mce.c revision f3c6ea1b06c71b43f751b36bd99345369fe911af
1/*
2 * Machine check handler.
3 *
4 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5 * Rest from unknown author(s).
6 * 2004 Andi Kleen. Rewrote most of it.
7 * Copyright 2008 Intel Corporation
8 * Author: Andi Kleen
9 */
10#include <linux/thread_info.h>
11#include <linux/capability.h>
12#include <linux/miscdevice.h>
13#include <linux/interrupt.h>
14#include <linux/ratelimit.h>
15#include <linux/kallsyms.h>
16#include <linux/rcupdate.h>
17#include <linux/kobject.h>
18#include <linux/uaccess.h>
19#include <linux/kdebug.h>
20#include <linux/kernel.h>
21#include <linux/percpu.h>
22#include <linux/string.h>
23#include <linux/sysdev.h>
24#include <linux/syscore_ops.h>
25#include <linux/delay.h>
26#include <linux/ctype.h>
27#include <linux/sched.h>
28#include <linux/sysfs.h>
29#include <linux/types.h>
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/kmod.h>
33#include <linux/poll.h>
34#include <linux/nmi.h>
35#include <linux/cpu.h>
36#include <linux/smp.h>
37#include <linux/fs.h>
38#include <linux/mm.h>
39#include <linux/debugfs.h>
40#include <linux/edac_mce.h>
41
42#include <asm/processor.h>
43#include <asm/hw_irq.h>
44#include <asm/apic.h>
45#include <asm/idle.h>
46#include <asm/ipi.h>
47#include <asm/mce.h>
48#include <asm/msr.h>
49
50#include "mce-internal.h"
51
52static DEFINE_MUTEX(mce_read_mutex);
53
54#define rcu_dereference_check_mce(p) \
55	rcu_dereference_index_check((p), \
56			      rcu_read_lock_sched_held() || \
57			      lockdep_is_held(&mce_read_mutex))
58
59#define CREATE_TRACE_POINTS
60#include <trace/events/mce.h>
61
62int mce_disabled __read_mostly;
63
64#define MISC_MCELOG_MINOR	227
65
66#define SPINUNIT 100	/* 100ns */
67
68atomic_t mce_entry;
69
70DEFINE_PER_CPU(unsigned, mce_exception_count);
71
72/*
73 * Tolerant levels:
74 *   0: always panic on uncorrected errors, log corrected errors
75 *   1: panic or SIGBUS on uncorrected errors, log corrected errors
76 *   2: SIGBUS or log uncorrected errors (if possible), log corrected errors
77 *   3: never panic or SIGBUS, log all errors (for testing only)
78 */
79static int			tolerant		__read_mostly = 1;
80static int			banks			__read_mostly;
81static int			rip_msr			__read_mostly;
82static int			mce_bootlog		__read_mostly = -1;
83static int			monarch_timeout		__read_mostly = -1;
84static int			mce_panic_timeout	__read_mostly;
85static int			mce_dont_log_ce		__read_mostly;
86int				mce_cmci_disabled	__read_mostly;
87int				mce_ignore_ce		__read_mostly;
88int				mce_ser			__read_mostly;
89
90struct mce_bank                *mce_banks		__read_mostly;
91
92/* User mode helper program triggered by machine check event */
93static unsigned long		mce_need_notify;
94static char			mce_helper[128];
95static char			*mce_helper_argv[2] = { mce_helper, NULL };
96
97static DECLARE_WAIT_QUEUE_HEAD(mce_wait);
98static DEFINE_PER_CPU(struct mce, mces_seen);
99static int			cpu_missing;
100
101/*
102 * CPU/chipset specific EDAC code can register a notifier call here to print
103 * MCE errors in a human-readable form.
104 */
105ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
106EXPORT_SYMBOL_GPL(x86_mce_decoder_chain);
107
108static int default_decode_mce(struct notifier_block *nb, unsigned long val,
109			       void *data)
110{
111	pr_emerg(HW_ERR "No human readable MCE decoding support on this CPU type.\n");
112	pr_emerg(HW_ERR "Run the message through 'mcelog --ascii' to decode.\n");
113
114	return NOTIFY_STOP;
115}
116
117static struct notifier_block mce_dec_nb = {
118	.notifier_call = default_decode_mce,
119	.priority      = -1,
120};
121
122/* MCA banks polled by the period polling timer for corrected events */
123DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
124	[0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
125};
126
127static DEFINE_PER_CPU(struct work_struct, mce_work);
128
129/* Do initial initialization of a struct mce */
130void mce_setup(struct mce *m)
131{
132	memset(m, 0, sizeof(struct mce));
133	m->cpu = m->extcpu = smp_processor_id();
134	rdtscll(m->tsc);
135	/* We hope get_seconds stays lockless */
136	m->time = get_seconds();
137	m->cpuvendor = boot_cpu_data.x86_vendor;
138	m->cpuid = cpuid_eax(1);
139#ifdef CONFIG_SMP
140	m->socketid = cpu_data(m->extcpu).phys_proc_id;
141#endif
142	m->apicid = cpu_data(m->extcpu).initial_apicid;
143	rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
144}
145
146DEFINE_PER_CPU(struct mce, injectm);
147EXPORT_PER_CPU_SYMBOL_GPL(injectm);
148
149/*
150 * Lockless MCE logging infrastructure.
151 * This avoids deadlocks on printk locks without having to break locks. Also
152 * separate MCEs from kernel messages to avoid bogus bug reports.
153 */
154
155static struct mce_log mcelog = {
156	.signature	= MCE_LOG_SIGNATURE,
157	.len		= MCE_LOG_LEN,
158	.recordlen	= sizeof(struct mce),
159};
160
161void mce_log(struct mce *mce)
162{
163	unsigned next, entry;
164
165	/* Emit the trace record: */
166	trace_mce_record(mce);
167
168	mce->finished = 0;
169	wmb();
170	for (;;) {
171		entry = rcu_dereference_check_mce(mcelog.next);
172		for (;;) {
173			/*
174			 * If edac_mce is enabled, it will check the error type
175			 * and will process it, if it is a known error.
176			 * Otherwise, the error will be sent through mcelog
177			 * interface
178			 */
179			if (edac_mce_parse(mce))
180				return;
181
182			/*
183			 * When the buffer fills up discard new entries.
184			 * Assume that the earlier errors are the more
185			 * interesting ones:
186			 */
187			if (entry >= MCE_LOG_LEN) {
188				set_bit(MCE_OVERFLOW,
189					(unsigned long *)&mcelog.flags);
190				return;
191			}
192			/* Old left over entry. Skip: */
193			if (mcelog.entry[entry].finished) {
194				entry++;
195				continue;
196			}
197			break;
198		}
199		smp_rmb();
200		next = entry + 1;
201		if (cmpxchg(&mcelog.next, entry, next) == entry)
202			break;
203	}
204	memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
205	wmb();
206	mcelog.entry[entry].finished = 1;
207	wmb();
208
209	mce->finished = 1;
210	set_bit(0, &mce_need_notify);
211}
212
213static void print_mce(struct mce *m)
214{
215	pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
216	       m->extcpu, m->mcgstatus, m->bank, m->status);
217
218	if (m->ip) {
219		pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
220			!(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
221				m->cs, m->ip);
222
223		if (m->cs == __KERNEL_CS)
224			print_symbol("{%s}", m->ip);
225		pr_cont("\n");
226	}
227
228	pr_emerg(HW_ERR "TSC %llx ", m->tsc);
229	if (m->addr)
230		pr_cont("ADDR %llx ", m->addr);
231	if (m->misc)
232		pr_cont("MISC %llx ", m->misc);
233
234	pr_cont("\n");
235	pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
236		m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid);
237
238	/*
239	 * Print out human-readable details about the MCE error,
240	 * (if the CPU has an implementation for that)
241	 */
242	atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
243}
244
245#define PANIC_TIMEOUT 5 /* 5 seconds */
246
247static atomic_t mce_paniced;
248
249static int fake_panic;
250static atomic_t mce_fake_paniced;
251
252/* Panic in progress. Enable interrupts and wait for final IPI */
253static void wait_for_panic(void)
254{
255	long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
256
257	preempt_disable();
258	local_irq_enable();
259	while (timeout-- > 0)
260		udelay(1);
261	if (panic_timeout == 0)
262		panic_timeout = mce_panic_timeout;
263	panic("Panicing machine check CPU died");
264}
265
266static void mce_panic(char *msg, struct mce *final, char *exp)
267{
268	int i, apei_err = 0;
269
270	if (!fake_panic) {
271		/*
272		 * Make sure only one CPU runs in machine check panic
273		 */
274		if (atomic_inc_return(&mce_paniced) > 1)
275			wait_for_panic();
276		barrier();
277
278		bust_spinlocks(1);
279		console_verbose();
280	} else {
281		/* Don't log too much for fake panic */
282		if (atomic_inc_return(&mce_fake_paniced) > 1)
283			return;
284	}
285	/* First print corrected ones that are still unlogged */
286	for (i = 0; i < MCE_LOG_LEN; i++) {
287		struct mce *m = &mcelog.entry[i];
288		if (!(m->status & MCI_STATUS_VAL))
289			continue;
290		if (!(m->status & MCI_STATUS_UC)) {
291			print_mce(m);
292			if (!apei_err)
293				apei_err = apei_write_mce(m);
294		}
295	}
296	/* Now print uncorrected but with the final one last */
297	for (i = 0; i < MCE_LOG_LEN; i++) {
298		struct mce *m = &mcelog.entry[i];
299		if (!(m->status & MCI_STATUS_VAL))
300			continue;
301		if (!(m->status & MCI_STATUS_UC))
302			continue;
303		if (!final || memcmp(m, final, sizeof(struct mce))) {
304			print_mce(m);
305			if (!apei_err)
306				apei_err = apei_write_mce(m);
307		}
308	}
309	if (final) {
310		print_mce(final);
311		if (!apei_err)
312			apei_err = apei_write_mce(final);
313	}
314	if (cpu_missing)
315		pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
316	if (exp)
317		pr_emerg(HW_ERR "Machine check: %s\n", exp);
318	if (!fake_panic) {
319		if (panic_timeout == 0)
320			panic_timeout = mce_panic_timeout;
321		panic(msg);
322	} else
323		pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
324}
325
326/* Support code for software error injection */
327
328static int msr_to_offset(u32 msr)
329{
330	unsigned bank = __this_cpu_read(injectm.bank);
331
332	if (msr == rip_msr)
333		return offsetof(struct mce, ip);
334	if (msr == MSR_IA32_MCx_STATUS(bank))
335		return offsetof(struct mce, status);
336	if (msr == MSR_IA32_MCx_ADDR(bank))
337		return offsetof(struct mce, addr);
338	if (msr == MSR_IA32_MCx_MISC(bank))
339		return offsetof(struct mce, misc);
340	if (msr == MSR_IA32_MCG_STATUS)
341		return offsetof(struct mce, mcgstatus);
342	return -1;
343}
344
345/* MSR access wrappers used for error injection */
346static u64 mce_rdmsrl(u32 msr)
347{
348	u64 v;
349
350	if (__this_cpu_read(injectm.finished)) {
351		int offset = msr_to_offset(msr);
352
353		if (offset < 0)
354			return 0;
355		return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
356	}
357
358	if (rdmsrl_safe(msr, &v)) {
359		WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
360		/*
361		 * Return zero in case the access faulted. This should
362		 * not happen normally but can happen if the CPU does
363		 * something weird, or if the code is buggy.
364		 */
365		v = 0;
366	}
367
368	return v;
369}
370
371static void mce_wrmsrl(u32 msr, u64 v)
372{
373	if (__this_cpu_read(injectm.finished)) {
374		int offset = msr_to_offset(msr);
375
376		if (offset >= 0)
377			*(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
378		return;
379	}
380	wrmsrl(msr, v);
381}
382
383/*
384 * Simple lockless ring to communicate PFNs from the exception handler with the
385 * process context work function. This is vastly simplified because there's
386 * only a single reader and a single writer.
387 */
388#define MCE_RING_SIZE 16	/* we use one entry less */
389
390struct mce_ring {
391	unsigned short start;
392	unsigned short end;
393	unsigned long ring[MCE_RING_SIZE];
394};
395static DEFINE_PER_CPU(struct mce_ring, mce_ring);
396
397/* Runs with CPU affinity in workqueue */
398static int mce_ring_empty(void)
399{
400	struct mce_ring *r = &__get_cpu_var(mce_ring);
401
402	return r->start == r->end;
403}
404
405static int mce_ring_get(unsigned long *pfn)
406{
407	struct mce_ring *r;
408	int ret = 0;
409
410	*pfn = 0;
411	get_cpu();
412	r = &__get_cpu_var(mce_ring);
413	if (r->start == r->end)
414		goto out;
415	*pfn = r->ring[r->start];
416	r->start = (r->start + 1) % MCE_RING_SIZE;
417	ret = 1;
418out:
419	put_cpu();
420	return ret;
421}
422
423/* Always runs in MCE context with preempt off */
424static int mce_ring_add(unsigned long pfn)
425{
426	struct mce_ring *r = &__get_cpu_var(mce_ring);
427	unsigned next;
428
429	next = (r->end + 1) % MCE_RING_SIZE;
430	if (next == r->start)
431		return -1;
432	r->ring[r->end] = pfn;
433	wmb();
434	r->end = next;
435	return 0;
436}
437
438int mce_available(struct cpuinfo_x86 *c)
439{
440	if (mce_disabled)
441		return 0;
442	return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
443}
444
445static void mce_schedule_work(void)
446{
447	if (!mce_ring_empty()) {
448		struct work_struct *work = &__get_cpu_var(mce_work);
449		if (!work_pending(work))
450			schedule_work(work);
451	}
452}
453
454/*
455 * Get the address of the instruction at the time of the machine check
456 * error.
457 */
458static inline void mce_get_rip(struct mce *m, struct pt_regs *regs)
459{
460
461	if (regs && (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV))) {
462		m->ip = regs->ip;
463		m->cs = regs->cs;
464	} else {
465		m->ip = 0;
466		m->cs = 0;
467	}
468	if (rip_msr)
469		m->ip = mce_rdmsrl(rip_msr);
470}
471
472#ifdef CONFIG_X86_LOCAL_APIC
473/*
474 * Called after interrupts have been reenabled again
475 * when a MCE happened during an interrupts off region
476 * in the kernel.
477 */
478asmlinkage void smp_mce_self_interrupt(struct pt_regs *regs)
479{
480	ack_APIC_irq();
481	exit_idle();
482	irq_enter();
483	mce_notify_irq();
484	mce_schedule_work();
485	irq_exit();
486}
487#endif
488
489static void mce_report_event(struct pt_regs *regs)
490{
491	if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
492		mce_notify_irq();
493		/*
494		 * Triggering the work queue here is just an insurance
495		 * policy in case the syscall exit notify handler
496		 * doesn't run soon enough or ends up running on the
497		 * wrong CPU (can happen when audit sleeps)
498		 */
499		mce_schedule_work();
500		return;
501	}
502
503#ifdef CONFIG_X86_LOCAL_APIC
504	/*
505	 * Without APIC do not notify. The event will be picked
506	 * up eventually.
507	 */
508	if (!cpu_has_apic)
509		return;
510
511	/*
512	 * When interrupts are disabled we cannot use
513	 * kernel services safely. Trigger an self interrupt
514	 * through the APIC to instead do the notification
515	 * after interrupts are reenabled again.
516	 */
517	apic->send_IPI_self(MCE_SELF_VECTOR);
518
519	/*
520	 * Wait for idle afterwards again so that we don't leave the
521	 * APIC in a non idle state because the normal APIC writes
522	 * cannot exclude us.
523	 */
524	apic_wait_icr_idle();
525#endif
526}
527
528DEFINE_PER_CPU(unsigned, mce_poll_count);
529
530/*
531 * Poll for corrected events or events that happened before reset.
532 * Those are just logged through /dev/mcelog.
533 *
534 * This is executed in standard interrupt context.
535 *
536 * Note: spec recommends to panic for fatal unsignalled
537 * errors here. However this would be quite problematic --
538 * we would need to reimplement the Monarch handling and
539 * it would mess up the exclusion between exception handler
540 * and poll hander -- * so we skip this for now.
541 * These cases should not happen anyways, or only when the CPU
542 * is already totally * confused. In this case it's likely it will
543 * not fully execute the machine check handler either.
544 */
545void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
546{
547	struct mce m;
548	int i;
549
550	percpu_inc(mce_poll_count);
551
552	mce_setup(&m);
553
554	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
555	for (i = 0; i < banks; i++) {
556		if (!mce_banks[i].ctl || !test_bit(i, *b))
557			continue;
558
559		m.misc = 0;
560		m.addr = 0;
561		m.bank = i;
562		m.tsc = 0;
563
564		barrier();
565		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
566		if (!(m.status & MCI_STATUS_VAL))
567			continue;
568
569		/*
570		 * Uncorrected or signalled events are handled by the exception
571		 * handler when it is enabled, so don't process those here.
572		 *
573		 * TBD do the same check for MCI_STATUS_EN here?
574		 */
575		if (!(flags & MCP_UC) &&
576		    (m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)))
577			continue;
578
579		if (m.status & MCI_STATUS_MISCV)
580			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
581		if (m.status & MCI_STATUS_ADDRV)
582			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
583
584		if (!(flags & MCP_TIMESTAMP))
585			m.tsc = 0;
586		/*
587		 * Don't get the IP here because it's unlikely to
588		 * have anything to do with the actual error location.
589		 */
590		if (!(flags & MCP_DONTLOG) && !mce_dont_log_ce) {
591			mce_log(&m);
592			atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, &m);
593			add_taint(TAINT_MACHINE_CHECK);
594		}
595
596		/*
597		 * Clear state for this bank.
598		 */
599		mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
600	}
601
602	/*
603	 * Don't clear MCG_STATUS here because it's only defined for
604	 * exceptions.
605	 */
606
607	sync_core();
608}
609EXPORT_SYMBOL_GPL(machine_check_poll);
610
611/*
612 * Do a quick check if any of the events requires a panic.
613 * This decides if we keep the events around or clear them.
614 */
615static int mce_no_way_out(struct mce *m, char **msg)
616{
617	int i;
618
619	for (i = 0; i < banks; i++) {
620		m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
621		if (mce_severity(m, tolerant, msg) >= MCE_PANIC_SEVERITY)
622			return 1;
623	}
624	return 0;
625}
626
627/*
628 * Variable to establish order between CPUs while scanning.
629 * Each CPU spins initially until executing is equal its number.
630 */
631static atomic_t mce_executing;
632
633/*
634 * Defines order of CPUs on entry. First CPU becomes Monarch.
635 */
636static atomic_t mce_callin;
637
638/*
639 * Check if a timeout waiting for other CPUs happened.
640 */
641static int mce_timed_out(u64 *t)
642{
643	/*
644	 * The others already did panic for some reason.
645	 * Bail out like in a timeout.
646	 * rmb() to tell the compiler that system_state
647	 * might have been modified by someone else.
648	 */
649	rmb();
650	if (atomic_read(&mce_paniced))
651		wait_for_panic();
652	if (!monarch_timeout)
653		goto out;
654	if ((s64)*t < SPINUNIT) {
655		/* CHECKME: Make panic default for 1 too? */
656		if (tolerant < 1)
657			mce_panic("Timeout synchronizing machine check over CPUs",
658				  NULL, NULL);
659		cpu_missing = 1;
660		return 1;
661	}
662	*t -= SPINUNIT;
663out:
664	touch_nmi_watchdog();
665	return 0;
666}
667
668/*
669 * The Monarch's reign.  The Monarch is the CPU who entered
670 * the machine check handler first. It waits for the others to
671 * raise the exception too and then grades them. When any
672 * error is fatal panic. Only then let the others continue.
673 *
674 * The other CPUs entering the MCE handler will be controlled by the
675 * Monarch. They are called Subjects.
676 *
677 * This way we prevent any potential data corruption in a unrecoverable case
678 * and also makes sure always all CPU's errors are examined.
679 *
680 * Also this detects the case of a machine check event coming from outer
681 * space (not detected by any CPUs) In this case some external agent wants
682 * us to shut down, so panic too.
683 *
684 * The other CPUs might still decide to panic if the handler happens
685 * in a unrecoverable place, but in this case the system is in a semi-stable
686 * state and won't corrupt anything by itself. It's ok to let the others
687 * continue for a bit first.
688 *
689 * All the spin loops have timeouts; when a timeout happens a CPU
690 * typically elects itself to be Monarch.
691 */
692static void mce_reign(void)
693{
694	int cpu;
695	struct mce *m = NULL;
696	int global_worst = 0;
697	char *msg = NULL;
698	char *nmsg = NULL;
699
700	/*
701	 * This CPU is the Monarch and the other CPUs have run
702	 * through their handlers.
703	 * Grade the severity of the errors of all the CPUs.
704	 */
705	for_each_possible_cpu(cpu) {
706		int severity = mce_severity(&per_cpu(mces_seen, cpu), tolerant,
707					    &nmsg);
708		if (severity > global_worst) {
709			msg = nmsg;
710			global_worst = severity;
711			m = &per_cpu(mces_seen, cpu);
712		}
713	}
714
715	/*
716	 * Cannot recover? Panic here then.
717	 * This dumps all the mces in the log buffer and stops the
718	 * other CPUs.
719	 */
720	if (m && global_worst >= MCE_PANIC_SEVERITY && tolerant < 3)
721		mce_panic("Fatal Machine check", m, msg);
722
723	/*
724	 * For UC somewhere we let the CPU who detects it handle it.
725	 * Also must let continue the others, otherwise the handling
726	 * CPU could deadlock on a lock.
727	 */
728
729	/*
730	 * No machine check event found. Must be some external
731	 * source or one CPU is hung. Panic.
732	 */
733	if (global_worst <= MCE_KEEP_SEVERITY && tolerant < 3)
734		mce_panic("Machine check from unknown source", NULL, NULL);
735
736	/*
737	 * Now clear all the mces_seen so that they don't reappear on
738	 * the next mce.
739	 */
740	for_each_possible_cpu(cpu)
741		memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
742}
743
744static atomic_t global_nwo;
745
746/*
747 * Start of Monarch synchronization. This waits until all CPUs have
748 * entered the exception handler and then determines if any of them
749 * saw a fatal event that requires panic. Then it executes them
750 * in the entry order.
751 * TBD double check parallel CPU hotunplug
752 */
753static int mce_start(int *no_way_out)
754{
755	int order;
756	int cpus = num_online_cpus();
757	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
758
759	if (!timeout)
760		return -1;
761
762	atomic_add(*no_way_out, &global_nwo);
763	/*
764	 * global_nwo should be updated before mce_callin
765	 */
766	smp_wmb();
767	order = atomic_inc_return(&mce_callin);
768
769	/*
770	 * Wait for everyone.
771	 */
772	while (atomic_read(&mce_callin) != cpus) {
773		if (mce_timed_out(&timeout)) {
774			atomic_set(&global_nwo, 0);
775			return -1;
776		}
777		ndelay(SPINUNIT);
778	}
779
780	/*
781	 * mce_callin should be read before global_nwo
782	 */
783	smp_rmb();
784
785	if (order == 1) {
786		/*
787		 * Monarch: Starts executing now, the others wait.
788		 */
789		atomic_set(&mce_executing, 1);
790	} else {
791		/*
792		 * Subject: Now start the scanning loop one by one in
793		 * the original callin order.
794		 * This way when there are any shared banks it will be
795		 * only seen by one CPU before cleared, avoiding duplicates.
796		 */
797		while (atomic_read(&mce_executing) < order) {
798			if (mce_timed_out(&timeout)) {
799				atomic_set(&global_nwo, 0);
800				return -1;
801			}
802			ndelay(SPINUNIT);
803		}
804	}
805
806	/*
807	 * Cache the global no_way_out state.
808	 */
809	*no_way_out = atomic_read(&global_nwo);
810
811	return order;
812}
813
814/*
815 * Synchronize between CPUs after main scanning loop.
816 * This invokes the bulk of the Monarch processing.
817 */
818static int mce_end(int order)
819{
820	int ret = -1;
821	u64 timeout = (u64)monarch_timeout * NSEC_PER_USEC;
822
823	if (!timeout)
824		goto reset;
825	if (order < 0)
826		goto reset;
827
828	/*
829	 * Allow others to run.
830	 */
831	atomic_inc(&mce_executing);
832
833	if (order == 1) {
834		/* CHECKME: Can this race with a parallel hotplug? */
835		int cpus = num_online_cpus();
836
837		/*
838		 * Monarch: Wait for everyone to go through their scanning
839		 * loops.
840		 */
841		while (atomic_read(&mce_executing) <= cpus) {
842			if (mce_timed_out(&timeout))
843				goto reset;
844			ndelay(SPINUNIT);
845		}
846
847		mce_reign();
848		barrier();
849		ret = 0;
850	} else {
851		/*
852		 * Subject: Wait for Monarch to finish.
853		 */
854		while (atomic_read(&mce_executing) != 0) {
855			if (mce_timed_out(&timeout))
856				goto reset;
857			ndelay(SPINUNIT);
858		}
859
860		/*
861		 * Don't reset anything. That's done by the Monarch.
862		 */
863		return 0;
864	}
865
866	/*
867	 * Reset all global state.
868	 */
869reset:
870	atomic_set(&global_nwo, 0);
871	atomic_set(&mce_callin, 0);
872	barrier();
873
874	/*
875	 * Let others run again.
876	 */
877	atomic_set(&mce_executing, 0);
878	return ret;
879}
880
881/*
882 * Check if the address reported by the CPU is in a format we can parse.
883 * It would be possible to add code for most other cases, but all would
884 * be somewhat complicated (e.g. segment offset would require an instruction
885 * parser). So only support physical addresses up to page granuality for now.
886 */
887static int mce_usable_address(struct mce *m)
888{
889	if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
890		return 0;
891	if ((m->misc & 0x3f) > PAGE_SHIFT)
892		return 0;
893	if (((m->misc >> 6) & 7) != MCM_ADDR_PHYS)
894		return 0;
895	return 1;
896}
897
898static void mce_clear_state(unsigned long *toclear)
899{
900	int i;
901
902	for (i = 0; i < banks; i++) {
903		if (test_bit(i, toclear))
904			mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
905	}
906}
907
908/*
909 * The actual machine check handler. This only handles real
910 * exceptions when something got corrupted coming in through int 18.
911 *
912 * This is executed in NMI context not subject to normal locking rules. This
913 * implies that most kernel services cannot be safely used. Don't even
914 * think about putting a printk in there!
915 *
916 * On Intel systems this is entered on all CPUs in parallel through
917 * MCE broadcast. However some CPUs might be broken beyond repair,
918 * so be always careful when synchronizing with others.
919 */
920void do_machine_check(struct pt_regs *regs, long error_code)
921{
922	struct mce m, *final;
923	int i;
924	int worst = 0;
925	int severity;
926	/*
927	 * Establish sequential order between the CPUs entering the machine
928	 * check handler.
929	 */
930	int order;
931	/*
932	 * If no_way_out gets set, there is no safe way to recover from this
933	 * MCE.  If tolerant is cranked up, we'll try anyway.
934	 */
935	int no_way_out = 0;
936	/*
937	 * If kill_it gets set, there might be a way to recover from this
938	 * error.
939	 */
940	int kill_it = 0;
941	DECLARE_BITMAP(toclear, MAX_NR_BANKS);
942	char *msg = "Unknown";
943
944	atomic_inc(&mce_entry);
945
946	percpu_inc(mce_exception_count);
947
948	if (notify_die(DIE_NMI, "machine check", regs, error_code,
949			   18, SIGKILL) == NOTIFY_STOP)
950		goto out;
951	if (!banks)
952		goto out;
953
954	mce_setup(&m);
955
956	m.mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
957	final = &__get_cpu_var(mces_seen);
958	*final = m;
959
960	no_way_out = mce_no_way_out(&m, &msg);
961
962	barrier();
963
964	/*
965	 * When no restart IP must always kill or panic.
966	 */
967	if (!(m.mcgstatus & MCG_STATUS_RIPV))
968		kill_it = 1;
969
970	/*
971	 * Go through all the banks in exclusion of the other CPUs.
972	 * This way we don't report duplicated events on shared banks
973	 * because the first one to see it will clear it.
974	 */
975	order = mce_start(&no_way_out);
976	for (i = 0; i < banks; i++) {
977		__clear_bit(i, toclear);
978		if (!mce_banks[i].ctl)
979			continue;
980
981		m.misc = 0;
982		m.addr = 0;
983		m.bank = i;
984
985		m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
986		if ((m.status & MCI_STATUS_VAL) == 0)
987			continue;
988
989		/*
990		 * Non uncorrected or non signaled errors are handled by
991		 * machine_check_poll. Leave them alone, unless this panics.
992		 */
993		if (!(m.status & (mce_ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
994			!no_way_out)
995			continue;
996
997		/*
998		 * Set taint even when machine check was not enabled.
999		 */
1000		add_taint(TAINT_MACHINE_CHECK);
1001
1002		severity = mce_severity(&m, tolerant, NULL);
1003
1004		/*
1005		 * When machine check was for corrected handler don't touch,
1006		 * unless we're panicing.
1007		 */
1008		if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1009			continue;
1010		__set_bit(i, toclear);
1011		if (severity == MCE_NO_SEVERITY) {
1012			/*
1013			 * Machine check event was not enabled. Clear, but
1014			 * ignore.
1015			 */
1016			continue;
1017		}
1018
1019		/*
1020		 * Kill on action required.
1021		 */
1022		if (severity == MCE_AR_SEVERITY)
1023			kill_it = 1;
1024
1025		if (m.status & MCI_STATUS_MISCV)
1026			m.misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
1027		if (m.status & MCI_STATUS_ADDRV)
1028			m.addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
1029
1030		/*
1031		 * Action optional error. Queue address for later processing.
1032		 * When the ring overflows we just ignore the AO error.
1033		 * RED-PEN add some logging mechanism when
1034		 * usable_address or mce_add_ring fails.
1035		 * RED-PEN don't ignore overflow for tolerant == 0
1036		 */
1037		if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1038			mce_ring_add(m.addr >> PAGE_SHIFT);
1039
1040		mce_get_rip(&m, regs);
1041		mce_log(&m);
1042
1043		if (severity > worst) {
1044			*final = m;
1045			worst = severity;
1046		}
1047	}
1048
1049	if (!no_way_out)
1050		mce_clear_state(toclear);
1051
1052	/*
1053	 * Do most of the synchronization with other CPUs.
1054	 * When there's any problem use only local no_way_out state.
1055	 */
1056	if (mce_end(order) < 0)
1057		no_way_out = worst >= MCE_PANIC_SEVERITY;
1058
1059	/*
1060	 * If we have decided that we just CAN'T continue, and the user
1061	 * has not set tolerant to an insane level, give up and die.
1062	 *
1063	 * This is mainly used in the case when the system doesn't
1064	 * support MCE broadcasting or it has been disabled.
1065	 */
1066	if (no_way_out && tolerant < 3)
1067		mce_panic("Fatal machine check on current CPU", final, msg);
1068
1069	/*
1070	 * If the error seems to be unrecoverable, something should be
1071	 * done.  Try to kill as little as possible.  If we can kill just
1072	 * one task, do that.  If the user has set the tolerance very
1073	 * high, don't try to do anything at all.
1074	 */
1075
1076	if (kill_it && tolerant < 3)
1077		force_sig(SIGBUS, current);
1078
1079	/* notify userspace ASAP */
1080	set_thread_flag(TIF_MCE_NOTIFY);
1081
1082	if (worst > 0)
1083		mce_report_event(regs);
1084	mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1085out:
1086	atomic_dec(&mce_entry);
1087	sync_core();
1088}
1089EXPORT_SYMBOL_GPL(do_machine_check);
1090
1091/* dummy to break dependency. actual code is in mm/memory-failure.c */
1092void __attribute__((weak)) memory_failure(unsigned long pfn, int vector)
1093{
1094	printk(KERN_ERR "Action optional memory failure at %lx ignored\n", pfn);
1095}
1096
1097/*
1098 * Called after mce notification in process context. This code
1099 * is allowed to sleep. Call the high level VM handler to process
1100 * any corrupted pages.
1101 * Assume that the work queue code only calls this one at a time
1102 * per CPU.
1103 * Note we don't disable preemption, so this code might run on the wrong
1104 * CPU. In this case the event is picked up by the scheduled work queue.
1105 * This is merely a fast path to expedite processing in some common
1106 * cases.
1107 */
1108void mce_notify_process(void)
1109{
1110	unsigned long pfn;
1111	mce_notify_irq();
1112	while (mce_ring_get(&pfn))
1113		memory_failure(pfn, MCE_VECTOR);
1114}
1115
1116static void mce_process_work(struct work_struct *dummy)
1117{
1118	mce_notify_process();
1119}
1120
1121#ifdef CONFIG_X86_MCE_INTEL
1122/***
1123 * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1124 * @cpu: The CPU on which the event occurred.
1125 * @status: Event status information
1126 *
1127 * This function should be called by the thermal interrupt after the
1128 * event has been processed and the decision was made to log the event
1129 * further.
1130 *
1131 * The status parameter will be saved to the 'status' field of 'struct mce'
1132 * and historically has been the register value of the
1133 * MSR_IA32_THERMAL_STATUS (Intel) msr.
1134 */
1135void mce_log_therm_throt_event(__u64 status)
1136{
1137	struct mce m;
1138
1139	mce_setup(&m);
1140	m.bank = MCE_THERMAL_BANK;
1141	m.status = status;
1142	mce_log(&m);
1143}
1144#endif /* CONFIG_X86_MCE_INTEL */
1145
1146/*
1147 * Periodic polling timer for "silent" machine check errors.  If the
1148 * poller finds an MCE, poll 2x faster.  When the poller finds no more
1149 * errors, poll 2x slower (up to check_interval seconds).
1150 */
1151static int check_interval = 5 * 60; /* 5 minutes */
1152
1153static DEFINE_PER_CPU(int, mce_next_interval); /* in jiffies */
1154static DEFINE_PER_CPU(struct timer_list, mce_timer);
1155
1156static void mce_start_timer(unsigned long data)
1157{
1158	struct timer_list *t = &per_cpu(mce_timer, data);
1159	int *n;
1160
1161	WARN_ON(smp_processor_id() != data);
1162
1163	if (mce_available(__this_cpu_ptr(&cpu_info))) {
1164		machine_check_poll(MCP_TIMESTAMP,
1165				&__get_cpu_var(mce_poll_banks));
1166	}
1167
1168	/*
1169	 * Alert userspace if needed.  If we logged an MCE, reduce the
1170	 * polling interval, otherwise increase the polling interval.
1171	 */
1172	n = &__get_cpu_var(mce_next_interval);
1173	if (mce_notify_irq())
1174		*n = max(*n/2, HZ/100);
1175	else
1176		*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
1177
1178	t->expires = jiffies + *n;
1179	add_timer_on(t, smp_processor_id());
1180}
1181
1182static void mce_do_trigger(struct work_struct *work)
1183{
1184	call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1185}
1186
1187static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1188
1189/*
1190 * Notify the user(s) about new machine check events.
1191 * Can be called from interrupt context, but not from machine check/NMI
1192 * context.
1193 */
1194int mce_notify_irq(void)
1195{
1196	/* Not more than two messages every minute */
1197	static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1198
1199	clear_thread_flag(TIF_MCE_NOTIFY);
1200
1201	if (test_and_clear_bit(0, &mce_need_notify)) {
1202		wake_up_interruptible(&mce_wait);
1203
1204		/*
1205		 * There is no risk of missing notifications because
1206		 * work_pending is always cleared before the function is
1207		 * executed.
1208		 */
1209		if (mce_helper[0] && !work_pending(&mce_trigger_work))
1210			schedule_work(&mce_trigger_work);
1211
1212		if (__ratelimit(&ratelimit))
1213			pr_info(HW_ERR "Machine check events logged\n");
1214
1215		return 1;
1216	}
1217	return 0;
1218}
1219EXPORT_SYMBOL_GPL(mce_notify_irq);
1220
1221static int __cpuinit __mcheck_cpu_mce_banks_init(void)
1222{
1223	int i;
1224
1225	mce_banks = kzalloc(banks * sizeof(struct mce_bank), GFP_KERNEL);
1226	if (!mce_banks)
1227		return -ENOMEM;
1228	for (i = 0; i < banks; i++) {
1229		struct mce_bank *b = &mce_banks[i];
1230
1231		b->ctl = -1ULL;
1232		b->init = 1;
1233	}
1234	return 0;
1235}
1236
1237/*
1238 * Initialize Machine Checks for a CPU.
1239 */
1240static int __cpuinit __mcheck_cpu_cap_init(void)
1241{
1242	unsigned b;
1243	u64 cap;
1244
1245	rdmsrl(MSR_IA32_MCG_CAP, cap);
1246
1247	b = cap & MCG_BANKCNT_MASK;
1248	if (!banks)
1249		printk(KERN_INFO "mce: CPU supports %d MCE banks\n", b);
1250
1251	if (b > MAX_NR_BANKS) {
1252		printk(KERN_WARNING
1253		       "MCE: Using only %u machine check banks out of %u\n",
1254			MAX_NR_BANKS, b);
1255		b = MAX_NR_BANKS;
1256	}
1257
1258	/* Don't support asymmetric configurations today */
1259	WARN_ON(banks != 0 && b != banks);
1260	banks = b;
1261	if (!mce_banks) {
1262		int err = __mcheck_cpu_mce_banks_init();
1263
1264		if (err)
1265			return err;
1266	}
1267
1268	/* Use accurate RIP reporting if available. */
1269	if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1270		rip_msr = MSR_IA32_MCG_EIP;
1271
1272	if (cap & MCG_SER_P)
1273		mce_ser = 1;
1274
1275	return 0;
1276}
1277
1278static void __mcheck_cpu_init_generic(void)
1279{
1280	mce_banks_t all_banks;
1281	u64 cap;
1282	int i;
1283
1284	/*
1285	 * Log the machine checks left over from the previous reset.
1286	 */
1287	bitmap_fill(all_banks, MAX_NR_BANKS);
1288	machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
1289
1290	set_in_cr4(X86_CR4_MCE);
1291
1292	rdmsrl(MSR_IA32_MCG_CAP, cap);
1293	if (cap & MCG_CTL_P)
1294		wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1295
1296	for (i = 0; i < banks; i++) {
1297		struct mce_bank *b = &mce_banks[i];
1298
1299		if (!b->init)
1300			continue;
1301		wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1302		wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1303	}
1304}
1305
1306/* Add per CPU specific workarounds here */
1307static int __cpuinit __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1308{
1309	if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1310		pr_info("MCE: unknown CPU type - not enabling MCE support.\n");
1311		return -EOPNOTSUPP;
1312	}
1313
1314	/* This should be disabled by the BIOS, but isn't always */
1315	if (c->x86_vendor == X86_VENDOR_AMD) {
1316		if (c->x86 == 15 && banks > 4) {
1317			/*
1318			 * disable GART TBL walk error reporting, which
1319			 * trips off incorrectly with the IOMMU & 3ware
1320			 * & Cerberus:
1321			 */
1322			clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1323		}
1324		if (c->x86 <= 17 && mce_bootlog < 0) {
1325			/*
1326			 * Lots of broken BIOS around that don't clear them
1327			 * by default and leave crap in there. Don't log:
1328			 */
1329			mce_bootlog = 0;
1330		}
1331		/*
1332		 * Various K7s with broken bank 0 around. Always disable
1333		 * by default.
1334		 */
1335		 if (c->x86 == 6 && banks > 0)
1336			mce_banks[0].ctl = 0;
1337	}
1338
1339	if (c->x86_vendor == X86_VENDOR_INTEL) {
1340		/*
1341		 * SDM documents that on family 6 bank 0 should not be written
1342		 * because it aliases to another special BIOS controlled
1343		 * register.
1344		 * But it's not aliased anymore on model 0x1a+
1345		 * Don't ignore bank 0 completely because there could be a
1346		 * valid event later, merely don't write CTL0.
1347		 */
1348
1349		if (c->x86 == 6 && c->x86_model < 0x1A && banks > 0)
1350			mce_banks[0].init = 0;
1351
1352		/*
1353		 * All newer Intel systems support MCE broadcasting. Enable
1354		 * synchronization with a one second timeout.
1355		 */
1356		if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1357			monarch_timeout < 0)
1358			monarch_timeout = USEC_PER_SEC;
1359
1360		/*
1361		 * There are also broken BIOSes on some Pentium M and
1362		 * earlier systems:
1363		 */
1364		if (c->x86 == 6 && c->x86_model <= 13 && mce_bootlog < 0)
1365			mce_bootlog = 0;
1366	}
1367	if (monarch_timeout < 0)
1368		monarch_timeout = 0;
1369	if (mce_bootlog != 0)
1370		mce_panic_timeout = 30;
1371
1372	return 0;
1373}
1374
1375static void __cpuinit __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1376{
1377	if (c->x86 != 5)
1378		return;
1379	switch (c->x86_vendor) {
1380	case X86_VENDOR_INTEL:
1381		intel_p5_mcheck_init(c);
1382		break;
1383	case X86_VENDOR_CENTAUR:
1384		winchip_mcheck_init(c);
1385		break;
1386	}
1387}
1388
1389static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1390{
1391	switch (c->x86_vendor) {
1392	case X86_VENDOR_INTEL:
1393		mce_intel_feature_init(c);
1394		break;
1395	case X86_VENDOR_AMD:
1396		mce_amd_feature_init(c);
1397		break;
1398	default:
1399		break;
1400	}
1401}
1402
1403static void __mcheck_cpu_init_timer(void)
1404{
1405	struct timer_list *t = &__get_cpu_var(mce_timer);
1406	int *n = &__get_cpu_var(mce_next_interval);
1407
1408	setup_timer(t, mce_start_timer, smp_processor_id());
1409
1410	if (mce_ignore_ce)
1411		return;
1412
1413	*n = check_interval * HZ;
1414	if (!*n)
1415		return;
1416	t->expires = round_jiffies(jiffies + *n);
1417	add_timer_on(t, smp_processor_id());
1418}
1419
1420/* Handle unconfigured int18 (should never happen) */
1421static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1422{
1423	printk(KERN_ERR "CPU#%d: Unexpected int18 (Machine Check).\n",
1424	       smp_processor_id());
1425}
1426
1427/* Call the installed machine check handler for this CPU setup. */
1428void (*machine_check_vector)(struct pt_regs *, long error_code) =
1429						unexpected_machine_check;
1430
1431/*
1432 * Called for each booted CPU to set up machine checks.
1433 * Must be called with preempt off:
1434 */
1435void __cpuinit mcheck_cpu_init(struct cpuinfo_x86 *c)
1436{
1437	if (mce_disabled)
1438		return;
1439
1440	__mcheck_cpu_ancient_init(c);
1441
1442	if (!mce_available(c))
1443		return;
1444
1445	if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1446		mce_disabled = 1;
1447		return;
1448	}
1449
1450	machine_check_vector = do_machine_check;
1451
1452	__mcheck_cpu_init_generic();
1453	__mcheck_cpu_init_vendor(c);
1454	__mcheck_cpu_init_timer();
1455	INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1456
1457}
1458
1459/*
1460 * Character device to read and clear the MCE log.
1461 */
1462
1463static DEFINE_SPINLOCK(mce_state_lock);
1464static int		open_count;		/* #times opened */
1465static int		open_exclu;		/* already open exclusive? */
1466
1467static int mce_open(struct inode *inode, struct file *file)
1468{
1469	spin_lock(&mce_state_lock);
1470
1471	if (open_exclu || (open_count && (file->f_flags & O_EXCL))) {
1472		spin_unlock(&mce_state_lock);
1473
1474		return -EBUSY;
1475	}
1476
1477	if (file->f_flags & O_EXCL)
1478		open_exclu = 1;
1479	open_count++;
1480
1481	spin_unlock(&mce_state_lock);
1482
1483	return nonseekable_open(inode, file);
1484}
1485
1486static int mce_release(struct inode *inode, struct file *file)
1487{
1488	spin_lock(&mce_state_lock);
1489
1490	open_count--;
1491	open_exclu = 0;
1492
1493	spin_unlock(&mce_state_lock);
1494
1495	return 0;
1496}
1497
1498static void collect_tscs(void *data)
1499{
1500	unsigned long *cpu_tsc = (unsigned long *)data;
1501
1502	rdtscll(cpu_tsc[smp_processor_id()]);
1503}
1504
1505static int mce_apei_read_done;
1506
1507/* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1508static int __mce_read_apei(char __user **ubuf, size_t usize)
1509{
1510	int rc;
1511	u64 record_id;
1512	struct mce m;
1513
1514	if (usize < sizeof(struct mce))
1515		return -EINVAL;
1516
1517	rc = apei_read_mce(&m, &record_id);
1518	/* Error or no more MCE record */
1519	if (rc <= 0) {
1520		mce_apei_read_done = 1;
1521		return rc;
1522	}
1523	rc = -EFAULT;
1524	if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1525		return rc;
1526	/*
1527	 * In fact, we should have cleared the record after that has
1528	 * been flushed to the disk or sent to network in
1529	 * /sbin/mcelog, but we have no interface to support that now,
1530	 * so just clear it to avoid duplication.
1531	 */
1532	rc = apei_clear_mce(record_id);
1533	if (rc) {
1534		mce_apei_read_done = 1;
1535		return rc;
1536	}
1537	*ubuf += sizeof(struct mce);
1538
1539	return 0;
1540}
1541
1542static ssize_t mce_read(struct file *filp, char __user *ubuf, size_t usize,
1543			loff_t *off)
1544{
1545	char __user *buf = ubuf;
1546	unsigned long *cpu_tsc;
1547	unsigned prev, next;
1548	int i, err;
1549
1550	cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1551	if (!cpu_tsc)
1552		return -ENOMEM;
1553
1554	mutex_lock(&mce_read_mutex);
1555
1556	if (!mce_apei_read_done) {
1557		err = __mce_read_apei(&buf, usize);
1558		if (err || buf != ubuf)
1559			goto out;
1560	}
1561
1562	next = rcu_dereference_check_mce(mcelog.next);
1563
1564	/* Only supports full reads right now */
1565	err = -EINVAL;
1566	if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1567		goto out;
1568
1569	err = 0;
1570	prev = 0;
1571	do {
1572		for (i = prev; i < next; i++) {
1573			unsigned long start = jiffies;
1574
1575			while (!mcelog.entry[i].finished) {
1576				if (time_after_eq(jiffies, start + 2)) {
1577					memset(mcelog.entry + i, 0,
1578					       sizeof(struct mce));
1579					goto timeout;
1580				}
1581				cpu_relax();
1582			}
1583			smp_rmb();
1584			err |= copy_to_user(buf, mcelog.entry + i,
1585					    sizeof(struct mce));
1586			buf += sizeof(struct mce);
1587timeout:
1588			;
1589		}
1590
1591		memset(mcelog.entry + prev, 0,
1592		       (next - prev) * sizeof(struct mce));
1593		prev = next;
1594		next = cmpxchg(&mcelog.next, prev, 0);
1595	} while (next != prev);
1596
1597	synchronize_sched();
1598
1599	/*
1600	 * Collect entries that were still getting written before the
1601	 * synchronize.
1602	 */
1603	on_each_cpu(collect_tscs, cpu_tsc, 1);
1604
1605	for (i = next; i < MCE_LOG_LEN; i++) {
1606		if (mcelog.entry[i].finished &&
1607		    mcelog.entry[i].tsc < cpu_tsc[mcelog.entry[i].cpu]) {
1608			err |= copy_to_user(buf, mcelog.entry+i,
1609					    sizeof(struct mce));
1610			smp_rmb();
1611			buf += sizeof(struct mce);
1612			memset(&mcelog.entry[i], 0, sizeof(struct mce));
1613		}
1614	}
1615
1616	if (err)
1617		err = -EFAULT;
1618
1619out:
1620	mutex_unlock(&mce_read_mutex);
1621	kfree(cpu_tsc);
1622
1623	return err ? err : buf - ubuf;
1624}
1625
1626static unsigned int mce_poll(struct file *file, poll_table *wait)
1627{
1628	poll_wait(file, &mce_wait, wait);
1629	if (rcu_dereference_check_mce(mcelog.next))
1630		return POLLIN | POLLRDNORM;
1631	if (!mce_apei_read_done && apei_check_mce())
1632		return POLLIN | POLLRDNORM;
1633	return 0;
1634}
1635
1636static long mce_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1637{
1638	int __user *p = (int __user *)arg;
1639
1640	if (!capable(CAP_SYS_ADMIN))
1641		return -EPERM;
1642
1643	switch (cmd) {
1644	case MCE_GET_RECORD_LEN:
1645		return put_user(sizeof(struct mce), p);
1646	case MCE_GET_LOG_LEN:
1647		return put_user(MCE_LOG_LEN, p);
1648	case MCE_GETCLEAR_FLAGS: {
1649		unsigned flags;
1650
1651		do {
1652			flags = mcelog.flags;
1653		} while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1654
1655		return put_user(flags, p);
1656	}
1657	default:
1658		return -ENOTTY;
1659	}
1660}
1661
1662/* Modified in mce-inject.c, so not static or const */
1663struct file_operations mce_chrdev_ops = {
1664	.open			= mce_open,
1665	.release		= mce_release,
1666	.read			= mce_read,
1667	.poll			= mce_poll,
1668	.unlocked_ioctl		= mce_ioctl,
1669	.llseek		= no_llseek,
1670};
1671EXPORT_SYMBOL_GPL(mce_chrdev_ops);
1672
1673static struct miscdevice mce_log_device = {
1674	MISC_MCELOG_MINOR,
1675	"mcelog",
1676	&mce_chrdev_ops,
1677};
1678
1679/*
1680 * mce=off Disables machine check
1681 * mce=no_cmci Disables CMCI
1682 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1683 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1684 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1685 *	monarchtimeout is how long to wait for other CPUs on machine
1686 *	check, or 0 to not wait
1687 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1688 * mce=nobootlog Don't log MCEs from before booting.
1689 */
1690static int __init mcheck_enable(char *str)
1691{
1692	if (*str == 0) {
1693		enable_p5_mce();
1694		return 1;
1695	}
1696	if (*str == '=')
1697		str++;
1698	if (!strcmp(str, "off"))
1699		mce_disabled = 1;
1700	else if (!strcmp(str, "no_cmci"))
1701		mce_cmci_disabled = 1;
1702	else if (!strcmp(str, "dont_log_ce"))
1703		mce_dont_log_ce = 1;
1704	else if (!strcmp(str, "ignore_ce"))
1705		mce_ignore_ce = 1;
1706	else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
1707		mce_bootlog = (str[0] == 'b');
1708	else if (isdigit(str[0])) {
1709		get_option(&str, &tolerant);
1710		if (*str == ',') {
1711			++str;
1712			get_option(&str, &monarch_timeout);
1713		}
1714	} else {
1715		printk(KERN_INFO "mce argument %s ignored. Please use /sys\n",
1716		       str);
1717		return 0;
1718	}
1719	return 1;
1720}
1721__setup("mce", mcheck_enable);
1722
1723int __init mcheck_init(void)
1724{
1725	atomic_notifier_chain_register(&x86_mce_decoder_chain, &mce_dec_nb);
1726
1727	mcheck_intel_therm_init();
1728
1729	return 0;
1730}
1731
1732/*
1733 * Sysfs support
1734 */
1735
1736/*
1737 * Disable machine checks on suspend and shutdown. We can't really handle
1738 * them later.
1739 */
1740static int mce_disable_error_reporting(void)
1741{
1742	int i;
1743
1744	for (i = 0; i < banks; i++) {
1745		struct mce_bank *b = &mce_banks[i];
1746
1747		if (b->init)
1748			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
1749	}
1750	return 0;
1751}
1752
1753static int mce_suspend(void)
1754{
1755	return mce_disable_error_reporting();
1756}
1757
1758static void mce_shutdown(void)
1759{
1760	mce_disable_error_reporting();
1761}
1762
1763/*
1764 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
1765 * Only one CPU is active at this time, the others get re-added later using
1766 * CPU hotplug:
1767 */
1768static void mce_resume(void)
1769{
1770	__mcheck_cpu_init_generic();
1771	__mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
1772}
1773
1774static struct syscore_ops mce_syscore_ops = {
1775	.suspend	= mce_suspend,
1776	.shutdown	= mce_shutdown,
1777	.resume		= mce_resume,
1778};
1779
1780static void mce_cpu_restart(void *data)
1781{
1782	del_timer_sync(&__get_cpu_var(mce_timer));
1783	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1784		return;
1785	__mcheck_cpu_init_generic();
1786	__mcheck_cpu_init_timer();
1787}
1788
1789/* Reinit MCEs after user configuration changes */
1790static void mce_restart(void)
1791{
1792	on_each_cpu(mce_cpu_restart, NULL, 1);
1793}
1794
1795/* Toggle features for corrected errors */
1796static void mce_disable_ce(void *all)
1797{
1798	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1799		return;
1800	if (all)
1801		del_timer_sync(&__get_cpu_var(mce_timer));
1802	cmci_clear();
1803}
1804
1805static void mce_enable_ce(void *all)
1806{
1807	if (!mce_available(__this_cpu_ptr(&cpu_info)))
1808		return;
1809	cmci_reenable();
1810	cmci_recheck();
1811	if (all)
1812		__mcheck_cpu_init_timer();
1813}
1814
1815static struct sysdev_class mce_sysclass = {
1816	.name		= "machinecheck",
1817};
1818
1819DEFINE_PER_CPU(struct sys_device, mce_dev);
1820
1821__cpuinitdata
1822void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
1823
1824static inline struct mce_bank *attr_to_bank(struct sysdev_attribute *attr)
1825{
1826	return container_of(attr, struct mce_bank, attr);
1827}
1828
1829static ssize_t show_bank(struct sys_device *s, struct sysdev_attribute *attr,
1830			 char *buf)
1831{
1832	return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
1833}
1834
1835static ssize_t set_bank(struct sys_device *s, struct sysdev_attribute *attr,
1836			const char *buf, size_t size)
1837{
1838	u64 new;
1839
1840	if (strict_strtoull(buf, 0, &new) < 0)
1841		return -EINVAL;
1842
1843	attr_to_bank(attr)->ctl = new;
1844	mce_restart();
1845
1846	return size;
1847}
1848
1849static ssize_t
1850show_trigger(struct sys_device *s, struct sysdev_attribute *attr, char *buf)
1851{
1852	strcpy(buf, mce_helper);
1853	strcat(buf, "\n");
1854	return strlen(mce_helper) + 1;
1855}
1856
1857static ssize_t set_trigger(struct sys_device *s, struct sysdev_attribute *attr,
1858				const char *buf, size_t siz)
1859{
1860	char *p;
1861
1862	strncpy(mce_helper, buf, sizeof(mce_helper));
1863	mce_helper[sizeof(mce_helper)-1] = 0;
1864	p = strchr(mce_helper, '\n');
1865
1866	if (p)
1867		*p = 0;
1868
1869	return strlen(mce_helper) + !!p;
1870}
1871
1872static ssize_t set_ignore_ce(struct sys_device *s,
1873			     struct sysdev_attribute *attr,
1874			     const char *buf, size_t size)
1875{
1876	u64 new;
1877
1878	if (strict_strtoull(buf, 0, &new) < 0)
1879		return -EINVAL;
1880
1881	if (mce_ignore_ce ^ !!new) {
1882		if (new) {
1883			/* disable ce features */
1884			on_each_cpu(mce_disable_ce, (void *)1, 1);
1885			mce_ignore_ce = 1;
1886		} else {
1887			/* enable ce features */
1888			mce_ignore_ce = 0;
1889			on_each_cpu(mce_enable_ce, (void *)1, 1);
1890		}
1891	}
1892	return size;
1893}
1894
1895static ssize_t set_cmci_disabled(struct sys_device *s,
1896				 struct sysdev_attribute *attr,
1897				 const char *buf, size_t size)
1898{
1899	u64 new;
1900
1901	if (strict_strtoull(buf, 0, &new) < 0)
1902		return -EINVAL;
1903
1904	if (mce_cmci_disabled ^ !!new) {
1905		if (new) {
1906			/* disable cmci */
1907			on_each_cpu(mce_disable_ce, NULL, 1);
1908			mce_cmci_disabled = 1;
1909		} else {
1910			/* enable cmci */
1911			mce_cmci_disabled = 0;
1912			on_each_cpu(mce_enable_ce, NULL, 1);
1913		}
1914	}
1915	return size;
1916}
1917
1918static ssize_t store_int_with_restart(struct sys_device *s,
1919				      struct sysdev_attribute *attr,
1920				      const char *buf, size_t size)
1921{
1922	ssize_t ret = sysdev_store_int(s, attr, buf, size);
1923	mce_restart();
1924	return ret;
1925}
1926
1927static SYSDEV_ATTR(trigger, 0644, show_trigger, set_trigger);
1928static SYSDEV_INT_ATTR(tolerant, 0644, tolerant);
1929static SYSDEV_INT_ATTR(monarch_timeout, 0644, monarch_timeout);
1930static SYSDEV_INT_ATTR(dont_log_ce, 0644, mce_dont_log_ce);
1931
1932static struct sysdev_ext_attribute attr_check_interval = {
1933	_SYSDEV_ATTR(check_interval, 0644, sysdev_show_int,
1934		     store_int_with_restart),
1935	&check_interval
1936};
1937
1938static struct sysdev_ext_attribute attr_ignore_ce = {
1939	_SYSDEV_ATTR(ignore_ce, 0644, sysdev_show_int, set_ignore_ce),
1940	&mce_ignore_ce
1941};
1942
1943static struct sysdev_ext_attribute attr_cmci_disabled = {
1944	_SYSDEV_ATTR(cmci_disabled, 0644, sysdev_show_int, set_cmci_disabled),
1945	&mce_cmci_disabled
1946};
1947
1948static struct sysdev_attribute *mce_attrs[] = {
1949	&attr_tolerant.attr,
1950	&attr_check_interval.attr,
1951	&attr_trigger,
1952	&attr_monarch_timeout.attr,
1953	&attr_dont_log_ce.attr,
1954	&attr_ignore_ce.attr,
1955	&attr_cmci_disabled.attr,
1956	NULL
1957};
1958
1959static cpumask_var_t mce_dev_initialized;
1960
1961/* Per cpu sysdev init. All of the cpus still share the same ctrl bank: */
1962static __cpuinit int mce_create_device(unsigned int cpu)
1963{
1964	int err;
1965	int i, j;
1966
1967	if (!mce_available(&boot_cpu_data))
1968		return -EIO;
1969
1970	memset(&per_cpu(mce_dev, cpu).kobj, 0, sizeof(struct kobject));
1971	per_cpu(mce_dev, cpu).id	= cpu;
1972	per_cpu(mce_dev, cpu).cls	= &mce_sysclass;
1973
1974	err = sysdev_register(&per_cpu(mce_dev, cpu));
1975	if (err)
1976		return err;
1977
1978	for (i = 0; mce_attrs[i]; i++) {
1979		err = sysdev_create_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1980		if (err)
1981			goto error;
1982	}
1983	for (j = 0; j < banks; j++) {
1984		err = sysdev_create_file(&per_cpu(mce_dev, cpu),
1985					&mce_banks[j].attr);
1986		if (err)
1987			goto error2;
1988	}
1989	cpumask_set_cpu(cpu, mce_dev_initialized);
1990
1991	return 0;
1992error2:
1993	while (--j >= 0)
1994		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[j].attr);
1995error:
1996	while (--i >= 0)
1997		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
1998
1999	sysdev_unregister(&per_cpu(mce_dev, cpu));
2000
2001	return err;
2002}
2003
2004static __cpuinit void mce_remove_device(unsigned int cpu)
2005{
2006	int i;
2007
2008	if (!cpumask_test_cpu(cpu, mce_dev_initialized))
2009		return;
2010
2011	for (i = 0; mce_attrs[i]; i++)
2012		sysdev_remove_file(&per_cpu(mce_dev, cpu), mce_attrs[i]);
2013
2014	for (i = 0; i < banks; i++)
2015		sysdev_remove_file(&per_cpu(mce_dev, cpu), &mce_banks[i].attr);
2016
2017	sysdev_unregister(&per_cpu(mce_dev, cpu));
2018	cpumask_clear_cpu(cpu, mce_dev_initialized);
2019}
2020
2021/* Make sure there are no machine checks on offlined CPUs. */
2022static void __cpuinit mce_disable_cpu(void *h)
2023{
2024	unsigned long action = *(unsigned long *)h;
2025	int i;
2026
2027	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2028		return;
2029
2030	if (!(action & CPU_TASKS_FROZEN))
2031		cmci_clear();
2032	for (i = 0; i < banks; i++) {
2033		struct mce_bank *b = &mce_banks[i];
2034
2035		if (b->init)
2036			wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2037	}
2038}
2039
2040static void __cpuinit mce_reenable_cpu(void *h)
2041{
2042	unsigned long action = *(unsigned long *)h;
2043	int i;
2044
2045	if (!mce_available(__this_cpu_ptr(&cpu_info)))
2046		return;
2047
2048	if (!(action & CPU_TASKS_FROZEN))
2049		cmci_reenable();
2050	for (i = 0; i < banks; i++) {
2051		struct mce_bank *b = &mce_banks[i];
2052
2053		if (b->init)
2054			wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2055	}
2056}
2057
2058/* Get notified when a cpu comes on/off. Be hotplug friendly. */
2059static int __cpuinit
2060mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2061{
2062	unsigned int cpu = (unsigned long)hcpu;
2063	struct timer_list *t = &per_cpu(mce_timer, cpu);
2064
2065	switch (action) {
2066	case CPU_ONLINE:
2067	case CPU_ONLINE_FROZEN:
2068		mce_create_device(cpu);
2069		if (threshold_cpu_callback)
2070			threshold_cpu_callback(action, cpu);
2071		break;
2072	case CPU_DEAD:
2073	case CPU_DEAD_FROZEN:
2074		if (threshold_cpu_callback)
2075			threshold_cpu_callback(action, cpu);
2076		mce_remove_device(cpu);
2077		break;
2078	case CPU_DOWN_PREPARE:
2079	case CPU_DOWN_PREPARE_FROZEN:
2080		del_timer_sync(t);
2081		smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2082		break;
2083	case CPU_DOWN_FAILED:
2084	case CPU_DOWN_FAILED_FROZEN:
2085		if (!mce_ignore_ce && check_interval) {
2086			t->expires = round_jiffies(jiffies +
2087					   __get_cpu_var(mce_next_interval));
2088			add_timer_on(t, cpu);
2089		}
2090		smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2091		break;
2092	case CPU_POST_DEAD:
2093		/* intentionally ignoring frozen here */
2094		cmci_rediscover(cpu);
2095		break;
2096	}
2097	return NOTIFY_OK;
2098}
2099
2100static struct notifier_block mce_cpu_notifier __cpuinitdata = {
2101	.notifier_call = mce_cpu_callback,
2102};
2103
2104static __init void mce_init_banks(void)
2105{
2106	int i;
2107
2108	for (i = 0; i < banks; i++) {
2109		struct mce_bank *b = &mce_banks[i];
2110		struct sysdev_attribute *a = &b->attr;
2111
2112		sysfs_attr_init(&a->attr);
2113		a->attr.name	= b->attrname;
2114		snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2115
2116		a->attr.mode	= 0644;
2117		a->show		= show_bank;
2118		a->store	= set_bank;
2119	}
2120}
2121
2122static __init int mcheck_init_device(void)
2123{
2124	int err;
2125	int i = 0;
2126
2127	if (!mce_available(&boot_cpu_data))
2128		return -EIO;
2129
2130	zalloc_cpumask_var(&mce_dev_initialized, GFP_KERNEL);
2131
2132	mce_init_banks();
2133
2134	err = sysdev_class_register(&mce_sysclass);
2135	if (err)
2136		return err;
2137
2138	for_each_online_cpu(i) {
2139		err = mce_create_device(i);
2140		if (err)
2141			return err;
2142	}
2143
2144	register_syscore_ops(&mce_syscore_ops);
2145	register_hotcpu_notifier(&mce_cpu_notifier);
2146	misc_register(&mce_log_device);
2147
2148	return err;
2149}
2150
2151device_initcall(mcheck_init_device);
2152
2153/*
2154 * Old style boot options parsing. Only for compatibility.
2155 */
2156static int __init mcheck_disable(char *str)
2157{
2158	mce_disabled = 1;
2159	return 1;
2160}
2161__setup("nomce", mcheck_disable);
2162
2163#ifdef CONFIG_DEBUG_FS
2164struct dentry *mce_get_debugfs_dir(void)
2165{
2166	static struct dentry *dmce;
2167
2168	if (!dmce)
2169		dmce = debugfs_create_dir("mce", NULL);
2170
2171	return dmce;
2172}
2173
2174static void mce_reset(void)
2175{
2176	cpu_missing = 0;
2177	atomic_set(&mce_fake_paniced, 0);
2178	atomic_set(&mce_executing, 0);
2179	atomic_set(&mce_callin, 0);
2180	atomic_set(&global_nwo, 0);
2181}
2182
2183static int fake_panic_get(void *data, u64 *val)
2184{
2185	*val = fake_panic;
2186	return 0;
2187}
2188
2189static int fake_panic_set(void *data, u64 val)
2190{
2191	mce_reset();
2192	fake_panic = val;
2193	return 0;
2194}
2195
2196DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2197			fake_panic_set, "%llu\n");
2198
2199static int __init mcheck_debugfs_init(void)
2200{
2201	struct dentry *dmce, *ffake_panic;
2202
2203	dmce = mce_get_debugfs_dir();
2204	if (!dmce)
2205		return -ENOMEM;
2206	ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2207					  &fake_panic_fops);
2208	if (!ffake_panic)
2209		return -ENOMEM;
2210
2211	return 0;
2212}
2213late_initcall(mcheck_debugfs_init);
2214#endif
2215