e820.c revision 58f7c98850a226d3fb05b1095af9f7c4ea3507ba
1/*
2 * Handle the memory map.
3 * The functions here do the job until bootmem takes over.
4 *
5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7 *     Alex Achenbach <xela@slit.de>, December 2002.
8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9 *
10 */
11#include <linux/kernel.h>
12#include <linux/types.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/ioport.h>
16#include <linux/string.h>
17#include <linux/kexec.h>
18#include <linux/module.h>
19#include <linux/mm.h>
20#include <linux/pfn.h>
21#include <linux/suspend.h>
22#include <linux/firmware-map.h>
23
24#include <asm/pgtable.h>
25#include <asm/page.h>
26#include <asm/e820.h>
27#include <asm/proto.h>
28#include <asm/setup.h>
29#include <asm/trampoline.h>
30
31/*
32 * The e820 map is the map that gets modified e.g. with command line parameters
33 * and that is also registered with modifications in the kernel resource tree
34 * with the iomem_resource as parent.
35 *
36 * The e820_saved is directly saved after the BIOS-provided memory map is
37 * copied. It doesn't get modified afterwards. It's registered for the
38 * /sys/firmware/memmap interface.
39 *
40 * That memory map is not modified and is used as base for kexec. The kexec'd
41 * kernel should get the same memory map as the firmware provides. Then the
42 * user can e.g. boot the original kernel with mem=1G while still booting the
43 * next kernel with full memory.
44 */
45struct e820map e820;
46struct e820map e820_saved;
47
48/* For PCI or other memory-mapped resources */
49unsigned long pci_mem_start = 0xaeedbabe;
50#ifdef CONFIG_PCI
51EXPORT_SYMBOL(pci_mem_start);
52#endif
53
54/*
55 * This function checks if any part of the range <start,end> is mapped
56 * with type.
57 */
58int
59e820_any_mapped(u64 start, u64 end, unsigned type)
60{
61	int i;
62
63	for (i = 0; i < e820.nr_map; i++) {
64		struct e820entry *ei = &e820.map[i];
65
66		if (type && ei->type != type)
67			continue;
68		if (ei->addr >= end || ei->addr + ei->size <= start)
69			continue;
70		return 1;
71	}
72	return 0;
73}
74EXPORT_SYMBOL_GPL(e820_any_mapped);
75
76/*
77 * This function checks if the entire range <start,end> is mapped with type.
78 *
79 * Note: this function only works correct if the e820 table is sorted and
80 * not-overlapping, which is the case
81 */
82int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83{
84	int i;
85
86	for (i = 0; i < e820.nr_map; i++) {
87		struct e820entry *ei = &e820.map[i];
88
89		if (type && ei->type != type)
90			continue;
91		/* is the region (part) in overlap with the current region ?*/
92		if (ei->addr >= end || ei->addr + ei->size <= start)
93			continue;
94
95		/* if the region is at the beginning of <start,end> we move
96		 * start to the end of the region since it's ok until there
97		 */
98		if (ei->addr <= start)
99			start = ei->addr + ei->size;
100		/*
101		 * if start is now at or beyond end, we're done, full
102		 * coverage
103		 */
104		if (start >= end)
105			return 1;
106	}
107	return 0;
108}
109
110/*
111 * Add a memory region to the kernel e820 map.
112 */
113void __init e820_add_region(u64 start, u64 size, int type)
114{
115	int x = e820.nr_map;
116
117	if (x == ARRAY_SIZE(e820.map)) {
118		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
119		return;
120	}
121
122	e820.map[x].addr = start;
123	e820.map[x].size = size;
124	e820.map[x].type = type;
125	e820.nr_map++;
126}
127
128void __init e820_print_map(char *who)
129{
130	int i;
131
132	for (i = 0; i < e820.nr_map; i++) {
133		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
134		       (unsigned long long) e820.map[i].addr,
135		       (unsigned long long)
136		       (e820.map[i].addr + e820.map[i].size));
137		switch (e820.map[i].type) {
138		case E820_RAM:
139		case E820_RESERVED_KERN:
140			printk(KERN_CONT "(usable)\n");
141			break;
142		case E820_RESERVED:
143			printk(KERN_CONT "(reserved)\n");
144			break;
145		case E820_ACPI:
146			printk(KERN_CONT "(ACPI data)\n");
147			break;
148		case E820_NVS:
149			printk(KERN_CONT "(ACPI NVS)\n");
150			break;
151		case E820_UNUSABLE:
152			printk("(unusable)\n");
153			break;
154		default:
155			printk(KERN_CONT "type %u\n", e820.map[i].type);
156			break;
157		}
158	}
159}
160
161/*
162 * Sanitize the BIOS e820 map.
163 *
164 * Some e820 responses include overlapping entries. The following
165 * replaces the original e820 map with a new one, removing overlaps,
166 * and resolving conflicting memory types in favor of highest
167 * numbered type.
168 *
169 * The input parameter biosmap points to an array of 'struct
170 * e820entry' which on entry has elements in the range [0, *pnr_map)
171 * valid, and which has space for up to max_nr_map entries.
172 * On return, the resulting sanitized e820 map entries will be in
173 * overwritten in the same location, starting at biosmap.
174 *
175 * The integer pointed to by pnr_map must be valid on entry (the
176 * current number of valid entries located at biosmap) and will
177 * be updated on return, with the new number of valid entries
178 * (something no more than max_nr_map.)
179 *
180 * The return value from sanitize_e820_map() is zero if it
181 * successfully 'sanitized' the map entries passed in, and is -1
182 * if it did nothing, which can happen if either of (1) it was
183 * only passed one map entry, or (2) any of the input map entries
184 * were invalid (start + size < start, meaning that the size was
185 * so big the described memory range wrapped around through zero.)
186 *
187 *	Visually we're performing the following
188 *	(1,2,3,4 = memory types)...
189 *
190 *	Sample memory map (w/overlaps):
191 *	   ____22__________________
192 *	   ______________________4_
193 *	   ____1111________________
194 *	   _44_____________________
195 *	   11111111________________
196 *	   ____________________33__
197 *	   ___________44___________
198 *	   __________33333_________
199 *	   ______________22________
200 *	   ___________________2222_
201 *	   _________111111111______
202 *	   _____________________11_
203 *	   _________________4______
204 *
205 *	Sanitized equivalent (no overlap):
206 *	   1_______________________
207 *	   _44_____________________
208 *	   ___1____________________
209 *	   ____22__________________
210 *	   ______11________________
211 *	   _________1______________
212 *	   __________3_____________
213 *	   ___________44___________
214 *	   _____________33_________
215 *	   _______________2________
216 *	   ________________1_______
217 *	   _________________4______
218 *	   ___________________2____
219 *	   ____________________33__
220 *	   ______________________4_
221 */
222
223int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
224				int *pnr_map)
225{
226	struct change_member {
227		struct e820entry *pbios; /* pointer to original bios entry */
228		unsigned long long addr; /* address for this change point */
229	};
230	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
231	static struct change_member *change_point[2*E820_X_MAX] __initdata;
232	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
233	static struct e820entry new_bios[E820_X_MAX] __initdata;
234	struct change_member *change_tmp;
235	unsigned long current_type, last_type;
236	unsigned long long last_addr;
237	int chgidx, still_changing;
238	int overlap_entries;
239	int new_bios_entry;
240	int old_nr, new_nr, chg_nr;
241	int i;
242
243	/* if there's only one memory region, don't bother */
244	if (*pnr_map < 2)
245		return -1;
246
247	old_nr = *pnr_map;
248	BUG_ON(old_nr > max_nr_map);
249
250	/* bail out if we find any unreasonable addresses in bios map */
251	for (i = 0; i < old_nr; i++)
252		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
253			return -1;
254
255	/* create pointers for initial change-point information (for sorting) */
256	for (i = 0; i < 2 * old_nr; i++)
257		change_point[i] = &change_point_list[i];
258
259	/* record all known change-points (starting and ending addresses),
260	   omitting those that are for empty memory regions */
261	chgidx = 0;
262	for (i = 0; i < old_nr; i++)	{
263		if (biosmap[i].size != 0) {
264			change_point[chgidx]->addr = biosmap[i].addr;
265			change_point[chgidx++]->pbios = &biosmap[i];
266			change_point[chgidx]->addr = biosmap[i].addr +
267				biosmap[i].size;
268			change_point[chgidx++]->pbios = &biosmap[i];
269		}
270	}
271	chg_nr = chgidx;
272
273	/* sort change-point list by memory addresses (low -> high) */
274	still_changing = 1;
275	while (still_changing)	{
276		still_changing = 0;
277		for (i = 1; i < chg_nr; i++)  {
278			unsigned long long curaddr, lastaddr;
279			unsigned long long curpbaddr, lastpbaddr;
280
281			curaddr = change_point[i]->addr;
282			lastaddr = change_point[i - 1]->addr;
283			curpbaddr = change_point[i]->pbios->addr;
284			lastpbaddr = change_point[i - 1]->pbios->addr;
285
286			/*
287			 * swap entries, when:
288			 *
289			 * curaddr > lastaddr or
290			 * curaddr == lastaddr and curaddr == curpbaddr and
291			 * lastaddr != lastpbaddr
292			 */
293			if (curaddr < lastaddr ||
294			    (curaddr == lastaddr && curaddr == curpbaddr &&
295			     lastaddr != lastpbaddr)) {
296				change_tmp = change_point[i];
297				change_point[i] = change_point[i-1];
298				change_point[i-1] = change_tmp;
299				still_changing = 1;
300			}
301		}
302	}
303
304	/* create a new bios memory map, removing overlaps */
305	overlap_entries = 0;	 /* number of entries in the overlap table */
306	new_bios_entry = 0;	 /* index for creating new bios map entries */
307	last_type = 0;		 /* start with undefined memory type */
308	last_addr = 0;		 /* start with 0 as last starting address */
309
310	/* loop through change-points, determining affect on the new bios map */
311	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
312		/* keep track of all overlapping bios entries */
313		if (change_point[chgidx]->addr ==
314		    change_point[chgidx]->pbios->addr) {
315			/*
316			 * add map entry to overlap list (> 1 entry
317			 * implies an overlap)
318			 */
319			overlap_list[overlap_entries++] =
320				change_point[chgidx]->pbios;
321		} else {
322			/*
323			 * remove entry from list (order independent,
324			 * so swap with last)
325			 */
326			for (i = 0; i < overlap_entries; i++) {
327				if (overlap_list[i] ==
328				    change_point[chgidx]->pbios)
329					overlap_list[i] =
330						overlap_list[overlap_entries-1];
331			}
332			overlap_entries--;
333		}
334		/*
335		 * if there are overlapping entries, decide which
336		 * "type" to use (larger value takes precedence --
337		 * 1=usable, 2,3,4,4+=unusable)
338		 */
339		current_type = 0;
340		for (i = 0; i < overlap_entries; i++)
341			if (overlap_list[i]->type > current_type)
342				current_type = overlap_list[i]->type;
343		/*
344		 * continue building up new bios map based on this
345		 * information
346		 */
347		if (current_type != last_type)	{
348			if (last_type != 0)	 {
349				new_bios[new_bios_entry].size =
350					change_point[chgidx]->addr - last_addr;
351				/*
352				 * move forward only if the new size
353				 * was non-zero
354				 */
355				if (new_bios[new_bios_entry].size != 0)
356					/*
357					 * no more space left for new
358					 * bios entries ?
359					 */
360					if (++new_bios_entry >= max_nr_map)
361						break;
362			}
363			if (current_type != 0)	{
364				new_bios[new_bios_entry].addr =
365					change_point[chgidx]->addr;
366				new_bios[new_bios_entry].type = current_type;
367				last_addr = change_point[chgidx]->addr;
368			}
369			last_type = current_type;
370		}
371	}
372	/* retain count for new bios entries */
373	new_nr = new_bios_entry;
374
375	/* copy new bios mapping into original location */
376	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
377	*pnr_map = new_nr;
378
379	return 0;
380}
381
382static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
383{
384	while (nr_map) {
385		u64 start = biosmap->addr;
386		u64 size = biosmap->size;
387		u64 end = start + size;
388		u32 type = biosmap->type;
389
390		/* Overflow in 64 bits? Ignore the memory map. */
391		if (start > end)
392			return -1;
393
394		e820_add_region(start, size, type);
395
396		biosmap++;
397		nr_map--;
398	}
399	return 0;
400}
401
402/*
403 * Copy the BIOS e820 map into a safe place.
404 *
405 * Sanity-check it while we're at it..
406 *
407 * If we're lucky and live on a modern system, the setup code
408 * will have given us a memory map that we can use to properly
409 * set up memory.  If we aren't, we'll fake a memory map.
410 */
411static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
412{
413	/* Only one memory region (or negative)? Ignore it */
414	if (nr_map < 2)
415		return -1;
416
417	return __append_e820_map(biosmap, nr_map);
418}
419
420static u64 __init e820_update_range_map(struct e820map *e820x, u64 start,
421					u64 size, unsigned old_type,
422					unsigned new_type)
423{
424	int i;
425	u64 real_updated_size = 0;
426
427	BUG_ON(old_type == new_type);
428
429	if (size > (ULLONG_MAX - start))
430		size = ULLONG_MAX - start;
431
432	for (i = 0; i < e820.nr_map; i++) {
433		struct e820entry *ei = &e820x->map[i];
434		u64 final_start, final_end;
435		if (ei->type != old_type)
436			continue;
437		/* totally covered? */
438		if (ei->addr >= start &&
439		    (ei->addr + ei->size) <= (start + size)) {
440			ei->type = new_type;
441			real_updated_size += ei->size;
442			continue;
443		}
444		/* partially covered */
445		final_start = max(start, ei->addr);
446		final_end = min(start + size, ei->addr + ei->size);
447		if (final_start >= final_end)
448			continue;
449		e820_add_region(final_start, final_end - final_start,
450					 new_type);
451		real_updated_size += final_end - final_start;
452
453		ei->size -= final_end - final_start;
454		if (ei->addr < final_start)
455			continue;
456		ei->addr = final_end;
457	}
458	return real_updated_size;
459}
460
461u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
462			     unsigned new_type)
463{
464	return e820_update_range_map(&e820, start, size, old_type, new_type);
465}
466
467static u64 __init e820_update_range_saved(u64 start, u64 size,
468					  unsigned old_type, unsigned new_type)
469{
470	return e820_update_range_map(&e820_saved, start, size, old_type,
471				     new_type);
472}
473
474/* make e820 not cover the range */
475u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
476			     int checktype)
477{
478	int i;
479	u64 real_removed_size = 0;
480
481	if (size > (ULLONG_MAX - start))
482		size = ULLONG_MAX - start;
483
484	for (i = 0; i < e820.nr_map; i++) {
485		struct e820entry *ei = &e820.map[i];
486		u64 final_start, final_end;
487
488		if (checktype && ei->type != old_type)
489			continue;
490		/* totally covered? */
491		if (ei->addr >= start &&
492		    (ei->addr + ei->size) <= (start + size)) {
493			real_removed_size += ei->size;
494			memset(ei, 0, sizeof(struct e820entry));
495			continue;
496		}
497		/* partially covered */
498		final_start = max(start, ei->addr);
499		final_end = min(start + size, ei->addr + ei->size);
500		if (final_start >= final_end)
501			continue;
502		real_removed_size += final_end - final_start;
503
504		ei->size -= final_end - final_start;
505		if (ei->addr < final_start)
506			continue;
507		ei->addr = final_end;
508	}
509	return real_removed_size;
510}
511
512void __init update_e820(void)
513{
514	int nr_map;
515
516	nr_map = e820.nr_map;
517	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
518		return;
519	e820.nr_map = nr_map;
520	printk(KERN_INFO "modified physical RAM map:\n");
521	e820_print_map("modified");
522}
523static void __init update_e820_saved(void)
524{
525	int nr_map;
526
527	nr_map = e820_saved.nr_map;
528	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
529		return;
530	e820_saved.nr_map = nr_map;
531}
532#define MAX_GAP_END 0x100000000ull
533/*
534 * Search for a gap in the e820 memory space from start_addr to end_addr.
535 */
536__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
537		unsigned long start_addr, unsigned long long end_addr)
538{
539	unsigned long long last;
540	int i = e820.nr_map;
541	int found = 0;
542
543	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
544
545	while (--i >= 0) {
546		unsigned long long start = e820.map[i].addr;
547		unsigned long long end = start + e820.map[i].size;
548
549		if (end < start_addr)
550			continue;
551
552		/*
553		 * Since "last" is at most 4GB, we know we'll
554		 * fit in 32 bits if this condition is true
555		 */
556		if (last > end) {
557			unsigned long gap = last - end;
558
559			if (gap >= *gapsize) {
560				*gapsize = gap;
561				*gapstart = end;
562				found = 1;
563			}
564		}
565		if (start < last)
566			last = start;
567	}
568	return found;
569}
570
571/*
572 * Search for the biggest gap in the low 32 bits of the e820
573 * memory space.  We pass this space to PCI to assign MMIO resources
574 * for hotplug or unconfigured devices in.
575 * Hopefully the BIOS let enough space left.
576 */
577__init void e820_setup_gap(void)
578{
579	unsigned long gapstart, gapsize, round;
580	int found;
581
582	gapstart = 0x10000000;
583	gapsize = 0x400000;
584	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
585
586#ifdef CONFIG_X86_64
587	if (!found) {
588		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
589		printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit "
590		       "address range\n"
591		       KERN_ERR "PCI: Unassigned devices with 32bit resource "
592		       "registers may break!\n");
593	}
594#endif
595
596	/*
597	 * See how much we want to round up: start off with
598	 * rounding to the next 1MB area.
599	 */
600	round = 0x100000;
601	while ((gapsize >> 4) > round)
602		round += round;
603	/* Fun with two's complement */
604	pci_mem_start = (gapstart + round) & -round;
605
606	printk(KERN_INFO
607	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
608	       pci_mem_start, gapstart, gapsize);
609}
610
611/**
612 * Because of the size limitation of struct boot_params, only first
613 * 128 E820 memory entries are passed to kernel via
614 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
615 * linked list of struct setup_data, which is parsed here.
616 */
617void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
618{
619	u32 map_len;
620	int entries;
621	struct e820entry *extmap;
622
623	entries = sdata->len / sizeof(struct e820entry);
624	map_len = sdata->len + sizeof(struct setup_data);
625	if (map_len > PAGE_SIZE)
626		sdata = early_ioremap(pa_data, map_len);
627	extmap = (struct e820entry *)(sdata->data);
628	__append_e820_map(extmap, entries);
629	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
630	if (map_len > PAGE_SIZE)
631		early_iounmap(sdata, map_len);
632	printk(KERN_INFO "extended physical RAM map:\n");
633	e820_print_map("extended");
634}
635
636#if defined(CONFIG_X86_64) || \
637	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
638/**
639 * Find the ranges of physical addresses that do not correspond to
640 * e820 RAM areas and mark the corresponding pages as nosave for
641 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
642 *
643 * This function requires the e820 map to be sorted and without any
644 * overlapping entries and assumes the first e820 area to be RAM.
645 */
646void __init e820_mark_nosave_regions(unsigned long limit_pfn)
647{
648	int i;
649	unsigned long pfn;
650
651	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
652	for (i = 1; i < e820.nr_map; i++) {
653		struct e820entry *ei = &e820.map[i];
654
655		if (pfn < PFN_UP(ei->addr))
656			register_nosave_region(pfn, PFN_UP(ei->addr));
657
658		pfn = PFN_DOWN(ei->addr + ei->size);
659		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
660			register_nosave_region(PFN_UP(ei->addr), pfn);
661
662		if (pfn >= limit_pfn)
663			break;
664	}
665}
666#endif
667
668/*
669 * Early reserved memory areas.
670 */
671#define MAX_EARLY_RES 20
672
673struct early_res {
674	u64 start, end;
675	char name[16];
676	char overlap_ok;
677};
678static struct early_res early_res[MAX_EARLY_RES] __initdata = {
679	{ 0, PAGE_SIZE, "BIOS data page" },	/* BIOS data page */
680#if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE)
681	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" },
682#endif
683#if defined(CONFIG_X86_32) && defined(CONFIG_SMP)
684	/*
685	 * But first pinch a few for the stack/trampoline stuff
686	 * FIXME: Don't need the extra page at 4K, but need to fix
687	 * trampoline before removing it. (see the GDT stuff)
688	 */
689	{ PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" },
690	/*
691	 * Has to be in very low memory so we can execute
692	 * real-mode AP code.
693	 */
694	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" },
695#endif
696	{}
697};
698
699static int __init find_overlapped_early(u64 start, u64 end)
700{
701	int i;
702	struct early_res *r;
703
704	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
705		r = &early_res[i];
706		if (end > r->start && start < r->end)
707			break;
708	}
709
710	return i;
711}
712
713/*
714 * Drop the i-th range from the early reservation map,
715 * by copying any higher ranges down one over it, and
716 * clearing what had been the last slot.
717 */
718static void __init drop_range(int i)
719{
720	int j;
721
722	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
723		;
724
725	memmove(&early_res[i], &early_res[i + 1],
726	       (j - 1 - i) * sizeof(struct early_res));
727
728	early_res[j - 1].end = 0;
729}
730
731/*
732 * Split any existing ranges that:
733 *  1) are marked 'overlap_ok', and
734 *  2) overlap with the stated range [start, end)
735 * into whatever portion (if any) of the existing range is entirely
736 * below or entirely above the stated range.  Drop the portion
737 * of the existing range that overlaps with the stated range,
738 * which will allow the caller of this routine to then add that
739 * stated range without conflicting with any existing range.
740 */
741static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
742{
743	int i;
744	struct early_res *r;
745	u64 lower_start, lower_end;
746	u64 upper_start, upper_end;
747	char name[16];
748
749	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
750		r = &early_res[i];
751
752		/* Continue past non-overlapping ranges */
753		if (end <= r->start || start >= r->end)
754			continue;
755
756		/*
757		 * Leave non-ok overlaps as is; let caller
758		 * panic "Overlapping early reservations"
759		 * when it hits this overlap.
760		 */
761		if (!r->overlap_ok)
762			return;
763
764		/*
765		 * We have an ok overlap.  We will drop it from the early
766		 * reservation map, and add back in any non-overlapping
767		 * portions (lower or upper) as separate, overlap_ok,
768		 * non-overlapping ranges.
769		 */
770
771		/* 1. Note any non-overlapping (lower or upper) ranges. */
772		strncpy(name, r->name, sizeof(name) - 1);
773
774		lower_start = lower_end = 0;
775		upper_start = upper_end = 0;
776		if (r->start < start) {
777		 	lower_start = r->start;
778			lower_end = start;
779		}
780		if (r->end > end) {
781			upper_start = end;
782			upper_end = r->end;
783		}
784
785		/* 2. Drop the original ok overlapping range */
786		drop_range(i);
787
788		i--;		/* resume for-loop on copied down entry */
789
790		/* 3. Add back in any non-overlapping ranges. */
791		if (lower_end)
792			reserve_early_overlap_ok(lower_start, lower_end, name);
793		if (upper_end)
794			reserve_early_overlap_ok(upper_start, upper_end, name);
795	}
796}
797
798static void __init __reserve_early(u64 start, u64 end, char *name,
799						int overlap_ok)
800{
801	int i;
802	struct early_res *r;
803
804	i = find_overlapped_early(start, end);
805	if (i >= MAX_EARLY_RES)
806		panic("Too many early reservations");
807	r = &early_res[i];
808	if (r->end)
809		panic("Overlapping early reservations "
810		      "%llx-%llx %s to %llx-%llx %s\n",
811		      start, end - 1, name?name:"", r->start,
812		      r->end - 1, r->name);
813	r->start = start;
814	r->end = end;
815	r->overlap_ok = overlap_ok;
816	if (name)
817		strncpy(r->name, name, sizeof(r->name) - 1);
818}
819
820/*
821 * A few early reservtations come here.
822 *
823 * The 'overlap_ok' in the name of this routine does -not- mean it
824 * is ok for these reservations to overlap an earlier reservation.
825 * Rather it means that it is ok for subsequent reservations to
826 * overlap this one.
827 *
828 * Use this entry point to reserve early ranges when you are doing
829 * so out of "Paranoia", reserving perhaps more memory than you need,
830 * just in case, and don't mind a subsequent overlapping reservation
831 * that is known to be needed.
832 *
833 * The drop_overlaps_that_are_ok() call here isn't really needed.
834 * It would be needed if we had two colliding 'overlap_ok'
835 * reservations, so that the second such would not panic on the
836 * overlap with the first.  We don't have any such as of this
837 * writing, but might as well tolerate such if it happens in
838 * the future.
839 */
840void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
841{
842	drop_overlaps_that_are_ok(start, end);
843	__reserve_early(start, end, name, 1);
844}
845
846/*
847 * Most early reservations come here.
848 *
849 * We first have drop_overlaps_that_are_ok() drop any pre-existing
850 * 'overlap_ok' ranges, so that we can then reserve this memory
851 * range without risk of panic'ing on an overlapping overlap_ok
852 * early reservation.
853 */
854void __init reserve_early(u64 start, u64 end, char *name)
855{
856	drop_overlaps_that_are_ok(start, end);
857	__reserve_early(start, end, name, 0);
858}
859
860void __init free_early(u64 start, u64 end)
861{
862	struct early_res *r;
863	int i;
864
865	i = find_overlapped_early(start, end);
866	r = &early_res[i];
867	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
868		panic("free_early on not reserved area: %llx-%llx!",
869			 start, end - 1);
870
871	drop_range(i);
872}
873
874void __init early_res_to_bootmem(u64 start, u64 end)
875{
876	int i, count;
877	u64 final_start, final_end;
878
879	count  = 0;
880	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
881		count++;
882
883	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
884			 count, start, end);
885	for (i = 0; i < count; i++) {
886		struct early_res *r = &early_res[i];
887		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
888			r->start, r->end, r->name);
889		final_start = max(start, r->start);
890		final_end = min(end, r->end);
891		if (final_start >= final_end) {
892			printk(KERN_CONT "\n");
893			continue;
894		}
895		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
896			final_start, final_end);
897		reserve_bootmem_generic(final_start, final_end - final_start,
898				BOOTMEM_DEFAULT);
899	}
900}
901
902/* Check for already reserved areas */
903static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
904{
905	int i;
906	u64 addr = *addrp;
907	int changed = 0;
908	struct early_res *r;
909again:
910	i = find_overlapped_early(addr, addr + size);
911	r = &early_res[i];
912	if (i < MAX_EARLY_RES && r->end) {
913		*addrp = addr = round_up(r->end, align);
914		changed = 1;
915		goto again;
916	}
917	return changed;
918}
919
920/* Check for already reserved areas */
921static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
922{
923	int i;
924	u64 addr = *addrp, last;
925	u64 size = *sizep;
926	int changed = 0;
927again:
928	last = addr + size;
929	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
930		struct early_res *r = &early_res[i];
931		if (last > r->start && addr < r->start) {
932			size = r->start - addr;
933			changed = 1;
934			goto again;
935		}
936		if (last > r->end && addr < r->end) {
937			addr = round_up(r->end, align);
938			size = last - addr;
939			changed = 1;
940			goto again;
941		}
942		if (last <= r->end && addr >= r->start) {
943			(*sizep)++;
944			return 0;
945		}
946	}
947	if (changed) {
948		*addrp = addr;
949		*sizep = size;
950	}
951	return changed;
952}
953
954/*
955 * Find a free area with specified alignment in a specific range.
956 */
957u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
958{
959	int i;
960
961	for (i = 0; i < e820.nr_map; i++) {
962		struct e820entry *ei = &e820.map[i];
963		u64 addr, last;
964		u64 ei_last;
965
966		if (ei->type != E820_RAM)
967			continue;
968		addr = round_up(ei->addr, align);
969		ei_last = ei->addr + ei->size;
970		if (addr < start)
971			addr = round_up(start, align);
972		if (addr >= ei_last)
973			continue;
974		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
975			;
976		last = addr + size;
977		if (last > ei_last)
978			continue;
979		if (last > end)
980			continue;
981		return addr;
982	}
983	return -1ULL;
984}
985
986/*
987 * Find next free range after *start
988 */
989u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
990{
991	int i;
992
993	for (i = 0; i < e820.nr_map; i++) {
994		struct e820entry *ei = &e820.map[i];
995		u64 addr, last;
996		u64 ei_last;
997
998		if (ei->type != E820_RAM)
999			continue;
1000		addr = round_up(ei->addr, align);
1001		ei_last = ei->addr + ei->size;
1002		if (addr < start)
1003			addr = round_up(start, align);
1004		if (addr >= ei_last)
1005			continue;
1006		*sizep = ei_last - addr;
1007		while (bad_addr_size(&addr, sizep, align) &&
1008			addr + *sizep <= ei_last)
1009			;
1010		last = addr + *sizep;
1011		if (last > ei_last)
1012			continue;
1013		return addr;
1014	}
1015	return -1UL;
1016
1017}
1018
1019/*
1020 * pre allocated 4k and reserved it in e820
1021 */
1022u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1023{
1024	u64 size = 0;
1025	u64 addr;
1026	u64 start;
1027
1028	start = startt;
1029	while (size < sizet)
1030		start = find_e820_area_size(start, &size, align);
1031
1032	if (size < sizet)
1033		return 0;
1034
1035	addr = round_down(start + size - sizet, align);
1036	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1037	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1038	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1039	update_e820();
1040	update_e820_saved();
1041
1042	return addr;
1043}
1044
1045#ifdef CONFIG_X86_32
1046# ifdef CONFIG_X86_PAE
1047#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1048# else
1049#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1050# endif
1051#else /* CONFIG_X86_32 */
1052# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1053#endif
1054
1055/*
1056 * Find the highest page frame number we have available
1057 */
1058static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1059{
1060	int i;
1061	unsigned long last_pfn = 0;
1062	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1063
1064	for (i = 0; i < e820.nr_map; i++) {
1065		struct e820entry *ei = &e820.map[i];
1066		unsigned long start_pfn;
1067		unsigned long end_pfn;
1068
1069		if (ei->type != type)
1070			continue;
1071
1072		start_pfn = ei->addr >> PAGE_SHIFT;
1073		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1074
1075		if (start_pfn >= limit_pfn)
1076			continue;
1077		if (end_pfn > limit_pfn) {
1078			last_pfn = limit_pfn;
1079			break;
1080		}
1081		if (end_pfn > last_pfn)
1082			last_pfn = end_pfn;
1083	}
1084
1085	if (last_pfn > max_arch_pfn)
1086		last_pfn = max_arch_pfn;
1087
1088	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1089			 last_pfn, max_arch_pfn);
1090	return last_pfn;
1091}
1092unsigned long __init e820_end_of_ram_pfn(void)
1093{
1094	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1095}
1096
1097unsigned long __init e820_end_of_low_ram_pfn(void)
1098{
1099	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1100}
1101/*
1102 * Finds an active region in the address range from start_pfn to last_pfn and
1103 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1104 */
1105int __init e820_find_active_region(const struct e820entry *ei,
1106				  unsigned long start_pfn,
1107				  unsigned long last_pfn,
1108				  unsigned long *ei_startpfn,
1109				  unsigned long *ei_endpfn)
1110{
1111	u64 align = PAGE_SIZE;
1112
1113	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1114	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1115
1116	/* Skip map entries smaller than a page */
1117	if (*ei_startpfn >= *ei_endpfn)
1118		return 0;
1119
1120	/* Skip if map is outside the node */
1121	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1122				    *ei_startpfn >= last_pfn)
1123		return 0;
1124
1125	/* Check for overlaps */
1126	if (*ei_startpfn < start_pfn)
1127		*ei_startpfn = start_pfn;
1128	if (*ei_endpfn > last_pfn)
1129		*ei_endpfn = last_pfn;
1130
1131	return 1;
1132}
1133
1134/* Walk the e820 map and register active regions within a node */
1135void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1136					 unsigned long last_pfn)
1137{
1138	unsigned long ei_startpfn;
1139	unsigned long ei_endpfn;
1140	int i;
1141
1142	for (i = 0; i < e820.nr_map; i++)
1143		if (e820_find_active_region(&e820.map[i],
1144					    start_pfn, last_pfn,
1145					    &ei_startpfn, &ei_endpfn))
1146			add_active_range(nid, ei_startpfn, ei_endpfn);
1147}
1148
1149/*
1150 * Find the hole size (in bytes) in the memory range.
1151 * @start: starting address of the memory range to scan
1152 * @end: ending address of the memory range to scan
1153 */
1154u64 __init e820_hole_size(u64 start, u64 end)
1155{
1156	unsigned long start_pfn = start >> PAGE_SHIFT;
1157	unsigned long last_pfn = end >> PAGE_SHIFT;
1158	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1159	int i;
1160
1161	for (i = 0; i < e820.nr_map; i++) {
1162		if (e820_find_active_region(&e820.map[i],
1163					    start_pfn, last_pfn,
1164					    &ei_startpfn, &ei_endpfn))
1165			ram += ei_endpfn - ei_startpfn;
1166	}
1167	return end - start - ((u64)ram << PAGE_SHIFT);
1168}
1169
1170static void early_panic(char *msg)
1171{
1172	early_printk(msg);
1173	panic(msg);
1174}
1175
1176static int userdef __initdata;
1177
1178/* "mem=nopentium" disables the 4MB page tables. */
1179static int __init parse_memopt(char *p)
1180{
1181	u64 mem_size;
1182
1183	if (!p)
1184		return -EINVAL;
1185
1186#ifdef CONFIG_X86_32
1187	if (!strcmp(p, "nopentium")) {
1188		setup_clear_cpu_cap(X86_FEATURE_PSE);
1189		return 0;
1190	}
1191#endif
1192
1193	userdef = 1;
1194	mem_size = memparse(p, &p);
1195	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1196
1197	return 0;
1198}
1199early_param("mem", parse_memopt);
1200
1201static int __init parse_memmap_opt(char *p)
1202{
1203	char *oldp;
1204	u64 start_at, mem_size;
1205
1206	if (!p)
1207		return -EINVAL;
1208
1209	if (!strcmp(p, "exactmap")) {
1210#ifdef CONFIG_CRASH_DUMP
1211		/*
1212		 * If we are doing a crash dump, we still need to know
1213		 * the real mem size before original memory map is
1214		 * reset.
1215		 */
1216		saved_max_pfn = e820_end_of_ram_pfn();
1217#endif
1218		e820.nr_map = 0;
1219		userdef = 1;
1220		return 0;
1221	}
1222
1223	oldp = p;
1224	mem_size = memparse(p, &p);
1225	if (p == oldp)
1226		return -EINVAL;
1227
1228	userdef = 1;
1229	if (*p == '@') {
1230		start_at = memparse(p+1, &p);
1231		e820_add_region(start_at, mem_size, E820_RAM);
1232	} else if (*p == '#') {
1233		start_at = memparse(p+1, &p);
1234		e820_add_region(start_at, mem_size, E820_ACPI);
1235	} else if (*p == '$') {
1236		start_at = memparse(p+1, &p);
1237		e820_add_region(start_at, mem_size, E820_RESERVED);
1238	} else
1239		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1240
1241	return *p == '\0' ? 0 : -EINVAL;
1242}
1243early_param("memmap", parse_memmap_opt);
1244
1245void __init finish_e820_parsing(void)
1246{
1247	if (userdef) {
1248		int nr = e820.nr_map;
1249
1250		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1251			early_panic("Invalid user supplied memory map");
1252		e820.nr_map = nr;
1253
1254		printk(KERN_INFO "user-defined physical RAM map:\n");
1255		e820_print_map("user");
1256	}
1257}
1258
1259static inline const char *e820_type_to_string(int e820_type)
1260{
1261	switch (e820_type) {
1262	case E820_RESERVED_KERN:
1263	case E820_RAM:	return "System RAM";
1264	case E820_ACPI:	return "ACPI Tables";
1265	case E820_NVS:	return "ACPI Non-volatile Storage";
1266	case E820_UNUSABLE:	return "Unusable memory";
1267	default:	return "reserved";
1268	}
1269}
1270
1271/*
1272 * Mark e820 reserved areas as busy for the resource manager.
1273 */
1274struct resource __initdata *e820_res;
1275void __init e820_reserve_resources(void)
1276{
1277	int i;
1278	u64 end;
1279	struct resource *res;
1280
1281	res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map);
1282	e820_res = res;
1283	for (i = 0; i < e820.nr_map; i++) {
1284		end = e820.map[i].addr + e820.map[i].size - 1;
1285#ifndef CONFIG_RESOURCES_64BIT
1286		if (end > 0x100000000ULL) {
1287			res++;
1288			continue;
1289		}
1290#endif
1291		res->name = e820_type_to_string(e820.map[i].type);
1292		res->start = e820.map[i].addr;
1293		res->end = end;
1294
1295		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1296		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20))
1297			insert_resource(&iomem_resource, res);
1298		res++;
1299	}
1300
1301	for (i = 0; i < e820_saved.nr_map; i++) {
1302		struct e820entry *entry = &e820_saved.map[i];
1303		firmware_map_add_early(entry->addr,
1304			entry->addr + entry->size - 1,
1305			e820_type_to_string(entry->type));
1306	}
1307}
1308
1309void __init e820_reserve_resources_late(void)
1310{
1311	int i;
1312	struct resource *res;
1313
1314	res = e820_res;
1315	for (i = 0; i < e820.nr_map; i++) {
1316		if (e820.map[i].type == E820_RESERVED && res->start >= (1ULL<<20))
1317			insert_resource(&iomem_resource, res);
1318		res++;
1319	}
1320}
1321
1322char *__init default_machine_specific_memory_setup(void)
1323{
1324	char *who = "BIOS-e820";
1325	int new_nr;
1326	/*
1327	 * Try to copy the BIOS-supplied E820-map.
1328	 *
1329	 * Otherwise fake a memory map; one section from 0k->640k,
1330	 * the next section from 1mb->appropriate_mem_k
1331	 */
1332	new_nr = boot_params.e820_entries;
1333	sanitize_e820_map(boot_params.e820_map,
1334			ARRAY_SIZE(boot_params.e820_map),
1335			&new_nr);
1336	boot_params.e820_entries = new_nr;
1337	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1338	  < 0) {
1339		u64 mem_size;
1340
1341		/* compare results from other methods and take the greater */
1342		if (boot_params.alt_mem_k
1343		    < boot_params.screen_info.ext_mem_k) {
1344			mem_size = boot_params.screen_info.ext_mem_k;
1345			who = "BIOS-88";
1346		} else {
1347			mem_size = boot_params.alt_mem_k;
1348			who = "BIOS-e801";
1349		}
1350
1351		e820.nr_map = 0;
1352		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1353		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1354	}
1355
1356	/* In case someone cares... */
1357	return who;
1358}
1359
1360char *__init __attribute__((weak)) machine_specific_memory_setup(void)
1361{
1362	if (x86_quirks->arch_memory_setup) {
1363		char *who = x86_quirks->arch_memory_setup();
1364
1365		if (who)
1366			return who;
1367	}
1368	return default_machine_specific_memory_setup();
1369}
1370
1371/* Overridden in paravirt.c if CONFIG_PARAVIRT */
1372char * __init __attribute__((weak)) memory_setup(void)
1373{
1374	return machine_specific_memory_setup();
1375}
1376
1377void __init setup_memory_map(void)
1378{
1379	char *who;
1380
1381	who = memory_setup();
1382	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1383	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1384	e820_print_map(who);
1385}
1386