e820.c revision 7b479becdb8c1fb4ff6fbb2a4076c471c737b54c
1/*
2 * Handle the memory map.
3 * The functions here do the job until bootmem takes over.
4 *
5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7 *     Alex Achenbach <xela@slit.de>, December 2002.
8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9 *
10 */
11#include <linux/kernel.h>
12#include <linux/types.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/ioport.h>
16#include <linux/string.h>
17#include <linux/kexec.h>
18#include <linux/module.h>
19#include <linux/mm.h>
20#include <linux/pfn.h>
21#include <linux/suspend.h>
22#include <linux/firmware-map.h>
23
24#include <asm/pgtable.h>
25#include <asm/page.h>
26#include <asm/e820.h>
27#include <asm/proto.h>
28#include <asm/setup.h>
29#include <asm/trampoline.h>
30
31/*
32 * The e820 map is the map that gets modified e.g. with command line parameters
33 * and that is also registered with modifications in the kernel resource tree
34 * with the iomem_resource as parent.
35 *
36 * The e820_saved is directly saved after the BIOS-provided memory map is
37 * copied. It doesn't get modified afterwards. It's registered for the
38 * /sys/firmware/memmap interface.
39 *
40 * That memory map is not modified and is used as base for kexec. The kexec'd
41 * kernel should get the same memory map as the firmware provides. Then the
42 * user can e.g. boot the original kernel with mem=1G while still booting the
43 * next kernel with full memory.
44 */
45struct e820map e820;
46struct e820map e820_saved;
47
48/* For PCI or other memory-mapped resources */
49unsigned long pci_mem_start = 0xaeedbabe;
50#ifdef CONFIG_PCI
51EXPORT_SYMBOL(pci_mem_start);
52#endif
53
54/*
55 * This function checks if any part of the range <start,end> is mapped
56 * with type.
57 */
58int
59e820_any_mapped(u64 start, u64 end, unsigned type)
60{
61	int i;
62
63	for (i = 0; i < e820.nr_map; i++) {
64		struct e820entry *ei = &e820.map[i];
65
66		if (type && ei->type != type)
67			continue;
68		if (ei->addr >= end || ei->addr + ei->size <= start)
69			continue;
70		return 1;
71	}
72	return 0;
73}
74EXPORT_SYMBOL_GPL(e820_any_mapped);
75
76/*
77 * This function checks if the entire range <start,end> is mapped with type.
78 *
79 * Note: this function only works correct if the e820 table is sorted and
80 * not-overlapping, which is the case
81 */
82int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83{
84	int i;
85
86	for (i = 0; i < e820.nr_map; i++) {
87		struct e820entry *ei = &e820.map[i];
88
89		if (type && ei->type != type)
90			continue;
91		/* is the region (part) in overlap with the current region ?*/
92		if (ei->addr >= end || ei->addr + ei->size <= start)
93			continue;
94
95		/* if the region is at the beginning of <start,end> we move
96		 * start to the end of the region since it's ok until there
97		 */
98		if (ei->addr <= start)
99			start = ei->addr + ei->size;
100		/*
101		 * if start is now at or beyond end, we're done, full
102		 * coverage
103		 */
104		if (start >= end)
105			return 1;
106	}
107	return 0;
108}
109
110/*
111 * Add a memory region to the kernel e820 map.
112 */
113void __init e820_add_region(u64 start, u64 size, int type)
114{
115	int x = e820.nr_map;
116
117	if (x == ARRAY_SIZE(e820.map)) {
118		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
119		return;
120	}
121
122	e820.map[x].addr = start;
123	e820.map[x].size = size;
124	e820.map[x].type = type;
125	e820.nr_map++;
126}
127
128void __init e820_print_map(char *who)
129{
130	int i;
131
132	for (i = 0; i < e820.nr_map; i++) {
133		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
134		       (unsigned long long) e820.map[i].addr,
135		       (unsigned long long)
136		       (e820.map[i].addr + e820.map[i].size));
137		switch (e820.map[i].type) {
138		case E820_RAM:
139		case E820_RESERVED_KERN:
140			printk(KERN_CONT "(usable)\n");
141			break;
142		case E820_RESERVED:
143			printk(KERN_CONT "(reserved)\n");
144			break;
145		case E820_ACPI:
146			printk(KERN_CONT "(ACPI data)\n");
147			break;
148		case E820_NVS:
149			printk(KERN_CONT "(ACPI NVS)\n");
150			break;
151		default:
152			printk(KERN_CONT "type %u\n", e820.map[i].type);
153			break;
154		}
155	}
156}
157
158/*
159 * Sanitize the BIOS e820 map.
160 *
161 * Some e820 responses include overlapping entries. The following
162 * replaces the original e820 map with a new one, removing overlaps,
163 * and resolving conflicting memory types in favor of highest
164 * numbered type.
165 *
166 * The input parameter biosmap points to an array of 'struct
167 * e820entry' which on entry has elements in the range [0, *pnr_map)
168 * valid, and which has space for up to max_nr_map entries.
169 * On return, the resulting sanitized e820 map entries will be in
170 * overwritten in the same location, starting at biosmap.
171 *
172 * The integer pointed to by pnr_map must be valid on entry (the
173 * current number of valid entries located at biosmap) and will
174 * be updated on return, with the new number of valid entries
175 * (something no more than max_nr_map.)
176 *
177 * The return value from sanitize_e820_map() is zero if it
178 * successfully 'sanitized' the map entries passed in, and is -1
179 * if it did nothing, which can happen if either of (1) it was
180 * only passed one map entry, or (2) any of the input map entries
181 * were invalid (start + size < start, meaning that the size was
182 * so big the described memory range wrapped around through zero.)
183 *
184 *	Visually we're performing the following
185 *	(1,2,3,4 = memory types)...
186 *
187 *	Sample memory map (w/overlaps):
188 *	   ____22__________________
189 *	   ______________________4_
190 *	   ____1111________________
191 *	   _44_____________________
192 *	   11111111________________
193 *	   ____________________33__
194 *	   ___________44___________
195 *	   __________33333_________
196 *	   ______________22________
197 *	   ___________________2222_
198 *	   _________111111111______
199 *	   _____________________11_
200 *	   _________________4______
201 *
202 *	Sanitized equivalent (no overlap):
203 *	   1_______________________
204 *	   _44_____________________
205 *	   ___1____________________
206 *	   ____22__________________
207 *	   ______11________________
208 *	   _________1______________
209 *	   __________3_____________
210 *	   ___________44___________
211 *	   _____________33_________
212 *	   _______________2________
213 *	   ________________1_______
214 *	   _________________4______
215 *	   ___________________2____
216 *	   ____________________33__
217 *	   ______________________4_
218 */
219
220int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
221				int *pnr_map)
222{
223	struct change_member {
224		struct e820entry *pbios; /* pointer to original bios entry */
225		unsigned long long addr; /* address for this change point */
226	};
227	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
228	static struct change_member *change_point[2*E820_X_MAX] __initdata;
229	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
230	static struct e820entry new_bios[E820_X_MAX] __initdata;
231	struct change_member *change_tmp;
232	unsigned long current_type, last_type;
233	unsigned long long last_addr;
234	int chgidx, still_changing;
235	int overlap_entries;
236	int new_bios_entry;
237	int old_nr, new_nr, chg_nr;
238	int i;
239
240	/* if there's only one memory region, don't bother */
241	if (*pnr_map < 2)
242		return -1;
243
244	old_nr = *pnr_map;
245	BUG_ON(old_nr > max_nr_map);
246
247	/* bail out if we find any unreasonable addresses in bios map */
248	for (i = 0; i < old_nr; i++)
249		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
250			return -1;
251
252	/* create pointers for initial change-point information (for sorting) */
253	for (i = 0; i < 2 * old_nr; i++)
254		change_point[i] = &change_point_list[i];
255
256	/* record all known change-points (starting and ending addresses),
257	   omitting those that are for empty memory regions */
258	chgidx = 0;
259	for (i = 0; i < old_nr; i++)	{
260		if (biosmap[i].size != 0) {
261			change_point[chgidx]->addr = biosmap[i].addr;
262			change_point[chgidx++]->pbios = &biosmap[i];
263			change_point[chgidx]->addr = biosmap[i].addr +
264				biosmap[i].size;
265			change_point[chgidx++]->pbios = &biosmap[i];
266		}
267	}
268	chg_nr = chgidx;
269
270	/* sort change-point list by memory addresses (low -> high) */
271	still_changing = 1;
272	while (still_changing)	{
273		still_changing = 0;
274		for (i = 1; i < chg_nr; i++)  {
275			unsigned long long curaddr, lastaddr;
276			unsigned long long curpbaddr, lastpbaddr;
277
278			curaddr = change_point[i]->addr;
279			lastaddr = change_point[i - 1]->addr;
280			curpbaddr = change_point[i]->pbios->addr;
281			lastpbaddr = change_point[i - 1]->pbios->addr;
282
283			/*
284			 * swap entries, when:
285			 *
286			 * curaddr > lastaddr or
287			 * curaddr == lastaddr and curaddr == curpbaddr and
288			 * lastaddr != lastpbaddr
289			 */
290			if (curaddr < lastaddr ||
291			    (curaddr == lastaddr && curaddr == curpbaddr &&
292			     lastaddr != lastpbaddr)) {
293				change_tmp = change_point[i];
294				change_point[i] = change_point[i-1];
295				change_point[i-1] = change_tmp;
296				still_changing = 1;
297			}
298		}
299	}
300
301	/* create a new bios memory map, removing overlaps */
302	overlap_entries = 0;	 /* number of entries in the overlap table */
303	new_bios_entry = 0;	 /* index for creating new bios map entries */
304	last_type = 0;		 /* start with undefined memory type */
305	last_addr = 0;		 /* start with 0 as last starting address */
306
307	/* loop through change-points, determining affect on the new bios map */
308	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
309		/* keep track of all overlapping bios entries */
310		if (change_point[chgidx]->addr ==
311		    change_point[chgidx]->pbios->addr) {
312			/*
313			 * add map entry to overlap list (> 1 entry
314			 * implies an overlap)
315			 */
316			overlap_list[overlap_entries++] =
317				change_point[chgidx]->pbios;
318		} else {
319			/*
320			 * remove entry from list (order independent,
321			 * so swap with last)
322			 */
323			for (i = 0; i < overlap_entries; i++) {
324				if (overlap_list[i] ==
325				    change_point[chgidx]->pbios)
326					overlap_list[i] =
327						overlap_list[overlap_entries-1];
328			}
329			overlap_entries--;
330		}
331		/*
332		 * if there are overlapping entries, decide which
333		 * "type" to use (larger value takes precedence --
334		 * 1=usable, 2,3,4,4+=unusable)
335		 */
336		current_type = 0;
337		for (i = 0; i < overlap_entries; i++)
338			if (overlap_list[i]->type > current_type)
339				current_type = overlap_list[i]->type;
340		/*
341		 * continue building up new bios map based on this
342		 * information
343		 */
344		if (current_type != last_type)	{
345			if (last_type != 0)	 {
346				new_bios[new_bios_entry].size =
347					change_point[chgidx]->addr - last_addr;
348				/*
349				 * move forward only if the new size
350				 * was non-zero
351				 */
352				if (new_bios[new_bios_entry].size != 0)
353					/*
354					 * no more space left for new
355					 * bios entries ?
356					 */
357					if (++new_bios_entry >= max_nr_map)
358						break;
359			}
360			if (current_type != 0)	{
361				new_bios[new_bios_entry].addr =
362					change_point[chgidx]->addr;
363				new_bios[new_bios_entry].type = current_type;
364				last_addr = change_point[chgidx]->addr;
365			}
366			last_type = current_type;
367		}
368	}
369	/* retain count for new bios entries */
370	new_nr = new_bios_entry;
371
372	/* copy new bios mapping into original location */
373	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
374	*pnr_map = new_nr;
375
376	return 0;
377}
378
379static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
380{
381	while (nr_map) {
382		u64 start = biosmap->addr;
383		u64 size = biosmap->size;
384		u64 end = start + size;
385		u32 type = biosmap->type;
386
387		/* Overflow in 64 bits? Ignore the memory map. */
388		if (start > end)
389			return -1;
390
391		e820_add_region(start, size, type);
392
393		biosmap++;
394		nr_map--;
395	}
396	return 0;
397}
398
399/*
400 * Copy the BIOS e820 map into a safe place.
401 *
402 * Sanity-check it while we're at it..
403 *
404 * If we're lucky and live on a modern system, the setup code
405 * will have given us a memory map that we can use to properly
406 * set up memory.  If we aren't, we'll fake a memory map.
407 */
408static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
409{
410	/* Only one memory region (or negative)? Ignore it */
411	if (nr_map < 2)
412		return -1;
413
414	return __append_e820_map(biosmap, nr_map);
415}
416
417static u64 __init e820_update_range_map(struct e820map *e820x, u64 start,
418					u64 size, unsigned old_type,
419					unsigned new_type)
420{
421	int i;
422	u64 real_updated_size = 0;
423
424	BUG_ON(old_type == new_type);
425
426	if (size > (ULLONG_MAX - start))
427		size = ULLONG_MAX - start;
428
429	for (i = 0; i < e820.nr_map; i++) {
430		struct e820entry *ei = &e820x->map[i];
431		u64 final_start, final_end;
432		if (ei->type != old_type)
433			continue;
434		/* totally covered? */
435		if (ei->addr >= start &&
436		    (ei->addr + ei->size) <= (start + size)) {
437			ei->type = new_type;
438			real_updated_size += ei->size;
439			continue;
440		}
441		/* partially covered */
442		final_start = max(start, ei->addr);
443		final_end = min(start + size, ei->addr + ei->size);
444		if (final_start >= final_end)
445			continue;
446		e820_add_region(final_start, final_end - final_start,
447					 new_type);
448		real_updated_size += final_end - final_start;
449
450		ei->size -= final_end - final_start;
451		if (ei->addr < final_start)
452			continue;
453		ei->addr = final_end;
454	}
455	return real_updated_size;
456}
457
458u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
459			     unsigned new_type)
460{
461	return e820_update_range_map(&e820, start, size, old_type, new_type);
462}
463
464static u64 __init e820_update_range_saved(u64 start, u64 size,
465					  unsigned old_type, unsigned new_type)
466{
467	return e820_update_range_map(&e820_saved, start, size, old_type,
468				     new_type);
469}
470
471/* make e820 not cover the range */
472u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
473			     int checktype)
474{
475	int i;
476	u64 real_removed_size = 0;
477
478	if (size > (ULLONG_MAX - start))
479		size = ULLONG_MAX - start;
480
481	for (i = 0; i < e820.nr_map; i++) {
482		struct e820entry *ei = &e820.map[i];
483		u64 final_start, final_end;
484
485		if (checktype && ei->type != old_type)
486			continue;
487		/* totally covered? */
488		if (ei->addr >= start &&
489		    (ei->addr + ei->size) <= (start + size)) {
490			real_removed_size += ei->size;
491			memset(ei, 0, sizeof(struct e820entry));
492			continue;
493		}
494		/* partially covered */
495		final_start = max(start, ei->addr);
496		final_end = min(start + size, ei->addr + ei->size);
497		if (final_start >= final_end)
498			continue;
499		real_removed_size += final_end - final_start;
500
501		ei->size -= final_end - final_start;
502		if (ei->addr < final_start)
503			continue;
504		ei->addr = final_end;
505	}
506	return real_removed_size;
507}
508
509void __init update_e820(void)
510{
511	int nr_map;
512
513	nr_map = e820.nr_map;
514	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
515		return;
516	e820.nr_map = nr_map;
517	printk(KERN_INFO "modified physical RAM map:\n");
518	e820_print_map("modified");
519}
520static void __init update_e820_saved(void)
521{
522	int nr_map;
523
524	nr_map = e820_saved.nr_map;
525	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
526		return;
527	e820_saved.nr_map = nr_map;
528}
529#define MAX_GAP_END 0x100000000ull
530/*
531 * Search for a gap in the e820 memory space from start_addr to end_addr.
532 */
533__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
534		unsigned long start_addr, unsigned long long end_addr)
535{
536	unsigned long long last;
537	int i = e820.nr_map;
538	int found = 0;
539
540	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
541
542	while (--i >= 0) {
543		unsigned long long start = e820.map[i].addr;
544		unsigned long long end = start + e820.map[i].size;
545
546		if (end < start_addr)
547			continue;
548
549		/*
550		 * Since "last" is at most 4GB, we know we'll
551		 * fit in 32 bits if this condition is true
552		 */
553		if (last > end) {
554			unsigned long gap = last - end;
555
556			if (gap >= *gapsize) {
557				*gapsize = gap;
558				*gapstart = end;
559				found = 1;
560			}
561		}
562		if (start < last)
563			last = start;
564	}
565	return found;
566}
567
568/*
569 * Search for the biggest gap in the low 32 bits of the e820
570 * memory space.  We pass this space to PCI to assign MMIO resources
571 * for hotplug or unconfigured devices in.
572 * Hopefully the BIOS let enough space left.
573 */
574__init void e820_setup_gap(void)
575{
576	unsigned long gapstart, gapsize, round;
577	int found;
578
579	gapstart = 0x10000000;
580	gapsize = 0x400000;
581	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
582
583#ifdef CONFIG_X86_64
584	if (!found) {
585		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
586		printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit "
587		       "address range\n"
588		       KERN_ERR "PCI: Unassigned devices with 32bit resource "
589		       "registers may break!\n");
590	}
591#endif
592
593	/*
594	 * See how much we want to round up: start off with
595	 * rounding to the next 1MB area.
596	 */
597	round = 0x100000;
598	while ((gapsize >> 4) > round)
599		round += round;
600	/* Fun with two's complement */
601	pci_mem_start = (gapstart + round) & -round;
602
603	printk(KERN_INFO
604	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
605	       pci_mem_start, gapstart, gapsize);
606}
607
608/**
609 * Because of the size limitation of struct boot_params, only first
610 * 128 E820 memory entries are passed to kernel via
611 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
612 * linked list of struct setup_data, which is parsed here.
613 */
614void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
615{
616	u32 map_len;
617	int entries;
618	struct e820entry *extmap;
619
620	entries = sdata->len / sizeof(struct e820entry);
621	map_len = sdata->len + sizeof(struct setup_data);
622	if (map_len > PAGE_SIZE)
623		sdata = early_ioremap(pa_data, map_len);
624	extmap = (struct e820entry *)(sdata->data);
625	__append_e820_map(extmap, entries);
626	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
627	if (map_len > PAGE_SIZE)
628		early_iounmap(sdata, map_len);
629	printk(KERN_INFO "extended physical RAM map:\n");
630	e820_print_map("extended");
631}
632
633#if defined(CONFIG_X86_64) || \
634	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
635/**
636 * Find the ranges of physical addresses that do not correspond to
637 * e820 RAM areas and mark the corresponding pages as nosave for
638 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
639 *
640 * This function requires the e820 map to be sorted and without any
641 * overlapping entries and assumes the first e820 area to be RAM.
642 */
643void __init e820_mark_nosave_regions(unsigned long limit_pfn)
644{
645	int i;
646	unsigned long pfn;
647
648	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
649	for (i = 1; i < e820.nr_map; i++) {
650		struct e820entry *ei = &e820.map[i];
651
652		if (pfn < PFN_UP(ei->addr))
653			register_nosave_region(pfn, PFN_UP(ei->addr));
654
655		pfn = PFN_DOWN(ei->addr + ei->size);
656		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
657			register_nosave_region(PFN_UP(ei->addr), pfn);
658
659		if (pfn >= limit_pfn)
660			break;
661	}
662}
663#endif
664
665/*
666 * Early reserved memory areas.
667 */
668#define MAX_EARLY_RES 20
669
670struct early_res {
671	u64 start, end;
672	char name[16];
673	char overlap_ok;
674};
675static struct early_res early_res[MAX_EARLY_RES] __initdata = {
676	{ 0, PAGE_SIZE, "BIOS data page" },	/* BIOS data page */
677#if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE)
678	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" },
679#endif
680#if defined(CONFIG_X86_32) && defined(CONFIG_SMP)
681	/*
682	 * But first pinch a few for the stack/trampoline stuff
683	 * FIXME: Don't need the extra page at 4K, but need to fix
684	 * trampoline before removing it. (see the GDT stuff)
685	 */
686	{ PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" },
687	/*
688	 * Has to be in very low memory so we can execute
689	 * real-mode AP code.
690	 */
691	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" },
692#endif
693	{}
694};
695
696static int __init find_overlapped_early(u64 start, u64 end)
697{
698	int i;
699	struct early_res *r;
700
701	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
702		r = &early_res[i];
703		if (end > r->start && start < r->end)
704			break;
705	}
706
707	return i;
708}
709
710/*
711 * Drop the i-th range from the early reservation map,
712 * by copying any higher ranges down one over it, and
713 * clearing what had been the last slot.
714 */
715static void __init drop_range(int i)
716{
717	int j;
718
719	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
720		;
721
722	memmove(&early_res[i], &early_res[i + 1],
723	       (j - 1 - i) * sizeof(struct early_res));
724
725	early_res[j - 1].end = 0;
726}
727
728/*
729 * Split any existing ranges that:
730 *  1) are marked 'overlap_ok', and
731 *  2) overlap with the stated range [start, end)
732 * into whatever portion (if any) of the existing range is entirely
733 * below or entirely above the stated range.  Drop the portion
734 * of the existing range that overlaps with the stated range,
735 * which will allow the caller of this routine to then add that
736 * stated range without conflicting with any existing range.
737 */
738static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
739{
740	int i;
741	struct early_res *r;
742	u64 lower_start, lower_end;
743	u64 upper_start, upper_end;
744	char name[16];
745
746	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
747		r = &early_res[i];
748
749		/* Continue past non-overlapping ranges */
750		if (end <= r->start || start >= r->end)
751			continue;
752
753		/*
754		 * Leave non-ok overlaps as is; let caller
755		 * panic "Overlapping early reservations"
756		 * when it hits this overlap.
757		 */
758		if (!r->overlap_ok)
759			return;
760
761		/*
762		 * We have an ok overlap.  We will drop it from the early
763		 * reservation map, and add back in any non-overlapping
764		 * portions (lower or upper) as separate, overlap_ok,
765		 * non-overlapping ranges.
766		 */
767
768		/* 1. Note any non-overlapping (lower or upper) ranges. */
769		strncpy(name, r->name, sizeof(name) - 1);
770
771		lower_start = lower_end = 0;
772		upper_start = upper_end = 0;
773		if (r->start < start) {
774		 	lower_start = r->start;
775			lower_end = start;
776		}
777		if (r->end > end) {
778			upper_start = end;
779			upper_end = r->end;
780		}
781
782		/* 2. Drop the original ok overlapping range */
783		drop_range(i);
784
785		i--;		/* resume for-loop on copied down entry */
786
787		/* 3. Add back in any non-overlapping ranges. */
788		if (lower_end)
789			reserve_early_overlap_ok(lower_start, lower_end, name);
790		if (upper_end)
791			reserve_early_overlap_ok(upper_start, upper_end, name);
792	}
793}
794
795static void __init __reserve_early(u64 start, u64 end, char *name,
796						int overlap_ok)
797{
798	int i;
799	struct early_res *r;
800
801	i = find_overlapped_early(start, end);
802	if (i >= MAX_EARLY_RES)
803		panic("Too many early reservations");
804	r = &early_res[i];
805	if (r->end)
806		panic("Overlapping early reservations "
807		      "%llx-%llx %s to %llx-%llx %s\n",
808		      start, end - 1, name?name:"", r->start,
809		      r->end - 1, r->name);
810	r->start = start;
811	r->end = end;
812	r->overlap_ok = overlap_ok;
813	if (name)
814		strncpy(r->name, name, sizeof(r->name) - 1);
815}
816
817/*
818 * A few early reservtations come here.
819 *
820 * The 'overlap_ok' in the name of this routine does -not- mean it
821 * is ok for these reservations to overlap an earlier reservation.
822 * Rather it means that it is ok for subsequent reservations to
823 * overlap this one.
824 *
825 * Use this entry point to reserve early ranges when you are doing
826 * so out of "Paranoia", reserving perhaps more memory than you need,
827 * just in case, and don't mind a subsequent overlapping reservation
828 * that is known to be needed.
829 *
830 * The drop_overlaps_that_are_ok() call here isn't really needed.
831 * It would be needed if we had two colliding 'overlap_ok'
832 * reservations, so that the second such would not panic on the
833 * overlap with the first.  We don't have any such as of this
834 * writing, but might as well tolerate such if it happens in
835 * the future.
836 */
837void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
838{
839	drop_overlaps_that_are_ok(start, end);
840	__reserve_early(start, end, name, 1);
841}
842
843/*
844 * Most early reservations come here.
845 *
846 * We first have drop_overlaps_that_are_ok() drop any pre-existing
847 * 'overlap_ok' ranges, so that we can then reserve this memory
848 * range without risk of panic'ing on an overlapping overlap_ok
849 * early reservation.
850 */
851void __init reserve_early(u64 start, u64 end, char *name)
852{
853	drop_overlaps_that_are_ok(start, end);
854	__reserve_early(start, end, name, 0);
855}
856
857void __init free_early(u64 start, u64 end)
858{
859	struct early_res *r;
860	int i;
861
862	i = find_overlapped_early(start, end);
863	r = &early_res[i];
864	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
865		panic("free_early on not reserved area: %llx-%llx!",
866			 start, end - 1);
867
868	drop_range(i);
869}
870
871void __init early_res_to_bootmem(u64 start, u64 end)
872{
873	int i, count;
874	u64 final_start, final_end;
875
876	count  = 0;
877	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
878		count++;
879
880	printk(KERN_INFO "(%d early reservations) ==> bootmem\n", count);
881	for (i = 0; i < count; i++) {
882		struct early_res *r = &early_res[i];
883		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
884			r->start, r->end, r->name);
885		final_start = max(start, r->start);
886		final_end = min(end, r->end);
887		if (final_start >= final_end) {
888			printk(KERN_CONT "\n");
889			continue;
890		}
891		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
892			final_start, final_end);
893		reserve_bootmem_generic(final_start, final_end - final_start,
894				BOOTMEM_DEFAULT);
895	}
896}
897
898/* Check for already reserved areas */
899static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
900{
901	int i;
902	u64 addr = *addrp;
903	int changed = 0;
904	struct early_res *r;
905again:
906	i = find_overlapped_early(addr, addr + size);
907	r = &early_res[i];
908	if (i < MAX_EARLY_RES && r->end) {
909		*addrp = addr = round_up(r->end, align);
910		changed = 1;
911		goto again;
912	}
913	return changed;
914}
915
916/* Check for already reserved areas */
917static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
918{
919	int i;
920	u64 addr = *addrp, last;
921	u64 size = *sizep;
922	int changed = 0;
923again:
924	last = addr + size;
925	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
926		struct early_res *r = &early_res[i];
927		if (last > r->start && addr < r->start) {
928			size = r->start - addr;
929			changed = 1;
930			goto again;
931		}
932		if (last > r->end && addr < r->end) {
933			addr = round_up(r->end, align);
934			size = last - addr;
935			changed = 1;
936			goto again;
937		}
938		if (last <= r->end && addr >= r->start) {
939			(*sizep)++;
940			return 0;
941		}
942	}
943	if (changed) {
944		*addrp = addr;
945		*sizep = size;
946	}
947	return changed;
948}
949
950/*
951 * Find a free area with specified alignment in a specific range.
952 */
953u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
954{
955	int i;
956
957	for (i = 0; i < e820.nr_map; i++) {
958		struct e820entry *ei = &e820.map[i];
959		u64 addr, last;
960		u64 ei_last;
961
962		if (ei->type != E820_RAM)
963			continue;
964		addr = round_up(ei->addr, align);
965		ei_last = ei->addr + ei->size;
966		if (addr < start)
967			addr = round_up(start, align);
968		if (addr >= ei_last)
969			continue;
970		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
971			;
972		last = addr + size;
973		if (last > ei_last)
974			continue;
975		if (last > end)
976			continue;
977		return addr;
978	}
979	return -1ULL;
980}
981
982/*
983 * Find next free range after *start
984 */
985u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
986{
987	int i;
988
989	for (i = 0; i < e820.nr_map; i++) {
990		struct e820entry *ei = &e820.map[i];
991		u64 addr, last;
992		u64 ei_last;
993
994		if (ei->type != E820_RAM)
995			continue;
996		addr = round_up(ei->addr, align);
997		ei_last = ei->addr + ei->size;
998		if (addr < start)
999			addr = round_up(start, align);
1000		if (addr >= ei_last)
1001			continue;
1002		*sizep = ei_last - addr;
1003		while (bad_addr_size(&addr, sizep, align) &&
1004			addr + *sizep <= ei_last)
1005			;
1006		last = addr + *sizep;
1007		if (last > ei_last)
1008			continue;
1009		return addr;
1010	}
1011	return -1UL;
1012
1013}
1014
1015/*
1016 * pre allocated 4k and reserved it in e820
1017 */
1018u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1019{
1020	u64 size = 0;
1021	u64 addr;
1022	u64 start;
1023
1024	start = startt;
1025	while (size < sizet)
1026		start = find_e820_area_size(start, &size, align);
1027
1028	if (size < sizet)
1029		return 0;
1030
1031	addr = round_down(start + size - sizet, align);
1032	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1033	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1034	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1035	update_e820();
1036	update_e820_saved();
1037
1038	return addr;
1039}
1040
1041#ifdef CONFIG_X86_32
1042# ifdef CONFIG_X86_PAE
1043#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1044# else
1045#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1046# endif
1047#else /* CONFIG_X86_32 */
1048# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1049#endif
1050
1051/*
1052 * Find the highest page frame number we have available
1053 */
1054static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1055{
1056	int i;
1057	unsigned long last_pfn = 0;
1058	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1059
1060	for (i = 0; i < e820.nr_map; i++) {
1061		struct e820entry *ei = &e820.map[i];
1062		unsigned long start_pfn;
1063		unsigned long end_pfn;
1064
1065		if (ei->type != type)
1066			continue;
1067
1068		start_pfn = ei->addr >> PAGE_SHIFT;
1069		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1070
1071		if (start_pfn >= limit_pfn)
1072			continue;
1073		if (end_pfn > limit_pfn) {
1074			last_pfn = limit_pfn;
1075			break;
1076		}
1077		if (end_pfn > last_pfn)
1078			last_pfn = end_pfn;
1079	}
1080
1081	if (last_pfn > max_arch_pfn)
1082		last_pfn = max_arch_pfn;
1083
1084	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1085			 last_pfn, max_arch_pfn);
1086	return last_pfn;
1087}
1088unsigned long __init e820_end_of_ram_pfn(void)
1089{
1090	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1091}
1092
1093unsigned long __init e820_end_of_low_ram_pfn(void)
1094{
1095	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1096}
1097/*
1098 * Finds an active region in the address range from start_pfn to last_pfn and
1099 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1100 */
1101int __init e820_find_active_region(const struct e820entry *ei,
1102				  unsigned long start_pfn,
1103				  unsigned long last_pfn,
1104				  unsigned long *ei_startpfn,
1105				  unsigned long *ei_endpfn)
1106{
1107	u64 align = PAGE_SIZE;
1108
1109	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1110	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1111
1112	/* Skip map entries smaller than a page */
1113	if (*ei_startpfn >= *ei_endpfn)
1114		return 0;
1115
1116	/* Skip if map is outside the node */
1117	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1118				    *ei_startpfn >= last_pfn)
1119		return 0;
1120
1121	/* Check for overlaps */
1122	if (*ei_startpfn < start_pfn)
1123		*ei_startpfn = start_pfn;
1124	if (*ei_endpfn > last_pfn)
1125		*ei_endpfn = last_pfn;
1126
1127	return 1;
1128}
1129
1130/* Walk the e820 map and register active regions within a node */
1131void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1132					 unsigned long last_pfn)
1133{
1134	unsigned long ei_startpfn;
1135	unsigned long ei_endpfn;
1136	int i;
1137
1138	for (i = 0; i < e820.nr_map; i++)
1139		if (e820_find_active_region(&e820.map[i],
1140					    start_pfn, last_pfn,
1141					    &ei_startpfn, &ei_endpfn))
1142			add_active_range(nid, ei_startpfn, ei_endpfn);
1143}
1144
1145/*
1146 * Find the hole size (in bytes) in the memory range.
1147 * @start: starting address of the memory range to scan
1148 * @end: ending address of the memory range to scan
1149 */
1150u64 __init e820_hole_size(u64 start, u64 end)
1151{
1152	unsigned long start_pfn = start >> PAGE_SHIFT;
1153	unsigned long last_pfn = end >> PAGE_SHIFT;
1154	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1155	int i;
1156
1157	for (i = 0; i < e820.nr_map; i++) {
1158		if (e820_find_active_region(&e820.map[i],
1159					    start_pfn, last_pfn,
1160					    &ei_startpfn, &ei_endpfn))
1161			ram += ei_endpfn - ei_startpfn;
1162	}
1163	return end - start - ((u64)ram << PAGE_SHIFT);
1164}
1165
1166static void early_panic(char *msg)
1167{
1168	early_printk(msg);
1169	panic(msg);
1170}
1171
1172static int userdef __initdata;
1173
1174/* "mem=nopentium" disables the 4MB page tables. */
1175static int __init parse_memopt(char *p)
1176{
1177	u64 mem_size;
1178
1179	if (!p)
1180		return -EINVAL;
1181
1182#ifdef CONFIG_X86_32
1183	if (!strcmp(p, "nopentium")) {
1184		setup_clear_cpu_cap(X86_FEATURE_PSE);
1185		return 0;
1186	}
1187#endif
1188
1189	userdef = 1;
1190	mem_size = memparse(p, &p);
1191	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1192
1193	return 0;
1194}
1195early_param("mem", parse_memopt);
1196
1197static int __init parse_memmap_opt(char *p)
1198{
1199	char *oldp;
1200	u64 start_at, mem_size;
1201
1202	if (!p)
1203		return -EINVAL;
1204
1205	if (!strcmp(p, "exactmap")) {
1206#ifdef CONFIG_CRASH_DUMP
1207		/*
1208		 * If we are doing a crash dump, we still need to know
1209		 * the real mem size before original memory map is
1210		 * reset.
1211		 */
1212		saved_max_pfn = e820_end_of_ram_pfn();
1213#endif
1214		e820.nr_map = 0;
1215		userdef = 1;
1216		return 0;
1217	}
1218
1219	oldp = p;
1220	mem_size = memparse(p, &p);
1221	if (p == oldp)
1222		return -EINVAL;
1223
1224	userdef = 1;
1225	if (*p == '@') {
1226		start_at = memparse(p+1, &p);
1227		e820_add_region(start_at, mem_size, E820_RAM);
1228	} else if (*p == '#') {
1229		start_at = memparse(p+1, &p);
1230		e820_add_region(start_at, mem_size, E820_ACPI);
1231	} else if (*p == '$') {
1232		start_at = memparse(p+1, &p);
1233		e820_add_region(start_at, mem_size, E820_RESERVED);
1234	} else
1235		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1236
1237	return *p == '\0' ? 0 : -EINVAL;
1238}
1239early_param("memmap", parse_memmap_opt);
1240
1241void __init finish_e820_parsing(void)
1242{
1243	if (userdef) {
1244		int nr = e820.nr_map;
1245
1246		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1247			early_panic("Invalid user supplied memory map");
1248		e820.nr_map = nr;
1249
1250		printk(KERN_INFO "user-defined physical RAM map:\n");
1251		e820_print_map("user");
1252	}
1253}
1254
1255static inline const char *e820_type_to_string(int e820_type)
1256{
1257	switch (e820_type) {
1258	case E820_RESERVED_KERN:
1259	case E820_RAM:	return "System RAM";
1260	case E820_ACPI:	return "ACPI Tables";
1261	case E820_NVS:	return "ACPI Non-volatile Storage";
1262	default:	return "reserved";
1263	}
1264}
1265
1266/*
1267 * Mark e820 reserved areas as busy for the resource manager.
1268 */
1269void __init e820_reserve_resources(void)
1270{
1271	int i;
1272	struct resource *res;
1273	u64 end;
1274
1275	res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map);
1276	for (i = 0; i < e820.nr_map; i++) {
1277		end = e820.map[i].addr + e820.map[i].size - 1;
1278#ifndef CONFIG_RESOURCES_64BIT
1279		if (end > 0x100000000ULL) {
1280			res++;
1281			continue;
1282		}
1283#endif
1284		res->name = e820_type_to_string(e820.map[i].type);
1285		res->start = e820.map[i].addr;
1286		res->end = end;
1287
1288		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1289		insert_resource(&iomem_resource, res);
1290		res++;
1291	}
1292
1293	for (i = 0; i < e820_saved.nr_map; i++) {
1294		struct e820entry *entry = &e820_saved.map[i];
1295		firmware_map_add_early(entry->addr,
1296			entry->addr + entry->size - 1,
1297			e820_type_to_string(entry->type));
1298	}
1299}
1300
1301/*
1302 * Non-standard memory setup can be specified via this quirk:
1303 */
1304char * (*arch_memory_setup_quirk)(void);
1305
1306char *__init default_machine_specific_memory_setup(void)
1307{
1308	char *who = "BIOS-e820";
1309	int new_nr;
1310	/*
1311	 * Try to copy the BIOS-supplied E820-map.
1312	 *
1313	 * Otherwise fake a memory map; one section from 0k->640k,
1314	 * the next section from 1mb->appropriate_mem_k
1315	 */
1316	new_nr = boot_params.e820_entries;
1317	sanitize_e820_map(boot_params.e820_map,
1318			ARRAY_SIZE(boot_params.e820_map),
1319			&new_nr);
1320	boot_params.e820_entries = new_nr;
1321	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1322	  < 0) {
1323		u64 mem_size;
1324
1325		/* compare results from other methods and take the greater */
1326		if (boot_params.alt_mem_k
1327		    < boot_params.screen_info.ext_mem_k) {
1328			mem_size = boot_params.screen_info.ext_mem_k;
1329			who = "BIOS-88";
1330		} else {
1331			mem_size = boot_params.alt_mem_k;
1332			who = "BIOS-e801";
1333		}
1334
1335		e820.nr_map = 0;
1336		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1337		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1338	}
1339
1340	/* In case someone cares... */
1341	return who;
1342}
1343
1344char *__init __attribute__((weak)) machine_specific_memory_setup(void)
1345{
1346	if (arch_memory_setup_quirk) {
1347		char *who = arch_memory_setup_quirk();
1348
1349		if (who)
1350			return who;
1351	}
1352	return default_machine_specific_memory_setup();
1353}
1354
1355/* Overridden in paravirt.c if CONFIG_PARAVIRT */
1356char * __init __attribute__((weak)) memory_setup(void)
1357{
1358	return machine_specific_memory_setup();
1359}
1360
1361void __init setup_memory_map(void)
1362{
1363	char *who;
1364
1365	who = memory_setup();
1366	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1367	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1368	e820_print_map(who);
1369}
1370
1371#ifdef CONFIG_X86_64
1372int __init arch_get_ram_range(int slot, u64 *addr, u64 *size)
1373{
1374	int i;
1375
1376	if (slot < 0 || slot >= e820.nr_map)
1377		return -1;
1378	for (i = slot; i < e820.nr_map; i++) {
1379		if (e820.map[i].type != E820_RAM)
1380			continue;
1381		break;
1382	}
1383	if (i == e820.nr_map || e820.map[i].addr > (max_pfn << PAGE_SHIFT))
1384		return -1;
1385	*addr = e820.map[i].addr;
1386	*size = min_t(u64, e820.map[i].size + e820.map[i].addr,
1387		max_pfn << PAGE_SHIFT) - *addr;
1388	return i + 1;
1389}
1390#endif
1391