e820.c revision 7b479becdb8c1fb4ff6fbb2a4076c471c737b54c
1/* 2 * Handle the memory map. 3 * The functions here do the job until bootmem takes over. 4 * 5 * Getting sanitize_e820_map() in sync with i386 version by applying change: 6 * - Provisions for empty E820 memory regions (reported by certain BIOSes). 7 * Alex Achenbach <xela@slit.de>, December 2002. 8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 9 * 10 */ 11#include <linux/kernel.h> 12#include <linux/types.h> 13#include <linux/init.h> 14#include <linux/bootmem.h> 15#include <linux/ioport.h> 16#include <linux/string.h> 17#include <linux/kexec.h> 18#include <linux/module.h> 19#include <linux/mm.h> 20#include <linux/pfn.h> 21#include <linux/suspend.h> 22#include <linux/firmware-map.h> 23 24#include <asm/pgtable.h> 25#include <asm/page.h> 26#include <asm/e820.h> 27#include <asm/proto.h> 28#include <asm/setup.h> 29#include <asm/trampoline.h> 30 31/* 32 * The e820 map is the map that gets modified e.g. with command line parameters 33 * and that is also registered with modifications in the kernel resource tree 34 * with the iomem_resource as parent. 35 * 36 * The e820_saved is directly saved after the BIOS-provided memory map is 37 * copied. It doesn't get modified afterwards. It's registered for the 38 * /sys/firmware/memmap interface. 39 * 40 * That memory map is not modified and is used as base for kexec. The kexec'd 41 * kernel should get the same memory map as the firmware provides. Then the 42 * user can e.g. boot the original kernel with mem=1G while still booting the 43 * next kernel with full memory. 44 */ 45struct e820map e820; 46struct e820map e820_saved; 47 48/* For PCI or other memory-mapped resources */ 49unsigned long pci_mem_start = 0xaeedbabe; 50#ifdef CONFIG_PCI 51EXPORT_SYMBOL(pci_mem_start); 52#endif 53 54/* 55 * This function checks if any part of the range <start,end> is mapped 56 * with type. 57 */ 58int 59e820_any_mapped(u64 start, u64 end, unsigned type) 60{ 61 int i; 62 63 for (i = 0; i < e820.nr_map; i++) { 64 struct e820entry *ei = &e820.map[i]; 65 66 if (type && ei->type != type) 67 continue; 68 if (ei->addr >= end || ei->addr + ei->size <= start) 69 continue; 70 return 1; 71 } 72 return 0; 73} 74EXPORT_SYMBOL_GPL(e820_any_mapped); 75 76/* 77 * This function checks if the entire range <start,end> is mapped with type. 78 * 79 * Note: this function only works correct if the e820 table is sorted and 80 * not-overlapping, which is the case 81 */ 82int __init e820_all_mapped(u64 start, u64 end, unsigned type) 83{ 84 int i; 85 86 for (i = 0; i < e820.nr_map; i++) { 87 struct e820entry *ei = &e820.map[i]; 88 89 if (type && ei->type != type) 90 continue; 91 /* is the region (part) in overlap with the current region ?*/ 92 if (ei->addr >= end || ei->addr + ei->size <= start) 93 continue; 94 95 /* if the region is at the beginning of <start,end> we move 96 * start to the end of the region since it's ok until there 97 */ 98 if (ei->addr <= start) 99 start = ei->addr + ei->size; 100 /* 101 * if start is now at or beyond end, we're done, full 102 * coverage 103 */ 104 if (start >= end) 105 return 1; 106 } 107 return 0; 108} 109 110/* 111 * Add a memory region to the kernel e820 map. 112 */ 113void __init e820_add_region(u64 start, u64 size, int type) 114{ 115 int x = e820.nr_map; 116 117 if (x == ARRAY_SIZE(e820.map)) { 118 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); 119 return; 120 } 121 122 e820.map[x].addr = start; 123 e820.map[x].size = size; 124 e820.map[x].type = type; 125 e820.nr_map++; 126} 127 128void __init e820_print_map(char *who) 129{ 130 int i; 131 132 for (i = 0; i < e820.nr_map; i++) { 133 printk(KERN_INFO " %s: %016Lx - %016Lx ", who, 134 (unsigned long long) e820.map[i].addr, 135 (unsigned long long) 136 (e820.map[i].addr + e820.map[i].size)); 137 switch (e820.map[i].type) { 138 case E820_RAM: 139 case E820_RESERVED_KERN: 140 printk(KERN_CONT "(usable)\n"); 141 break; 142 case E820_RESERVED: 143 printk(KERN_CONT "(reserved)\n"); 144 break; 145 case E820_ACPI: 146 printk(KERN_CONT "(ACPI data)\n"); 147 break; 148 case E820_NVS: 149 printk(KERN_CONT "(ACPI NVS)\n"); 150 break; 151 default: 152 printk(KERN_CONT "type %u\n", e820.map[i].type); 153 break; 154 } 155 } 156} 157 158/* 159 * Sanitize the BIOS e820 map. 160 * 161 * Some e820 responses include overlapping entries. The following 162 * replaces the original e820 map with a new one, removing overlaps, 163 * and resolving conflicting memory types in favor of highest 164 * numbered type. 165 * 166 * The input parameter biosmap points to an array of 'struct 167 * e820entry' which on entry has elements in the range [0, *pnr_map) 168 * valid, and which has space for up to max_nr_map entries. 169 * On return, the resulting sanitized e820 map entries will be in 170 * overwritten in the same location, starting at biosmap. 171 * 172 * The integer pointed to by pnr_map must be valid on entry (the 173 * current number of valid entries located at biosmap) and will 174 * be updated on return, with the new number of valid entries 175 * (something no more than max_nr_map.) 176 * 177 * The return value from sanitize_e820_map() is zero if it 178 * successfully 'sanitized' the map entries passed in, and is -1 179 * if it did nothing, which can happen if either of (1) it was 180 * only passed one map entry, or (2) any of the input map entries 181 * were invalid (start + size < start, meaning that the size was 182 * so big the described memory range wrapped around through zero.) 183 * 184 * Visually we're performing the following 185 * (1,2,3,4 = memory types)... 186 * 187 * Sample memory map (w/overlaps): 188 * ____22__________________ 189 * ______________________4_ 190 * ____1111________________ 191 * _44_____________________ 192 * 11111111________________ 193 * ____________________33__ 194 * ___________44___________ 195 * __________33333_________ 196 * ______________22________ 197 * ___________________2222_ 198 * _________111111111______ 199 * _____________________11_ 200 * _________________4______ 201 * 202 * Sanitized equivalent (no overlap): 203 * 1_______________________ 204 * _44_____________________ 205 * ___1____________________ 206 * ____22__________________ 207 * ______11________________ 208 * _________1______________ 209 * __________3_____________ 210 * ___________44___________ 211 * _____________33_________ 212 * _______________2________ 213 * ________________1_______ 214 * _________________4______ 215 * ___________________2____ 216 * ____________________33__ 217 * ______________________4_ 218 */ 219 220int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map, 221 int *pnr_map) 222{ 223 struct change_member { 224 struct e820entry *pbios; /* pointer to original bios entry */ 225 unsigned long long addr; /* address for this change point */ 226 }; 227 static struct change_member change_point_list[2*E820_X_MAX] __initdata; 228 static struct change_member *change_point[2*E820_X_MAX] __initdata; 229 static struct e820entry *overlap_list[E820_X_MAX] __initdata; 230 static struct e820entry new_bios[E820_X_MAX] __initdata; 231 struct change_member *change_tmp; 232 unsigned long current_type, last_type; 233 unsigned long long last_addr; 234 int chgidx, still_changing; 235 int overlap_entries; 236 int new_bios_entry; 237 int old_nr, new_nr, chg_nr; 238 int i; 239 240 /* if there's only one memory region, don't bother */ 241 if (*pnr_map < 2) 242 return -1; 243 244 old_nr = *pnr_map; 245 BUG_ON(old_nr > max_nr_map); 246 247 /* bail out if we find any unreasonable addresses in bios map */ 248 for (i = 0; i < old_nr; i++) 249 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) 250 return -1; 251 252 /* create pointers for initial change-point information (for sorting) */ 253 for (i = 0; i < 2 * old_nr; i++) 254 change_point[i] = &change_point_list[i]; 255 256 /* record all known change-points (starting and ending addresses), 257 omitting those that are for empty memory regions */ 258 chgidx = 0; 259 for (i = 0; i < old_nr; i++) { 260 if (biosmap[i].size != 0) { 261 change_point[chgidx]->addr = biosmap[i].addr; 262 change_point[chgidx++]->pbios = &biosmap[i]; 263 change_point[chgidx]->addr = biosmap[i].addr + 264 biosmap[i].size; 265 change_point[chgidx++]->pbios = &biosmap[i]; 266 } 267 } 268 chg_nr = chgidx; 269 270 /* sort change-point list by memory addresses (low -> high) */ 271 still_changing = 1; 272 while (still_changing) { 273 still_changing = 0; 274 for (i = 1; i < chg_nr; i++) { 275 unsigned long long curaddr, lastaddr; 276 unsigned long long curpbaddr, lastpbaddr; 277 278 curaddr = change_point[i]->addr; 279 lastaddr = change_point[i - 1]->addr; 280 curpbaddr = change_point[i]->pbios->addr; 281 lastpbaddr = change_point[i - 1]->pbios->addr; 282 283 /* 284 * swap entries, when: 285 * 286 * curaddr > lastaddr or 287 * curaddr == lastaddr and curaddr == curpbaddr and 288 * lastaddr != lastpbaddr 289 */ 290 if (curaddr < lastaddr || 291 (curaddr == lastaddr && curaddr == curpbaddr && 292 lastaddr != lastpbaddr)) { 293 change_tmp = change_point[i]; 294 change_point[i] = change_point[i-1]; 295 change_point[i-1] = change_tmp; 296 still_changing = 1; 297 } 298 } 299 } 300 301 /* create a new bios memory map, removing overlaps */ 302 overlap_entries = 0; /* number of entries in the overlap table */ 303 new_bios_entry = 0; /* index for creating new bios map entries */ 304 last_type = 0; /* start with undefined memory type */ 305 last_addr = 0; /* start with 0 as last starting address */ 306 307 /* loop through change-points, determining affect on the new bios map */ 308 for (chgidx = 0; chgidx < chg_nr; chgidx++) { 309 /* keep track of all overlapping bios entries */ 310 if (change_point[chgidx]->addr == 311 change_point[chgidx]->pbios->addr) { 312 /* 313 * add map entry to overlap list (> 1 entry 314 * implies an overlap) 315 */ 316 overlap_list[overlap_entries++] = 317 change_point[chgidx]->pbios; 318 } else { 319 /* 320 * remove entry from list (order independent, 321 * so swap with last) 322 */ 323 for (i = 0; i < overlap_entries; i++) { 324 if (overlap_list[i] == 325 change_point[chgidx]->pbios) 326 overlap_list[i] = 327 overlap_list[overlap_entries-1]; 328 } 329 overlap_entries--; 330 } 331 /* 332 * if there are overlapping entries, decide which 333 * "type" to use (larger value takes precedence -- 334 * 1=usable, 2,3,4,4+=unusable) 335 */ 336 current_type = 0; 337 for (i = 0; i < overlap_entries; i++) 338 if (overlap_list[i]->type > current_type) 339 current_type = overlap_list[i]->type; 340 /* 341 * continue building up new bios map based on this 342 * information 343 */ 344 if (current_type != last_type) { 345 if (last_type != 0) { 346 new_bios[new_bios_entry].size = 347 change_point[chgidx]->addr - last_addr; 348 /* 349 * move forward only if the new size 350 * was non-zero 351 */ 352 if (new_bios[new_bios_entry].size != 0) 353 /* 354 * no more space left for new 355 * bios entries ? 356 */ 357 if (++new_bios_entry >= max_nr_map) 358 break; 359 } 360 if (current_type != 0) { 361 new_bios[new_bios_entry].addr = 362 change_point[chgidx]->addr; 363 new_bios[new_bios_entry].type = current_type; 364 last_addr = change_point[chgidx]->addr; 365 } 366 last_type = current_type; 367 } 368 } 369 /* retain count for new bios entries */ 370 new_nr = new_bios_entry; 371 372 /* copy new bios mapping into original location */ 373 memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry)); 374 *pnr_map = new_nr; 375 376 return 0; 377} 378 379static int __init __append_e820_map(struct e820entry *biosmap, int nr_map) 380{ 381 while (nr_map) { 382 u64 start = biosmap->addr; 383 u64 size = biosmap->size; 384 u64 end = start + size; 385 u32 type = biosmap->type; 386 387 /* Overflow in 64 bits? Ignore the memory map. */ 388 if (start > end) 389 return -1; 390 391 e820_add_region(start, size, type); 392 393 biosmap++; 394 nr_map--; 395 } 396 return 0; 397} 398 399/* 400 * Copy the BIOS e820 map into a safe place. 401 * 402 * Sanity-check it while we're at it.. 403 * 404 * If we're lucky and live on a modern system, the setup code 405 * will have given us a memory map that we can use to properly 406 * set up memory. If we aren't, we'll fake a memory map. 407 */ 408static int __init append_e820_map(struct e820entry *biosmap, int nr_map) 409{ 410 /* Only one memory region (or negative)? Ignore it */ 411 if (nr_map < 2) 412 return -1; 413 414 return __append_e820_map(biosmap, nr_map); 415} 416 417static u64 __init e820_update_range_map(struct e820map *e820x, u64 start, 418 u64 size, unsigned old_type, 419 unsigned new_type) 420{ 421 int i; 422 u64 real_updated_size = 0; 423 424 BUG_ON(old_type == new_type); 425 426 if (size > (ULLONG_MAX - start)) 427 size = ULLONG_MAX - start; 428 429 for (i = 0; i < e820.nr_map; i++) { 430 struct e820entry *ei = &e820x->map[i]; 431 u64 final_start, final_end; 432 if (ei->type != old_type) 433 continue; 434 /* totally covered? */ 435 if (ei->addr >= start && 436 (ei->addr + ei->size) <= (start + size)) { 437 ei->type = new_type; 438 real_updated_size += ei->size; 439 continue; 440 } 441 /* partially covered */ 442 final_start = max(start, ei->addr); 443 final_end = min(start + size, ei->addr + ei->size); 444 if (final_start >= final_end) 445 continue; 446 e820_add_region(final_start, final_end - final_start, 447 new_type); 448 real_updated_size += final_end - final_start; 449 450 ei->size -= final_end - final_start; 451 if (ei->addr < final_start) 452 continue; 453 ei->addr = final_end; 454 } 455 return real_updated_size; 456} 457 458u64 __init e820_update_range(u64 start, u64 size, unsigned old_type, 459 unsigned new_type) 460{ 461 return e820_update_range_map(&e820, start, size, old_type, new_type); 462} 463 464static u64 __init e820_update_range_saved(u64 start, u64 size, 465 unsigned old_type, unsigned new_type) 466{ 467 return e820_update_range_map(&e820_saved, start, size, old_type, 468 new_type); 469} 470 471/* make e820 not cover the range */ 472u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type, 473 int checktype) 474{ 475 int i; 476 u64 real_removed_size = 0; 477 478 if (size > (ULLONG_MAX - start)) 479 size = ULLONG_MAX - start; 480 481 for (i = 0; i < e820.nr_map; i++) { 482 struct e820entry *ei = &e820.map[i]; 483 u64 final_start, final_end; 484 485 if (checktype && ei->type != old_type) 486 continue; 487 /* totally covered? */ 488 if (ei->addr >= start && 489 (ei->addr + ei->size) <= (start + size)) { 490 real_removed_size += ei->size; 491 memset(ei, 0, sizeof(struct e820entry)); 492 continue; 493 } 494 /* partially covered */ 495 final_start = max(start, ei->addr); 496 final_end = min(start + size, ei->addr + ei->size); 497 if (final_start >= final_end) 498 continue; 499 real_removed_size += final_end - final_start; 500 501 ei->size -= final_end - final_start; 502 if (ei->addr < final_start) 503 continue; 504 ei->addr = final_end; 505 } 506 return real_removed_size; 507} 508 509void __init update_e820(void) 510{ 511 int nr_map; 512 513 nr_map = e820.nr_map; 514 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map)) 515 return; 516 e820.nr_map = nr_map; 517 printk(KERN_INFO "modified physical RAM map:\n"); 518 e820_print_map("modified"); 519} 520static void __init update_e820_saved(void) 521{ 522 int nr_map; 523 524 nr_map = e820_saved.nr_map; 525 if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map)) 526 return; 527 e820_saved.nr_map = nr_map; 528} 529#define MAX_GAP_END 0x100000000ull 530/* 531 * Search for a gap in the e820 memory space from start_addr to end_addr. 532 */ 533__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize, 534 unsigned long start_addr, unsigned long long end_addr) 535{ 536 unsigned long long last; 537 int i = e820.nr_map; 538 int found = 0; 539 540 last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END; 541 542 while (--i >= 0) { 543 unsigned long long start = e820.map[i].addr; 544 unsigned long long end = start + e820.map[i].size; 545 546 if (end < start_addr) 547 continue; 548 549 /* 550 * Since "last" is at most 4GB, we know we'll 551 * fit in 32 bits if this condition is true 552 */ 553 if (last > end) { 554 unsigned long gap = last - end; 555 556 if (gap >= *gapsize) { 557 *gapsize = gap; 558 *gapstart = end; 559 found = 1; 560 } 561 } 562 if (start < last) 563 last = start; 564 } 565 return found; 566} 567 568/* 569 * Search for the biggest gap in the low 32 bits of the e820 570 * memory space. We pass this space to PCI to assign MMIO resources 571 * for hotplug or unconfigured devices in. 572 * Hopefully the BIOS let enough space left. 573 */ 574__init void e820_setup_gap(void) 575{ 576 unsigned long gapstart, gapsize, round; 577 int found; 578 579 gapstart = 0x10000000; 580 gapsize = 0x400000; 581 found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END); 582 583#ifdef CONFIG_X86_64 584 if (!found) { 585 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 586 printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit " 587 "address range\n" 588 KERN_ERR "PCI: Unassigned devices with 32bit resource " 589 "registers may break!\n"); 590 } 591#endif 592 593 /* 594 * See how much we want to round up: start off with 595 * rounding to the next 1MB area. 596 */ 597 round = 0x100000; 598 while ((gapsize >> 4) > round) 599 round += round; 600 /* Fun with two's complement */ 601 pci_mem_start = (gapstart + round) & -round; 602 603 printk(KERN_INFO 604 "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n", 605 pci_mem_start, gapstart, gapsize); 606} 607 608/** 609 * Because of the size limitation of struct boot_params, only first 610 * 128 E820 memory entries are passed to kernel via 611 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of 612 * linked list of struct setup_data, which is parsed here. 613 */ 614void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data) 615{ 616 u32 map_len; 617 int entries; 618 struct e820entry *extmap; 619 620 entries = sdata->len / sizeof(struct e820entry); 621 map_len = sdata->len + sizeof(struct setup_data); 622 if (map_len > PAGE_SIZE) 623 sdata = early_ioremap(pa_data, map_len); 624 extmap = (struct e820entry *)(sdata->data); 625 __append_e820_map(extmap, entries); 626 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); 627 if (map_len > PAGE_SIZE) 628 early_iounmap(sdata, map_len); 629 printk(KERN_INFO "extended physical RAM map:\n"); 630 e820_print_map("extended"); 631} 632 633#if defined(CONFIG_X86_64) || \ 634 (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION)) 635/** 636 * Find the ranges of physical addresses that do not correspond to 637 * e820 RAM areas and mark the corresponding pages as nosave for 638 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit). 639 * 640 * This function requires the e820 map to be sorted and without any 641 * overlapping entries and assumes the first e820 area to be RAM. 642 */ 643void __init e820_mark_nosave_regions(unsigned long limit_pfn) 644{ 645 int i; 646 unsigned long pfn; 647 648 pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size); 649 for (i = 1; i < e820.nr_map; i++) { 650 struct e820entry *ei = &e820.map[i]; 651 652 if (pfn < PFN_UP(ei->addr)) 653 register_nosave_region(pfn, PFN_UP(ei->addr)); 654 655 pfn = PFN_DOWN(ei->addr + ei->size); 656 if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN) 657 register_nosave_region(PFN_UP(ei->addr), pfn); 658 659 if (pfn >= limit_pfn) 660 break; 661 } 662} 663#endif 664 665/* 666 * Early reserved memory areas. 667 */ 668#define MAX_EARLY_RES 20 669 670struct early_res { 671 u64 start, end; 672 char name[16]; 673 char overlap_ok; 674}; 675static struct early_res early_res[MAX_EARLY_RES] __initdata = { 676 { 0, PAGE_SIZE, "BIOS data page" }, /* BIOS data page */ 677#if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE) 678 { TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" }, 679#endif 680#if defined(CONFIG_X86_32) && defined(CONFIG_SMP) 681 /* 682 * But first pinch a few for the stack/trampoline stuff 683 * FIXME: Don't need the extra page at 4K, but need to fix 684 * trampoline before removing it. (see the GDT stuff) 685 */ 686 { PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" }, 687 /* 688 * Has to be in very low memory so we can execute 689 * real-mode AP code. 690 */ 691 { TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" }, 692#endif 693 {} 694}; 695 696static int __init find_overlapped_early(u64 start, u64 end) 697{ 698 int i; 699 struct early_res *r; 700 701 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { 702 r = &early_res[i]; 703 if (end > r->start && start < r->end) 704 break; 705 } 706 707 return i; 708} 709 710/* 711 * Drop the i-th range from the early reservation map, 712 * by copying any higher ranges down one over it, and 713 * clearing what had been the last slot. 714 */ 715static void __init drop_range(int i) 716{ 717 int j; 718 719 for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++) 720 ; 721 722 memmove(&early_res[i], &early_res[i + 1], 723 (j - 1 - i) * sizeof(struct early_res)); 724 725 early_res[j - 1].end = 0; 726} 727 728/* 729 * Split any existing ranges that: 730 * 1) are marked 'overlap_ok', and 731 * 2) overlap with the stated range [start, end) 732 * into whatever portion (if any) of the existing range is entirely 733 * below or entirely above the stated range. Drop the portion 734 * of the existing range that overlaps with the stated range, 735 * which will allow the caller of this routine to then add that 736 * stated range without conflicting with any existing range. 737 */ 738static void __init drop_overlaps_that_are_ok(u64 start, u64 end) 739{ 740 int i; 741 struct early_res *r; 742 u64 lower_start, lower_end; 743 u64 upper_start, upper_end; 744 char name[16]; 745 746 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { 747 r = &early_res[i]; 748 749 /* Continue past non-overlapping ranges */ 750 if (end <= r->start || start >= r->end) 751 continue; 752 753 /* 754 * Leave non-ok overlaps as is; let caller 755 * panic "Overlapping early reservations" 756 * when it hits this overlap. 757 */ 758 if (!r->overlap_ok) 759 return; 760 761 /* 762 * We have an ok overlap. We will drop it from the early 763 * reservation map, and add back in any non-overlapping 764 * portions (lower or upper) as separate, overlap_ok, 765 * non-overlapping ranges. 766 */ 767 768 /* 1. Note any non-overlapping (lower or upper) ranges. */ 769 strncpy(name, r->name, sizeof(name) - 1); 770 771 lower_start = lower_end = 0; 772 upper_start = upper_end = 0; 773 if (r->start < start) { 774 lower_start = r->start; 775 lower_end = start; 776 } 777 if (r->end > end) { 778 upper_start = end; 779 upper_end = r->end; 780 } 781 782 /* 2. Drop the original ok overlapping range */ 783 drop_range(i); 784 785 i--; /* resume for-loop on copied down entry */ 786 787 /* 3. Add back in any non-overlapping ranges. */ 788 if (lower_end) 789 reserve_early_overlap_ok(lower_start, lower_end, name); 790 if (upper_end) 791 reserve_early_overlap_ok(upper_start, upper_end, name); 792 } 793} 794 795static void __init __reserve_early(u64 start, u64 end, char *name, 796 int overlap_ok) 797{ 798 int i; 799 struct early_res *r; 800 801 i = find_overlapped_early(start, end); 802 if (i >= MAX_EARLY_RES) 803 panic("Too many early reservations"); 804 r = &early_res[i]; 805 if (r->end) 806 panic("Overlapping early reservations " 807 "%llx-%llx %s to %llx-%llx %s\n", 808 start, end - 1, name?name:"", r->start, 809 r->end - 1, r->name); 810 r->start = start; 811 r->end = end; 812 r->overlap_ok = overlap_ok; 813 if (name) 814 strncpy(r->name, name, sizeof(r->name) - 1); 815} 816 817/* 818 * A few early reservtations come here. 819 * 820 * The 'overlap_ok' in the name of this routine does -not- mean it 821 * is ok for these reservations to overlap an earlier reservation. 822 * Rather it means that it is ok for subsequent reservations to 823 * overlap this one. 824 * 825 * Use this entry point to reserve early ranges when you are doing 826 * so out of "Paranoia", reserving perhaps more memory than you need, 827 * just in case, and don't mind a subsequent overlapping reservation 828 * that is known to be needed. 829 * 830 * The drop_overlaps_that_are_ok() call here isn't really needed. 831 * It would be needed if we had two colliding 'overlap_ok' 832 * reservations, so that the second such would not panic on the 833 * overlap with the first. We don't have any such as of this 834 * writing, but might as well tolerate such if it happens in 835 * the future. 836 */ 837void __init reserve_early_overlap_ok(u64 start, u64 end, char *name) 838{ 839 drop_overlaps_that_are_ok(start, end); 840 __reserve_early(start, end, name, 1); 841} 842 843/* 844 * Most early reservations come here. 845 * 846 * We first have drop_overlaps_that_are_ok() drop any pre-existing 847 * 'overlap_ok' ranges, so that we can then reserve this memory 848 * range without risk of panic'ing on an overlapping overlap_ok 849 * early reservation. 850 */ 851void __init reserve_early(u64 start, u64 end, char *name) 852{ 853 drop_overlaps_that_are_ok(start, end); 854 __reserve_early(start, end, name, 0); 855} 856 857void __init free_early(u64 start, u64 end) 858{ 859 struct early_res *r; 860 int i; 861 862 i = find_overlapped_early(start, end); 863 r = &early_res[i]; 864 if (i >= MAX_EARLY_RES || r->end != end || r->start != start) 865 panic("free_early on not reserved area: %llx-%llx!", 866 start, end - 1); 867 868 drop_range(i); 869} 870 871void __init early_res_to_bootmem(u64 start, u64 end) 872{ 873 int i, count; 874 u64 final_start, final_end; 875 876 count = 0; 877 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) 878 count++; 879 880 printk(KERN_INFO "(%d early reservations) ==> bootmem\n", count); 881 for (i = 0; i < count; i++) { 882 struct early_res *r = &early_res[i]; 883 printk(KERN_INFO " #%d [%010llx - %010llx] %16s", i, 884 r->start, r->end, r->name); 885 final_start = max(start, r->start); 886 final_end = min(end, r->end); 887 if (final_start >= final_end) { 888 printk(KERN_CONT "\n"); 889 continue; 890 } 891 printk(KERN_CONT " ==> [%010llx - %010llx]\n", 892 final_start, final_end); 893 reserve_bootmem_generic(final_start, final_end - final_start, 894 BOOTMEM_DEFAULT); 895 } 896} 897 898/* Check for already reserved areas */ 899static inline int __init bad_addr(u64 *addrp, u64 size, u64 align) 900{ 901 int i; 902 u64 addr = *addrp; 903 int changed = 0; 904 struct early_res *r; 905again: 906 i = find_overlapped_early(addr, addr + size); 907 r = &early_res[i]; 908 if (i < MAX_EARLY_RES && r->end) { 909 *addrp = addr = round_up(r->end, align); 910 changed = 1; 911 goto again; 912 } 913 return changed; 914} 915 916/* Check for already reserved areas */ 917static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align) 918{ 919 int i; 920 u64 addr = *addrp, last; 921 u64 size = *sizep; 922 int changed = 0; 923again: 924 last = addr + size; 925 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { 926 struct early_res *r = &early_res[i]; 927 if (last > r->start && addr < r->start) { 928 size = r->start - addr; 929 changed = 1; 930 goto again; 931 } 932 if (last > r->end && addr < r->end) { 933 addr = round_up(r->end, align); 934 size = last - addr; 935 changed = 1; 936 goto again; 937 } 938 if (last <= r->end && addr >= r->start) { 939 (*sizep)++; 940 return 0; 941 } 942 } 943 if (changed) { 944 *addrp = addr; 945 *sizep = size; 946 } 947 return changed; 948} 949 950/* 951 * Find a free area with specified alignment in a specific range. 952 */ 953u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align) 954{ 955 int i; 956 957 for (i = 0; i < e820.nr_map; i++) { 958 struct e820entry *ei = &e820.map[i]; 959 u64 addr, last; 960 u64 ei_last; 961 962 if (ei->type != E820_RAM) 963 continue; 964 addr = round_up(ei->addr, align); 965 ei_last = ei->addr + ei->size; 966 if (addr < start) 967 addr = round_up(start, align); 968 if (addr >= ei_last) 969 continue; 970 while (bad_addr(&addr, size, align) && addr+size <= ei_last) 971 ; 972 last = addr + size; 973 if (last > ei_last) 974 continue; 975 if (last > end) 976 continue; 977 return addr; 978 } 979 return -1ULL; 980} 981 982/* 983 * Find next free range after *start 984 */ 985u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align) 986{ 987 int i; 988 989 for (i = 0; i < e820.nr_map; i++) { 990 struct e820entry *ei = &e820.map[i]; 991 u64 addr, last; 992 u64 ei_last; 993 994 if (ei->type != E820_RAM) 995 continue; 996 addr = round_up(ei->addr, align); 997 ei_last = ei->addr + ei->size; 998 if (addr < start) 999 addr = round_up(start, align); 1000 if (addr >= ei_last) 1001 continue; 1002 *sizep = ei_last - addr; 1003 while (bad_addr_size(&addr, sizep, align) && 1004 addr + *sizep <= ei_last) 1005 ; 1006 last = addr + *sizep; 1007 if (last > ei_last) 1008 continue; 1009 return addr; 1010 } 1011 return -1UL; 1012 1013} 1014 1015/* 1016 * pre allocated 4k and reserved it in e820 1017 */ 1018u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align) 1019{ 1020 u64 size = 0; 1021 u64 addr; 1022 u64 start; 1023 1024 start = startt; 1025 while (size < sizet) 1026 start = find_e820_area_size(start, &size, align); 1027 1028 if (size < sizet) 1029 return 0; 1030 1031 addr = round_down(start + size - sizet, align); 1032 e820_update_range(addr, sizet, E820_RAM, E820_RESERVED); 1033 e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED); 1034 printk(KERN_INFO "update e820 for early_reserve_e820\n"); 1035 update_e820(); 1036 update_e820_saved(); 1037 1038 return addr; 1039} 1040 1041#ifdef CONFIG_X86_32 1042# ifdef CONFIG_X86_PAE 1043# define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 1044# else 1045# define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 1046# endif 1047#else /* CONFIG_X86_32 */ 1048# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 1049#endif 1050 1051/* 1052 * Find the highest page frame number we have available 1053 */ 1054static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type) 1055{ 1056 int i; 1057 unsigned long last_pfn = 0; 1058 unsigned long max_arch_pfn = MAX_ARCH_PFN; 1059 1060 for (i = 0; i < e820.nr_map; i++) { 1061 struct e820entry *ei = &e820.map[i]; 1062 unsigned long start_pfn; 1063 unsigned long end_pfn; 1064 1065 if (ei->type != type) 1066 continue; 1067 1068 start_pfn = ei->addr >> PAGE_SHIFT; 1069 end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT; 1070 1071 if (start_pfn >= limit_pfn) 1072 continue; 1073 if (end_pfn > limit_pfn) { 1074 last_pfn = limit_pfn; 1075 break; 1076 } 1077 if (end_pfn > last_pfn) 1078 last_pfn = end_pfn; 1079 } 1080 1081 if (last_pfn > max_arch_pfn) 1082 last_pfn = max_arch_pfn; 1083 1084 printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n", 1085 last_pfn, max_arch_pfn); 1086 return last_pfn; 1087} 1088unsigned long __init e820_end_of_ram_pfn(void) 1089{ 1090 return e820_end_pfn(MAX_ARCH_PFN, E820_RAM); 1091} 1092 1093unsigned long __init e820_end_of_low_ram_pfn(void) 1094{ 1095 return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM); 1096} 1097/* 1098 * Finds an active region in the address range from start_pfn to last_pfn and 1099 * returns its range in ei_startpfn and ei_endpfn for the e820 entry. 1100 */ 1101int __init e820_find_active_region(const struct e820entry *ei, 1102 unsigned long start_pfn, 1103 unsigned long last_pfn, 1104 unsigned long *ei_startpfn, 1105 unsigned long *ei_endpfn) 1106{ 1107 u64 align = PAGE_SIZE; 1108 1109 *ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT; 1110 *ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT; 1111 1112 /* Skip map entries smaller than a page */ 1113 if (*ei_startpfn >= *ei_endpfn) 1114 return 0; 1115 1116 /* Skip if map is outside the node */ 1117 if (ei->type != E820_RAM || *ei_endpfn <= start_pfn || 1118 *ei_startpfn >= last_pfn) 1119 return 0; 1120 1121 /* Check for overlaps */ 1122 if (*ei_startpfn < start_pfn) 1123 *ei_startpfn = start_pfn; 1124 if (*ei_endpfn > last_pfn) 1125 *ei_endpfn = last_pfn; 1126 1127 return 1; 1128} 1129 1130/* Walk the e820 map and register active regions within a node */ 1131void __init e820_register_active_regions(int nid, unsigned long start_pfn, 1132 unsigned long last_pfn) 1133{ 1134 unsigned long ei_startpfn; 1135 unsigned long ei_endpfn; 1136 int i; 1137 1138 for (i = 0; i < e820.nr_map; i++) 1139 if (e820_find_active_region(&e820.map[i], 1140 start_pfn, last_pfn, 1141 &ei_startpfn, &ei_endpfn)) 1142 add_active_range(nid, ei_startpfn, ei_endpfn); 1143} 1144 1145/* 1146 * Find the hole size (in bytes) in the memory range. 1147 * @start: starting address of the memory range to scan 1148 * @end: ending address of the memory range to scan 1149 */ 1150u64 __init e820_hole_size(u64 start, u64 end) 1151{ 1152 unsigned long start_pfn = start >> PAGE_SHIFT; 1153 unsigned long last_pfn = end >> PAGE_SHIFT; 1154 unsigned long ei_startpfn, ei_endpfn, ram = 0; 1155 int i; 1156 1157 for (i = 0; i < e820.nr_map; i++) { 1158 if (e820_find_active_region(&e820.map[i], 1159 start_pfn, last_pfn, 1160 &ei_startpfn, &ei_endpfn)) 1161 ram += ei_endpfn - ei_startpfn; 1162 } 1163 return end - start - ((u64)ram << PAGE_SHIFT); 1164} 1165 1166static void early_panic(char *msg) 1167{ 1168 early_printk(msg); 1169 panic(msg); 1170} 1171 1172static int userdef __initdata; 1173 1174/* "mem=nopentium" disables the 4MB page tables. */ 1175static int __init parse_memopt(char *p) 1176{ 1177 u64 mem_size; 1178 1179 if (!p) 1180 return -EINVAL; 1181 1182#ifdef CONFIG_X86_32 1183 if (!strcmp(p, "nopentium")) { 1184 setup_clear_cpu_cap(X86_FEATURE_PSE); 1185 return 0; 1186 } 1187#endif 1188 1189 userdef = 1; 1190 mem_size = memparse(p, &p); 1191 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); 1192 1193 return 0; 1194} 1195early_param("mem", parse_memopt); 1196 1197static int __init parse_memmap_opt(char *p) 1198{ 1199 char *oldp; 1200 u64 start_at, mem_size; 1201 1202 if (!p) 1203 return -EINVAL; 1204 1205 if (!strcmp(p, "exactmap")) { 1206#ifdef CONFIG_CRASH_DUMP 1207 /* 1208 * If we are doing a crash dump, we still need to know 1209 * the real mem size before original memory map is 1210 * reset. 1211 */ 1212 saved_max_pfn = e820_end_of_ram_pfn(); 1213#endif 1214 e820.nr_map = 0; 1215 userdef = 1; 1216 return 0; 1217 } 1218 1219 oldp = p; 1220 mem_size = memparse(p, &p); 1221 if (p == oldp) 1222 return -EINVAL; 1223 1224 userdef = 1; 1225 if (*p == '@') { 1226 start_at = memparse(p+1, &p); 1227 e820_add_region(start_at, mem_size, E820_RAM); 1228 } else if (*p == '#') { 1229 start_at = memparse(p+1, &p); 1230 e820_add_region(start_at, mem_size, E820_ACPI); 1231 } else if (*p == '$') { 1232 start_at = memparse(p+1, &p); 1233 e820_add_region(start_at, mem_size, E820_RESERVED); 1234 } else 1235 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); 1236 1237 return *p == '\0' ? 0 : -EINVAL; 1238} 1239early_param("memmap", parse_memmap_opt); 1240 1241void __init finish_e820_parsing(void) 1242{ 1243 if (userdef) { 1244 int nr = e820.nr_map; 1245 1246 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0) 1247 early_panic("Invalid user supplied memory map"); 1248 e820.nr_map = nr; 1249 1250 printk(KERN_INFO "user-defined physical RAM map:\n"); 1251 e820_print_map("user"); 1252 } 1253} 1254 1255static inline const char *e820_type_to_string(int e820_type) 1256{ 1257 switch (e820_type) { 1258 case E820_RESERVED_KERN: 1259 case E820_RAM: return "System RAM"; 1260 case E820_ACPI: return "ACPI Tables"; 1261 case E820_NVS: return "ACPI Non-volatile Storage"; 1262 default: return "reserved"; 1263 } 1264} 1265 1266/* 1267 * Mark e820 reserved areas as busy for the resource manager. 1268 */ 1269void __init e820_reserve_resources(void) 1270{ 1271 int i; 1272 struct resource *res; 1273 u64 end; 1274 1275 res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map); 1276 for (i = 0; i < e820.nr_map; i++) { 1277 end = e820.map[i].addr + e820.map[i].size - 1; 1278#ifndef CONFIG_RESOURCES_64BIT 1279 if (end > 0x100000000ULL) { 1280 res++; 1281 continue; 1282 } 1283#endif 1284 res->name = e820_type_to_string(e820.map[i].type); 1285 res->start = e820.map[i].addr; 1286 res->end = end; 1287 1288 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; 1289 insert_resource(&iomem_resource, res); 1290 res++; 1291 } 1292 1293 for (i = 0; i < e820_saved.nr_map; i++) { 1294 struct e820entry *entry = &e820_saved.map[i]; 1295 firmware_map_add_early(entry->addr, 1296 entry->addr + entry->size - 1, 1297 e820_type_to_string(entry->type)); 1298 } 1299} 1300 1301/* 1302 * Non-standard memory setup can be specified via this quirk: 1303 */ 1304char * (*arch_memory_setup_quirk)(void); 1305 1306char *__init default_machine_specific_memory_setup(void) 1307{ 1308 char *who = "BIOS-e820"; 1309 int new_nr; 1310 /* 1311 * Try to copy the BIOS-supplied E820-map. 1312 * 1313 * Otherwise fake a memory map; one section from 0k->640k, 1314 * the next section from 1mb->appropriate_mem_k 1315 */ 1316 new_nr = boot_params.e820_entries; 1317 sanitize_e820_map(boot_params.e820_map, 1318 ARRAY_SIZE(boot_params.e820_map), 1319 &new_nr); 1320 boot_params.e820_entries = new_nr; 1321 if (append_e820_map(boot_params.e820_map, boot_params.e820_entries) 1322 < 0) { 1323 u64 mem_size; 1324 1325 /* compare results from other methods and take the greater */ 1326 if (boot_params.alt_mem_k 1327 < boot_params.screen_info.ext_mem_k) { 1328 mem_size = boot_params.screen_info.ext_mem_k; 1329 who = "BIOS-88"; 1330 } else { 1331 mem_size = boot_params.alt_mem_k; 1332 who = "BIOS-e801"; 1333 } 1334 1335 e820.nr_map = 0; 1336 e820_add_region(0, LOWMEMSIZE(), E820_RAM); 1337 e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM); 1338 } 1339 1340 /* In case someone cares... */ 1341 return who; 1342} 1343 1344char *__init __attribute__((weak)) machine_specific_memory_setup(void) 1345{ 1346 if (arch_memory_setup_quirk) { 1347 char *who = arch_memory_setup_quirk(); 1348 1349 if (who) 1350 return who; 1351 } 1352 return default_machine_specific_memory_setup(); 1353} 1354 1355/* Overridden in paravirt.c if CONFIG_PARAVIRT */ 1356char * __init __attribute__((weak)) memory_setup(void) 1357{ 1358 return machine_specific_memory_setup(); 1359} 1360 1361void __init setup_memory_map(void) 1362{ 1363 char *who; 1364 1365 who = memory_setup(); 1366 memcpy(&e820_saved, &e820, sizeof(struct e820map)); 1367 printk(KERN_INFO "BIOS-provided physical RAM map:\n"); 1368 e820_print_map(who); 1369} 1370 1371#ifdef CONFIG_X86_64 1372int __init arch_get_ram_range(int slot, u64 *addr, u64 *size) 1373{ 1374 int i; 1375 1376 if (slot < 0 || slot >= e820.nr_map) 1377 return -1; 1378 for (i = slot; i < e820.nr_map; i++) { 1379 if (e820.map[i].type != E820_RAM) 1380 continue; 1381 break; 1382 } 1383 if (i == e820.nr_map || e820.map[i].addr > (max_pfn << PAGE_SHIFT)) 1384 return -1; 1385 *addr = e820.map[i].addr; 1386 *size = min_t(u64, e820.map[i].size + e820.map[i].addr, 1387 max_pfn << PAGE_SHIFT) - *addr; 1388 return i + 1; 1389} 1390#endif 1391