e820.c revision b69edc76539be6a4aa39a22f85365fd4a3b3b9d2
1/*
2 * Handle the memory map.
3 * The functions here do the job until bootmem takes over.
4 *
5 *  Getting sanitize_e820_map() in sync with i386 version by applying change:
6 *  -  Provisions for empty E820 memory regions (reported by certain BIOSes).
7 *     Alex Achenbach <xela@slit.de>, December 2002.
8 *  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
9 *
10 */
11#include <linux/kernel.h>
12#include <linux/types.h>
13#include <linux/init.h>
14#include <linux/bootmem.h>
15#include <linux/ioport.h>
16#include <linux/string.h>
17#include <linux/kexec.h>
18#include <linux/module.h>
19#include <linux/mm.h>
20#include <linux/pfn.h>
21#include <linux/suspend.h>
22#include <linux/firmware-map.h>
23
24#include <asm/pgtable.h>
25#include <asm/page.h>
26#include <asm/e820.h>
27#include <asm/proto.h>
28#include <asm/setup.h>
29#include <asm/trampoline.h>
30
31/*
32 * The e820 map is the map that gets modified e.g. with command line parameters
33 * and that is also registered with modifications in the kernel resource tree
34 * with the iomem_resource as parent.
35 *
36 * The e820_saved is directly saved after the BIOS-provided memory map is
37 * copied. It doesn't get modified afterwards. It's registered for the
38 * /sys/firmware/memmap interface.
39 *
40 * That memory map is not modified and is used as base for kexec. The kexec'd
41 * kernel should get the same memory map as the firmware provides. Then the
42 * user can e.g. boot the original kernel with mem=1G while still booting the
43 * next kernel with full memory.
44 */
45struct e820map e820;
46struct e820map e820_saved;
47
48/* For PCI or other memory-mapped resources */
49unsigned long pci_mem_start = 0xaeedbabe;
50#ifdef CONFIG_PCI
51EXPORT_SYMBOL(pci_mem_start);
52#endif
53
54/*
55 * This function checks if any part of the range <start,end> is mapped
56 * with type.
57 */
58int
59e820_any_mapped(u64 start, u64 end, unsigned type)
60{
61	int i;
62
63	for (i = 0; i < e820.nr_map; i++) {
64		struct e820entry *ei = &e820.map[i];
65
66		if (type && ei->type != type)
67			continue;
68		if (ei->addr >= end || ei->addr + ei->size <= start)
69			continue;
70		return 1;
71	}
72	return 0;
73}
74EXPORT_SYMBOL_GPL(e820_any_mapped);
75
76/*
77 * This function checks if the entire range <start,end> is mapped with type.
78 *
79 * Note: this function only works correct if the e820 table is sorted and
80 * not-overlapping, which is the case
81 */
82int __init e820_all_mapped(u64 start, u64 end, unsigned type)
83{
84	int i;
85
86	for (i = 0; i < e820.nr_map; i++) {
87		struct e820entry *ei = &e820.map[i];
88
89		if (type && ei->type != type)
90			continue;
91		/* is the region (part) in overlap with the current region ?*/
92		if (ei->addr >= end || ei->addr + ei->size <= start)
93			continue;
94
95		/* if the region is at the beginning of <start,end> we move
96		 * start to the end of the region since it's ok until there
97		 */
98		if (ei->addr <= start)
99			start = ei->addr + ei->size;
100		/*
101		 * if start is now at or beyond end, we're done, full
102		 * coverage
103		 */
104		if (start >= end)
105			return 1;
106	}
107	return 0;
108}
109
110/*
111 * Add a memory region to the kernel e820 map.
112 */
113void __init e820_add_region(u64 start, u64 size, int type)
114{
115	int x = e820.nr_map;
116
117	if (x == ARRAY_SIZE(e820.map)) {
118		printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
119		return;
120	}
121
122	e820.map[x].addr = start;
123	e820.map[x].size = size;
124	e820.map[x].type = type;
125	e820.nr_map++;
126}
127
128void __init e820_print_map(char *who)
129{
130	int i;
131
132	for (i = 0; i < e820.nr_map; i++) {
133		printk(KERN_INFO " %s: %016Lx - %016Lx ", who,
134		       (unsigned long long) e820.map[i].addr,
135		       (unsigned long long)
136		       (e820.map[i].addr + e820.map[i].size));
137		switch (e820.map[i].type) {
138		case E820_RAM:
139		case E820_RESERVED_KERN:
140			printk(KERN_CONT "(usable)\n");
141			break;
142		case E820_RESERVED:
143			printk(KERN_CONT "(reserved)\n");
144			break;
145		case E820_ACPI:
146			printk(KERN_CONT "(ACPI data)\n");
147			break;
148		case E820_NVS:
149			printk(KERN_CONT "(ACPI NVS)\n");
150			break;
151		case E820_UNUSABLE:
152			printk("(unusable)\n");
153			break;
154		default:
155			printk(KERN_CONT "type %u\n", e820.map[i].type);
156			break;
157		}
158	}
159}
160
161/*
162 * Sanitize the BIOS e820 map.
163 *
164 * Some e820 responses include overlapping entries. The following
165 * replaces the original e820 map with a new one, removing overlaps,
166 * and resolving conflicting memory types in favor of highest
167 * numbered type.
168 *
169 * The input parameter biosmap points to an array of 'struct
170 * e820entry' which on entry has elements in the range [0, *pnr_map)
171 * valid, and which has space for up to max_nr_map entries.
172 * On return, the resulting sanitized e820 map entries will be in
173 * overwritten in the same location, starting at biosmap.
174 *
175 * The integer pointed to by pnr_map must be valid on entry (the
176 * current number of valid entries located at biosmap) and will
177 * be updated on return, with the new number of valid entries
178 * (something no more than max_nr_map.)
179 *
180 * The return value from sanitize_e820_map() is zero if it
181 * successfully 'sanitized' the map entries passed in, and is -1
182 * if it did nothing, which can happen if either of (1) it was
183 * only passed one map entry, or (2) any of the input map entries
184 * were invalid (start + size < start, meaning that the size was
185 * so big the described memory range wrapped around through zero.)
186 *
187 *	Visually we're performing the following
188 *	(1,2,3,4 = memory types)...
189 *
190 *	Sample memory map (w/overlaps):
191 *	   ____22__________________
192 *	   ______________________4_
193 *	   ____1111________________
194 *	   _44_____________________
195 *	   11111111________________
196 *	   ____________________33__
197 *	   ___________44___________
198 *	   __________33333_________
199 *	   ______________22________
200 *	   ___________________2222_
201 *	   _________111111111______
202 *	   _____________________11_
203 *	   _________________4______
204 *
205 *	Sanitized equivalent (no overlap):
206 *	   1_______________________
207 *	   _44_____________________
208 *	   ___1____________________
209 *	   ____22__________________
210 *	   ______11________________
211 *	   _________1______________
212 *	   __________3_____________
213 *	   ___________44___________
214 *	   _____________33_________
215 *	   _______________2________
216 *	   ________________1_______
217 *	   _________________4______
218 *	   ___________________2____
219 *	   ____________________33__
220 *	   ______________________4_
221 */
222
223int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
224				int *pnr_map)
225{
226	struct change_member {
227		struct e820entry *pbios; /* pointer to original bios entry */
228		unsigned long long addr; /* address for this change point */
229	};
230	static struct change_member change_point_list[2*E820_X_MAX] __initdata;
231	static struct change_member *change_point[2*E820_X_MAX] __initdata;
232	static struct e820entry *overlap_list[E820_X_MAX] __initdata;
233	static struct e820entry new_bios[E820_X_MAX] __initdata;
234	struct change_member *change_tmp;
235	unsigned long current_type, last_type;
236	unsigned long long last_addr;
237	int chgidx, still_changing;
238	int overlap_entries;
239	int new_bios_entry;
240	int old_nr, new_nr, chg_nr;
241	int i;
242
243	/* if there's only one memory region, don't bother */
244	if (*pnr_map < 2)
245		return -1;
246
247	old_nr = *pnr_map;
248	BUG_ON(old_nr > max_nr_map);
249
250	/* bail out if we find any unreasonable addresses in bios map */
251	for (i = 0; i < old_nr; i++)
252		if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
253			return -1;
254
255	/* create pointers for initial change-point information (for sorting) */
256	for (i = 0; i < 2 * old_nr; i++)
257		change_point[i] = &change_point_list[i];
258
259	/* record all known change-points (starting and ending addresses),
260	   omitting those that are for empty memory regions */
261	chgidx = 0;
262	for (i = 0; i < old_nr; i++)	{
263		if (biosmap[i].size != 0) {
264			change_point[chgidx]->addr = biosmap[i].addr;
265			change_point[chgidx++]->pbios = &biosmap[i];
266			change_point[chgidx]->addr = biosmap[i].addr +
267				biosmap[i].size;
268			change_point[chgidx++]->pbios = &biosmap[i];
269		}
270	}
271	chg_nr = chgidx;
272
273	/* sort change-point list by memory addresses (low -> high) */
274	still_changing = 1;
275	while (still_changing)	{
276		still_changing = 0;
277		for (i = 1; i < chg_nr; i++)  {
278			unsigned long long curaddr, lastaddr;
279			unsigned long long curpbaddr, lastpbaddr;
280
281			curaddr = change_point[i]->addr;
282			lastaddr = change_point[i - 1]->addr;
283			curpbaddr = change_point[i]->pbios->addr;
284			lastpbaddr = change_point[i - 1]->pbios->addr;
285
286			/*
287			 * swap entries, when:
288			 *
289			 * curaddr > lastaddr or
290			 * curaddr == lastaddr and curaddr == curpbaddr and
291			 * lastaddr != lastpbaddr
292			 */
293			if (curaddr < lastaddr ||
294			    (curaddr == lastaddr && curaddr == curpbaddr &&
295			     lastaddr != lastpbaddr)) {
296				change_tmp = change_point[i];
297				change_point[i] = change_point[i-1];
298				change_point[i-1] = change_tmp;
299				still_changing = 1;
300			}
301		}
302	}
303
304	/* create a new bios memory map, removing overlaps */
305	overlap_entries = 0;	 /* number of entries in the overlap table */
306	new_bios_entry = 0;	 /* index for creating new bios map entries */
307	last_type = 0;		 /* start with undefined memory type */
308	last_addr = 0;		 /* start with 0 as last starting address */
309
310	/* loop through change-points, determining affect on the new bios map */
311	for (chgidx = 0; chgidx < chg_nr; chgidx++) {
312		/* keep track of all overlapping bios entries */
313		if (change_point[chgidx]->addr ==
314		    change_point[chgidx]->pbios->addr) {
315			/*
316			 * add map entry to overlap list (> 1 entry
317			 * implies an overlap)
318			 */
319			overlap_list[overlap_entries++] =
320				change_point[chgidx]->pbios;
321		} else {
322			/*
323			 * remove entry from list (order independent,
324			 * so swap with last)
325			 */
326			for (i = 0; i < overlap_entries; i++) {
327				if (overlap_list[i] ==
328				    change_point[chgidx]->pbios)
329					overlap_list[i] =
330						overlap_list[overlap_entries-1];
331			}
332			overlap_entries--;
333		}
334		/*
335		 * if there are overlapping entries, decide which
336		 * "type" to use (larger value takes precedence --
337		 * 1=usable, 2,3,4,4+=unusable)
338		 */
339		current_type = 0;
340		for (i = 0; i < overlap_entries; i++)
341			if (overlap_list[i]->type > current_type)
342				current_type = overlap_list[i]->type;
343		/*
344		 * continue building up new bios map based on this
345		 * information
346		 */
347		if (current_type != last_type)	{
348			if (last_type != 0)	 {
349				new_bios[new_bios_entry].size =
350					change_point[chgidx]->addr - last_addr;
351				/*
352				 * move forward only if the new size
353				 * was non-zero
354				 */
355				if (new_bios[new_bios_entry].size != 0)
356					/*
357					 * no more space left for new
358					 * bios entries ?
359					 */
360					if (++new_bios_entry >= max_nr_map)
361						break;
362			}
363			if (current_type != 0)	{
364				new_bios[new_bios_entry].addr =
365					change_point[chgidx]->addr;
366				new_bios[new_bios_entry].type = current_type;
367				last_addr = change_point[chgidx]->addr;
368			}
369			last_type = current_type;
370		}
371	}
372	/* retain count for new bios entries */
373	new_nr = new_bios_entry;
374
375	/* copy new bios mapping into original location */
376	memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
377	*pnr_map = new_nr;
378
379	return 0;
380}
381
382static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
383{
384	while (nr_map) {
385		u64 start = biosmap->addr;
386		u64 size = biosmap->size;
387		u64 end = start + size;
388		u32 type = biosmap->type;
389
390		/* Overflow in 64 bits? Ignore the memory map. */
391		if (start > end)
392			return -1;
393
394		e820_add_region(start, size, type);
395
396		biosmap++;
397		nr_map--;
398	}
399	return 0;
400}
401
402/*
403 * Copy the BIOS e820 map into a safe place.
404 *
405 * Sanity-check it while we're at it..
406 *
407 * If we're lucky and live on a modern system, the setup code
408 * will have given us a memory map that we can use to properly
409 * set up memory.  If we aren't, we'll fake a memory map.
410 */
411static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
412{
413	/* Only one memory region (or negative)? Ignore it */
414	if (nr_map < 2)
415		return -1;
416
417	return __append_e820_map(biosmap, nr_map);
418}
419
420static u64 __init e820_update_range_map(struct e820map *e820x, u64 start,
421					u64 size, unsigned old_type,
422					unsigned new_type)
423{
424	int i;
425	u64 real_updated_size = 0;
426
427	BUG_ON(old_type == new_type);
428
429	if (size > (ULLONG_MAX - start))
430		size = ULLONG_MAX - start;
431
432	for (i = 0; i < e820.nr_map; i++) {
433		struct e820entry *ei = &e820x->map[i];
434		u64 final_start, final_end;
435		if (ei->type != old_type)
436			continue;
437		/* totally covered? */
438		if (ei->addr >= start &&
439		    (ei->addr + ei->size) <= (start + size)) {
440			ei->type = new_type;
441			real_updated_size += ei->size;
442			continue;
443		}
444		/* partially covered */
445		final_start = max(start, ei->addr);
446		final_end = min(start + size, ei->addr + ei->size);
447		if (final_start >= final_end)
448			continue;
449		e820_add_region(final_start, final_end - final_start,
450					 new_type);
451		real_updated_size += final_end - final_start;
452
453		ei->size -= final_end - final_start;
454		if (ei->addr < final_start)
455			continue;
456		ei->addr = final_end;
457	}
458	return real_updated_size;
459}
460
461u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
462			     unsigned new_type)
463{
464	return e820_update_range_map(&e820, start, size, old_type, new_type);
465}
466
467static u64 __init e820_update_range_saved(u64 start, u64 size,
468					  unsigned old_type, unsigned new_type)
469{
470	return e820_update_range_map(&e820_saved, start, size, old_type,
471				     new_type);
472}
473
474/* make e820 not cover the range */
475u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
476			     int checktype)
477{
478	int i;
479	u64 real_removed_size = 0;
480
481	if (size > (ULLONG_MAX - start))
482		size = ULLONG_MAX - start;
483
484	for (i = 0; i < e820.nr_map; i++) {
485		struct e820entry *ei = &e820.map[i];
486		u64 final_start, final_end;
487
488		if (checktype && ei->type != old_type)
489			continue;
490		/* totally covered? */
491		if (ei->addr >= start &&
492		    (ei->addr + ei->size) <= (start + size)) {
493			real_removed_size += ei->size;
494			memset(ei, 0, sizeof(struct e820entry));
495			continue;
496		}
497		/* partially covered */
498		final_start = max(start, ei->addr);
499		final_end = min(start + size, ei->addr + ei->size);
500		if (final_start >= final_end)
501			continue;
502		real_removed_size += final_end - final_start;
503
504		ei->size -= final_end - final_start;
505		if (ei->addr < final_start)
506			continue;
507		ei->addr = final_end;
508	}
509	return real_removed_size;
510}
511
512void __init update_e820(void)
513{
514	int nr_map;
515
516	nr_map = e820.nr_map;
517	if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
518		return;
519	e820.nr_map = nr_map;
520	printk(KERN_INFO "modified physical RAM map:\n");
521	e820_print_map("modified");
522}
523static void __init update_e820_saved(void)
524{
525	int nr_map;
526
527	nr_map = e820_saved.nr_map;
528	if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
529		return;
530	e820_saved.nr_map = nr_map;
531}
532#define MAX_GAP_END 0x100000000ull
533/*
534 * Search for a gap in the e820 memory space from start_addr to end_addr.
535 */
536__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
537		unsigned long start_addr, unsigned long long end_addr)
538{
539	unsigned long long last;
540	int i = e820.nr_map;
541	int found = 0;
542
543	last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
544
545	while (--i >= 0) {
546		unsigned long long start = e820.map[i].addr;
547		unsigned long long end = start + e820.map[i].size;
548
549		if (end < start_addr)
550			continue;
551
552		/*
553		 * Since "last" is at most 4GB, we know we'll
554		 * fit in 32 bits if this condition is true
555		 */
556		if (last > end) {
557			unsigned long gap = last - end;
558
559			if (gap >= *gapsize) {
560				*gapsize = gap;
561				*gapstart = end;
562				found = 1;
563			}
564		}
565		if (start < last)
566			last = start;
567	}
568	return found;
569}
570
571/*
572 * Search for the biggest gap in the low 32 bits of the e820
573 * memory space.  We pass this space to PCI to assign MMIO resources
574 * for hotplug or unconfigured devices in.
575 * Hopefully the BIOS let enough space left.
576 */
577__init void e820_setup_gap(void)
578{
579	unsigned long gapstart, gapsize, round;
580	int found;
581
582	gapstart = 0x10000000;
583	gapsize = 0x400000;
584	found  = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
585
586#ifdef CONFIG_X86_64
587	if (!found) {
588		gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
589		printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit "
590		       "address range\n"
591		       KERN_ERR "PCI: Unassigned devices with 32bit resource "
592		       "registers may break!\n");
593	}
594#endif
595
596	/*
597	 * See how much we want to round up: start off with
598	 * rounding to the next 1MB area.
599	 */
600	round = 0x100000;
601	while ((gapsize >> 4) > round)
602		round += round;
603	/* Fun with two's complement */
604	pci_mem_start = (gapstart + round) & -round;
605
606	printk(KERN_INFO
607	       "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n",
608	       pci_mem_start, gapstart, gapsize);
609}
610
611/**
612 * Because of the size limitation of struct boot_params, only first
613 * 128 E820 memory entries are passed to kernel via
614 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of
615 * linked list of struct setup_data, which is parsed here.
616 */
617void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data)
618{
619	u32 map_len;
620	int entries;
621	struct e820entry *extmap;
622
623	entries = sdata->len / sizeof(struct e820entry);
624	map_len = sdata->len + sizeof(struct setup_data);
625	if (map_len > PAGE_SIZE)
626		sdata = early_ioremap(pa_data, map_len);
627	extmap = (struct e820entry *)(sdata->data);
628	__append_e820_map(extmap, entries);
629	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
630	if (map_len > PAGE_SIZE)
631		early_iounmap(sdata, map_len);
632	printk(KERN_INFO "extended physical RAM map:\n");
633	e820_print_map("extended");
634}
635
636#if defined(CONFIG_X86_64) || \
637	(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
638/**
639 * Find the ranges of physical addresses that do not correspond to
640 * e820 RAM areas and mark the corresponding pages as nosave for
641 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
642 *
643 * This function requires the e820 map to be sorted and without any
644 * overlapping entries and assumes the first e820 area to be RAM.
645 */
646void __init e820_mark_nosave_regions(unsigned long limit_pfn)
647{
648	int i;
649	unsigned long pfn;
650
651	pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
652	for (i = 1; i < e820.nr_map; i++) {
653		struct e820entry *ei = &e820.map[i];
654
655		if (pfn < PFN_UP(ei->addr))
656			register_nosave_region(pfn, PFN_UP(ei->addr));
657
658		pfn = PFN_DOWN(ei->addr + ei->size);
659		if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
660			register_nosave_region(PFN_UP(ei->addr), pfn);
661
662		if (pfn >= limit_pfn)
663			break;
664	}
665}
666#endif
667
668#ifdef CONFIG_HIBERNATION
669/**
670 * Mark ACPI NVS memory region, so that we can save/restore it during
671 * hibernation and the subsequent resume.
672 */
673static int __init e820_mark_nvs_memory(void)
674{
675	int i;
676
677	for (i = 0; i < e820.nr_map; i++) {
678		struct e820entry *ei = &e820.map[i];
679
680		if (ei->type == E820_NVS)
681			hibernate_nvs_register(ei->addr, ei->size);
682	}
683
684	return 0;
685}
686core_initcall(e820_mark_nvs_memory);
687#endif
688
689/*
690 * Early reserved memory areas.
691 */
692#define MAX_EARLY_RES 20
693
694struct early_res {
695	u64 start, end;
696	char name[16];
697	char overlap_ok;
698};
699static struct early_res early_res[MAX_EARLY_RES] __initdata = {
700	{ 0, PAGE_SIZE, "BIOS data page" },	/* BIOS data page */
701#if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE)
702	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" },
703#endif
704#if defined(CONFIG_X86_32) && defined(CONFIG_SMP)
705	/*
706	 * But first pinch a few for the stack/trampoline stuff
707	 * FIXME: Don't need the extra page at 4K, but need to fix
708	 * trampoline before removing it. (see the GDT stuff)
709	 */
710	{ PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" },
711	/*
712	 * Has to be in very low memory so we can execute
713	 * real-mode AP code.
714	 */
715	{ TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" },
716#endif
717	{}
718};
719
720static int __init find_overlapped_early(u64 start, u64 end)
721{
722	int i;
723	struct early_res *r;
724
725	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
726		r = &early_res[i];
727		if (end > r->start && start < r->end)
728			break;
729	}
730
731	return i;
732}
733
734/*
735 * Drop the i-th range from the early reservation map,
736 * by copying any higher ranges down one over it, and
737 * clearing what had been the last slot.
738 */
739static void __init drop_range(int i)
740{
741	int j;
742
743	for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++)
744		;
745
746	memmove(&early_res[i], &early_res[i + 1],
747	       (j - 1 - i) * sizeof(struct early_res));
748
749	early_res[j - 1].end = 0;
750}
751
752/*
753 * Split any existing ranges that:
754 *  1) are marked 'overlap_ok', and
755 *  2) overlap with the stated range [start, end)
756 * into whatever portion (if any) of the existing range is entirely
757 * below or entirely above the stated range.  Drop the portion
758 * of the existing range that overlaps with the stated range,
759 * which will allow the caller of this routine to then add that
760 * stated range without conflicting with any existing range.
761 */
762static void __init drop_overlaps_that_are_ok(u64 start, u64 end)
763{
764	int i;
765	struct early_res *r;
766	u64 lower_start, lower_end;
767	u64 upper_start, upper_end;
768	char name[16];
769
770	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
771		r = &early_res[i];
772
773		/* Continue past non-overlapping ranges */
774		if (end <= r->start || start >= r->end)
775			continue;
776
777		/*
778		 * Leave non-ok overlaps as is; let caller
779		 * panic "Overlapping early reservations"
780		 * when it hits this overlap.
781		 */
782		if (!r->overlap_ok)
783			return;
784
785		/*
786		 * We have an ok overlap.  We will drop it from the early
787		 * reservation map, and add back in any non-overlapping
788		 * portions (lower or upper) as separate, overlap_ok,
789		 * non-overlapping ranges.
790		 */
791
792		/* 1. Note any non-overlapping (lower or upper) ranges. */
793		strncpy(name, r->name, sizeof(name) - 1);
794
795		lower_start = lower_end = 0;
796		upper_start = upper_end = 0;
797		if (r->start < start) {
798		 	lower_start = r->start;
799			lower_end = start;
800		}
801		if (r->end > end) {
802			upper_start = end;
803			upper_end = r->end;
804		}
805
806		/* 2. Drop the original ok overlapping range */
807		drop_range(i);
808
809		i--;		/* resume for-loop on copied down entry */
810
811		/* 3. Add back in any non-overlapping ranges. */
812		if (lower_end)
813			reserve_early_overlap_ok(lower_start, lower_end, name);
814		if (upper_end)
815			reserve_early_overlap_ok(upper_start, upper_end, name);
816	}
817}
818
819static void __init __reserve_early(u64 start, u64 end, char *name,
820						int overlap_ok)
821{
822	int i;
823	struct early_res *r;
824
825	i = find_overlapped_early(start, end);
826	if (i >= MAX_EARLY_RES)
827		panic("Too many early reservations");
828	r = &early_res[i];
829	if (r->end)
830		panic("Overlapping early reservations "
831		      "%llx-%llx %s to %llx-%llx %s\n",
832		      start, end - 1, name?name:"", r->start,
833		      r->end - 1, r->name);
834	r->start = start;
835	r->end = end;
836	r->overlap_ok = overlap_ok;
837	if (name)
838		strncpy(r->name, name, sizeof(r->name) - 1);
839}
840
841/*
842 * A few early reservtations come here.
843 *
844 * The 'overlap_ok' in the name of this routine does -not- mean it
845 * is ok for these reservations to overlap an earlier reservation.
846 * Rather it means that it is ok for subsequent reservations to
847 * overlap this one.
848 *
849 * Use this entry point to reserve early ranges when you are doing
850 * so out of "Paranoia", reserving perhaps more memory than you need,
851 * just in case, and don't mind a subsequent overlapping reservation
852 * that is known to be needed.
853 *
854 * The drop_overlaps_that_are_ok() call here isn't really needed.
855 * It would be needed if we had two colliding 'overlap_ok'
856 * reservations, so that the second such would not panic on the
857 * overlap with the first.  We don't have any such as of this
858 * writing, but might as well tolerate such if it happens in
859 * the future.
860 */
861void __init reserve_early_overlap_ok(u64 start, u64 end, char *name)
862{
863	drop_overlaps_that_are_ok(start, end);
864	__reserve_early(start, end, name, 1);
865}
866
867/*
868 * Most early reservations come here.
869 *
870 * We first have drop_overlaps_that_are_ok() drop any pre-existing
871 * 'overlap_ok' ranges, so that we can then reserve this memory
872 * range without risk of panic'ing on an overlapping overlap_ok
873 * early reservation.
874 */
875void __init reserve_early(u64 start, u64 end, char *name)
876{
877	drop_overlaps_that_are_ok(start, end);
878	__reserve_early(start, end, name, 0);
879}
880
881void __init free_early(u64 start, u64 end)
882{
883	struct early_res *r;
884	int i;
885
886	i = find_overlapped_early(start, end);
887	r = &early_res[i];
888	if (i >= MAX_EARLY_RES || r->end != end || r->start != start)
889		panic("free_early on not reserved area: %llx-%llx!",
890			 start, end - 1);
891
892	drop_range(i);
893}
894
895void __init early_res_to_bootmem(u64 start, u64 end)
896{
897	int i, count;
898	u64 final_start, final_end;
899
900	count  = 0;
901	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++)
902		count++;
903
904	printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n",
905			 count, start, end);
906	for (i = 0; i < count; i++) {
907		struct early_res *r = &early_res[i];
908		printk(KERN_INFO "  #%d [%010llx - %010llx] %16s", i,
909			r->start, r->end, r->name);
910		final_start = max(start, r->start);
911		final_end = min(end, r->end);
912		if (final_start >= final_end) {
913			printk(KERN_CONT "\n");
914			continue;
915		}
916		printk(KERN_CONT " ==> [%010llx - %010llx]\n",
917			final_start, final_end);
918		reserve_bootmem_generic(final_start, final_end - final_start,
919				BOOTMEM_DEFAULT);
920	}
921}
922
923/* Check for already reserved areas */
924static inline int __init bad_addr(u64 *addrp, u64 size, u64 align)
925{
926	int i;
927	u64 addr = *addrp;
928	int changed = 0;
929	struct early_res *r;
930again:
931	i = find_overlapped_early(addr, addr + size);
932	r = &early_res[i];
933	if (i < MAX_EARLY_RES && r->end) {
934		*addrp = addr = round_up(r->end, align);
935		changed = 1;
936		goto again;
937	}
938	return changed;
939}
940
941/* Check for already reserved areas */
942static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align)
943{
944	int i;
945	u64 addr = *addrp, last;
946	u64 size = *sizep;
947	int changed = 0;
948again:
949	last = addr + size;
950	for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) {
951		struct early_res *r = &early_res[i];
952		if (last > r->start && addr < r->start) {
953			size = r->start - addr;
954			changed = 1;
955			goto again;
956		}
957		if (last > r->end && addr < r->end) {
958			addr = round_up(r->end, align);
959			size = last - addr;
960			changed = 1;
961			goto again;
962		}
963		if (last <= r->end && addr >= r->start) {
964			(*sizep)++;
965			return 0;
966		}
967	}
968	if (changed) {
969		*addrp = addr;
970		*sizep = size;
971	}
972	return changed;
973}
974
975/*
976 * Find a free area with specified alignment in a specific range.
977 */
978u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align)
979{
980	int i;
981
982	for (i = 0; i < e820.nr_map; i++) {
983		struct e820entry *ei = &e820.map[i];
984		u64 addr, last;
985		u64 ei_last;
986
987		if (ei->type != E820_RAM)
988			continue;
989		addr = round_up(ei->addr, align);
990		ei_last = ei->addr + ei->size;
991		if (addr < start)
992			addr = round_up(start, align);
993		if (addr >= ei_last)
994			continue;
995		while (bad_addr(&addr, size, align) && addr+size <= ei_last)
996			;
997		last = addr + size;
998		if (last > ei_last)
999			continue;
1000		if (last > end)
1001			continue;
1002		return addr;
1003	}
1004	return -1ULL;
1005}
1006
1007/*
1008 * Find next free range after *start
1009 */
1010u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align)
1011{
1012	int i;
1013
1014	for (i = 0; i < e820.nr_map; i++) {
1015		struct e820entry *ei = &e820.map[i];
1016		u64 addr, last;
1017		u64 ei_last;
1018
1019		if (ei->type != E820_RAM)
1020			continue;
1021		addr = round_up(ei->addr, align);
1022		ei_last = ei->addr + ei->size;
1023		if (addr < start)
1024			addr = round_up(start, align);
1025		if (addr >= ei_last)
1026			continue;
1027		*sizep = ei_last - addr;
1028		while (bad_addr_size(&addr, sizep, align) &&
1029			addr + *sizep <= ei_last)
1030			;
1031		last = addr + *sizep;
1032		if (last > ei_last)
1033			continue;
1034		return addr;
1035	}
1036	return -1UL;
1037
1038}
1039
1040/*
1041 * pre allocated 4k and reserved it in e820
1042 */
1043u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align)
1044{
1045	u64 size = 0;
1046	u64 addr;
1047	u64 start;
1048
1049	start = startt;
1050	while (size < sizet)
1051		start = find_e820_area_size(start, &size, align);
1052
1053	if (size < sizet)
1054		return 0;
1055
1056	addr = round_down(start + size - sizet, align);
1057	e820_update_range(addr, sizet, E820_RAM, E820_RESERVED);
1058	e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED);
1059	printk(KERN_INFO "update e820 for early_reserve_e820\n");
1060	update_e820();
1061	update_e820_saved();
1062
1063	return addr;
1064}
1065
1066#ifdef CONFIG_X86_32
1067# ifdef CONFIG_X86_PAE
1068#  define MAX_ARCH_PFN		(1ULL<<(36-PAGE_SHIFT))
1069# else
1070#  define MAX_ARCH_PFN		(1ULL<<(32-PAGE_SHIFT))
1071# endif
1072#else /* CONFIG_X86_32 */
1073# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
1074#endif
1075
1076/*
1077 * Find the highest page frame number we have available
1078 */
1079static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
1080{
1081	int i;
1082	unsigned long last_pfn = 0;
1083	unsigned long max_arch_pfn = MAX_ARCH_PFN;
1084
1085	for (i = 0; i < e820.nr_map; i++) {
1086		struct e820entry *ei = &e820.map[i];
1087		unsigned long start_pfn;
1088		unsigned long end_pfn;
1089
1090		if (ei->type != type)
1091			continue;
1092
1093		start_pfn = ei->addr >> PAGE_SHIFT;
1094		end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
1095
1096		if (start_pfn >= limit_pfn)
1097			continue;
1098		if (end_pfn > limit_pfn) {
1099			last_pfn = limit_pfn;
1100			break;
1101		}
1102		if (end_pfn > last_pfn)
1103			last_pfn = end_pfn;
1104	}
1105
1106	if (last_pfn > max_arch_pfn)
1107		last_pfn = max_arch_pfn;
1108
1109	printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n",
1110			 last_pfn, max_arch_pfn);
1111	return last_pfn;
1112}
1113unsigned long __init e820_end_of_ram_pfn(void)
1114{
1115	return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
1116}
1117
1118unsigned long __init e820_end_of_low_ram_pfn(void)
1119{
1120	return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
1121}
1122/*
1123 * Finds an active region in the address range from start_pfn to last_pfn and
1124 * returns its range in ei_startpfn and ei_endpfn for the e820 entry.
1125 */
1126int __init e820_find_active_region(const struct e820entry *ei,
1127				  unsigned long start_pfn,
1128				  unsigned long last_pfn,
1129				  unsigned long *ei_startpfn,
1130				  unsigned long *ei_endpfn)
1131{
1132	u64 align = PAGE_SIZE;
1133
1134	*ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT;
1135	*ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT;
1136
1137	/* Skip map entries smaller than a page */
1138	if (*ei_startpfn >= *ei_endpfn)
1139		return 0;
1140
1141	/* Skip if map is outside the node */
1142	if (ei->type != E820_RAM || *ei_endpfn <= start_pfn ||
1143				    *ei_startpfn >= last_pfn)
1144		return 0;
1145
1146	/* Check for overlaps */
1147	if (*ei_startpfn < start_pfn)
1148		*ei_startpfn = start_pfn;
1149	if (*ei_endpfn > last_pfn)
1150		*ei_endpfn = last_pfn;
1151
1152	return 1;
1153}
1154
1155/* Walk the e820 map and register active regions within a node */
1156void __init e820_register_active_regions(int nid, unsigned long start_pfn,
1157					 unsigned long last_pfn)
1158{
1159	unsigned long ei_startpfn;
1160	unsigned long ei_endpfn;
1161	int i;
1162
1163	for (i = 0; i < e820.nr_map; i++)
1164		if (e820_find_active_region(&e820.map[i],
1165					    start_pfn, last_pfn,
1166					    &ei_startpfn, &ei_endpfn))
1167			add_active_range(nid, ei_startpfn, ei_endpfn);
1168}
1169
1170/*
1171 * Find the hole size (in bytes) in the memory range.
1172 * @start: starting address of the memory range to scan
1173 * @end: ending address of the memory range to scan
1174 */
1175u64 __init e820_hole_size(u64 start, u64 end)
1176{
1177	unsigned long start_pfn = start >> PAGE_SHIFT;
1178	unsigned long last_pfn = end >> PAGE_SHIFT;
1179	unsigned long ei_startpfn, ei_endpfn, ram = 0;
1180	int i;
1181
1182	for (i = 0; i < e820.nr_map; i++) {
1183		if (e820_find_active_region(&e820.map[i],
1184					    start_pfn, last_pfn,
1185					    &ei_startpfn, &ei_endpfn))
1186			ram += ei_endpfn - ei_startpfn;
1187	}
1188	return end - start - ((u64)ram << PAGE_SHIFT);
1189}
1190
1191static void early_panic(char *msg)
1192{
1193	early_printk(msg);
1194	panic(msg);
1195}
1196
1197static int userdef __initdata;
1198
1199/* "mem=nopentium" disables the 4MB page tables. */
1200static int __init parse_memopt(char *p)
1201{
1202	u64 mem_size;
1203
1204	if (!p)
1205		return -EINVAL;
1206
1207#ifdef CONFIG_X86_32
1208	if (!strcmp(p, "nopentium")) {
1209		setup_clear_cpu_cap(X86_FEATURE_PSE);
1210		return 0;
1211	}
1212#endif
1213
1214	userdef = 1;
1215	mem_size = memparse(p, &p);
1216	e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1217
1218	return 0;
1219}
1220early_param("mem", parse_memopt);
1221
1222static int __init parse_memmap_opt(char *p)
1223{
1224	char *oldp;
1225	u64 start_at, mem_size;
1226
1227	if (!p)
1228		return -EINVAL;
1229
1230	if (!strncmp(p, "exactmap", 8)) {
1231#ifdef CONFIG_CRASH_DUMP
1232		/*
1233		 * If we are doing a crash dump, we still need to know
1234		 * the real mem size before original memory map is
1235		 * reset.
1236		 */
1237		saved_max_pfn = e820_end_of_ram_pfn();
1238#endif
1239		e820.nr_map = 0;
1240		userdef = 1;
1241		return 0;
1242	}
1243
1244	oldp = p;
1245	mem_size = memparse(p, &p);
1246	if (p == oldp)
1247		return -EINVAL;
1248
1249	userdef = 1;
1250	if (*p == '@') {
1251		start_at = memparse(p+1, &p);
1252		e820_add_region(start_at, mem_size, E820_RAM);
1253	} else if (*p == '#') {
1254		start_at = memparse(p+1, &p);
1255		e820_add_region(start_at, mem_size, E820_ACPI);
1256	} else if (*p == '$') {
1257		start_at = memparse(p+1, &p);
1258		e820_add_region(start_at, mem_size, E820_RESERVED);
1259	} else
1260		e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
1261
1262	return *p == '\0' ? 0 : -EINVAL;
1263}
1264early_param("memmap", parse_memmap_opt);
1265
1266void __init finish_e820_parsing(void)
1267{
1268	if (userdef) {
1269		int nr = e820.nr_map;
1270
1271		if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
1272			early_panic("Invalid user supplied memory map");
1273		e820.nr_map = nr;
1274
1275		printk(KERN_INFO "user-defined physical RAM map:\n");
1276		e820_print_map("user");
1277	}
1278}
1279
1280static inline const char *e820_type_to_string(int e820_type)
1281{
1282	switch (e820_type) {
1283	case E820_RESERVED_KERN:
1284	case E820_RAM:	return "System RAM";
1285	case E820_ACPI:	return "ACPI Tables";
1286	case E820_NVS:	return "ACPI Non-volatile Storage";
1287	case E820_UNUSABLE:	return "Unusable memory";
1288	default:	return "reserved";
1289	}
1290}
1291
1292/*
1293 * Mark e820 reserved areas as busy for the resource manager.
1294 */
1295static struct resource __initdata *e820_res;
1296void __init e820_reserve_resources(void)
1297{
1298	int i;
1299	struct resource *res;
1300	u64 end;
1301
1302	res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map);
1303	e820_res = res;
1304	for (i = 0; i < e820.nr_map; i++) {
1305		end = e820.map[i].addr + e820.map[i].size - 1;
1306		if (end != (resource_size_t)end) {
1307			res++;
1308			continue;
1309		}
1310		res->name = e820_type_to_string(e820.map[i].type);
1311		res->start = e820.map[i].addr;
1312		res->end = end;
1313
1314		res->flags = IORESOURCE_MEM;
1315
1316		/*
1317		 * don't register the region that could be conflicted with
1318		 * pci device BAR resource and insert them later in
1319		 * pcibios_resource_survey()
1320		 */
1321		if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
1322			res->flags |= IORESOURCE_BUSY;
1323			insert_resource(&iomem_resource, res);
1324		}
1325		res++;
1326	}
1327
1328	for (i = 0; i < e820_saved.nr_map; i++) {
1329		struct e820entry *entry = &e820_saved.map[i];
1330		firmware_map_add_early(entry->addr,
1331			entry->addr + entry->size - 1,
1332			e820_type_to_string(entry->type));
1333	}
1334}
1335
1336void __init e820_reserve_resources_late(void)
1337{
1338	int i;
1339	struct resource *res;
1340
1341	res = e820_res;
1342	for (i = 0; i < e820.nr_map; i++) {
1343		if (!res->parent && res->end)
1344			insert_resource_expand_to_fit(&iomem_resource, res);
1345		res++;
1346	}
1347}
1348
1349char *__init default_machine_specific_memory_setup(void)
1350{
1351	char *who = "BIOS-e820";
1352	int new_nr;
1353	/*
1354	 * Try to copy the BIOS-supplied E820-map.
1355	 *
1356	 * Otherwise fake a memory map; one section from 0k->640k,
1357	 * the next section from 1mb->appropriate_mem_k
1358	 */
1359	new_nr = boot_params.e820_entries;
1360	sanitize_e820_map(boot_params.e820_map,
1361			ARRAY_SIZE(boot_params.e820_map),
1362			&new_nr);
1363	boot_params.e820_entries = new_nr;
1364	if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
1365	  < 0) {
1366		u64 mem_size;
1367
1368		/* compare results from other methods and take the greater */
1369		if (boot_params.alt_mem_k
1370		    < boot_params.screen_info.ext_mem_k) {
1371			mem_size = boot_params.screen_info.ext_mem_k;
1372			who = "BIOS-88";
1373		} else {
1374			mem_size = boot_params.alt_mem_k;
1375			who = "BIOS-e801";
1376		}
1377
1378		e820.nr_map = 0;
1379		e820_add_region(0, LOWMEMSIZE(), E820_RAM);
1380		e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
1381	}
1382
1383	/* In case someone cares... */
1384	return who;
1385}
1386
1387char *__init __attribute__((weak)) machine_specific_memory_setup(void)
1388{
1389	if (x86_quirks->arch_memory_setup) {
1390		char *who = x86_quirks->arch_memory_setup();
1391
1392		if (who)
1393			return who;
1394	}
1395	return default_machine_specific_memory_setup();
1396}
1397
1398/* Overridden in paravirt.c if CONFIG_PARAVIRT */
1399char * __init __attribute__((weak)) memory_setup(void)
1400{
1401	return machine_specific_memory_setup();
1402}
1403
1404void __init setup_memory_map(void)
1405{
1406	char *who;
1407
1408	who = memory_setup();
1409	memcpy(&e820_saved, &e820, sizeof(struct e820map));
1410	printk(KERN_INFO "BIOS-provided physical RAM map:\n");
1411	e820_print_map(who);
1412}
1413