e820.c revision b69edc76539be6a4aa39a22f85365fd4a3b3b9d2
1/* 2 * Handle the memory map. 3 * The functions here do the job until bootmem takes over. 4 * 5 * Getting sanitize_e820_map() in sync with i386 version by applying change: 6 * - Provisions for empty E820 memory regions (reported by certain BIOSes). 7 * Alex Achenbach <xela@slit.de>, December 2002. 8 * Venkatesh Pallipadi <venkatesh.pallipadi@intel.com> 9 * 10 */ 11#include <linux/kernel.h> 12#include <linux/types.h> 13#include <linux/init.h> 14#include <linux/bootmem.h> 15#include <linux/ioport.h> 16#include <linux/string.h> 17#include <linux/kexec.h> 18#include <linux/module.h> 19#include <linux/mm.h> 20#include <linux/pfn.h> 21#include <linux/suspend.h> 22#include <linux/firmware-map.h> 23 24#include <asm/pgtable.h> 25#include <asm/page.h> 26#include <asm/e820.h> 27#include <asm/proto.h> 28#include <asm/setup.h> 29#include <asm/trampoline.h> 30 31/* 32 * The e820 map is the map that gets modified e.g. with command line parameters 33 * and that is also registered with modifications in the kernel resource tree 34 * with the iomem_resource as parent. 35 * 36 * The e820_saved is directly saved after the BIOS-provided memory map is 37 * copied. It doesn't get modified afterwards. It's registered for the 38 * /sys/firmware/memmap interface. 39 * 40 * That memory map is not modified and is used as base for kexec. The kexec'd 41 * kernel should get the same memory map as the firmware provides. Then the 42 * user can e.g. boot the original kernel with mem=1G while still booting the 43 * next kernel with full memory. 44 */ 45struct e820map e820; 46struct e820map e820_saved; 47 48/* For PCI or other memory-mapped resources */ 49unsigned long pci_mem_start = 0xaeedbabe; 50#ifdef CONFIG_PCI 51EXPORT_SYMBOL(pci_mem_start); 52#endif 53 54/* 55 * This function checks if any part of the range <start,end> is mapped 56 * with type. 57 */ 58int 59e820_any_mapped(u64 start, u64 end, unsigned type) 60{ 61 int i; 62 63 for (i = 0; i < e820.nr_map; i++) { 64 struct e820entry *ei = &e820.map[i]; 65 66 if (type && ei->type != type) 67 continue; 68 if (ei->addr >= end || ei->addr + ei->size <= start) 69 continue; 70 return 1; 71 } 72 return 0; 73} 74EXPORT_SYMBOL_GPL(e820_any_mapped); 75 76/* 77 * This function checks if the entire range <start,end> is mapped with type. 78 * 79 * Note: this function only works correct if the e820 table is sorted and 80 * not-overlapping, which is the case 81 */ 82int __init e820_all_mapped(u64 start, u64 end, unsigned type) 83{ 84 int i; 85 86 for (i = 0; i < e820.nr_map; i++) { 87 struct e820entry *ei = &e820.map[i]; 88 89 if (type && ei->type != type) 90 continue; 91 /* is the region (part) in overlap with the current region ?*/ 92 if (ei->addr >= end || ei->addr + ei->size <= start) 93 continue; 94 95 /* if the region is at the beginning of <start,end> we move 96 * start to the end of the region since it's ok until there 97 */ 98 if (ei->addr <= start) 99 start = ei->addr + ei->size; 100 /* 101 * if start is now at or beyond end, we're done, full 102 * coverage 103 */ 104 if (start >= end) 105 return 1; 106 } 107 return 0; 108} 109 110/* 111 * Add a memory region to the kernel e820 map. 112 */ 113void __init e820_add_region(u64 start, u64 size, int type) 114{ 115 int x = e820.nr_map; 116 117 if (x == ARRAY_SIZE(e820.map)) { 118 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n"); 119 return; 120 } 121 122 e820.map[x].addr = start; 123 e820.map[x].size = size; 124 e820.map[x].type = type; 125 e820.nr_map++; 126} 127 128void __init e820_print_map(char *who) 129{ 130 int i; 131 132 for (i = 0; i < e820.nr_map; i++) { 133 printk(KERN_INFO " %s: %016Lx - %016Lx ", who, 134 (unsigned long long) e820.map[i].addr, 135 (unsigned long long) 136 (e820.map[i].addr + e820.map[i].size)); 137 switch (e820.map[i].type) { 138 case E820_RAM: 139 case E820_RESERVED_KERN: 140 printk(KERN_CONT "(usable)\n"); 141 break; 142 case E820_RESERVED: 143 printk(KERN_CONT "(reserved)\n"); 144 break; 145 case E820_ACPI: 146 printk(KERN_CONT "(ACPI data)\n"); 147 break; 148 case E820_NVS: 149 printk(KERN_CONT "(ACPI NVS)\n"); 150 break; 151 case E820_UNUSABLE: 152 printk("(unusable)\n"); 153 break; 154 default: 155 printk(KERN_CONT "type %u\n", e820.map[i].type); 156 break; 157 } 158 } 159} 160 161/* 162 * Sanitize the BIOS e820 map. 163 * 164 * Some e820 responses include overlapping entries. The following 165 * replaces the original e820 map with a new one, removing overlaps, 166 * and resolving conflicting memory types in favor of highest 167 * numbered type. 168 * 169 * The input parameter biosmap points to an array of 'struct 170 * e820entry' which on entry has elements in the range [0, *pnr_map) 171 * valid, and which has space for up to max_nr_map entries. 172 * On return, the resulting sanitized e820 map entries will be in 173 * overwritten in the same location, starting at biosmap. 174 * 175 * The integer pointed to by pnr_map must be valid on entry (the 176 * current number of valid entries located at biosmap) and will 177 * be updated on return, with the new number of valid entries 178 * (something no more than max_nr_map.) 179 * 180 * The return value from sanitize_e820_map() is zero if it 181 * successfully 'sanitized' the map entries passed in, and is -1 182 * if it did nothing, which can happen if either of (1) it was 183 * only passed one map entry, or (2) any of the input map entries 184 * were invalid (start + size < start, meaning that the size was 185 * so big the described memory range wrapped around through zero.) 186 * 187 * Visually we're performing the following 188 * (1,2,3,4 = memory types)... 189 * 190 * Sample memory map (w/overlaps): 191 * ____22__________________ 192 * ______________________4_ 193 * ____1111________________ 194 * _44_____________________ 195 * 11111111________________ 196 * ____________________33__ 197 * ___________44___________ 198 * __________33333_________ 199 * ______________22________ 200 * ___________________2222_ 201 * _________111111111______ 202 * _____________________11_ 203 * _________________4______ 204 * 205 * Sanitized equivalent (no overlap): 206 * 1_______________________ 207 * _44_____________________ 208 * ___1____________________ 209 * ____22__________________ 210 * ______11________________ 211 * _________1______________ 212 * __________3_____________ 213 * ___________44___________ 214 * _____________33_________ 215 * _______________2________ 216 * ________________1_______ 217 * _________________4______ 218 * ___________________2____ 219 * ____________________33__ 220 * ______________________4_ 221 */ 222 223int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map, 224 int *pnr_map) 225{ 226 struct change_member { 227 struct e820entry *pbios; /* pointer to original bios entry */ 228 unsigned long long addr; /* address for this change point */ 229 }; 230 static struct change_member change_point_list[2*E820_X_MAX] __initdata; 231 static struct change_member *change_point[2*E820_X_MAX] __initdata; 232 static struct e820entry *overlap_list[E820_X_MAX] __initdata; 233 static struct e820entry new_bios[E820_X_MAX] __initdata; 234 struct change_member *change_tmp; 235 unsigned long current_type, last_type; 236 unsigned long long last_addr; 237 int chgidx, still_changing; 238 int overlap_entries; 239 int new_bios_entry; 240 int old_nr, new_nr, chg_nr; 241 int i; 242 243 /* if there's only one memory region, don't bother */ 244 if (*pnr_map < 2) 245 return -1; 246 247 old_nr = *pnr_map; 248 BUG_ON(old_nr > max_nr_map); 249 250 /* bail out if we find any unreasonable addresses in bios map */ 251 for (i = 0; i < old_nr; i++) 252 if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr) 253 return -1; 254 255 /* create pointers for initial change-point information (for sorting) */ 256 for (i = 0; i < 2 * old_nr; i++) 257 change_point[i] = &change_point_list[i]; 258 259 /* record all known change-points (starting and ending addresses), 260 omitting those that are for empty memory regions */ 261 chgidx = 0; 262 for (i = 0; i < old_nr; i++) { 263 if (biosmap[i].size != 0) { 264 change_point[chgidx]->addr = biosmap[i].addr; 265 change_point[chgidx++]->pbios = &biosmap[i]; 266 change_point[chgidx]->addr = biosmap[i].addr + 267 biosmap[i].size; 268 change_point[chgidx++]->pbios = &biosmap[i]; 269 } 270 } 271 chg_nr = chgidx; 272 273 /* sort change-point list by memory addresses (low -> high) */ 274 still_changing = 1; 275 while (still_changing) { 276 still_changing = 0; 277 for (i = 1; i < chg_nr; i++) { 278 unsigned long long curaddr, lastaddr; 279 unsigned long long curpbaddr, lastpbaddr; 280 281 curaddr = change_point[i]->addr; 282 lastaddr = change_point[i - 1]->addr; 283 curpbaddr = change_point[i]->pbios->addr; 284 lastpbaddr = change_point[i - 1]->pbios->addr; 285 286 /* 287 * swap entries, when: 288 * 289 * curaddr > lastaddr or 290 * curaddr == lastaddr and curaddr == curpbaddr and 291 * lastaddr != lastpbaddr 292 */ 293 if (curaddr < lastaddr || 294 (curaddr == lastaddr && curaddr == curpbaddr && 295 lastaddr != lastpbaddr)) { 296 change_tmp = change_point[i]; 297 change_point[i] = change_point[i-1]; 298 change_point[i-1] = change_tmp; 299 still_changing = 1; 300 } 301 } 302 } 303 304 /* create a new bios memory map, removing overlaps */ 305 overlap_entries = 0; /* number of entries in the overlap table */ 306 new_bios_entry = 0; /* index for creating new bios map entries */ 307 last_type = 0; /* start with undefined memory type */ 308 last_addr = 0; /* start with 0 as last starting address */ 309 310 /* loop through change-points, determining affect on the new bios map */ 311 for (chgidx = 0; chgidx < chg_nr; chgidx++) { 312 /* keep track of all overlapping bios entries */ 313 if (change_point[chgidx]->addr == 314 change_point[chgidx]->pbios->addr) { 315 /* 316 * add map entry to overlap list (> 1 entry 317 * implies an overlap) 318 */ 319 overlap_list[overlap_entries++] = 320 change_point[chgidx]->pbios; 321 } else { 322 /* 323 * remove entry from list (order independent, 324 * so swap with last) 325 */ 326 for (i = 0; i < overlap_entries; i++) { 327 if (overlap_list[i] == 328 change_point[chgidx]->pbios) 329 overlap_list[i] = 330 overlap_list[overlap_entries-1]; 331 } 332 overlap_entries--; 333 } 334 /* 335 * if there are overlapping entries, decide which 336 * "type" to use (larger value takes precedence -- 337 * 1=usable, 2,3,4,4+=unusable) 338 */ 339 current_type = 0; 340 for (i = 0; i < overlap_entries; i++) 341 if (overlap_list[i]->type > current_type) 342 current_type = overlap_list[i]->type; 343 /* 344 * continue building up new bios map based on this 345 * information 346 */ 347 if (current_type != last_type) { 348 if (last_type != 0) { 349 new_bios[new_bios_entry].size = 350 change_point[chgidx]->addr - last_addr; 351 /* 352 * move forward only if the new size 353 * was non-zero 354 */ 355 if (new_bios[new_bios_entry].size != 0) 356 /* 357 * no more space left for new 358 * bios entries ? 359 */ 360 if (++new_bios_entry >= max_nr_map) 361 break; 362 } 363 if (current_type != 0) { 364 new_bios[new_bios_entry].addr = 365 change_point[chgidx]->addr; 366 new_bios[new_bios_entry].type = current_type; 367 last_addr = change_point[chgidx]->addr; 368 } 369 last_type = current_type; 370 } 371 } 372 /* retain count for new bios entries */ 373 new_nr = new_bios_entry; 374 375 /* copy new bios mapping into original location */ 376 memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry)); 377 *pnr_map = new_nr; 378 379 return 0; 380} 381 382static int __init __append_e820_map(struct e820entry *biosmap, int nr_map) 383{ 384 while (nr_map) { 385 u64 start = biosmap->addr; 386 u64 size = biosmap->size; 387 u64 end = start + size; 388 u32 type = biosmap->type; 389 390 /* Overflow in 64 bits? Ignore the memory map. */ 391 if (start > end) 392 return -1; 393 394 e820_add_region(start, size, type); 395 396 biosmap++; 397 nr_map--; 398 } 399 return 0; 400} 401 402/* 403 * Copy the BIOS e820 map into a safe place. 404 * 405 * Sanity-check it while we're at it.. 406 * 407 * If we're lucky and live on a modern system, the setup code 408 * will have given us a memory map that we can use to properly 409 * set up memory. If we aren't, we'll fake a memory map. 410 */ 411static int __init append_e820_map(struct e820entry *biosmap, int nr_map) 412{ 413 /* Only one memory region (or negative)? Ignore it */ 414 if (nr_map < 2) 415 return -1; 416 417 return __append_e820_map(biosmap, nr_map); 418} 419 420static u64 __init e820_update_range_map(struct e820map *e820x, u64 start, 421 u64 size, unsigned old_type, 422 unsigned new_type) 423{ 424 int i; 425 u64 real_updated_size = 0; 426 427 BUG_ON(old_type == new_type); 428 429 if (size > (ULLONG_MAX - start)) 430 size = ULLONG_MAX - start; 431 432 for (i = 0; i < e820.nr_map; i++) { 433 struct e820entry *ei = &e820x->map[i]; 434 u64 final_start, final_end; 435 if (ei->type != old_type) 436 continue; 437 /* totally covered? */ 438 if (ei->addr >= start && 439 (ei->addr + ei->size) <= (start + size)) { 440 ei->type = new_type; 441 real_updated_size += ei->size; 442 continue; 443 } 444 /* partially covered */ 445 final_start = max(start, ei->addr); 446 final_end = min(start + size, ei->addr + ei->size); 447 if (final_start >= final_end) 448 continue; 449 e820_add_region(final_start, final_end - final_start, 450 new_type); 451 real_updated_size += final_end - final_start; 452 453 ei->size -= final_end - final_start; 454 if (ei->addr < final_start) 455 continue; 456 ei->addr = final_end; 457 } 458 return real_updated_size; 459} 460 461u64 __init e820_update_range(u64 start, u64 size, unsigned old_type, 462 unsigned new_type) 463{ 464 return e820_update_range_map(&e820, start, size, old_type, new_type); 465} 466 467static u64 __init e820_update_range_saved(u64 start, u64 size, 468 unsigned old_type, unsigned new_type) 469{ 470 return e820_update_range_map(&e820_saved, start, size, old_type, 471 new_type); 472} 473 474/* make e820 not cover the range */ 475u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type, 476 int checktype) 477{ 478 int i; 479 u64 real_removed_size = 0; 480 481 if (size > (ULLONG_MAX - start)) 482 size = ULLONG_MAX - start; 483 484 for (i = 0; i < e820.nr_map; i++) { 485 struct e820entry *ei = &e820.map[i]; 486 u64 final_start, final_end; 487 488 if (checktype && ei->type != old_type) 489 continue; 490 /* totally covered? */ 491 if (ei->addr >= start && 492 (ei->addr + ei->size) <= (start + size)) { 493 real_removed_size += ei->size; 494 memset(ei, 0, sizeof(struct e820entry)); 495 continue; 496 } 497 /* partially covered */ 498 final_start = max(start, ei->addr); 499 final_end = min(start + size, ei->addr + ei->size); 500 if (final_start >= final_end) 501 continue; 502 real_removed_size += final_end - final_start; 503 504 ei->size -= final_end - final_start; 505 if (ei->addr < final_start) 506 continue; 507 ei->addr = final_end; 508 } 509 return real_removed_size; 510} 511 512void __init update_e820(void) 513{ 514 int nr_map; 515 516 nr_map = e820.nr_map; 517 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map)) 518 return; 519 e820.nr_map = nr_map; 520 printk(KERN_INFO "modified physical RAM map:\n"); 521 e820_print_map("modified"); 522} 523static void __init update_e820_saved(void) 524{ 525 int nr_map; 526 527 nr_map = e820_saved.nr_map; 528 if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map)) 529 return; 530 e820_saved.nr_map = nr_map; 531} 532#define MAX_GAP_END 0x100000000ull 533/* 534 * Search for a gap in the e820 memory space from start_addr to end_addr. 535 */ 536__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize, 537 unsigned long start_addr, unsigned long long end_addr) 538{ 539 unsigned long long last; 540 int i = e820.nr_map; 541 int found = 0; 542 543 last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END; 544 545 while (--i >= 0) { 546 unsigned long long start = e820.map[i].addr; 547 unsigned long long end = start + e820.map[i].size; 548 549 if (end < start_addr) 550 continue; 551 552 /* 553 * Since "last" is at most 4GB, we know we'll 554 * fit in 32 bits if this condition is true 555 */ 556 if (last > end) { 557 unsigned long gap = last - end; 558 559 if (gap >= *gapsize) { 560 *gapsize = gap; 561 *gapstart = end; 562 found = 1; 563 } 564 } 565 if (start < last) 566 last = start; 567 } 568 return found; 569} 570 571/* 572 * Search for the biggest gap in the low 32 bits of the e820 573 * memory space. We pass this space to PCI to assign MMIO resources 574 * for hotplug or unconfigured devices in. 575 * Hopefully the BIOS let enough space left. 576 */ 577__init void e820_setup_gap(void) 578{ 579 unsigned long gapstart, gapsize, round; 580 int found; 581 582 gapstart = 0x10000000; 583 gapsize = 0x400000; 584 found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END); 585 586#ifdef CONFIG_X86_64 587 if (!found) { 588 gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024; 589 printk(KERN_ERR "PCI: Warning: Cannot find a gap in the 32bit " 590 "address range\n" 591 KERN_ERR "PCI: Unassigned devices with 32bit resource " 592 "registers may break!\n"); 593 } 594#endif 595 596 /* 597 * See how much we want to round up: start off with 598 * rounding to the next 1MB area. 599 */ 600 round = 0x100000; 601 while ((gapsize >> 4) > round) 602 round += round; 603 /* Fun with two's complement */ 604 pci_mem_start = (gapstart + round) & -round; 605 606 printk(KERN_INFO 607 "Allocating PCI resources starting at %lx (gap: %lx:%lx)\n", 608 pci_mem_start, gapstart, gapsize); 609} 610 611/** 612 * Because of the size limitation of struct boot_params, only first 613 * 128 E820 memory entries are passed to kernel via 614 * boot_params.e820_map, others are passed via SETUP_E820_EXT node of 615 * linked list of struct setup_data, which is parsed here. 616 */ 617void __init parse_e820_ext(struct setup_data *sdata, unsigned long pa_data) 618{ 619 u32 map_len; 620 int entries; 621 struct e820entry *extmap; 622 623 entries = sdata->len / sizeof(struct e820entry); 624 map_len = sdata->len + sizeof(struct setup_data); 625 if (map_len > PAGE_SIZE) 626 sdata = early_ioremap(pa_data, map_len); 627 extmap = (struct e820entry *)(sdata->data); 628 __append_e820_map(extmap, entries); 629 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map); 630 if (map_len > PAGE_SIZE) 631 early_iounmap(sdata, map_len); 632 printk(KERN_INFO "extended physical RAM map:\n"); 633 e820_print_map("extended"); 634} 635 636#if defined(CONFIG_X86_64) || \ 637 (defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION)) 638/** 639 * Find the ranges of physical addresses that do not correspond to 640 * e820 RAM areas and mark the corresponding pages as nosave for 641 * hibernation (32 bit) or software suspend and suspend to RAM (64 bit). 642 * 643 * This function requires the e820 map to be sorted and without any 644 * overlapping entries and assumes the first e820 area to be RAM. 645 */ 646void __init e820_mark_nosave_regions(unsigned long limit_pfn) 647{ 648 int i; 649 unsigned long pfn; 650 651 pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size); 652 for (i = 1; i < e820.nr_map; i++) { 653 struct e820entry *ei = &e820.map[i]; 654 655 if (pfn < PFN_UP(ei->addr)) 656 register_nosave_region(pfn, PFN_UP(ei->addr)); 657 658 pfn = PFN_DOWN(ei->addr + ei->size); 659 if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN) 660 register_nosave_region(PFN_UP(ei->addr), pfn); 661 662 if (pfn >= limit_pfn) 663 break; 664 } 665} 666#endif 667 668#ifdef CONFIG_HIBERNATION 669/** 670 * Mark ACPI NVS memory region, so that we can save/restore it during 671 * hibernation and the subsequent resume. 672 */ 673static int __init e820_mark_nvs_memory(void) 674{ 675 int i; 676 677 for (i = 0; i < e820.nr_map; i++) { 678 struct e820entry *ei = &e820.map[i]; 679 680 if (ei->type == E820_NVS) 681 hibernate_nvs_register(ei->addr, ei->size); 682 } 683 684 return 0; 685} 686core_initcall(e820_mark_nvs_memory); 687#endif 688 689/* 690 * Early reserved memory areas. 691 */ 692#define MAX_EARLY_RES 20 693 694struct early_res { 695 u64 start, end; 696 char name[16]; 697 char overlap_ok; 698}; 699static struct early_res early_res[MAX_EARLY_RES] __initdata = { 700 { 0, PAGE_SIZE, "BIOS data page" }, /* BIOS data page */ 701#if defined(CONFIG_X86_64) && defined(CONFIG_X86_TRAMPOLINE) 702 { TRAMPOLINE_BASE, TRAMPOLINE_BASE + 2 * PAGE_SIZE, "TRAMPOLINE" }, 703#endif 704#if defined(CONFIG_X86_32) && defined(CONFIG_SMP) 705 /* 706 * But first pinch a few for the stack/trampoline stuff 707 * FIXME: Don't need the extra page at 4K, but need to fix 708 * trampoline before removing it. (see the GDT stuff) 709 */ 710 { PAGE_SIZE, PAGE_SIZE + PAGE_SIZE, "EX TRAMPOLINE" }, 711 /* 712 * Has to be in very low memory so we can execute 713 * real-mode AP code. 714 */ 715 { TRAMPOLINE_BASE, TRAMPOLINE_BASE + PAGE_SIZE, "TRAMPOLINE" }, 716#endif 717 {} 718}; 719 720static int __init find_overlapped_early(u64 start, u64 end) 721{ 722 int i; 723 struct early_res *r; 724 725 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { 726 r = &early_res[i]; 727 if (end > r->start && start < r->end) 728 break; 729 } 730 731 return i; 732} 733 734/* 735 * Drop the i-th range from the early reservation map, 736 * by copying any higher ranges down one over it, and 737 * clearing what had been the last slot. 738 */ 739static void __init drop_range(int i) 740{ 741 int j; 742 743 for (j = i + 1; j < MAX_EARLY_RES && early_res[j].end; j++) 744 ; 745 746 memmove(&early_res[i], &early_res[i + 1], 747 (j - 1 - i) * sizeof(struct early_res)); 748 749 early_res[j - 1].end = 0; 750} 751 752/* 753 * Split any existing ranges that: 754 * 1) are marked 'overlap_ok', and 755 * 2) overlap with the stated range [start, end) 756 * into whatever portion (if any) of the existing range is entirely 757 * below or entirely above the stated range. Drop the portion 758 * of the existing range that overlaps with the stated range, 759 * which will allow the caller of this routine to then add that 760 * stated range without conflicting with any existing range. 761 */ 762static void __init drop_overlaps_that_are_ok(u64 start, u64 end) 763{ 764 int i; 765 struct early_res *r; 766 u64 lower_start, lower_end; 767 u64 upper_start, upper_end; 768 char name[16]; 769 770 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { 771 r = &early_res[i]; 772 773 /* Continue past non-overlapping ranges */ 774 if (end <= r->start || start >= r->end) 775 continue; 776 777 /* 778 * Leave non-ok overlaps as is; let caller 779 * panic "Overlapping early reservations" 780 * when it hits this overlap. 781 */ 782 if (!r->overlap_ok) 783 return; 784 785 /* 786 * We have an ok overlap. We will drop it from the early 787 * reservation map, and add back in any non-overlapping 788 * portions (lower or upper) as separate, overlap_ok, 789 * non-overlapping ranges. 790 */ 791 792 /* 1. Note any non-overlapping (lower or upper) ranges. */ 793 strncpy(name, r->name, sizeof(name) - 1); 794 795 lower_start = lower_end = 0; 796 upper_start = upper_end = 0; 797 if (r->start < start) { 798 lower_start = r->start; 799 lower_end = start; 800 } 801 if (r->end > end) { 802 upper_start = end; 803 upper_end = r->end; 804 } 805 806 /* 2. Drop the original ok overlapping range */ 807 drop_range(i); 808 809 i--; /* resume for-loop on copied down entry */ 810 811 /* 3. Add back in any non-overlapping ranges. */ 812 if (lower_end) 813 reserve_early_overlap_ok(lower_start, lower_end, name); 814 if (upper_end) 815 reserve_early_overlap_ok(upper_start, upper_end, name); 816 } 817} 818 819static void __init __reserve_early(u64 start, u64 end, char *name, 820 int overlap_ok) 821{ 822 int i; 823 struct early_res *r; 824 825 i = find_overlapped_early(start, end); 826 if (i >= MAX_EARLY_RES) 827 panic("Too many early reservations"); 828 r = &early_res[i]; 829 if (r->end) 830 panic("Overlapping early reservations " 831 "%llx-%llx %s to %llx-%llx %s\n", 832 start, end - 1, name?name:"", r->start, 833 r->end - 1, r->name); 834 r->start = start; 835 r->end = end; 836 r->overlap_ok = overlap_ok; 837 if (name) 838 strncpy(r->name, name, sizeof(r->name) - 1); 839} 840 841/* 842 * A few early reservtations come here. 843 * 844 * The 'overlap_ok' in the name of this routine does -not- mean it 845 * is ok for these reservations to overlap an earlier reservation. 846 * Rather it means that it is ok for subsequent reservations to 847 * overlap this one. 848 * 849 * Use this entry point to reserve early ranges when you are doing 850 * so out of "Paranoia", reserving perhaps more memory than you need, 851 * just in case, and don't mind a subsequent overlapping reservation 852 * that is known to be needed. 853 * 854 * The drop_overlaps_that_are_ok() call here isn't really needed. 855 * It would be needed if we had two colliding 'overlap_ok' 856 * reservations, so that the second such would not panic on the 857 * overlap with the first. We don't have any such as of this 858 * writing, but might as well tolerate such if it happens in 859 * the future. 860 */ 861void __init reserve_early_overlap_ok(u64 start, u64 end, char *name) 862{ 863 drop_overlaps_that_are_ok(start, end); 864 __reserve_early(start, end, name, 1); 865} 866 867/* 868 * Most early reservations come here. 869 * 870 * We first have drop_overlaps_that_are_ok() drop any pre-existing 871 * 'overlap_ok' ranges, so that we can then reserve this memory 872 * range without risk of panic'ing on an overlapping overlap_ok 873 * early reservation. 874 */ 875void __init reserve_early(u64 start, u64 end, char *name) 876{ 877 drop_overlaps_that_are_ok(start, end); 878 __reserve_early(start, end, name, 0); 879} 880 881void __init free_early(u64 start, u64 end) 882{ 883 struct early_res *r; 884 int i; 885 886 i = find_overlapped_early(start, end); 887 r = &early_res[i]; 888 if (i >= MAX_EARLY_RES || r->end != end || r->start != start) 889 panic("free_early on not reserved area: %llx-%llx!", 890 start, end - 1); 891 892 drop_range(i); 893} 894 895void __init early_res_to_bootmem(u64 start, u64 end) 896{ 897 int i, count; 898 u64 final_start, final_end; 899 900 count = 0; 901 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) 902 count++; 903 904 printk(KERN_INFO "(%d early reservations) ==> bootmem [%010llx - %010llx]\n", 905 count, start, end); 906 for (i = 0; i < count; i++) { 907 struct early_res *r = &early_res[i]; 908 printk(KERN_INFO " #%d [%010llx - %010llx] %16s", i, 909 r->start, r->end, r->name); 910 final_start = max(start, r->start); 911 final_end = min(end, r->end); 912 if (final_start >= final_end) { 913 printk(KERN_CONT "\n"); 914 continue; 915 } 916 printk(KERN_CONT " ==> [%010llx - %010llx]\n", 917 final_start, final_end); 918 reserve_bootmem_generic(final_start, final_end - final_start, 919 BOOTMEM_DEFAULT); 920 } 921} 922 923/* Check for already reserved areas */ 924static inline int __init bad_addr(u64 *addrp, u64 size, u64 align) 925{ 926 int i; 927 u64 addr = *addrp; 928 int changed = 0; 929 struct early_res *r; 930again: 931 i = find_overlapped_early(addr, addr + size); 932 r = &early_res[i]; 933 if (i < MAX_EARLY_RES && r->end) { 934 *addrp = addr = round_up(r->end, align); 935 changed = 1; 936 goto again; 937 } 938 return changed; 939} 940 941/* Check for already reserved areas */ 942static inline int __init bad_addr_size(u64 *addrp, u64 *sizep, u64 align) 943{ 944 int i; 945 u64 addr = *addrp, last; 946 u64 size = *sizep; 947 int changed = 0; 948again: 949 last = addr + size; 950 for (i = 0; i < MAX_EARLY_RES && early_res[i].end; i++) { 951 struct early_res *r = &early_res[i]; 952 if (last > r->start && addr < r->start) { 953 size = r->start - addr; 954 changed = 1; 955 goto again; 956 } 957 if (last > r->end && addr < r->end) { 958 addr = round_up(r->end, align); 959 size = last - addr; 960 changed = 1; 961 goto again; 962 } 963 if (last <= r->end && addr >= r->start) { 964 (*sizep)++; 965 return 0; 966 } 967 } 968 if (changed) { 969 *addrp = addr; 970 *sizep = size; 971 } 972 return changed; 973} 974 975/* 976 * Find a free area with specified alignment in a specific range. 977 */ 978u64 __init find_e820_area(u64 start, u64 end, u64 size, u64 align) 979{ 980 int i; 981 982 for (i = 0; i < e820.nr_map; i++) { 983 struct e820entry *ei = &e820.map[i]; 984 u64 addr, last; 985 u64 ei_last; 986 987 if (ei->type != E820_RAM) 988 continue; 989 addr = round_up(ei->addr, align); 990 ei_last = ei->addr + ei->size; 991 if (addr < start) 992 addr = round_up(start, align); 993 if (addr >= ei_last) 994 continue; 995 while (bad_addr(&addr, size, align) && addr+size <= ei_last) 996 ; 997 last = addr + size; 998 if (last > ei_last) 999 continue; 1000 if (last > end) 1001 continue; 1002 return addr; 1003 } 1004 return -1ULL; 1005} 1006 1007/* 1008 * Find next free range after *start 1009 */ 1010u64 __init find_e820_area_size(u64 start, u64 *sizep, u64 align) 1011{ 1012 int i; 1013 1014 for (i = 0; i < e820.nr_map; i++) { 1015 struct e820entry *ei = &e820.map[i]; 1016 u64 addr, last; 1017 u64 ei_last; 1018 1019 if (ei->type != E820_RAM) 1020 continue; 1021 addr = round_up(ei->addr, align); 1022 ei_last = ei->addr + ei->size; 1023 if (addr < start) 1024 addr = round_up(start, align); 1025 if (addr >= ei_last) 1026 continue; 1027 *sizep = ei_last - addr; 1028 while (bad_addr_size(&addr, sizep, align) && 1029 addr + *sizep <= ei_last) 1030 ; 1031 last = addr + *sizep; 1032 if (last > ei_last) 1033 continue; 1034 return addr; 1035 } 1036 return -1UL; 1037 1038} 1039 1040/* 1041 * pre allocated 4k and reserved it in e820 1042 */ 1043u64 __init early_reserve_e820(u64 startt, u64 sizet, u64 align) 1044{ 1045 u64 size = 0; 1046 u64 addr; 1047 u64 start; 1048 1049 start = startt; 1050 while (size < sizet) 1051 start = find_e820_area_size(start, &size, align); 1052 1053 if (size < sizet) 1054 return 0; 1055 1056 addr = round_down(start + size - sizet, align); 1057 e820_update_range(addr, sizet, E820_RAM, E820_RESERVED); 1058 e820_update_range_saved(addr, sizet, E820_RAM, E820_RESERVED); 1059 printk(KERN_INFO "update e820 for early_reserve_e820\n"); 1060 update_e820(); 1061 update_e820_saved(); 1062 1063 return addr; 1064} 1065 1066#ifdef CONFIG_X86_32 1067# ifdef CONFIG_X86_PAE 1068# define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT)) 1069# else 1070# define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT)) 1071# endif 1072#else /* CONFIG_X86_32 */ 1073# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT 1074#endif 1075 1076/* 1077 * Find the highest page frame number we have available 1078 */ 1079static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type) 1080{ 1081 int i; 1082 unsigned long last_pfn = 0; 1083 unsigned long max_arch_pfn = MAX_ARCH_PFN; 1084 1085 for (i = 0; i < e820.nr_map; i++) { 1086 struct e820entry *ei = &e820.map[i]; 1087 unsigned long start_pfn; 1088 unsigned long end_pfn; 1089 1090 if (ei->type != type) 1091 continue; 1092 1093 start_pfn = ei->addr >> PAGE_SHIFT; 1094 end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT; 1095 1096 if (start_pfn >= limit_pfn) 1097 continue; 1098 if (end_pfn > limit_pfn) { 1099 last_pfn = limit_pfn; 1100 break; 1101 } 1102 if (end_pfn > last_pfn) 1103 last_pfn = end_pfn; 1104 } 1105 1106 if (last_pfn > max_arch_pfn) 1107 last_pfn = max_arch_pfn; 1108 1109 printk(KERN_INFO "last_pfn = %#lx max_arch_pfn = %#lx\n", 1110 last_pfn, max_arch_pfn); 1111 return last_pfn; 1112} 1113unsigned long __init e820_end_of_ram_pfn(void) 1114{ 1115 return e820_end_pfn(MAX_ARCH_PFN, E820_RAM); 1116} 1117 1118unsigned long __init e820_end_of_low_ram_pfn(void) 1119{ 1120 return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM); 1121} 1122/* 1123 * Finds an active region in the address range from start_pfn to last_pfn and 1124 * returns its range in ei_startpfn and ei_endpfn for the e820 entry. 1125 */ 1126int __init e820_find_active_region(const struct e820entry *ei, 1127 unsigned long start_pfn, 1128 unsigned long last_pfn, 1129 unsigned long *ei_startpfn, 1130 unsigned long *ei_endpfn) 1131{ 1132 u64 align = PAGE_SIZE; 1133 1134 *ei_startpfn = round_up(ei->addr, align) >> PAGE_SHIFT; 1135 *ei_endpfn = round_down(ei->addr + ei->size, align) >> PAGE_SHIFT; 1136 1137 /* Skip map entries smaller than a page */ 1138 if (*ei_startpfn >= *ei_endpfn) 1139 return 0; 1140 1141 /* Skip if map is outside the node */ 1142 if (ei->type != E820_RAM || *ei_endpfn <= start_pfn || 1143 *ei_startpfn >= last_pfn) 1144 return 0; 1145 1146 /* Check for overlaps */ 1147 if (*ei_startpfn < start_pfn) 1148 *ei_startpfn = start_pfn; 1149 if (*ei_endpfn > last_pfn) 1150 *ei_endpfn = last_pfn; 1151 1152 return 1; 1153} 1154 1155/* Walk the e820 map and register active regions within a node */ 1156void __init e820_register_active_regions(int nid, unsigned long start_pfn, 1157 unsigned long last_pfn) 1158{ 1159 unsigned long ei_startpfn; 1160 unsigned long ei_endpfn; 1161 int i; 1162 1163 for (i = 0; i < e820.nr_map; i++) 1164 if (e820_find_active_region(&e820.map[i], 1165 start_pfn, last_pfn, 1166 &ei_startpfn, &ei_endpfn)) 1167 add_active_range(nid, ei_startpfn, ei_endpfn); 1168} 1169 1170/* 1171 * Find the hole size (in bytes) in the memory range. 1172 * @start: starting address of the memory range to scan 1173 * @end: ending address of the memory range to scan 1174 */ 1175u64 __init e820_hole_size(u64 start, u64 end) 1176{ 1177 unsigned long start_pfn = start >> PAGE_SHIFT; 1178 unsigned long last_pfn = end >> PAGE_SHIFT; 1179 unsigned long ei_startpfn, ei_endpfn, ram = 0; 1180 int i; 1181 1182 for (i = 0; i < e820.nr_map; i++) { 1183 if (e820_find_active_region(&e820.map[i], 1184 start_pfn, last_pfn, 1185 &ei_startpfn, &ei_endpfn)) 1186 ram += ei_endpfn - ei_startpfn; 1187 } 1188 return end - start - ((u64)ram << PAGE_SHIFT); 1189} 1190 1191static void early_panic(char *msg) 1192{ 1193 early_printk(msg); 1194 panic(msg); 1195} 1196 1197static int userdef __initdata; 1198 1199/* "mem=nopentium" disables the 4MB page tables. */ 1200static int __init parse_memopt(char *p) 1201{ 1202 u64 mem_size; 1203 1204 if (!p) 1205 return -EINVAL; 1206 1207#ifdef CONFIG_X86_32 1208 if (!strcmp(p, "nopentium")) { 1209 setup_clear_cpu_cap(X86_FEATURE_PSE); 1210 return 0; 1211 } 1212#endif 1213 1214 userdef = 1; 1215 mem_size = memparse(p, &p); 1216 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); 1217 1218 return 0; 1219} 1220early_param("mem", parse_memopt); 1221 1222static int __init parse_memmap_opt(char *p) 1223{ 1224 char *oldp; 1225 u64 start_at, mem_size; 1226 1227 if (!p) 1228 return -EINVAL; 1229 1230 if (!strncmp(p, "exactmap", 8)) { 1231#ifdef CONFIG_CRASH_DUMP 1232 /* 1233 * If we are doing a crash dump, we still need to know 1234 * the real mem size before original memory map is 1235 * reset. 1236 */ 1237 saved_max_pfn = e820_end_of_ram_pfn(); 1238#endif 1239 e820.nr_map = 0; 1240 userdef = 1; 1241 return 0; 1242 } 1243 1244 oldp = p; 1245 mem_size = memparse(p, &p); 1246 if (p == oldp) 1247 return -EINVAL; 1248 1249 userdef = 1; 1250 if (*p == '@') { 1251 start_at = memparse(p+1, &p); 1252 e820_add_region(start_at, mem_size, E820_RAM); 1253 } else if (*p == '#') { 1254 start_at = memparse(p+1, &p); 1255 e820_add_region(start_at, mem_size, E820_ACPI); 1256 } else if (*p == '$') { 1257 start_at = memparse(p+1, &p); 1258 e820_add_region(start_at, mem_size, E820_RESERVED); 1259 } else 1260 e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1); 1261 1262 return *p == '\0' ? 0 : -EINVAL; 1263} 1264early_param("memmap", parse_memmap_opt); 1265 1266void __init finish_e820_parsing(void) 1267{ 1268 if (userdef) { 1269 int nr = e820.nr_map; 1270 1271 if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0) 1272 early_panic("Invalid user supplied memory map"); 1273 e820.nr_map = nr; 1274 1275 printk(KERN_INFO "user-defined physical RAM map:\n"); 1276 e820_print_map("user"); 1277 } 1278} 1279 1280static inline const char *e820_type_to_string(int e820_type) 1281{ 1282 switch (e820_type) { 1283 case E820_RESERVED_KERN: 1284 case E820_RAM: return "System RAM"; 1285 case E820_ACPI: return "ACPI Tables"; 1286 case E820_NVS: return "ACPI Non-volatile Storage"; 1287 case E820_UNUSABLE: return "Unusable memory"; 1288 default: return "reserved"; 1289 } 1290} 1291 1292/* 1293 * Mark e820 reserved areas as busy for the resource manager. 1294 */ 1295static struct resource __initdata *e820_res; 1296void __init e820_reserve_resources(void) 1297{ 1298 int i; 1299 struct resource *res; 1300 u64 end; 1301 1302 res = alloc_bootmem_low(sizeof(struct resource) * e820.nr_map); 1303 e820_res = res; 1304 for (i = 0; i < e820.nr_map; i++) { 1305 end = e820.map[i].addr + e820.map[i].size - 1; 1306 if (end != (resource_size_t)end) { 1307 res++; 1308 continue; 1309 } 1310 res->name = e820_type_to_string(e820.map[i].type); 1311 res->start = e820.map[i].addr; 1312 res->end = end; 1313 1314 res->flags = IORESOURCE_MEM; 1315 1316 /* 1317 * don't register the region that could be conflicted with 1318 * pci device BAR resource and insert them later in 1319 * pcibios_resource_survey() 1320 */ 1321 if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) { 1322 res->flags |= IORESOURCE_BUSY; 1323 insert_resource(&iomem_resource, res); 1324 } 1325 res++; 1326 } 1327 1328 for (i = 0; i < e820_saved.nr_map; i++) { 1329 struct e820entry *entry = &e820_saved.map[i]; 1330 firmware_map_add_early(entry->addr, 1331 entry->addr + entry->size - 1, 1332 e820_type_to_string(entry->type)); 1333 } 1334} 1335 1336void __init e820_reserve_resources_late(void) 1337{ 1338 int i; 1339 struct resource *res; 1340 1341 res = e820_res; 1342 for (i = 0; i < e820.nr_map; i++) { 1343 if (!res->parent && res->end) 1344 insert_resource_expand_to_fit(&iomem_resource, res); 1345 res++; 1346 } 1347} 1348 1349char *__init default_machine_specific_memory_setup(void) 1350{ 1351 char *who = "BIOS-e820"; 1352 int new_nr; 1353 /* 1354 * Try to copy the BIOS-supplied E820-map. 1355 * 1356 * Otherwise fake a memory map; one section from 0k->640k, 1357 * the next section from 1mb->appropriate_mem_k 1358 */ 1359 new_nr = boot_params.e820_entries; 1360 sanitize_e820_map(boot_params.e820_map, 1361 ARRAY_SIZE(boot_params.e820_map), 1362 &new_nr); 1363 boot_params.e820_entries = new_nr; 1364 if (append_e820_map(boot_params.e820_map, boot_params.e820_entries) 1365 < 0) { 1366 u64 mem_size; 1367 1368 /* compare results from other methods and take the greater */ 1369 if (boot_params.alt_mem_k 1370 < boot_params.screen_info.ext_mem_k) { 1371 mem_size = boot_params.screen_info.ext_mem_k; 1372 who = "BIOS-88"; 1373 } else { 1374 mem_size = boot_params.alt_mem_k; 1375 who = "BIOS-e801"; 1376 } 1377 1378 e820.nr_map = 0; 1379 e820_add_region(0, LOWMEMSIZE(), E820_RAM); 1380 e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM); 1381 } 1382 1383 /* In case someone cares... */ 1384 return who; 1385} 1386 1387char *__init __attribute__((weak)) machine_specific_memory_setup(void) 1388{ 1389 if (x86_quirks->arch_memory_setup) { 1390 char *who = x86_quirks->arch_memory_setup(); 1391 1392 if (who) 1393 return who; 1394 } 1395 return default_machine_specific_memory_setup(); 1396} 1397 1398/* Overridden in paravirt.c if CONFIG_PARAVIRT */ 1399char * __init __attribute__((weak)) memory_setup(void) 1400{ 1401 return machine_specific_memory_setup(); 1402} 1403 1404void __init setup_memory_map(void) 1405{ 1406 char *who; 1407 1408 who = memory_setup(); 1409 memcpy(&e820_saved, &e820, sizeof(struct e820map)); 1410 printk(KERN_INFO "BIOS-provided physical RAM map:\n"); 1411 e820_print_map(who); 1412} 1413