vm86_32.c revision 0f54091051c450bab751c3ca0cb45d61a67a683b
1/*
2 *  Copyright (C) 1994  Linus Torvalds
3 *
4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 *                stack - Manfred Spraul <manfred@colorfullife.com>
6 *
7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 *                them correctly. Now the emulation will be in a
9 *                consistent state after stackfaults - Kasper Dupont
10 *                <kasperd@daimi.au.dk>
11 *
12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 *                <kasperd@daimi.au.dk>
14 *
15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 *                caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 *                Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 *                Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 *   9 apr 2002 - Changed stack access macros to jump to a label
25 *                instead of returning to userspace. This simplifies
26 *                do_int, and is needed by handle_vm6_fault. Kasper
27 *                Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
31#include <linux/capability.h>
32#include <linux/errno.h>
33#include <linux/interrupt.h>
34#include <linux/sched.h>
35#include <linux/kernel.h>
36#include <linux/signal.h>
37#include <linux/string.h>
38#include <linux/mm.h>
39#include <linux/smp.h>
40#include <linux/highmem.h>
41#include <linux/ptrace.h>
42#include <linux/audit.h>
43#include <linux/stddef.h>
44
45#include <asm/uaccess.h>
46#include <asm/io.h>
47#include <asm/tlbflush.h>
48#include <asm/irq.h>
49
50/*
51 * Known problems:
52 *
53 * Interrupt handling is not guaranteed:
54 * - a real x86 will disable all interrupts for one instruction
55 *   after a "mov ss,xx" to make stack handling atomic even without
56 *   the 'lss' instruction. We can't guarantee this in v86 mode,
57 *   as the next instruction might result in a page fault or similar.
58 * - a real x86 will have interrupts disabled for one instruction
59 *   past the 'sti' that enables them. We don't bother with all the
60 *   details yet.
61 *
62 * Let's hope these problems do not actually matter for anything.
63 */
64
65
66#define KVM86	((struct kernel_vm86_struct *)regs)
67#define VMPI	KVM86->vm86plus
68
69
70/*
71 * 8- and 16-bit register defines..
72 */
73#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
74#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
75#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
76#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
77
78/*
79 * virtual flags (16 and 32-bit versions)
80 */
81#define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
82#define VEFLAGS	(current->thread.v86flags)
83
84#define set_flags(X, new, mask) \
85((X) = ((X) & ~(mask)) | ((new) & (mask)))
86
87#define SAFE_MASK	(0xDD5)
88#define RETURN_MASK	(0xDFF)
89
90/* convert kernel_vm86_regs to vm86_regs */
91static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
92				  const struct kernel_vm86_regs *regs)
93{
94	int ret = 0;
95
96	/*
97	 * kernel_vm86_regs is missing gs, so copy everything up to
98	 * (but not including) orig_eax, and then rest including orig_eax.
99	 */
100	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
101	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
102			    sizeof(struct kernel_vm86_regs) -
103			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
104
105	return ret;
106}
107
108/* convert vm86_regs to kernel_vm86_regs */
109static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
110				    const struct vm86_regs __user *user,
111				    unsigned extra)
112{
113	int ret = 0;
114
115	/* copy ax-fs inclusive */
116	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
117	/* copy orig_ax-__gsh+extra */
118	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
119			      sizeof(struct kernel_vm86_regs) -
120			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
121			      extra);
122	return ret;
123}
124
125struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
126{
127	struct tss_struct *tss;
128	struct pt_regs *ret;
129	unsigned long tmp;
130
131	/*
132	 * This gets called from entry.S with interrupts disabled, but
133	 * from process context. Enable interrupts here, before trying
134	 * to access user space.
135	 */
136	local_irq_enable();
137
138	if (!current->thread.vm86_info) {
139		printk("no vm86_info: BAD\n");
140		do_exit(SIGSEGV);
141	}
142	set_flags(regs->pt.flags, VEFLAGS, VIF_MASK | current->thread.v86mask);
143	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
144	tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
145	if (tmp) {
146		printk("vm86: could not access userspace vm86_info\n");
147		do_exit(SIGSEGV);
148	}
149
150	tss = &per_cpu(init_tss, get_cpu());
151	current->thread.sp0 = current->thread.saved_sp0;
152	current->thread.sysenter_cs = __KERNEL_CS;
153	load_sp0(tss, &current->thread);
154	current->thread.saved_sp0 = 0;
155	put_cpu();
156
157	ret = KVM86->regs32;
158
159	ret->fs = current->thread.saved_fs;
160	loadsegment(gs, current->thread.saved_gs);
161
162	return ret;
163}
164
165static void mark_screen_rdonly(struct mm_struct *mm)
166{
167	pgd_t *pgd;
168	pud_t *pud;
169	pmd_t *pmd;
170	pte_t *pte;
171	spinlock_t *ptl;
172	int i;
173
174	pgd = pgd_offset(mm, 0xA0000);
175	if (pgd_none_or_clear_bad(pgd))
176		goto out;
177	pud = pud_offset(pgd, 0xA0000);
178	if (pud_none_or_clear_bad(pud))
179		goto out;
180	pmd = pmd_offset(pud, 0xA0000);
181	if (pmd_none_or_clear_bad(pmd))
182		goto out;
183	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
184	for (i = 0; i < 32; i++) {
185		if (pte_present(*pte))
186			set_pte(pte, pte_wrprotect(*pte));
187		pte++;
188	}
189	pte_unmap_unlock(pte, ptl);
190out:
191	flush_tlb();
192}
193
194
195
196static int do_vm86_irq_handling(int subfunction, int irqnumber);
197static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
198
199asmlinkage int sys_vm86old(struct pt_regs regs)
200{
201	struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx;
202	struct kernel_vm86_struct info; /* declare this _on top_,
203					 * this avoids wasting of stack space.
204					 * This remains on the stack until we
205					 * return to 32 bit user space.
206					 */
207	struct task_struct *tsk;
208	int tmp, ret = -EPERM;
209
210	tsk = current;
211	if (tsk->thread.saved_sp0)
212		goto out;
213	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
214				       offsetof(struct kernel_vm86_struct, vm86plus) -
215				       sizeof(info.regs));
216	ret = -EFAULT;
217	if (tmp)
218		goto out;
219	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
220	info.regs32 = &regs;
221	tsk->thread.vm86_info = v86;
222	do_sys_vm86(&info, tsk);
223	ret = 0;	/* we never return here */
224out:
225	return ret;
226}
227
228
229asmlinkage int sys_vm86(struct pt_regs regs)
230{
231	struct kernel_vm86_struct info; /* declare this _on top_,
232					 * this avoids wasting of stack space.
233					 * This remains on the stack until we
234					 * return to 32 bit user space.
235					 */
236	struct task_struct *tsk;
237	int tmp, ret;
238	struct vm86plus_struct __user *v86;
239
240	tsk = current;
241	switch (regs.bx) {
242	case VM86_REQUEST_IRQ:
243	case VM86_FREE_IRQ:
244	case VM86_GET_IRQ_BITS:
245	case VM86_GET_AND_RESET_IRQ:
246		ret = do_vm86_irq_handling(regs.bx, (int)regs.cx);
247		goto out;
248	case VM86_PLUS_INSTALL_CHECK:
249		/*
250		 * NOTE: on old vm86 stuff this will return the error
251		 *  from access_ok(), because the subfunction is
252		 *  interpreted as (invalid) address to vm86_struct.
253		 *  So the installation check works.
254		 */
255		ret = 0;
256		goto out;
257	}
258
259	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
260	ret = -EPERM;
261	if (tsk->thread.saved_sp0)
262		goto out;
263	v86 = (struct vm86plus_struct __user *)regs.cx;
264	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
265				       offsetof(struct kernel_vm86_struct, regs32) -
266				       sizeof(info.regs));
267	ret = -EFAULT;
268	if (tmp)
269		goto out;
270	info.regs32 = &regs;
271	info.vm86plus.is_vm86pus = 1;
272	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
273	do_sys_vm86(&info, tsk);
274	ret = 0;	/* we never return here */
275out:
276	return ret;
277}
278
279
280static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
281{
282	struct tss_struct *tss;
283/*
284 * make sure the vm86() system call doesn't try to do anything silly
285 */
286	info->regs.pt.ds = 0;
287	info->regs.pt.es = 0;
288	info->regs.pt.fs = 0;
289
290/* we are clearing gs later just before "jmp resume_userspace",
291 * because it is not saved/restored.
292 */
293
294/*
295 * The flags register is also special: we cannot trust that the user
296 * has set it up safely, so this makes sure interrupt etc flags are
297 * inherited from protected mode.
298 */
299	VEFLAGS = info->regs.pt.flags;
300	info->regs.pt.flags &= SAFE_MASK;
301	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
302	info->regs.pt.flags |= VM_MASK;
303
304	switch (info->cpu_type) {
305	case CPU_286:
306		tsk->thread.v86mask = 0;
307		break;
308	case CPU_386:
309		tsk->thread.v86mask = NT_MASK | IOPL_MASK;
310		break;
311	case CPU_486:
312		tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
313		break;
314	default:
315		tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
316		break;
317	}
318
319/*
320 * Save old state, set default return value (%ax) to 0
321 */
322	info->regs32->ax = 0;
323	tsk->thread.saved_sp0 = tsk->thread.sp0;
324	tsk->thread.saved_fs = info->regs32->fs;
325	savesegment(gs, tsk->thread.saved_gs);
326
327	tss = &per_cpu(init_tss, get_cpu());
328	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
329	if (cpu_has_sep)
330		tsk->thread.sysenter_cs = 0;
331	load_sp0(tss, &tsk->thread);
332	put_cpu();
333
334	tsk->thread.screen_bitmap = info->screen_bitmap;
335	if (info->flags & VM86_SCREEN_BITMAP)
336		mark_screen_rdonly(tsk->mm);
337
338	/*call audit_syscall_exit since we do not exit via the normal paths */
339	if (unlikely(current->audit_context))
340		audit_syscall_exit(AUDITSC_RESULT(0), 0);
341
342	__asm__ __volatile__(
343		"movl %0,%%esp\n\t"
344		"movl %1,%%ebp\n\t"
345		"mov  %2, %%gs\n\t"
346		"jmp resume_userspace"
347		: /* no outputs */
348		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
349	/* we never return here */
350}
351
352static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
353{
354	struct pt_regs *regs32;
355
356	regs32 = save_v86_state(regs16);
357	regs32->ax = retval;
358	__asm__ __volatile__("movl %0,%%esp\n\t"
359		"movl %1,%%ebp\n\t"
360		"jmp resume_userspace"
361		: : "r" (regs32), "r" (current_thread_info()));
362}
363
364static inline void set_IF(struct kernel_vm86_regs *regs)
365{
366	VEFLAGS |= VIF_MASK;
367	if (VEFLAGS & VIP_MASK)
368		return_to_32bit(regs, VM86_STI);
369}
370
371static inline void clear_IF(struct kernel_vm86_regs *regs)
372{
373	VEFLAGS &= ~VIF_MASK;
374}
375
376static inline void clear_TF(struct kernel_vm86_regs *regs)
377{
378	regs->pt.flags &= ~TF_MASK;
379}
380
381static inline void clear_AC(struct kernel_vm86_regs *regs)
382{
383	regs->pt.flags &= ~AC_MASK;
384}
385
386/*
387 * It is correct to call set_IF(regs) from the set_vflags_*
388 * functions. However someone forgot to call clear_IF(regs)
389 * in the opposite case.
390 * After the command sequence CLI PUSHF STI POPF you should
391 * end up with interrupts disabled, but you ended up with
392 * interrupts enabled.
393 *  ( I was testing my own changes, but the only bug I
394 *    could find was in a function I had not changed. )
395 * [KD]
396 */
397
398static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
399{
400	set_flags(VEFLAGS, flags, current->thread.v86mask);
401	set_flags(regs->pt.flags, flags, SAFE_MASK);
402	if (flags & IF_MASK)
403		set_IF(regs);
404	else
405		clear_IF(regs);
406}
407
408static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
409{
410	set_flags(VFLAGS, flags, current->thread.v86mask);
411	set_flags(regs->pt.flags, flags, SAFE_MASK);
412	if (flags & IF_MASK)
413		set_IF(regs);
414	else
415		clear_IF(regs);
416}
417
418static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
419{
420	unsigned long flags = regs->pt.flags & RETURN_MASK;
421
422	if (VEFLAGS & VIF_MASK)
423		flags |= IF_MASK;
424	flags |= IOPL_MASK;
425	return flags | (VEFLAGS & current->thread.v86mask);
426}
427
428static inline int is_revectored(int nr, struct revectored_struct *bitmap)
429{
430	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
431		:"=r" (nr)
432		:"m" (*bitmap), "r" (nr));
433	return nr;
434}
435
436#define val_byte(val, n) (((__u8 *)&val)[n])
437
438#define pushb(base, ptr, val, err_label) \
439	do { \
440		__u8 __val = val; \
441		ptr--; \
442		if (put_user(__val, base + ptr) < 0) \
443			goto err_label; \
444	} while (0)
445
446#define pushw(base, ptr, val, err_label) \
447	do { \
448		__u16 __val = val; \
449		ptr--; \
450		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
451			goto err_label; \
452		ptr--; \
453		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
454			goto err_label; \
455	} while (0)
456
457#define pushl(base, ptr, val, err_label) \
458	do { \
459		__u32 __val = val; \
460		ptr--; \
461		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
462			goto err_label; \
463		ptr--; \
464		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
465			goto err_label; \
466		ptr--; \
467		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
468			goto err_label; \
469		ptr--; \
470		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
471			goto err_label; \
472	} while (0)
473
474#define popb(base, ptr, err_label) \
475	({ \
476		__u8 __res; \
477		if (get_user(__res, base + ptr) < 0) \
478			goto err_label; \
479		ptr++; \
480		__res; \
481	})
482
483#define popw(base, ptr, err_label) \
484	({ \
485		__u16 __res; \
486		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
487			goto err_label; \
488		ptr++; \
489		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
490			goto err_label; \
491		ptr++; \
492		__res; \
493	})
494
495#define popl(base, ptr, err_label) \
496	({ \
497		__u32 __res; \
498		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
499			goto err_label; \
500		ptr++; \
501		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
502			goto err_label; \
503		ptr++; \
504		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
505			goto err_label; \
506		ptr++; \
507		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
508			goto err_label; \
509		ptr++; \
510		__res; \
511	})
512
513/* There are so many possible reasons for this function to return
514 * VM86_INTx, so adding another doesn't bother me. We can expect
515 * userspace programs to be able to handle it. (Getting a problem
516 * in userspace is always better than an Oops anyway.) [KD]
517 */
518static void do_int(struct kernel_vm86_regs *regs, int i,
519    unsigned char __user *ssp, unsigned short sp)
520{
521	unsigned long __user *intr_ptr;
522	unsigned long segoffs;
523
524	if (regs->pt.cs == BIOSSEG)
525		goto cannot_handle;
526	if (is_revectored(i, &KVM86->int_revectored))
527		goto cannot_handle;
528	if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
529		goto cannot_handle;
530	intr_ptr = (unsigned long __user *) (i << 2);
531	if (get_user(segoffs, intr_ptr))
532		goto cannot_handle;
533	if ((segoffs >> 16) == BIOSSEG)
534		goto cannot_handle;
535	pushw(ssp, sp, get_vflags(regs), cannot_handle);
536	pushw(ssp, sp, regs->pt.cs, cannot_handle);
537	pushw(ssp, sp, IP(regs), cannot_handle);
538	regs->pt.cs = segoffs >> 16;
539	SP(regs) -= 6;
540	IP(regs) = segoffs & 0xffff;
541	clear_TF(regs);
542	clear_IF(regs);
543	clear_AC(regs);
544	return;
545
546cannot_handle:
547	return_to_32bit(regs, VM86_INTx + (i << 8));
548}
549
550int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
551{
552	if (VMPI.is_vm86pus) {
553		if ((trapno == 3) || (trapno == 1))
554			return_to_32bit(regs, VM86_TRAP + (trapno << 8));
555		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
556		return 0;
557	}
558	if (trapno != 1)
559		return 1; /* we let this handle by the calling routine */
560	current->thread.trap_no = trapno;
561	current->thread.error_code = error_code;
562	force_sig(SIGTRAP, current);
563	return 0;
564}
565
566void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
567{
568	unsigned char opcode;
569	unsigned char __user *csp;
570	unsigned char __user *ssp;
571	unsigned short ip, sp, orig_flags;
572	int data32, pref_done;
573
574#define CHECK_IF_IN_TRAP \
575	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
576		newflags |= TF_MASK
577#define VM86_FAULT_RETURN do { \
578	if (VMPI.force_return_for_pic  && (VEFLAGS & (IF_MASK | VIF_MASK))) \
579		return_to_32bit(regs, VM86_PICRETURN); \
580	if (orig_flags & TF_MASK) \
581		handle_vm86_trap(regs, 0, 1); \
582	return; } while (0)
583
584	orig_flags = *(unsigned short *)&regs->pt.flags;
585
586	csp = (unsigned char __user *) (regs->pt.cs << 4);
587	ssp = (unsigned char __user *) (regs->pt.ss << 4);
588	sp = SP(regs);
589	ip = IP(regs);
590
591	data32 = 0;
592	pref_done = 0;
593	do {
594		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
595		case 0x66:      /* 32-bit data */     data32 = 1; break;
596		case 0x67:      /* 32-bit address */  break;
597		case 0x2e:      /* CS */              break;
598		case 0x3e:      /* DS */              break;
599		case 0x26:      /* ES */              break;
600		case 0x36:      /* SS */              break;
601		case 0x65:      /* GS */              break;
602		case 0x64:      /* FS */              break;
603		case 0xf2:      /* repnz */       break;
604		case 0xf3:      /* rep */             break;
605		default: pref_done = 1;
606		}
607	} while (!pref_done);
608
609	switch (opcode) {
610
611	/* pushf */
612	case 0x9c:
613		if (data32) {
614			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
615			SP(regs) -= 4;
616		} else {
617			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
618			SP(regs) -= 2;
619		}
620		IP(regs) = ip;
621		VM86_FAULT_RETURN;
622
623	/* popf */
624	case 0x9d:
625		{
626		unsigned long newflags;
627		if (data32) {
628			newflags = popl(ssp, sp, simulate_sigsegv);
629			SP(regs) += 4;
630		} else {
631			newflags = popw(ssp, sp, simulate_sigsegv);
632			SP(regs) += 2;
633		}
634		IP(regs) = ip;
635		CHECK_IF_IN_TRAP;
636		if (data32)
637			set_vflags_long(newflags, regs);
638		else
639			set_vflags_short(newflags, regs);
640
641		VM86_FAULT_RETURN;
642		}
643
644	/* int xx */
645	case 0xcd: {
646		int intno = popb(csp, ip, simulate_sigsegv);
647		IP(regs) = ip;
648		if (VMPI.vm86dbg_active) {
649			if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
650				return_to_32bit(regs, VM86_INTx + (intno << 8));
651		}
652		do_int(regs, intno, ssp, sp);
653		return;
654	}
655
656	/* iret */
657	case 0xcf:
658		{
659		unsigned long newip;
660		unsigned long newcs;
661		unsigned long newflags;
662		if (data32) {
663			newip = popl(ssp, sp, simulate_sigsegv);
664			newcs = popl(ssp, sp, simulate_sigsegv);
665			newflags = popl(ssp, sp, simulate_sigsegv);
666			SP(regs) += 12;
667		} else {
668			newip = popw(ssp, sp, simulate_sigsegv);
669			newcs = popw(ssp, sp, simulate_sigsegv);
670			newflags = popw(ssp, sp, simulate_sigsegv);
671			SP(regs) += 6;
672		}
673		IP(regs) = newip;
674		regs->pt.cs = newcs;
675		CHECK_IF_IN_TRAP;
676		if (data32) {
677			set_vflags_long(newflags, regs);
678		} else {
679			set_vflags_short(newflags, regs);
680		}
681		VM86_FAULT_RETURN;
682		}
683
684	/* cli */
685	case 0xfa:
686		IP(regs) = ip;
687		clear_IF(regs);
688		VM86_FAULT_RETURN;
689
690	/* sti */
691	/*
692	 * Damn. This is incorrect: the 'sti' instruction should actually
693	 * enable interrupts after the /next/ instruction. Not good.
694	 *
695	 * Probably needs some horsing around with the TF flag. Aiee..
696	 */
697	case 0xfb:
698		IP(regs) = ip;
699		set_IF(regs);
700		VM86_FAULT_RETURN;
701
702	default:
703		return_to_32bit(regs, VM86_UNKNOWN);
704	}
705
706	return;
707
708simulate_sigsegv:
709	/* FIXME: After a long discussion with Stas we finally
710	 *        agreed, that this is wrong. Here we should
711	 *        really send a SIGSEGV to the user program.
712	 *        But how do we create the correct context? We
713	 *        are inside a general protection fault handler
714	 *        and has just returned from a page fault handler.
715	 *        The correct context for the signal handler
716	 *        should be a mixture of the two, but how do we
717	 *        get the information? [KD]
718	 */
719	return_to_32bit(regs, VM86_UNKNOWN);
720}
721
722/* ---------------- vm86 special IRQ passing stuff ----------------- */
723
724#define VM86_IRQNAME		"vm86irq"
725
726static struct vm86_irqs {
727	struct task_struct *tsk;
728	int sig;
729} vm86_irqs[16];
730
731static DEFINE_SPINLOCK(irqbits_lock);
732static int irqbits;
733
734#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
735	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
736	| (1 << SIGUNUSED))
737
738static irqreturn_t irq_handler(int intno, void *dev_id)
739{
740	int irq_bit;
741	unsigned long flags;
742
743	spin_lock_irqsave(&irqbits_lock, flags);
744	irq_bit = 1 << intno;
745	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
746		goto out;
747	irqbits |= irq_bit;
748	if (vm86_irqs[intno].sig)
749		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
750	/*
751	 * IRQ will be re-enabled when user asks for the irq (whether
752	 * polling or as a result of the signal)
753	 */
754	disable_irq_nosync(intno);
755	spin_unlock_irqrestore(&irqbits_lock, flags);
756	return IRQ_HANDLED;
757
758out:
759	spin_unlock_irqrestore(&irqbits_lock, flags);
760	return IRQ_NONE;
761}
762
763static inline void free_vm86_irq(int irqnumber)
764{
765	unsigned long flags;
766
767	free_irq(irqnumber, NULL);
768	vm86_irqs[irqnumber].tsk = NULL;
769
770	spin_lock_irqsave(&irqbits_lock, flags);
771	irqbits &= ~(1 << irqnumber);
772	spin_unlock_irqrestore(&irqbits_lock, flags);
773}
774
775void release_vm86_irqs(struct task_struct *task)
776{
777	int i;
778	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
779	    if (vm86_irqs[i].tsk == task)
780		free_vm86_irq(i);
781}
782
783static inline int get_and_reset_irq(int irqnumber)
784{
785	int bit;
786	unsigned long flags;
787	int ret = 0;
788
789	if (invalid_vm86_irq(irqnumber)) return 0;
790	if (vm86_irqs[irqnumber].tsk != current) return 0;
791	spin_lock_irqsave(&irqbits_lock, flags);
792	bit = irqbits & (1 << irqnumber);
793	irqbits &= ~bit;
794	if (bit) {
795		enable_irq(irqnumber);
796		ret = 1;
797	}
798
799	spin_unlock_irqrestore(&irqbits_lock, flags);
800	return ret;
801}
802
803
804static int do_vm86_irq_handling(int subfunction, int irqnumber)
805{
806	int ret;
807	switch (subfunction) {
808		case VM86_GET_AND_RESET_IRQ: {
809			return get_and_reset_irq(irqnumber);
810		}
811		case VM86_GET_IRQ_BITS: {
812			return irqbits;
813		}
814		case VM86_REQUEST_IRQ: {
815			int sig = irqnumber >> 8;
816			int irq = irqnumber & 255;
817			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
818			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
819			if (invalid_vm86_irq(irq)) return -EPERM;
820			if (vm86_irqs[irq].tsk) return -EPERM;
821			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
822			if (ret) return ret;
823			vm86_irqs[irq].sig = sig;
824			vm86_irqs[irq].tsk = current;
825			return irq;
826		}
827		case  VM86_FREE_IRQ: {
828			if (invalid_vm86_irq(irqnumber)) return -EPERM;
829			if (!vm86_irqs[irqnumber].tsk) return 0;
830			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
831			free_vm86_irq(irqnumber);
832			return 0;
833		}
834	}
835	return -EINVAL;
836}
837
838