vm86_32.c revision 5522ddb3fc0dfd4a503c8278eafd88c9f2d3fada
1/*
2 *  Copyright (C) 1994  Linus Torvalds
3 *
4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 *                stack - Manfred Spraul <manfred@colorfullife.com>
6 *
7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 *                them correctly. Now the emulation will be in a
9 *                consistent state after stackfaults - Kasper Dupont
10 *                <kasperd@daimi.au.dk>
11 *
12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 *                <kasperd@daimi.au.dk>
14 *
15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 *                caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 *                Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 *                Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 *   9 apr 2002 - Changed stack access macros to jump to a label
25 *                instead of returning to userspace. This simplifies
26 *                do_int, and is needed by handle_vm6_fault. Kasper
27 *                Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33#include <linux/capability.h>
34#include <linux/errno.h>
35#include <linux/interrupt.h>
36#include <linux/syscalls.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/signal.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/smp.h>
43#include <linux/highmem.h>
44#include <linux/ptrace.h>
45#include <linux/audit.h>
46#include <linux/stddef.h>
47
48#include <asm/uaccess.h>
49#include <asm/io.h>
50#include <asm/tlbflush.h>
51#include <asm/irq.h>
52
53/*
54 * Known problems:
55 *
56 * Interrupt handling is not guaranteed:
57 * - a real x86 will disable all interrupts for one instruction
58 *   after a "mov ss,xx" to make stack handling atomic even without
59 *   the 'lss' instruction. We can't guarantee this in v86 mode,
60 *   as the next instruction might result in a page fault or similar.
61 * - a real x86 will have interrupts disabled for one instruction
62 *   past the 'sti' that enables them. We don't bother with all the
63 *   details yet.
64 *
65 * Let's hope these problems do not actually matter for anything.
66 */
67
68
69#define KVM86	((struct kernel_vm86_struct *)regs)
70#define VMPI	KVM86->vm86plus
71
72
73/*
74 * 8- and 16-bit register defines..
75 */
76#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
77#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
78#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
79#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
80
81/*
82 * virtual flags (16 and 32-bit versions)
83 */
84#define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
85#define VEFLAGS	(current->thread.v86flags)
86
87#define set_flags(X, new, mask) \
88((X) = ((X) & ~(mask)) | ((new) & (mask)))
89
90#define SAFE_MASK	(0xDD5)
91#define RETURN_MASK	(0xDFF)
92
93/* convert kernel_vm86_regs to vm86_regs */
94static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
95				  const struct kernel_vm86_regs *regs)
96{
97	int ret = 0;
98
99	/*
100	 * kernel_vm86_regs is missing gs, so copy everything up to
101	 * (but not including) orig_eax, and then rest including orig_eax.
102	 */
103	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
104	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
105			    sizeof(struct kernel_vm86_regs) -
106			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
107
108	return ret;
109}
110
111/* convert vm86_regs to kernel_vm86_regs */
112static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
113				    const struct vm86_regs __user *user,
114				    unsigned extra)
115{
116	int ret = 0;
117
118	/* copy ax-fs inclusive */
119	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
120	/* copy orig_ax-__gsh+extra */
121	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
122			      sizeof(struct kernel_vm86_regs) -
123			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
124			      extra);
125	return ret;
126}
127
128struct pt_regs *save_v86_state(struct kernel_vm86_regs *regs)
129{
130	struct tss_struct *tss;
131	struct pt_regs *ret;
132	unsigned long tmp;
133
134	/*
135	 * This gets called from entry.S with interrupts disabled, but
136	 * from process context. Enable interrupts here, before trying
137	 * to access user space.
138	 */
139	local_irq_enable();
140
141	if (!current->thread.vm86_info) {
142		pr_alert("no vm86_info: BAD\n");
143		do_exit(SIGSEGV);
144	}
145	set_flags(regs->pt.flags, VEFLAGS, X86_EFLAGS_VIF | current->thread.v86mask);
146	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs, regs);
147	tmp += put_user(current->thread.screen_bitmap, &current->thread.vm86_info->screen_bitmap);
148	if (tmp) {
149		pr_alert("could not access userspace vm86_info\n");
150		do_exit(SIGSEGV);
151	}
152
153	tss = &per_cpu(init_tss, get_cpu());
154	current->thread.sp0 = current->thread.saved_sp0;
155	current->thread.sysenter_cs = __KERNEL_CS;
156	load_sp0(tss, &current->thread);
157	current->thread.saved_sp0 = 0;
158	put_cpu();
159
160	ret = KVM86->regs32;
161
162	ret->fs = current->thread.saved_fs;
163	set_user_gs(ret, current->thread.saved_gs);
164
165	return ret;
166}
167
168static void mark_screen_rdonly(struct mm_struct *mm)
169{
170	pgd_t *pgd;
171	pud_t *pud;
172	pmd_t *pmd;
173	pte_t *pte;
174	spinlock_t *ptl;
175	int i;
176
177	down_write(&mm->mmap_sem);
178	pgd = pgd_offset(mm, 0xA0000);
179	if (pgd_none_or_clear_bad(pgd))
180		goto out;
181	pud = pud_offset(pgd, 0xA0000);
182	if (pud_none_or_clear_bad(pud))
183		goto out;
184	pmd = pmd_offset(pud, 0xA0000);
185	split_huge_page_pmd_mm(mm, 0xA0000, pmd);
186	if (pmd_none_or_clear_bad(pmd))
187		goto out;
188	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
189	for (i = 0; i < 32; i++) {
190		if (pte_present(*pte))
191			set_pte(pte, pte_wrprotect(*pte));
192		pte++;
193	}
194	pte_unmap_unlock(pte, ptl);
195out:
196	up_write(&mm->mmap_sem);
197	flush_tlb();
198}
199
200
201
202static int do_vm86_irq_handling(int subfunction, int irqnumber);
203static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
204
205SYSCALL_DEFINE1(vm86old, struct vm86_struct __user *, v86)
206{
207	struct kernel_vm86_struct info; /* declare this _on top_,
208					 * this avoids wasting of stack space.
209					 * This remains on the stack until we
210					 * return to 32 bit user space.
211					 */
212	struct task_struct *tsk = current;
213	int tmp;
214
215	if (tsk->thread.saved_sp0)
216		return -EPERM;
217	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
218				       offsetof(struct kernel_vm86_struct, vm86plus) -
219				       sizeof(info.regs));
220	if (tmp)
221		return -EFAULT;
222	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
223	info.regs32 = current_pt_regs();
224	tsk->thread.vm86_info = v86;
225	do_sys_vm86(&info, tsk);
226	return 0;	/* we never return here */
227}
228
229
230SYSCALL_DEFINE2(vm86, unsigned long, cmd, unsigned long, arg)
231{
232	struct kernel_vm86_struct info; /* declare this _on top_,
233					 * this avoids wasting of stack space.
234					 * This remains on the stack until we
235					 * return to 32 bit user space.
236					 */
237	struct task_struct *tsk;
238	int tmp;
239	struct vm86plus_struct __user *v86;
240
241	tsk = current;
242	switch (cmd) {
243	case VM86_REQUEST_IRQ:
244	case VM86_FREE_IRQ:
245	case VM86_GET_IRQ_BITS:
246	case VM86_GET_AND_RESET_IRQ:
247		return do_vm86_irq_handling(cmd, (int)arg);
248	case VM86_PLUS_INSTALL_CHECK:
249		/*
250		 * NOTE: on old vm86 stuff this will return the error
251		 *  from access_ok(), because the subfunction is
252		 *  interpreted as (invalid) address to vm86_struct.
253		 *  So the installation check works.
254		 */
255		return 0;
256	}
257
258	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
259	if (tsk->thread.saved_sp0)
260		return -EPERM;
261	v86 = (struct vm86plus_struct __user *)arg;
262	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
263				       offsetof(struct kernel_vm86_struct, regs32) -
264				       sizeof(info.regs));
265	if (tmp)
266		return -EFAULT;
267	info.regs32 = current_pt_regs();
268	info.vm86plus.is_vm86pus = 1;
269	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
270	do_sys_vm86(&info, tsk);
271	return 0;	/* we never return here */
272}
273
274
275static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
276{
277	struct tss_struct *tss;
278/*
279 * make sure the vm86() system call doesn't try to do anything silly
280 */
281	info->regs.pt.ds = 0;
282	info->regs.pt.es = 0;
283	info->regs.pt.fs = 0;
284#ifndef CONFIG_X86_32_LAZY_GS
285	info->regs.pt.gs = 0;
286#endif
287
288/*
289 * The flags register is also special: we cannot trust that the user
290 * has set it up safely, so this makes sure interrupt etc flags are
291 * inherited from protected mode.
292 */
293	VEFLAGS = info->regs.pt.flags;
294	info->regs.pt.flags &= SAFE_MASK;
295	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
296	info->regs.pt.flags |= X86_VM_MASK;
297
298	switch (info->cpu_type) {
299	case CPU_286:
300		tsk->thread.v86mask = 0;
301		break;
302	case CPU_386:
303		tsk->thread.v86mask = X86_EFLAGS_NT | X86_EFLAGS_IOPL;
304		break;
305	case CPU_486:
306		tsk->thread.v86mask = X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
307		break;
308	default:
309		tsk->thread.v86mask = X86_EFLAGS_ID | X86_EFLAGS_AC | X86_EFLAGS_NT | X86_EFLAGS_IOPL;
310		break;
311	}
312
313/*
314 * Save old state, set default return value (%ax) to 0 (VM86_SIGNAL)
315 */
316	info->regs32->ax = VM86_SIGNAL;
317	tsk->thread.saved_sp0 = tsk->thread.sp0;
318	tsk->thread.saved_fs = info->regs32->fs;
319	tsk->thread.saved_gs = get_user_gs(info->regs32);
320
321	tss = &per_cpu(init_tss, get_cpu());
322	tsk->thread.sp0 = (unsigned long) &info->VM86_TSS_ESP0;
323	if (cpu_has_sep)
324		tsk->thread.sysenter_cs = 0;
325	load_sp0(tss, &tsk->thread);
326	put_cpu();
327
328	tsk->thread.screen_bitmap = info->screen_bitmap;
329	if (info->flags & VM86_SCREEN_BITMAP)
330		mark_screen_rdonly(tsk->mm);
331
332	/*call __audit_syscall_exit since we do not exit via the normal paths */
333#ifdef CONFIG_AUDITSYSCALL
334	if (unlikely(current->audit_context))
335		__audit_syscall_exit(1, 0);
336#endif
337
338	__asm__ __volatile__(
339		"movl %0,%%esp\n\t"
340		"movl %1,%%ebp\n\t"
341#ifdef CONFIG_X86_32_LAZY_GS
342		"mov  %2, %%gs\n\t"
343#endif
344		"jmp resume_userspace"
345		: /* no outputs */
346		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
347	/* we never return here */
348}
349
350static inline void return_to_32bit(struct kernel_vm86_regs *regs16, int retval)
351{
352	struct pt_regs *regs32;
353
354	regs32 = save_v86_state(regs16);
355	regs32->ax = retval;
356	__asm__ __volatile__("movl %0,%%esp\n\t"
357		"movl %1,%%ebp\n\t"
358		"jmp resume_userspace"
359		: : "r" (regs32), "r" (current_thread_info()));
360}
361
362static inline void set_IF(struct kernel_vm86_regs *regs)
363{
364	VEFLAGS |= X86_EFLAGS_VIF;
365	if (VEFLAGS & X86_EFLAGS_VIP)
366		return_to_32bit(regs, VM86_STI);
367}
368
369static inline void clear_IF(struct kernel_vm86_regs *regs)
370{
371	VEFLAGS &= ~X86_EFLAGS_VIF;
372}
373
374static inline void clear_TF(struct kernel_vm86_regs *regs)
375{
376	regs->pt.flags &= ~X86_EFLAGS_TF;
377}
378
379static inline void clear_AC(struct kernel_vm86_regs *regs)
380{
381	regs->pt.flags &= ~X86_EFLAGS_AC;
382}
383
384/*
385 * It is correct to call set_IF(regs) from the set_vflags_*
386 * functions. However someone forgot to call clear_IF(regs)
387 * in the opposite case.
388 * After the command sequence CLI PUSHF STI POPF you should
389 * end up with interrupts disabled, but you ended up with
390 * interrupts enabled.
391 *  ( I was testing my own changes, but the only bug I
392 *    could find was in a function I had not changed. )
393 * [KD]
394 */
395
396static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs *regs)
397{
398	set_flags(VEFLAGS, flags, current->thread.v86mask);
399	set_flags(regs->pt.flags, flags, SAFE_MASK);
400	if (flags & X86_EFLAGS_IF)
401		set_IF(regs);
402	else
403		clear_IF(regs);
404}
405
406static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs *regs)
407{
408	set_flags(VFLAGS, flags, current->thread.v86mask);
409	set_flags(regs->pt.flags, flags, SAFE_MASK);
410	if (flags & X86_EFLAGS_IF)
411		set_IF(regs);
412	else
413		clear_IF(regs);
414}
415
416static inline unsigned long get_vflags(struct kernel_vm86_regs *regs)
417{
418	unsigned long flags = regs->pt.flags & RETURN_MASK;
419
420	if (VEFLAGS & X86_EFLAGS_VIF)
421		flags |= X86_EFLAGS_IF;
422	flags |= X86_EFLAGS_IOPL;
423	return flags | (VEFLAGS & current->thread.v86mask);
424}
425
426static inline int is_revectored(int nr, struct revectored_struct *bitmap)
427{
428	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
429		:"=r" (nr)
430		:"m" (*bitmap), "r" (nr));
431	return nr;
432}
433
434#define val_byte(val, n) (((__u8 *)&val)[n])
435
436#define pushb(base, ptr, val, err_label) \
437	do { \
438		__u8 __val = val; \
439		ptr--; \
440		if (put_user(__val, base + ptr) < 0) \
441			goto err_label; \
442	} while (0)
443
444#define pushw(base, ptr, val, err_label) \
445	do { \
446		__u16 __val = val; \
447		ptr--; \
448		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
449			goto err_label; \
450		ptr--; \
451		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
452			goto err_label; \
453	} while (0)
454
455#define pushl(base, ptr, val, err_label) \
456	do { \
457		__u32 __val = val; \
458		ptr--; \
459		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
460			goto err_label; \
461		ptr--; \
462		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
463			goto err_label; \
464		ptr--; \
465		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
466			goto err_label; \
467		ptr--; \
468		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
469			goto err_label; \
470	} while (0)
471
472#define popb(base, ptr, err_label) \
473	({ \
474		__u8 __res; \
475		if (get_user(__res, base + ptr) < 0) \
476			goto err_label; \
477		ptr++; \
478		__res; \
479	})
480
481#define popw(base, ptr, err_label) \
482	({ \
483		__u16 __res; \
484		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
485			goto err_label; \
486		ptr++; \
487		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
488			goto err_label; \
489		ptr++; \
490		__res; \
491	})
492
493#define popl(base, ptr, err_label) \
494	({ \
495		__u32 __res; \
496		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
497			goto err_label; \
498		ptr++; \
499		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
500			goto err_label; \
501		ptr++; \
502		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
503			goto err_label; \
504		ptr++; \
505		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
506			goto err_label; \
507		ptr++; \
508		__res; \
509	})
510
511/* There are so many possible reasons for this function to return
512 * VM86_INTx, so adding another doesn't bother me. We can expect
513 * userspace programs to be able to handle it. (Getting a problem
514 * in userspace is always better than an Oops anyway.) [KD]
515 */
516static void do_int(struct kernel_vm86_regs *regs, int i,
517    unsigned char __user *ssp, unsigned short sp)
518{
519	unsigned long __user *intr_ptr;
520	unsigned long segoffs;
521
522	if (regs->pt.cs == BIOSSEG)
523		goto cannot_handle;
524	if (is_revectored(i, &KVM86->int_revectored))
525		goto cannot_handle;
526	if (i == 0x21 && is_revectored(AH(regs), &KVM86->int21_revectored))
527		goto cannot_handle;
528	intr_ptr = (unsigned long __user *) (i << 2);
529	if (get_user(segoffs, intr_ptr))
530		goto cannot_handle;
531	if ((segoffs >> 16) == BIOSSEG)
532		goto cannot_handle;
533	pushw(ssp, sp, get_vflags(regs), cannot_handle);
534	pushw(ssp, sp, regs->pt.cs, cannot_handle);
535	pushw(ssp, sp, IP(regs), cannot_handle);
536	regs->pt.cs = segoffs >> 16;
537	SP(regs) -= 6;
538	IP(regs) = segoffs & 0xffff;
539	clear_TF(regs);
540	clear_IF(regs);
541	clear_AC(regs);
542	return;
543
544cannot_handle:
545	return_to_32bit(regs, VM86_INTx + (i << 8));
546}
547
548int handle_vm86_trap(struct kernel_vm86_regs *regs, long error_code, int trapno)
549{
550	if (VMPI.is_vm86pus) {
551		if ((trapno == 3) || (trapno == 1)) {
552			KVM86->regs32->ax = VM86_TRAP + (trapno << 8);
553			/* setting this flag forces the code in entry_32.S to
554			   the path where we call save_v86_state() and change
555			   the stack pointer to KVM86->regs32 */
556			set_thread_flag(TIF_NOTIFY_RESUME);
557			return 0;
558		}
559		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
560		return 0;
561	}
562	if (trapno != 1)
563		return 1; /* we let this handle by the calling routine */
564	current->thread.trap_nr = trapno;
565	current->thread.error_code = error_code;
566	force_sig(SIGTRAP, current);
567	return 0;
568}
569
570void handle_vm86_fault(struct kernel_vm86_regs *regs, long error_code)
571{
572	unsigned char opcode;
573	unsigned char __user *csp;
574	unsigned char __user *ssp;
575	unsigned short ip, sp, orig_flags;
576	int data32, pref_done;
577
578#define CHECK_IF_IN_TRAP \
579	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
580		newflags |= X86_EFLAGS_TF
581#define VM86_FAULT_RETURN do { \
582	if (VMPI.force_return_for_pic  && (VEFLAGS & (X86_EFLAGS_IF | X86_EFLAGS_VIF))) \
583		return_to_32bit(regs, VM86_PICRETURN); \
584	if (orig_flags & X86_EFLAGS_TF) \
585		handle_vm86_trap(regs, 0, 1); \
586	return; } while (0)
587
588	orig_flags = *(unsigned short *)&regs->pt.flags;
589
590	csp = (unsigned char __user *) (regs->pt.cs << 4);
591	ssp = (unsigned char __user *) (regs->pt.ss << 4);
592	sp = SP(regs);
593	ip = IP(regs);
594
595	data32 = 0;
596	pref_done = 0;
597	do {
598		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
599		case 0x66:      /* 32-bit data */     data32 = 1; break;
600		case 0x67:      /* 32-bit address */  break;
601		case 0x2e:      /* CS */              break;
602		case 0x3e:      /* DS */              break;
603		case 0x26:      /* ES */              break;
604		case 0x36:      /* SS */              break;
605		case 0x65:      /* GS */              break;
606		case 0x64:      /* FS */              break;
607		case 0xf2:      /* repnz */       break;
608		case 0xf3:      /* rep */             break;
609		default: pref_done = 1;
610		}
611	} while (!pref_done);
612
613	switch (opcode) {
614
615	/* pushf */
616	case 0x9c:
617		if (data32) {
618			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
619			SP(regs) -= 4;
620		} else {
621			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
622			SP(regs) -= 2;
623		}
624		IP(regs) = ip;
625		VM86_FAULT_RETURN;
626
627	/* popf */
628	case 0x9d:
629		{
630		unsigned long newflags;
631		if (data32) {
632			newflags = popl(ssp, sp, simulate_sigsegv);
633			SP(regs) += 4;
634		} else {
635			newflags = popw(ssp, sp, simulate_sigsegv);
636			SP(regs) += 2;
637		}
638		IP(regs) = ip;
639		CHECK_IF_IN_TRAP;
640		if (data32)
641			set_vflags_long(newflags, regs);
642		else
643			set_vflags_short(newflags, regs);
644
645		VM86_FAULT_RETURN;
646		}
647
648	/* int xx */
649	case 0xcd: {
650		int intno = popb(csp, ip, simulate_sigsegv);
651		IP(regs) = ip;
652		if (VMPI.vm86dbg_active) {
653			if ((1 << (intno & 7)) & VMPI.vm86dbg_intxxtab[intno >> 3])
654				return_to_32bit(regs, VM86_INTx + (intno << 8));
655		}
656		do_int(regs, intno, ssp, sp);
657		return;
658	}
659
660	/* iret */
661	case 0xcf:
662		{
663		unsigned long newip;
664		unsigned long newcs;
665		unsigned long newflags;
666		if (data32) {
667			newip = popl(ssp, sp, simulate_sigsegv);
668			newcs = popl(ssp, sp, simulate_sigsegv);
669			newflags = popl(ssp, sp, simulate_sigsegv);
670			SP(regs) += 12;
671		} else {
672			newip = popw(ssp, sp, simulate_sigsegv);
673			newcs = popw(ssp, sp, simulate_sigsegv);
674			newflags = popw(ssp, sp, simulate_sigsegv);
675			SP(regs) += 6;
676		}
677		IP(regs) = newip;
678		regs->pt.cs = newcs;
679		CHECK_IF_IN_TRAP;
680		if (data32) {
681			set_vflags_long(newflags, regs);
682		} else {
683			set_vflags_short(newflags, regs);
684		}
685		VM86_FAULT_RETURN;
686		}
687
688	/* cli */
689	case 0xfa:
690		IP(regs) = ip;
691		clear_IF(regs);
692		VM86_FAULT_RETURN;
693
694	/* sti */
695	/*
696	 * Damn. This is incorrect: the 'sti' instruction should actually
697	 * enable interrupts after the /next/ instruction. Not good.
698	 *
699	 * Probably needs some horsing around with the TF flag. Aiee..
700	 */
701	case 0xfb:
702		IP(regs) = ip;
703		set_IF(regs);
704		VM86_FAULT_RETURN;
705
706	default:
707		return_to_32bit(regs, VM86_UNKNOWN);
708	}
709
710	return;
711
712simulate_sigsegv:
713	/* FIXME: After a long discussion with Stas we finally
714	 *        agreed, that this is wrong. Here we should
715	 *        really send a SIGSEGV to the user program.
716	 *        But how do we create the correct context? We
717	 *        are inside a general protection fault handler
718	 *        and has just returned from a page fault handler.
719	 *        The correct context for the signal handler
720	 *        should be a mixture of the two, but how do we
721	 *        get the information? [KD]
722	 */
723	return_to_32bit(regs, VM86_UNKNOWN);
724}
725
726/* ---------------- vm86 special IRQ passing stuff ----------------- */
727
728#define VM86_IRQNAME		"vm86irq"
729
730static struct vm86_irqs {
731	struct task_struct *tsk;
732	int sig;
733} vm86_irqs[16];
734
735static DEFINE_SPINLOCK(irqbits_lock);
736static int irqbits;
737
738#define ALLOWED_SIGS (1 /* 0 = don't send a signal */ \
739	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
740	| (1 << SIGUNUSED))
741
742static irqreturn_t irq_handler(int intno, void *dev_id)
743{
744	int irq_bit;
745	unsigned long flags;
746
747	spin_lock_irqsave(&irqbits_lock, flags);
748	irq_bit = 1 << intno;
749	if ((irqbits & irq_bit) || !vm86_irqs[intno].tsk)
750		goto out;
751	irqbits |= irq_bit;
752	if (vm86_irqs[intno].sig)
753		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
754	/*
755	 * IRQ will be re-enabled when user asks for the irq (whether
756	 * polling or as a result of the signal)
757	 */
758	disable_irq_nosync(intno);
759	spin_unlock_irqrestore(&irqbits_lock, flags);
760	return IRQ_HANDLED;
761
762out:
763	spin_unlock_irqrestore(&irqbits_lock, flags);
764	return IRQ_NONE;
765}
766
767static inline void free_vm86_irq(int irqnumber)
768{
769	unsigned long flags;
770
771	free_irq(irqnumber, NULL);
772	vm86_irqs[irqnumber].tsk = NULL;
773
774	spin_lock_irqsave(&irqbits_lock, flags);
775	irqbits &= ~(1 << irqnumber);
776	spin_unlock_irqrestore(&irqbits_lock, flags);
777}
778
779void release_vm86_irqs(struct task_struct *task)
780{
781	int i;
782	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
783	    if (vm86_irqs[i].tsk == task)
784		free_vm86_irq(i);
785}
786
787static inline int get_and_reset_irq(int irqnumber)
788{
789	int bit;
790	unsigned long flags;
791	int ret = 0;
792
793	if (invalid_vm86_irq(irqnumber)) return 0;
794	if (vm86_irqs[irqnumber].tsk != current) return 0;
795	spin_lock_irqsave(&irqbits_lock, flags);
796	bit = irqbits & (1 << irqnumber);
797	irqbits &= ~bit;
798	if (bit) {
799		enable_irq(irqnumber);
800		ret = 1;
801	}
802
803	spin_unlock_irqrestore(&irqbits_lock, flags);
804	return ret;
805}
806
807
808static int do_vm86_irq_handling(int subfunction, int irqnumber)
809{
810	int ret;
811	switch (subfunction) {
812		case VM86_GET_AND_RESET_IRQ: {
813			return get_and_reset_irq(irqnumber);
814		}
815		case VM86_GET_IRQ_BITS: {
816			return irqbits;
817		}
818		case VM86_REQUEST_IRQ: {
819			int sig = irqnumber >> 8;
820			int irq = irqnumber & 255;
821			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
822			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
823			if (invalid_vm86_irq(irq)) return -EPERM;
824			if (vm86_irqs[irq].tsk) return -EPERM;
825			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
826			if (ret) return ret;
827			vm86_irqs[irq].sig = sig;
828			vm86_irqs[irq].tsk = current;
829			return irq;
830		}
831		case  VM86_FREE_IRQ: {
832			if (invalid_vm86_irq(irqnumber)) return -EPERM;
833			if (!vm86_irqs[irqnumber].tsk) return 0;
834			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
835			free_vm86_irq(irqnumber);
836			return 0;
837		}
838	}
839	return -EINVAL;
840}
841
842