vm86_32.c revision 65ea5b0349903585bfed9720fa06f5edb4f1cd25
1/*
2 *  Copyright (C) 1994  Linus Torvalds
3 *
4 *  29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
5 *                stack - Manfred Spraul <manfred@colorfullife.com>
6 *
7 *  22 mar 2002 - Manfred detected the stackfaults, but didn't handle
8 *                them correctly. Now the emulation will be in a
9 *                consistent state after stackfaults - Kasper Dupont
10 *                <kasperd@daimi.au.dk>
11 *
12 *  22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
13 *                <kasperd@daimi.au.dk>
14 *
15 *  ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
16 *                caused by Kasper Dupont's changes - Stas Sergeev
17 *
18 *   4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
19 *                Kasper Dupont <kasperd@daimi.au.dk>
20 *
21 *   9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
22 *                Kasper Dupont <kasperd@daimi.au.dk>
23 *
24 *   9 apr 2002 - Changed stack access macros to jump to a label
25 *                instead of returning to userspace. This simplifies
26 *                do_int, and is needed by handle_vm6_fault. Kasper
27 *                Dupont <kasperd@daimi.au.dk>
28 *
29 */
30
31#include <linux/capability.h>
32#include <linux/errno.h>
33#include <linux/interrupt.h>
34#include <linux/sched.h>
35#include <linux/kernel.h>
36#include <linux/signal.h>
37#include <linux/string.h>
38#include <linux/mm.h>
39#include <linux/smp.h>
40#include <linux/highmem.h>
41#include <linux/ptrace.h>
42#include <linux/audit.h>
43#include <linux/stddef.h>
44
45#include <asm/uaccess.h>
46#include <asm/io.h>
47#include <asm/tlbflush.h>
48#include <asm/irq.h>
49
50/*
51 * Known problems:
52 *
53 * Interrupt handling is not guaranteed:
54 * - a real x86 will disable all interrupts for one instruction
55 *   after a "mov ss,xx" to make stack handling atomic even without
56 *   the 'lss' instruction. We can't guarantee this in v86 mode,
57 *   as the next instruction might result in a page fault or similar.
58 * - a real x86 will have interrupts disabled for one instruction
59 *   past the 'sti' that enables them. We don't bother with all the
60 *   details yet.
61 *
62 * Let's hope these problems do not actually matter for anything.
63 */
64
65
66#define KVM86	((struct kernel_vm86_struct *)regs)
67#define VMPI 	KVM86->vm86plus
68
69
70/*
71 * 8- and 16-bit register defines..
72 */
73#define AL(regs)	(((unsigned char *)&((regs)->pt.ax))[0])
74#define AH(regs)	(((unsigned char *)&((regs)->pt.ax))[1])
75#define IP(regs)	(*(unsigned short *)&((regs)->pt.ip))
76#define SP(regs)	(*(unsigned short *)&((regs)->pt.sp))
77
78/*
79 * virtual flags (16 and 32-bit versions)
80 */
81#define VFLAGS	(*(unsigned short *)&(current->thread.v86flags))
82#define VEFLAGS	(current->thread.v86flags)
83
84#define set_flags(X,new,mask) \
85((X) = ((X) & ~(mask)) | ((new) & (mask)))
86
87#define SAFE_MASK	(0xDD5)
88#define RETURN_MASK	(0xDFF)
89
90/* convert kernel_vm86_regs to vm86_regs */
91static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
92				  const struct kernel_vm86_regs *regs)
93{
94	int ret = 0;
95
96	/* kernel_vm86_regs is missing gs, so copy everything up to
97	   (but not including) orig_eax, and then rest including orig_eax. */
98	ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_ax));
99	ret += copy_to_user(&user->orig_eax, &regs->pt.orig_ax,
100			    sizeof(struct kernel_vm86_regs) -
101			    offsetof(struct kernel_vm86_regs, pt.orig_ax));
102
103	return ret;
104}
105
106/* convert vm86_regs to kernel_vm86_regs */
107static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
108				    const struct vm86_regs __user *user,
109				    unsigned extra)
110{
111	int ret = 0;
112
113	/* copy ax-fs inclusive */
114	ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_ax));
115	/* copy orig_ax-__gsh+extra */
116	ret += copy_from_user(&regs->pt.orig_ax, &user->orig_eax,
117			      sizeof(struct kernel_vm86_regs) -
118			      offsetof(struct kernel_vm86_regs, pt.orig_ax) +
119			      extra);
120	return ret;
121}
122
123struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
124struct pt_regs * fastcall save_v86_state(struct kernel_vm86_regs * regs)
125{
126	struct tss_struct *tss;
127	struct pt_regs *ret;
128	unsigned long tmp;
129
130	/*
131	 * This gets called from entry.S with interrupts disabled, but
132	 * from process context. Enable interrupts here, before trying
133	 * to access user space.
134	 */
135	local_irq_enable();
136
137	if (!current->thread.vm86_info) {
138		printk("no vm86_info: BAD\n");
139		do_exit(SIGSEGV);
140	}
141	set_flags(regs->pt.flags, VEFLAGS, VIF_MASK | current->thread.v86mask);
142	tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
143	tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
144	if (tmp) {
145		printk("vm86: could not access userspace vm86_info\n");
146		do_exit(SIGSEGV);
147	}
148
149	tss = &per_cpu(init_tss, get_cpu());
150	current->thread.esp0 = current->thread.saved_esp0;
151	current->thread.sysenter_cs = __KERNEL_CS;
152	load_esp0(tss, &current->thread);
153	current->thread.saved_esp0 = 0;
154	put_cpu();
155
156	ret = KVM86->regs32;
157
158	ret->fs = current->thread.saved_fs;
159	loadsegment(gs, current->thread.saved_gs);
160
161	return ret;
162}
163
164static void mark_screen_rdonly(struct mm_struct *mm)
165{
166	pgd_t *pgd;
167	pud_t *pud;
168	pmd_t *pmd;
169	pte_t *pte;
170	spinlock_t *ptl;
171	int i;
172
173	pgd = pgd_offset(mm, 0xA0000);
174	if (pgd_none_or_clear_bad(pgd))
175		goto out;
176	pud = pud_offset(pgd, 0xA0000);
177	if (pud_none_or_clear_bad(pud))
178		goto out;
179	pmd = pmd_offset(pud, 0xA0000);
180	if (pmd_none_or_clear_bad(pmd))
181		goto out;
182	pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
183	for (i = 0; i < 32; i++) {
184		if (pte_present(*pte))
185			set_pte(pte, pte_wrprotect(*pte));
186		pte++;
187	}
188	pte_unmap_unlock(pte, ptl);
189out:
190	flush_tlb();
191}
192
193
194
195static int do_vm86_irq_handling(int subfunction, int irqnumber);
196static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
197
198asmlinkage int sys_vm86old(struct pt_regs regs)
199{
200	struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.bx;
201	struct kernel_vm86_struct info; /* declare this _on top_,
202					 * this avoids wasting of stack space.
203					 * This remains on the stack until we
204					 * return to 32 bit user space.
205					 */
206	struct task_struct *tsk;
207	int tmp, ret = -EPERM;
208
209	tsk = current;
210	if (tsk->thread.saved_esp0)
211		goto out;
212	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
213				       offsetof(struct kernel_vm86_struct, vm86plus) -
214				       sizeof(info.regs));
215	ret = -EFAULT;
216	if (tmp)
217		goto out;
218	memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
219	info.regs32 = &regs;
220	tsk->thread.vm86_info = v86;
221	do_sys_vm86(&info, tsk);
222	ret = 0;	/* we never return here */
223out:
224	return ret;
225}
226
227
228asmlinkage int sys_vm86(struct pt_regs regs)
229{
230	struct kernel_vm86_struct info; /* declare this _on top_,
231					 * this avoids wasting of stack space.
232					 * This remains on the stack until we
233					 * return to 32 bit user space.
234					 */
235	struct task_struct *tsk;
236	int tmp, ret;
237	struct vm86plus_struct __user *v86;
238
239	tsk = current;
240	switch (regs.bx) {
241		case VM86_REQUEST_IRQ:
242		case VM86_FREE_IRQ:
243		case VM86_GET_IRQ_BITS:
244		case VM86_GET_AND_RESET_IRQ:
245			ret = do_vm86_irq_handling(regs.bx, (int)regs.cx);
246			goto out;
247		case VM86_PLUS_INSTALL_CHECK:
248			/* NOTE: on old vm86 stuff this will return the error
249			   from access_ok(), because the subfunction is
250			   interpreted as (invalid) address to vm86_struct.
251			   So the installation check works.
252			 */
253			ret = 0;
254			goto out;
255	}
256
257	/* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
258	ret = -EPERM;
259	if (tsk->thread.saved_esp0)
260		goto out;
261	v86 = (struct vm86plus_struct __user *)regs.cx;
262	tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
263				       offsetof(struct kernel_vm86_struct, regs32) -
264				       sizeof(info.regs));
265	ret = -EFAULT;
266	if (tmp)
267		goto out;
268	info.regs32 = &regs;
269	info.vm86plus.is_vm86pus = 1;
270	tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
271	do_sys_vm86(&info, tsk);
272	ret = 0;	/* we never return here */
273out:
274	return ret;
275}
276
277
278static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
279{
280	struct tss_struct *tss;
281/*
282 * make sure the vm86() system call doesn't try to do anything silly
283 */
284	info->regs.pt.ds = 0;
285	info->regs.pt.es = 0;
286	info->regs.pt.fs = 0;
287
288/* we are clearing gs later just before "jmp resume_userspace",
289 * because it is not saved/restored.
290 */
291
292/*
293 * The flags register is also special: we cannot trust that the user
294 * has set it up safely, so this makes sure interrupt etc flags are
295 * inherited from protected mode.
296 */
297	VEFLAGS = info->regs.pt.flags;
298	info->regs.pt.flags &= SAFE_MASK;
299	info->regs.pt.flags |= info->regs32->flags & ~SAFE_MASK;
300	info->regs.pt.flags |= VM_MASK;
301
302	switch (info->cpu_type) {
303		case CPU_286:
304			tsk->thread.v86mask = 0;
305			break;
306		case CPU_386:
307			tsk->thread.v86mask = NT_MASK | IOPL_MASK;
308			break;
309		case CPU_486:
310			tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
311			break;
312		default:
313			tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
314			break;
315	}
316
317/*
318 * Save old state, set default return value (%ax) to 0
319 */
320	info->regs32->ax = 0;
321	tsk->thread.saved_esp0 = tsk->thread.esp0;
322	tsk->thread.saved_fs = info->regs32->fs;
323	savesegment(gs, tsk->thread.saved_gs);
324
325	tss = &per_cpu(init_tss, get_cpu());
326	tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
327	if (cpu_has_sep)
328		tsk->thread.sysenter_cs = 0;
329	load_esp0(tss, &tsk->thread);
330	put_cpu();
331
332	tsk->thread.screen_bitmap = info->screen_bitmap;
333	if (info->flags & VM86_SCREEN_BITMAP)
334		mark_screen_rdonly(tsk->mm);
335
336	/*call audit_syscall_exit since we do not exit via the normal paths */
337	if (unlikely(current->audit_context))
338		audit_syscall_exit(AUDITSC_RESULT(0), 0);
339
340	__asm__ __volatile__(
341		"movl %0,%%esp\n\t"
342		"movl %1,%%ebp\n\t"
343		"mov  %2, %%gs\n\t"
344		"jmp resume_userspace"
345		: /* no outputs */
346		:"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
347	/* we never return here */
348}
349
350static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
351{
352	struct pt_regs * regs32;
353
354	regs32 = save_v86_state(regs16);
355	regs32->ax = retval;
356	__asm__ __volatile__("movl %0,%%esp\n\t"
357		"movl %1,%%ebp\n\t"
358		"jmp resume_userspace"
359		: : "r" (regs32), "r" (current_thread_info()));
360}
361
362static inline void set_IF(struct kernel_vm86_regs * regs)
363{
364	VEFLAGS |= VIF_MASK;
365	if (VEFLAGS & VIP_MASK)
366		return_to_32bit(regs, VM86_STI);
367}
368
369static inline void clear_IF(struct kernel_vm86_regs * regs)
370{
371	VEFLAGS &= ~VIF_MASK;
372}
373
374static inline void clear_TF(struct kernel_vm86_regs * regs)
375{
376	regs->pt.flags &= ~TF_MASK;
377}
378
379static inline void clear_AC(struct kernel_vm86_regs * regs)
380{
381	regs->pt.flags &= ~AC_MASK;
382}
383
384/* It is correct to call set_IF(regs) from the set_vflags_*
385 * functions. However someone forgot to call clear_IF(regs)
386 * in the opposite case.
387 * After the command sequence CLI PUSHF STI POPF you should
388 * end up with interrups disabled, but you ended up with
389 * interrupts enabled.
390 *  ( I was testing my own changes, but the only bug I
391 *    could find was in a function I had not changed. )
392 * [KD]
393 */
394
395static inline void set_vflags_long(unsigned long flags, struct kernel_vm86_regs * regs)
396{
397	set_flags(VEFLAGS, flags, current->thread.v86mask);
398	set_flags(regs->pt.flags, flags, SAFE_MASK);
399	if (flags & IF_MASK)
400		set_IF(regs);
401	else
402		clear_IF(regs);
403}
404
405static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
406{
407	set_flags(VFLAGS, flags, current->thread.v86mask);
408	set_flags(regs->pt.flags, flags, SAFE_MASK);
409	if (flags & IF_MASK)
410		set_IF(regs);
411	else
412		clear_IF(regs);
413}
414
415static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
416{
417	unsigned long flags = regs->pt.flags & RETURN_MASK;
418
419	if (VEFLAGS & VIF_MASK)
420		flags |= IF_MASK;
421	flags |= IOPL_MASK;
422	return flags | (VEFLAGS & current->thread.v86mask);
423}
424
425static inline int is_revectored(int nr, struct revectored_struct * bitmap)
426{
427	__asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
428		:"=r" (nr)
429		:"m" (*bitmap),"r" (nr));
430	return nr;
431}
432
433#define val_byte(val, n) (((__u8 *)&val)[n])
434
435#define pushb(base, ptr, val, err_label) \
436	do { \
437		__u8 __val = val; \
438		ptr--; \
439		if (put_user(__val, base + ptr) < 0) \
440			goto err_label; \
441	} while(0)
442
443#define pushw(base, ptr, val, err_label) \
444	do { \
445		__u16 __val = val; \
446		ptr--; \
447		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
448			goto err_label; \
449		ptr--; \
450		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
451			goto err_label; \
452	} while(0)
453
454#define pushl(base, ptr, val, err_label) \
455	do { \
456		__u32 __val = val; \
457		ptr--; \
458		if (put_user(val_byte(__val, 3), base + ptr) < 0) \
459			goto err_label; \
460		ptr--; \
461		if (put_user(val_byte(__val, 2), base + ptr) < 0) \
462			goto err_label; \
463		ptr--; \
464		if (put_user(val_byte(__val, 1), base + ptr) < 0) \
465			goto err_label; \
466		ptr--; \
467		if (put_user(val_byte(__val, 0), base + ptr) < 0) \
468			goto err_label; \
469	} while(0)
470
471#define popb(base, ptr, err_label) \
472	({ \
473		__u8 __res; \
474		if (get_user(__res, base + ptr) < 0) \
475			goto err_label; \
476		ptr++; \
477		__res; \
478	})
479
480#define popw(base, ptr, err_label) \
481	({ \
482		__u16 __res; \
483		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
484			goto err_label; \
485		ptr++; \
486		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
487			goto err_label; \
488		ptr++; \
489		__res; \
490	})
491
492#define popl(base, ptr, err_label) \
493	({ \
494		__u32 __res; \
495		if (get_user(val_byte(__res, 0), base + ptr) < 0) \
496			goto err_label; \
497		ptr++; \
498		if (get_user(val_byte(__res, 1), base + ptr) < 0) \
499			goto err_label; \
500		ptr++; \
501		if (get_user(val_byte(__res, 2), base + ptr) < 0) \
502			goto err_label; \
503		ptr++; \
504		if (get_user(val_byte(__res, 3), base + ptr) < 0) \
505			goto err_label; \
506		ptr++; \
507		__res; \
508	})
509
510/* There are so many possible reasons for this function to return
511 * VM86_INTx, so adding another doesn't bother me. We can expect
512 * userspace programs to be able to handle it. (Getting a problem
513 * in userspace is always better than an Oops anyway.) [KD]
514 */
515static void do_int(struct kernel_vm86_regs *regs, int i,
516    unsigned char __user * ssp, unsigned short sp)
517{
518	unsigned long __user *intr_ptr;
519	unsigned long segoffs;
520
521	if (regs->pt.cs == BIOSSEG)
522		goto cannot_handle;
523	if (is_revectored(i, &KVM86->int_revectored))
524		goto cannot_handle;
525	if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
526		goto cannot_handle;
527	intr_ptr = (unsigned long __user *) (i << 2);
528	if (get_user(segoffs, intr_ptr))
529		goto cannot_handle;
530	if ((segoffs >> 16) == BIOSSEG)
531		goto cannot_handle;
532	pushw(ssp, sp, get_vflags(regs), cannot_handle);
533	pushw(ssp, sp, regs->pt.cs, cannot_handle);
534	pushw(ssp, sp, IP(regs), cannot_handle);
535	regs->pt.cs = segoffs >> 16;
536	SP(regs) -= 6;
537	IP(regs) = segoffs & 0xffff;
538	clear_TF(regs);
539	clear_IF(regs);
540	clear_AC(regs);
541	return;
542
543cannot_handle:
544	return_to_32bit(regs, VM86_INTx + (i << 8));
545}
546
547int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
548{
549	if (VMPI.is_vm86pus) {
550		if ( (trapno==3) || (trapno==1) )
551			return_to_32bit(regs, VM86_TRAP + (trapno << 8));
552		do_int(regs, trapno, (unsigned char __user *) (regs->pt.ss << 4), SP(regs));
553		return 0;
554	}
555	if (trapno !=1)
556		return 1; /* we let this handle by the calling routine */
557	if (current->ptrace & PT_PTRACED) {
558		unsigned long flags;
559		spin_lock_irqsave(&current->sighand->siglock, flags);
560		sigdelset(&current->blocked, SIGTRAP);
561		recalc_sigpending();
562		spin_unlock_irqrestore(&current->sighand->siglock, flags);
563	}
564	send_sig(SIGTRAP, current, 1);
565	current->thread.trap_no = trapno;
566	current->thread.error_code = error_code;
567	return 0;
568}
569
570void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
571{
572	unsigned char opcode;
573	unsigned char __user *csp;
574	unsigned char __user *ssp;
575	unsigned short ip, sp, orig_flags;
576	int data32, pref_done;
577
578#define CHECK_IF_IN_TRAP \
579	if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
580		newflags |= TF_MASK
581#define VM86_FAULT_RETURN do { \
582	if (VMPI.force_return_for_pic  && (VEFLAGS & (IF_MASK | VIF_MASK))) \
583		return_to_32bit(regs, VM86_PICRETURN); \
584	if (orig_flags & TF_MASK) \
585		handle_vm86_trap(regs, 0, 1); \
586	return; } while (0)
587
588	orig_flags = *(unsigned short *)&regs->pt.flags;
589
590	csp = (unsigned char __user *) (regs->pt.cs << 4);
591	ssp = (unsigned char __user *) (regs->pt.ss << 4);
592	sp = SP(regs);
593	ip = IP(regs);
594
595	data32 = 0;
596	pref_done = 0;
597	do {
598		switch (opcode = popb(csp, ip, simulate_sigsegv)) {
599			case 0x66:      /* 32-bit data */     data32=1; break;
600			case 0x67:      /* 32-bit address */  break;
601			case 0x2e:      /* CS */              break;
602			case 0x3e:      /* DS */              break;
603			case 0x26:      /* ES */              break;
604			case 0x36:      /* SS */              break;
605			case 0x65:      /* GS */              break;
606			case 0x64:      /* FS */              break;
607			case 0xf2:      /* repnz */       break;
608			case 0xf3:      /* rep */             break;
609			default: pref_done = 1;
610		}
611	} while (!pref_done);
612
613	switch (opcode) {
614
615	/* pushf */
616	case 0x9c:
617		if (data32) {
618			pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
619			SP(regs) -= 4;
620		} else {
621			pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
622			SP(regs) -= 2;
623		}
624		IP(regs) = ip;
625		VM86_FAULT_RETURN;
626
627	/* popf */
628	case 0x9d:
629		{
630		unsigned long newflags;
631		if (data32) {
632			newflags=popl(ssp, sp, simulate_sigsegv);
633			SP(regs) += 4;
634		} else {
635			newflags = popw(ssp, sp, simulate_sigsegv);
636			SP(regs) += 2;
637		}
638		IP(regs) = ip;
639		CHECK_IF_IN_TRAP;
640		if (data32) {
641			set_vflags_long(newflags, regs);
642		} else {
643			set_vflags_short(newflags, regs);
644		}
645		VM86_FAULT_RETURN;
646		}
647
648	/* int xx */
649	case 0xcd: {
650		int intno=popb(csp, ip, simulate_sigsegv);
651		IP(regs) = ip;
652		if (VMPI.vm86dbg_active) {
653			if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
654				return_to_32bit(regs, VM86_INTx + (intno << 8));
655		}
656		do_int(regs, intno, ssp, sp);
657		return;
658	}
659
660	/* iret */
661	case 0xcf:
662		{
663		unsigned long newip;
664		unsigned long newcs;
665		unsigned long newflags;
666		if (data32) {
667			newip=popl(ssp, sp, simulate_sigsegv);
668			newcs=popl(ssp, sp, simulate_sigsegv);
669			newflags=popl(ssp, sp, simulate_sigsegv);
670			SP(regs) += 12;
671		} else {
672			newip = popw(ssp, sp, simulate_sigsegv);
673			newcs = popw(ssp, sp, simulate_sigsegv);
674			newflags = popw(ssp, sp, simulate_sigsegv);
675			SP(regs) += 6;
676		}
677		IP(regs) = newip;
678		regs->pt.cs = newcs;
679		CHECK_IF_IN_TRAP;
680		if (data32) {
681			set_vflags_long(newflags, regs);
682		} else {
683			set_vflags_short(newflags, regs);
684		}
685		VM86_FAULT_RETURN;
686		}
687
688	/* cli */
689	case 0xfa:
690		IP(regs) = ip;
691		clear_IF(regs);
692		VM86_FAULT_RETURN;
693
694	/* sti */
695	/*
696	 * Damn. This is incorrect: the 'sti' instruction should actually
697	 * enable interrupts after the /next/ instruction. Not good.
698	 *
699	 * Probably needs some horsing around with the TF flag. Aiee..
700	 */
701	case 0xfb:
702		IP(regs) = ip;
703		set_IF(regs);
704		VM86_FAULT_RETURN;
705
706	default:
707		return_to_32bit(regs, VM86_UNKNOWN);
708	}
709
710	return;
711
712simulate_sigsegv:
713	/* FIXME: After a long discussion with Stas we finally
714	 *        agreed, that this is wrong. Here we should
715	 *        really send a SIGSEGV to the user program.
716	 *        But how do we create the correct context? We
717	 *        are inside a general protection fault handler
718	 *        and has just returned from a page fault handler.
719	 *        The correct context for the signal handler
720	 *        should be a mixture of the two, but how do we
721	 *        get the information? [KD]
722	 */
723	return_to_32bit(regs, VM86_UNKNOWN);
724}
725
726/* ---------------- vm86 special IRQ passing stuff ----------------- */
727
728#define VM86_IRQNAME		"vm86irq"
729
730static struct vm86_irqs {
731	struct task_struct *tsk;
732	int sig;
733} vm86_irqs[16];
734
735static DEFINE_SPINLOCK(irqbits_lock);
736static int irqbits;
737
738#define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
739	| (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO)  | (1 << SIGURG) \
740	| (1 << SIGUNUSED) )
741
742static irqreturn_t irq_handler(int intno, void *dev_id)
743{
744	int irq_bit;
745	unsigned long flags;
746
747	spin_lock_irqsave(&irqbits_lock, flags);
748	irq_bit = 1 << intno;
749	if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
750		goto out;
751	irqbits |= irq_bit;
752	if (vm86_irqs[intno].sig)
753		send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
754	/*
755	 * IRQ will be re-enabled when user asks for the irq (whether
756	 * polling or as a result of the signal)
757	 */
758	disable_irq_nosync(intno);
759	spin_unlock_irqrestore(&irqbits_lock, flags);
760	return IRQ_HANDLED;
761
762out:
763	spin_unlock_irqrestore(&irqbits_lock, flags);
764	return IRQ_NONE;
765}
766
767static inline void free_vm86_irq(int irqnumber)
768{
769	unsigned long flags;
770
771	free_irq(irqnumber, NULL);
772	vm86_irqs[irqnumber].tsk = NULL;
773
774	spin_lock_irqsave(&irqbits_lock, flags);
775	irqbits &= ~(1 << irqnumber);
776	spin_unlock_irqrestore(&irqbits_lock, flags);
777}
778
779void release_vm86_irqs(struct task_struct *task)
780{
781	int i;
782	for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
783	    if (vm86_irqs[i].tsk == task)
784		free_vm86_irq(i);
785}
786
787static inline int get_and_reset_irq(int irqnumber)
788{
789	int bit;
790	unsigned long flags;
791	int ret = 0;
792
793	if (invalid_vm86_irq(irqnumber)) return 0;
794	if (vm86_irqs[irqnumber].tsk != current) return 0;
795	spin_lock_irqsave(&irqbits_lock, flags);
796	bit = irqbits & (1 << irqnumber);
797	irqbits &= ~bit;
798	if (bit) {
799		enable_irq(irqnumber);
800		ret = 1;
801	}
802
803	spin_unlock_irqrestore(&irqbits_lock, flags);
804	return ret;
805}
806
807
808static int do_vm86_irq_handling(int subfunction, int irqnumber)
809{
810	int ret;
811	switch (subfunction) {
812		case VM86_GET_AND_RESET_IRQ: {
813			return get_and_reset_irq(irqnumber);
814		}
815		case VM86_GET_IRQ_BITS: {
816			return irqbits;
817		}
818		case VM86_REQUEST_IRQ: {
819			int sig = irqnumber >> 8;
820			int irq = irqnumber & 255;
821			if (!capable(CAP_SYS_ADMIN)) return -EPERM;
822			if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
823			if (invalid_vm86_irq(irq)) return -EPERM;
824			if (vm86_irqs[irq].tsk) return -EPERM;
825			ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
826			if (ret) return ret;
827			vm86_irqs[irq].sig = sig;
828			vm86_irqs[irq].tsk = current;
829			return irq;
830		}
831		case  VM86_FREE_IRQ: {
832			if (invalid_vm86_irq(irqnumber)) return -EPERM;
833			if (!vm86_irqs[irqnumber].tsk) return 0;
834			if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
835			free_vm86_irq(irqnumber);
836			return 0;
837		}
838	}
839	return -EINVAL;
840}
841
842