1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 *   Avi Kivity   <avi@qumranet.com>
12 *   Yaniv Kamay  <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.  See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
19#include "irq.h"
20#include "mmu.h"
21#include "cpuid.h"
22
23#include <linux/kvm_host.h>
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/sched.h>
29#include <linux/moduleparam.h>
30#include <linux/mod_devicetable.h>
31#include <linux/ftrace_event.h>
32#include <linux/slab.h>
33#include <linux/tboot.h>
34#include <linux/hrtimer.h>
35#include "kvm_cache_regs.h"
36#include "x86.h"
37
38#include <asm/io.h>
39#include <asm/desc.h>
40#include <asm/vmx.h>
41#include <asm/virtext.h>
42#include <asm/mce.h>
43#include <asm/i387.h>
44#include <asm/xcr.h>
45#include <asm/perf_event.h>
46#include <asm/debugreg.h>
47#include <asm/kexec.h>
48
49#include "trace.h"
50
51#define __ex(x) __kvm_handle_fault_on_reboot(x)
52#define __ex_clear(x, reg) \
53	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
54
55MODULE_AUTHOR("Qumranet");
56MODULE_LICENSE("GPL");
57
58static const struct x86_cpu_id vmx_cpu_id[] = {
59	X86_FEATURE_MATCH(X86_FEATURE_VMX),
60	{}
61};
62MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
63
64static bool __read_mostly enable_vpid = 1;
65module_param_named(vpid, enable_vpid, bool, 0444);
66
67static bool __read_mostly flexpriority_enabled = 1;
68module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
69
70static bool __read_mostly enable_ept = 1;
71module_param_named(ept, enable_ept, bool, S_IRUGO);
72
73static bool __read_mostly enable_unrestricted_guest = 1;
74module_param_named(unrestricted_guest,
75			enable_unrestricted_guest, bool, S_IRUGO);
76
77static bool __read_mostly enable_ept_ad_bits = 1;
78module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
79
80static bool __read_mostly emulate_invalid_guest_state = true;
81module_param(emulate_invalid_guest_state, bool, S_IRUGO);
82
83static bool __read_mostly vmm_exclusive = 1;
84module_param(vmm_exclusive, bool, S_IRUGO);
85
86static bool __read_mostly fasteoi = 1;
87module_param(fasteoi, bool, S_IRUGO);
88
89static bool __read_mostly enable_apicv = 1;
90module_param(enable_apicv, bool, S_IRUGO);
91
92static bool __read_mostly enable_shadow_vmcs = 1;
93module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
94/*
95 * If nested=1, nested virtualization is supported, i.e., guests may use
96 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
97 * use VMX instructions.
98 */
99static bool __read_mostly nested = 0;
100module_param(nested, bool, S_IRUGO);
101
102#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
103#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
104#define KVM_VM_CR0_ALWAYS_ON						\
105	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
106#define KVM_CR4_GUEST_OWNED_BITS				      \
107	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
108	 | X86_CR4_OSXMMEXCPT)
109
110#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
111#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
112
113#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
114
115#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
116
117/*
118 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
119 * ple_gap:    upper bound on the amount of time between two successive
120 *             executions of PAUSE in a loop. Also indicate if ple enabled.
121 *             According to test, this time is usually smaller than 128 cycles.
122 * ple_window: upper bound on the amount of time a guest is allowed to execute
123 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
124 *             less than 2^12 cycles
125 * Time is measured based on a counter that runs at the same rate as the TSC,
126 * refer SDM volume 3b section 21.6.13 & 22.1.3.
127 */
128#define KVM_VMX_DEFAULT_PLE_GAP           128
129#define KVM_VMX_DEFAULT_PLE_WINDOW        4096
130#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
131#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
132#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
133		INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
134
135static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
136module_param(ple_gap, int, S_IRUGO);
137
138static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
139module_param(ple_window, int, S_IRUGO);
140
141/* Default doubles per-vcpu window every exit. */
142static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
143module_param(ple_window_grow, int, S_IRUGO);
144
145/* Default resets per-vcpu window every exit to ple_window. */
146static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
147module_param(ple_window_shrink, int, S_IRUGO);
148
149/* Default is to compute the maximum so we can never overflow. */
150static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
151static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
152module_param(ple_window_max, int, S_IRUGO);
153
154extern const ulong vmx_return;
155
156#define NR_AUTOLOAD_MSRS 8
157#define VMCS02_POOL_SIZE 1
158
159struct vmcs {
160	u32 revision_id;
161	u32 abort;
162	char data[0];
163};
164
165/*
166 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
167 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
168 * loaded on this CPU (so we can clear them if the CPU goes down).
169 */
170struct loaded_vmcs {
171	struct vmcs *vmcs;
172	int cpu;
173	int launched;
174	struct list_head loaded_vmcss_on_cpu_link;
175};
176
177struct shared_msr_entry {
178	unsigned index;
179	u64 data;
180	u64 mask;
181};
182
183/*
184 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
185 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
186 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
187 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
188 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
189 * More than one of these structures may exist, if L1 runs multiple L2 guests.
190 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
191 * underlying hardware which will be used to run L2.
192 * This structure is packed to ensure that its layout is identical across
193 * machines (necessary for live migration).
194 * If there are changes in this struct, VMCS12_REVISION must be changed.
195 */
196typedef u64 natural_width;
197struct __packed vmcs12 {
198	/* According to the Intel spec, a VMCS region must start with the
199	 * following two fields. Then follow implementation-specific data.
200	 */
201	u32 revision_id;
202	u32 abort;
203
204	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
205	u32 padding[7]; /* room for future expansion */
206
207	u64 io_bitmap_a;
208	u64 io_bitmap_b;
209	u64 msr_bitmap;
210	u64 vm_exit_msr_store_addr;
211	u64 vm_exit_msr_load_addr;
212	u64 vm_entry_msr_load_addr;
213	u64 tsc_offset;
214	u64 virtual_apic_page_addr;
215	u64 apic_access_addr;
216	u64 ept_pointer;
217	u64 guest_physical_address;
218	u64 vmcs_link_pointer;
219	u64 guest_ia32_debugctl;
220	u64 guest_ia32_pat;
221	u64 guest_ia32_efer;
222	u64 guest_ia32_perf_global_ctrl;
223	u64 guest_pdptr0;
224	u64 guest_pdptr1;
225	u64 guest_pdptr2;
226	u64 guest_pdptr3;
227	u64 guest_bndcfgs;
228	u64 host_ia32_pat;
229	u64 host_ia32_efer;
230	u64 host_ia32_perf_global_ctrl;
231	u64 padding64[8]; /* room for future expansion */
232	/*
233	 * To allow migration of L1 (complete with its L2 guests) between
234	 * machines of different natural widths (32 or 64 bit), we cannot have
235	 * unsigned long fields with no explict size. We use u64 (aliased
236	 * natural_width) instead. Luckily, x86 is little-endian.
237	 */
238	natural_width cr0_guest_host_mask;
239	natural_width cr4_guest_host_mask;
240	natural_width cr0_read_shadow;
241	natural_width cr4_read_shadow;
242	natural_width cr3_target_value0;
243	natural_width cr3_target_value1;
244	natural_width cr3_target_value2;
245	natural_width cr3_target_value3;
246	natural_width exit_qualification;
247	natural_width guest_linear_address;
248	natural_width guest_cr0;
249	natural_width guest_cr3;
250	natural_width guest_cr4;
251	natural_width guest_es_base;
252	natural_width guest_cs_base;
253	natural_width guest_ss_base;
254	natural_width guest_ds_base;
255	natural_width guest_fs_base;
256	natural_width guest_gs_base;
257	natural_width guest_ldtr_base;
258	natural_width guest_tr_base;
259	natural_width guest_gdtr_base;
260	natural_width guest_idtr_base;
261	natural_width guest_dr7;
262	natural_width guest_rsp;
263	natural_width guest_rip;
264	natural_width guest_rflags;
265	natural_width guest_pending_dbg_exceptions;
266	natural_width guest_sysenter_esp;
267	natural_width guest_sysenter_eip;
268	natural_width host_cr0;
269	natural_width host_cr3;
270	natural_width host_cr4;
271	natural_width host_fs_base;
272	natural_width host_gs_base;
273	natural_width host_tr_base;
274	natural_width host_gdtr_base;
275	natural_width host_idtr_base;
276	natural_width host_ia32_sysenter_esp;
277	natural_width host_ia32_sysenter_eip;
278	natural_width host_rsp;
279	natural_width host_rip;
280	natural_width paddingl[8]; /* room for future expansion */
281	u32 pin_based_vm_exec_control;
282	u32 cpu_based_vm_exec_control;
283	u32 exception_bitmap;
284	u32 page_fault_error_code_mask;
285	u32 page_fault_error_code_match;
286	u32 cr3_target_count;
287	u32 vm_exit_controls;
288	u32 vm_exit_msr_store_count;
289	u32 vm_exit_msr_load_count;
290	u32 vm_entry_controls;
291	u32 vm_entry_msr_load_count;
292	u32 vm_entry_intr_info_field;
293	u32 vm_entry_exception_error_code;
294	u32 vm_entry_instruction_len;
295	u32 tpr_threshold;
296	u32 secondary_vm_exec_control;
297	u32 vm_instruction_error;
298	u32 vm_exit_reason;
299	u32 vm_exit_intr_info;
300	u32 vm_exit_intr_error_code;
301	u32 idt_vectoring_info_field;
302	u32 idt_vectoring_error_code;
303	u32 vm_exit_instruction_len;
304	u32 vmx_instruction_info;
305	u32 guest_es_limit;
306	u32 guest_cs_limit;
307	u32 guest_ss_limit;
308	u32 guest_ds_limit;
309	u32 guest_fs_limit;
310	u32 guest_gs_limit;
311	u32 guest_ldtr_limit;
312	u32 guest_tr_limit;
313	u32 guest_gdtr_limit;
314	u32 guest_idtr_limit;
315	u32 guest_es_ar_bytes;
316	u32 guest_cs_ar_bytes;
317	u32 guest_ss_ar_bytes;
318	u32 guest_ds_ar_bytes;
319	u32 guest_fs_ar_bytes;
320	u32 guest_gs_ar_bytes;
321	u32 guest_ldtr_ar_bytes;
322	u32 guest_tr_ar_bytes;
323	u32 guest_interruptibility_info;
324	u32 guest_activity_state;
325	u32 guest_sysenter_cs;
326	u32 host_ia32_sysenter_cs;
327	u32 vmx_preemption_timer_value;
328	u32 padding32[7]; /* room for future expansion */
329	u16 virtual_processor_id;
330	u16 guest_es_selector;
331	u16 guest_cs_selector;
332	u16 guest_ss_selector;
333	u16 guest_ds_selector;
334	u16 guest_fs_selector;
335	u16 guest_gs_selector;
336	u16 guest_ldtr_selector;
337	u16 guest_tr_selector;
338	u16 host_es_selector;
339	u16 host_cs_selector;
340	u16 host_ss_selector;
341	u16 host_ds_selector;
342	u16 host_fs_selector;
343	u16 host_gs_selector;
344	u16 host_tr_selector;
345};
346
347/*
348 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
349 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
350 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
351 */
352#define VMCS12_REVISION 0x11e57ed0
353
354/*
355 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
356 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
357 * current implementation, 4K are reserved to avoid future complications.
358 */
359#define VMCS12_SIZE 0x1000
360
361/* Used to remember the last vmcs02 used for some recently used vmcs12s */
362struct vmcs02_list {
363	struct list_head list;
364	gpa_t vmptr;
365	struct loaded_vmcs vmcs02;
366};
367
368/*
369 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
370 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
371 */
372struct nested_vmx {
373	/* Has the level1 guest done vmxon? */
374	bool vmxon;
375	gpa_t vmxon_ptr;
376
377	/* The guest-physical address of the current VMCS L1 keeps for L2 */
378	gpa_t current_vmptr;
379	/* The host-usable pointer to the above */
380	struct page *current_vmcs12_page;
381	struct vmcs12 *current_vmcs12;
382	struct vmcs *current_shadow_vmcs;
383	/*
384	 * Indicates if the shadow vmcs must be updated with the
385	 * data hold by vmcs12
386	 */
387	bool sync_shadow_vmcs;
388
389	/* vmcs02_list cache of VMCSs recently used to run L2 guests */
390	struct list_head vmcs02_pool;
391	int vmcs02_num;
392	u64 vmcs01_tsc_offset;
393	/* L2 must run next, and mustn't decide to exit to L1. */
394	bool nested_run_pending;
395	/*
396	 * Guest pages referred to in vmcs02 with host-physical pointers, so
397	 * we must keep them pinned while L2 runs.
398	 */
399	struct page *apic_access_page;
400	struct page *virtual_apic_page;
401	u64 msr_ia32_feature_control;
402
403	struct hrtimer preemption_timer;
404	bool preemption_timer_expired;
405
406	/* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
407	u64 vmcs01_debugctl;
408};
409
410#define POSTED_INTR_ON  0
411/* Posted-Interrupt Descriptor */
412struct pi_desc {
413	u32 pir[8];     /* Posted interrupt requested */
414	u32 control;	/* bit 0 of control is outstanding notification bit */
415	u32 rsvd[7];
416} __aligned(64);
417
418static bool pi_test_and_set_on(struct pi_desc *pi_desc)
419{
420	return test_and_set_bit(POSTED_INTR_ON,
421			(unsigned long *)&pi_desc->control);
422}
423
424static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
425{
426	return test_and_clear_bit(POSTED_INTR_ON,
427			(unsigned long *)&pi_desc->control);
428}
429
430static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
431{
432	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
433}
434
435struct vcpu_vmx {
436	struct kvm_vcpu       vcpu;
437	unsigned long         host_rsp;
438	u8                    fail;
439	bool                  nmi_known_unmasked;
440	u32                   exit_intr_info;
441	u32                   idt_vectoring_info;
442	ulong                 rflags;
443	struct shared_msr_entry *guest_msrs;
444	int                   nmsrs;
445	int                   save_nmsrs;
446	unsigned long	      host_idt_base;
447#ifdef CONFIG_X86_64
448	u64 		      msr_host_kernel_gs_base;
449	u64 		      msr_guest_kernel_gs_base;
450#endif
451	u32 vm_entry_controls_shadow;
452	u32 vm_exit_controls_shadow;
453	/*
454	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
455	 * non-nested (L1) guest, it always points to vmcs01. For a nested
456	 * guest (L2), it points to a different VMCS.
457	 */
458	struct loaded_vmcs    vmcs01;
459	struct loaded_vmcs   *loaded_vmcs;
460	bool                  __launched; /* temporary, used in vmx_vcpu_run */
461	struct msr_autoload {
462		unsigned nr;
463		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
464		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
465	} msr_autoload;
466	struct {
467		int           loaded;
468		u16           fs_sel, gs_sel, ldt_sel;
469#ifdef CONFIG_X86_64
470		u16           ds_sel, es_sel;
471#endif
472		int           gs_ldt_reload_needed;
473		int           fs_reload_needed;
474		u64           msr_host_bndcfgs;
475		unsigned long vmcs_host_cr4;	/* May not match real cr4 */
476	} host_state;
477	struct {
478		int vm86_active;
479		ulong save_rflags;
480		struct kvm_segment segs[8];
481	} rmode;
482	struct {
483		u32 bitmask; /* 4 bits per segment (1 bit per field) */
484		struct kvm_save_segment {
485			u16 selector;
486			unsigned long base;
487			u32 limit;
488			u32 ar;
489		} seg[8];
490	} segment_cache;
491	int vpid;
492	bool emulation_required;
493
494	/* Support for vnmi-less CPUs */
495	int soft_vnmi_blocked;
496	ktime_t entry_time;
497	s64 vnmi_blocked_time;
498	u32 exit_reason;
499
500	bool rdtscp_enabled;
501
502	/* Posted interrupt descriptor */
503	struct pi_desc pi_desc;
504
505	/* Support for a guest hypervisor (nested VMX) */
506	struct nested_vmx nested;
507
508	/* Dynamic PLE window. */
509	int ple_window;
510	bool ple_window_dirty;
511};
512
513enum segment_cache_field {
514	SEG_FIELD_SEL = 0,
515	SEG_FIELD_BASE = 1,
516	SEG_FIELD_LIMIT = 2,
517	SEG_FIELD_AR = 3,
518
519	SEG_FIELD_NR = 4
520};
521
522static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
523{
524	return container_of(vcpu, struct vcpu_vmx, vcpu);
525}
526
527#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
528#define FIELD(number, name)	[number] = VMCS12_OFFSET(name)
529#define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \
530				[number##_HIGH] = VMCS12_OFFSET(name)+4
531
532
533static unsigned long shadow_read_only_fields[] = {
534	/*
535	 * We do NOT shadow fields that are modified when L0
536	 * traps and emulates any vmx instruction (e.g. VMPTRLD,
537	 * VMXON...) executed by L1.
538	 * For example, VM_INSTRUCTION_ERROR is read
539	 * by L1 if a vmx instruction fails (part of the error path).
540	 * Note the code assumes this logic. If for some reason
541	 * we start shadowing these fields then we need to
542	 * force a shadow sync when L0 emulates vmx instructions
543	 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
544	 * by nested_vmx_failValid)
545	 */
546	VM_EXIT_REASON,
547	VM_EXIT_INTR_INFO,
548	VM_EXIT_INSTRUCTION_LEN,
549	IDT_VECTORING_INFO_FIELD,
550	IDT_VECTORING_ERROR_CODE,
551	VM_EXIT_INTR_ERROR_CODE,
552	EXIT_QUALIFICATION,
553	GUEST_LINEAR_ADDRESS,
554	GUEST_PHYSICAL_ADDRESS
555};
556static int max_shadow_read_only_fields =
557	ARRAY_SIZE(shadow_read_only_fields);
558
559static unsigned long shadow_read_write_fields[] = {
560	TPR_THRESHOLD,
561	GUEST_RIP,
562	GUEST_RSP,
563	GUEST_CR0,
564	GUEST_CR3,
565	GUEST_CR4,
566	GUEST_INTERRUPTIBILITY_INFO,
567	GUEST_RFLAGS,
568	GUEST_CS_SELECTOR,
569	GUEST_CS_AR_BYTES,
570	GUEST_CS_LIMIT,
571	GUEST_CS_BASE,
572	GUEST_ES_BASE,
573	GUEST_BNDCFGS,
574	CR0_GUEST_HOST_MASK,
575	CR0_READ_SHADOW,
576	CR4_READ_SHADOW,
577	TSC_OFFSET,
578	EXCEPTION_BITMAP,
579	CPU_BASED_VM_EXEC_CONTROL,
580	VM_ENTRY_EXCEPTION_ERROR_CODE,
581	VM_ENTRY_INTR_INFO_FIELD,
582	VM_ENTRY_INSTRUCTION_LEN,
583	VM_ENTRY_EXCEPTION_ERROR_CODE,
584	HOST_FS_BASE,
585	HOST_GS_BASE,
586	HOST_FS_SELECTOR,
587	HOST_GS_SELECTOR
588};
589static int max_shadow_read_write_fields =
590	ARRAY_SIZE(shadow_read_write_fields);
591
592static const unsigned short vmcs_field_to_offset_table[] = {
593	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
594	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
595	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
596	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
597	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
598	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
599	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
600	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
601	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
602	FIELD(HOST_ES_SELECTOR, host_es_selector),
603	FIELD(HOST_CS_SELECTOR, host_cs_selector),
604	FIELD(HOST_SS_SELECTOR, host_ss_selector),
605	FIELD(HOST_DS_SELECTOR, host_ds_selector),
606	FIELD(HOST_FS_SELECTOR, host_fs_selector),
607	FIELD(HOST_GS_SELECTOR, host_gs_selector),
608	FIELD(HOST_TR_SELECTOR, host_tr_selector),
609	FIELD64(IO_BITMAP_A, io_bitmap_a),
610	FIELD64(IO_BITMAP_B, io_bitmap_b),
611	FIELD64(MSR_BITMAP, msr_bitmap),
612	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
613	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
614	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
615	FIELD64(TSC_OFFSET, tsc_offset),
616	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
617	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
618	FIELD64(EPT_POINTER, ept_pointer),
619	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
620	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
621	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
622	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
623	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
624	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
625	FIELD64(GUEST_PDPTR0, guest_pdptr0),
626	FIELD64(GUEST_PDPTR1, guest_pdptr1),
627	FIELD64(GUEST_PDPTR2, guest_pdptr2),
628	FIELD64(GUEST_PDPTR3, guest_pdptr3),
629	FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
630	FIELD64(HOST_IA32_PAT, host_ia32_pat),
631	FIELD64(HOST_IA32_EFER, host_ia32_efer),
632	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
633	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
634	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
635	FIELD(EXCEPTION_BITMAP, exception_bitmap),
636	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
637	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
638	FIELD(CR3_TARGET_COUNT, cr3_target_count),
639	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
640	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
641	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
642	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
643	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
644	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
645	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
646	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
647	FIELD(TPR_THRESHOLD, tpr_threshold),
648	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
649	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
650	FIELD(VM_EXIT_REASON, vm_exit_reason),
651	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
652	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
653	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
654	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
655	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
656	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
657	FIELD(GUEST_ES_LIMIT, guest_es_limit),
658	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
659	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
660	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
661	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
662	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
663	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
664	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
665	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
666	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
667	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
668	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
669	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
670	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
671	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
672	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
673	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
674	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
675	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
676	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
677	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
678	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
679	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
680	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
681	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
682	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
683	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
684	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
685	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
686	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
687	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
688	FIELD(EXIT_QUALIFICATION, exit_qualification),
689	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
690	FIELD(GUEST_CR0, guest_cr0),
691	FIELD(GUEST_CR3, guest_cr3),
692	FIELD(GUEST_CR4, guest_cr4),
693	FIELD(GUEST_ES_BASE, guest_es_base),
694	FIELD(GUEST_CS_BASE, guest_cs_base),
695	FIELD(GUEST_SS_BASE, guest_ss_base),
696	FIELD(GUEST_DS_BASE, guest_ds_base),
697	FIELD(GUEST_FS_BASE, guest_fs_base),
698	FIELD(GUEST_GS_BASE, guest_gs_base),
699	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
700	FIELD(GUEST_TR_BASE, guest_tr_base),
701	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
702	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
703	FIELD(GUEST_DR7, guest_dr7),
704	FIELD(GUEST_RSP, guest_rsp),
705	FIELD(GUEST_RIP, guest_rip),
706	FIELD(GUEST_RFLAGS, guest_rflags),
707	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
708	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
709	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
710	FIELD(HOST_CR0, host_cr0),
711	FIELD(HOST_CR3, host_cr3),
712	FIELD(HOST_CR4, host_cr4),
713	FIELD(HOST_FS_BASE, host_fs_base),
714	FIELD(HOST_GS_BASE, host_gs_base),
715	FIELD(HOST_TR_BASE, host_tr_base),
716	FIELD(HOST_GDTR_BASE, host_gdtr_base),
717	FIELD(HOST_IDTR_BASE, host_idtr_base),
718	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
719	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
720	FIELD(HOST_RSP, host_rsp),
721	FIELD(HOST_RIP, host_rip),
722};
723static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
724
725static inline short vmcs_field_to_offset(unsigned long field)
726{
727	if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
728		return -1;
729	return vmcs_field_to_offset_table[field];
730}
731
732static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
733{
734	return to_vmx(vcpu)->nested.current_vmcs12;
735}
736
737static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
738{
739	struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
740	if (is_error_page(page))
741		return NULL;
742
743	return page;
744}
745
746static void nested_release_page(struct page *page)
747{
748	kvm_release_page_dirty(page);
749}
750
751static void nested_release_page_clean(struct page *page)
752{
753	kvm_release_page_clean(page);
754}
755
756static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
757static u64 construct_eptp(unsigned long root_hpa);
758static void kvm_cpu_vmxon(u64 addr);
759static void kvm_cpu_vmxoff(void);
760static bool vmx_mpx_supported(void);
761static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
762static void vmx_set_segment(struct kvm_vcpu *vcpu,
763			    struct kvm_segment *var, int seg);
764static void vmx_get_segment(struct kvm_vcpu *vcpu,
765			    struct kvm_segment *var, int seg);
766static bool guest_state_valid(struct kvm_vcpu *vcpu);
767static u32 vmx_segment_access_rights(struct kvm_segment *var);
768static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
769static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
770static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
771static int alloc_identity_pagetable(struct kvm *kvm);
772
773static DEFINE_PER_CPU(struct vmcs *, vmxarea);
774static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
775/*
776 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
777 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
778 */
779static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
780static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
781
782static unsigned long *vmx_io_bitmap_a;
783static unsigned long *vmx_io_bitmap_b;
784static unsigned long *vmx_msr_bitmap_legacy;
785static unsigned long *vmx_msr_bitmap_longmode;
786static unsigned long *vmx_msr_bitmap_legacy_x2apic;
787static unsigned long *vmx_msr_bitmap_longmode_x2apic;
788static unsigned long *vmx_vmread_bitmap;
789static unsigned long *vmx_vmwrite_bitmap;
790
791static bool cpu_has_load_ia32_efer;
792static bool cpu_has_load_perf_global_ctrl;
793
794static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
795static DEFINE_SPINLOCK(vmx_vpid_lock);
796
797static struct vmcs_config {
798	int size;
799	int order;
800	u32 revision_id;
801	u32 pin_based_exec_ctrl;
802	u32 cpu_based_exec_ctrl;
803	u32 cpu_based_2nd_exec_ctrl;
804	u32 vmexit_ctrl;
805	u32 vmentry_ctrl;
806} vmcs_config;
807
808static struct vmx_capability {
809	u32 ept;
810	u32 vpid;
811} vmx_capability;
812
813#define VMX_SEGMENT_FIELD(seg)					\
814	[VCPU_SREG_##seg] = {                                   \
815		.selector = GUEST_##seg##_SELECTOR,		\
816		.base = GUEST_##seg##_BASE,		   	\
817		.limit = GUEST_##seg##_LIMIT,		   	\
818		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
819	}
820
821static const struct kvm_vmx_segment_field {
822	unsigned selector;
823	unsigned base;
824	unsigned limit;
825	unsigned ar_bytes;
826} kvm_vmx_segment_fields[] = {
827	VMX_SEGMENT_FIELD(CS),
828	VMX_SEGMENT_FIELD(DS),
829	VMX_SEGMENT_FIELD(ES),
830	VMX_SEGMENT_FIELD(FS),
831	VMX_SEGMENT_FIELD(GS),
832	VMX_SEGMENT_FIELD(SS),
833	VMX_SEGMENT_FIELD(TR),
834	VMX_SEGMENT_FIELD(LDTR),
835};
836
837static u64 host_efer;
838
839static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
840
841/*
842 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
843 * away by decrementing the array size.
844 */
845static const u32 vmx_msr_index[] = {
846#ifdef CONFIG_X86_64
847	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
848#endif
849	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
850};
851
852static inline bool is_page_fault(u32 intr_info)
853{
854	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
855			     INTR_INFO_VALID_MASK)) ==
856		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
857}
858
859static inline bool is_no_device(u32 intr_info)
860{
861	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
862			     INTR_INFO_VALID_MASK)) ==
863		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
864}
865
866static inline bool is_invalid_opcode(u32 intr_info)
867{
868	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
869			     INTR_INFO_VALID_MASK)) ==
870		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
871}
872
873static inline bool is_external_interrupt(u32 intr_info)
874{
875	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
876		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
877}
878
879static inline bool is_machine_check(u32 intr_info)
880{
881	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
882			     INTR_INFO_VALID_MASK)) ==
883		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
884}
885
886static inline bool cpu_has_vmx_msr_bitmap(void)
887{
888	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
889}
890
891static inline bool cpu_has_vmx_tpr_shadow(void)
892{
893	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
894}
895
896static inline bool vm_need_tpr_shadow(struct kvm *kvm)
897{
898	return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
899}
900
901static inline bool cpu_has_secondary_exec_ctrls(void)
902{
903	return vmcs_config.cpu_based_exec_ctrl &
904		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
905}
906
907static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
908{
909	return vmcs_config.cpu_based_2nd_exec_ctrl &
910		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
911}
912
913static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
914{
915	return vmcs_config.cpu_based_2nd_exec_ctrl &
916		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
917}
918
919static inline bool cpu_has_vmx_apic_register_virt(void)
920{
921	return vmcs_config.cpu_based_2nd_exec_ctrl &
922		SECONDARY_EXEC_APIC_REGISTER_VIRT;
923}
924
925static inline bool cpu_has_vmx_virtual_intr_delivery(void)
926{
927	return vmcs_config.cpu_based_2nd_exec_ctrl &
928		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
929}
930
931static inline bool cpu_has_vmx_posted_intr(void)
932{
933	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
934}
935
936static inline bool cpu_has_vmx_apicv(void)
937{
938	return cpu_has_vmx_apic_register_virt() &&
939		cpu_has_vmx_virtual_intr_delivery() &&
940		cpu_has_vmx_posted_intr();
941}
942
943static inline bool cpu_has_vmx_flexpriority(void)
944{
945	return cpu_has_vmx_tpr_shadow() &&
946		cpu_has_vmx_virtualize_apic_accesses();
947}
948
949static inline bool cpu_has_vmx_ept_execute_only(void)
950{
951	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
952}
953
954static inline bool cpu_has_vmx_eptp_uncacheable(void)
955{
956	return vmx_capability.ept & VMX_EPTP_UC_BIT;
957}
958
959static inline bool cpu_has_vmx_eptp_writeback(void)
960{
961	return vmx_capability.ept & VMX_EPTP_WB_BIT;
962}
963
964static inline bool cpu_has_vmx_ept_2m_page(void)
965{
966	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
967}
968
969static inline bool cpu_has_vmx_ept_1g_page(void)
970{
971	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
972}
973
974static inline bool cpu_has_vmx_ept_4levels(void)
975{
976	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
977}
978
979static inline bool cpu_has_vmx_ept_ad_bits(void)
980{
981	return vmx_capability.ept & VMX_EPT_AD_BIT;
982}
983
984static inline bool cpu_has_vmx_invept_context(void)
985{
986	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
987}
988
989static inline bool cpu_has_vmx_invept_global(void)
990{
991	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
992}
993
994static inline bool cpu_has_vmx_invvpid_single(void)
995{
996	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
997}
998
999static inline bool cpu_has_vmx_invvpid_global(void)
1000{
1001	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1002}
1003
1004static inline bool cpu_has_vmx_ept(void)
1005{
1006	return vmcs_config.cpu_based_2nd_exec_ctrl &
1007		SECONDARY_EXEC_ENABLE_EPT;
1008}
1009
1010static inline bool cpu_has_vmx_unrestricted_guest(void)
1011{
1012	return vmcs_config.cpu_based_2nd_exec_ctrl &
1013		SECONDARY_EXEC_UNRESTRICTED_GUEST;
1014}
1015
1016static inline bool cpu_has_vmx_ple(void)
1017{
1018	return vmcs_config.cpu_based_2nd_exec_ctrl &
1019		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1020}
1021
1022static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
1023{
1024	return flexpriority_enabled && irqchip_in_kernel(kvm);
1025}
1026
1027static inline bool cpu_has_vmx_vpid(void)
1028{
1029	return vmcs_config.cpu_based_2nd_exec_ctrl &
1030		SECONDARY_EXEC_ENABLE_VPID;
1031}
1032
1033static inline bool cpu_has_vmx_rdtscp(void)
1034{
1035	return vmcs_config.cpu_based_2nd_exec_ctrl &
1036		SECONDARY_EXEC_RDTSCP;
1037}
1038
1039static inline bool cpu_has_vmx_invpcid(void)
1040{
1041	return vmcs_config.cpu_based_2nd_exec_ctrl &
1042		SECONDARY_EXEC_ENABLE_INVPCID;
1043}
1044
1045static inline bool cpu_has_virtual_nmis(void)
1046{
1047	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1048}
1049
1050static inline bool cpu_has_vmx_wbinvd_exit(void)
1051{
1052	return vmcs_config.cpu_based_2nd_exec_ctrl &
1053		SECONDARY_EXEC_WBINVD_EXITING;
1054}
1055
1056static inline bool cpu_has_vmx_shadow_vmcs(void)
1057{
1058	u64 vmx_msr;
1059	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1060	/* check if the cpu supports writing r/o exit information fields */
1061	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1062		return false;
1063
1064	return vmcs_config.cpu_based_2nd_exec_ctrl &
1065		SECONDARY_EXEC_SHADOW_VMCS;
1066}
1067
1068static inline bool report_flexpriority(void)
1069{
1070	return flexpriority_enabled;
1071}
1072
1073static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1074{
1075	return vmcs12->cpu_based_vm_exec_control & bit;
1076}
1077
1078static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1079{
1080	return (vmcs12->cpu_based_vm_exec_control &
1081			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1082		(vmcs12->secondary_vm_exec_control & bit);
1083}
1084
1085static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1086{
1087	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1088}
1089
1090static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1091{
1092	return vmcs12->pin_based_vm_exec_control &
1093		PIN_BASED_VMX_PREEMPTION_TIMER;
1094}
1095
1096static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1097{
1098	return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1099}
1100
1101static inline bool is_exception(u32 intr_info)
1102{
1103	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1104		== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1105}
1106
1107static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1108			      u32 exit_intr_info,
1109			      unsigned long exit_qualification);
1110static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1111			struct vmcs12 *vmcs12,
1112			u32 reason, unsigned long qualification);
1113
1114static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1115{
1116	int i;
1117
1118	for (i = 0; i < vmx->nmsrs; ++i)
1119		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1120			return i;
1121	return -1;
1122}
1123
1124static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1125{
1126    struct {
1127	u64 vpid : 16;
1128	u64 rsvd : 48;
1129	u64 gva;
1130    } operand = { vpid, 0, gva };
1131
1132    asm volatile (__ex(ASM_VMX_INVVPID)
1133		  /* CF==1 or ZF==1 --> rc = -1 */
1134		  "; ja 1f ; ud2 ; 1:"
1135		  : : "a"(&operand), "c"(ext) : "cc", "memory");
1136}
1137
1138static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1139{
1140	struct {
1141		u64 eptp, gpa;
1142	} operand = {eptp, gpa};
1143
1144	asm volatile (__ex(ASM_VMX_INVEPT)
1145			/* CF==1 or ZF==1 --> rc = -1 */
1146			"; ja 1f ; ud2 ; 1:\n"
1147			: : "a" (&operand), "c" (ext) : "cc", "memory");
1148}
1149
1150static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1151{
1152	int i;
1153
1154	i = __find_msr_index(vmx, msr);
1155	if (i >= 0)
1156		return &vmx->guest_msrs[i];
1157	return NULL;
1158}
1159
1160static void vmcs_clear(struct vmcs *vmcs)
1161{
1162	u64 phys_addr = __pa(vmcs);
1163	u8 error;
1164
1165	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1166		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1167		      : "cc", "memory");
1168	if (error)
1169		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1170		       vmcs, phys_addr);
1171}
1172
1173static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1174{
1175	vmcs_clear(loaded_vmcs->vmcs);
1176	loaded_vmcs->cpu = -1;
1177	loaded_vmcs->launched = 0;
1178}
1179
1180static void vmcs_load(struct vmcs *vmcs)
1181{
1182	u64 phys_addr = __pa(vmcs);
1183	u8 error;
1184
1185	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1186			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1187			: "cc", "memory");
1188	if (error)
1189		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1190		       vmcs, phys_addr);
1191}
1192
1193#ifdef CONFIG_KEXEC
1194/*
1195 * This bitmap is used to indicate whether the vmclear
1196 * operation is enabled on all cpus. All disabled by
1197 * default.
1198 */
1199static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1200
1201static inline void crash_enable_local_vmclear(int cpu)
1202{
1203	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1204}
1205
1206static inline void crash_disable_local_vmclear(int cpu)
1207{
1208	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1209}
1210
1211static inline int crash_local_vmclear_enabled(int cpu)
1212{
1213	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1214}
1215
1216static void crash_vmclear_local_loaded_vmcss(void)
1217{
1218	int cpu = raw_smp_processor_id();
1219	struct loaded_vmcs *v;
1220
1221	if (!crash_local_vmclear_enabled(cpu))
1222		return;
1223
1224	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1225			    loaded_vmcss_on_cpu_link)
1226		vmcs_clear(v->vmcs);
1227}
1228#else
1229static inline void crash_enable_local_vmclear(int cpu) { }
1230static inline void crash_disable_local_vmclear(int cpu) { }
1231#endif /* CONFIG_KEXEC */
1232
1233static void __loaded_vmcs_clear(void *arg)
1234{
1235	struct loaded_vmcs *loaded_vmcs = arg;
1236	int cpu = raw_smp_processor_id();
1237
1238	if (loaded_vmcs->cpu != cpu)
1239		return; /* vcpu migration can race with cpu offline */
1240	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1241		per_cpu(current_vmcs, cpu) = NULL;
1242	crash_disable_local_vmclear(cpu);
1243	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1244
1245	/*
1246	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1247	 * is before setting loaded_vmcs->vcpu to -1 which is done in
1248	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1249	 * then adds the vmcs into percpu list before it is deleted.
1250	 */
1251	smp_wmb();
1252
1253	loaded_vmcs_init(loaded_vmcs);
1254	crash_enable_local_vmclear(cpu);
1255}
1256
1257static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1258{
1259	int cpu = loaded_vmcs->cpu;
1260
1261	if (cpu != -1)
1262		smp_call_function_single(cpu,
1263			 __loaded_vmcs_clear, loaded_vmcs, 1);
1264}
1265
1266static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1267{
1268	if (vmx->vpid == 0)
1269		return;
1270
1271	if (cpu_has_vmx_invvpid_single())
1272		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1273}
1274
1275static inline void vpid_sync_vcpu_global(void)
1276{
1277	if (cpu_has_vmx_invvpid_global())
1278		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1279}
1280
1281static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1282{
1283	if (cpu_has_vmx_invvpid_single())
1284		vpid_sync_vcpu_single(vmx);
1285	else
1286		vpid_sync_vcpu_global();
1287}
1288
1289static inline void ept_sync_global(void)
1290{
1291	if (cpu_has_vmx_invept_global())
1292		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1293}
1294
1295static inline void ept_sync_context(u64 eptp)
1296{
1297	if (enable_ept) {
1298		if (cpu_has_vmx_invept_context())
1299			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1300		else
1301			ept_sync_global();
1302	}
1303}
1304
1305static __always_inline unsigned long vmcs_readl(unsigned long field)
1306{
1307	unsigned long value;
1308
1309	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1310		      : "=a"(value) : "d"(field) : "cc");
1311	return value;
1312}
1313
1314static __always_inline u16 vmcs_read16(unsigned long field)
1315{
1316	return vmcs_readl(field);
1317}
1318
1319static __always_inline u32 vmcs_read32(unsigned long field)
1320{
1321	return vmcs_readl(field);
1322}
1323
1324static __always_inline u64 vmcs_read64(unsigned long field)
1325{
1326#ifdef CONFIG_X86_64
1327	return vmcs_readl(field);
1328#else
1329	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1330#endif
1331}
1332
1333static noinline void vmwrite_error(unsigned long field, unsigned long value)
1334{
1335	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1336	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1337	dump_stack();
1338}
1339
1340static void vmcs_writel(unsigned long field, unsigned long value)
1341{
1342	u8 error;
1343
1344	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1345		       : "=q"(error) : "a"(value), "d"(field) : "cc");
1346	if (unlikely(error))
1347		vmwrite_error(field, value);
1348}
1349
1350static void vmcs_write16(unsigned long field, u16 value)
1351{
1352	vmcs_writel(field, value);
1353}
1354
1355static void vmcs_write32(unsigned long field, u32 value)
1356{
1357	vmcs_writel(field, value);
1358}
1359
1360static void vmcs_write64(unsigned long field, u64 value)
1361{
1362	vmcs_writel(field, value);
1363#ifndef CONFIG_X86_64
1364	asm volatile ("");
1365	vmcs_writel(field+1, value >> 32);
1366#endif
1367}
1368
1369static void vmcs_clear_bits(unsigned long field, u32 mask)
1370{
1371	vmcs_writel(field, vmcs_readl(field) & ~mask);
1372}
1373
1374static void vmcs_set_bits(unsigned long field, u32 mask)
1375{
1376	vmcs_writel(field, vmcs_readl(field) | mask);
1377}
1378
1379static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1380{
1381	vmcs_write32(VM_ENTRY_CONTROLS, val);
1382	vmx->vm_entry_controls_shadow = val;
1383}
1384
1385static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1386{
1387	if (vmx->vm_entry_controls_shadow != val)
1388		vm_entry_controls_init(vmx, val);
1389}
1390
1391static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1392{
1393	return vmx->vm_entry_controls_shadow;
1394}
1395
1396
1397static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1398{
1399	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1400}
1401
1402static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1403{
1404	vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1405}
1406
1407static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1408{
1409	vmcs_write32(VM_EXIT_CONTROLS, val);
1410	vmx->vm_exit_controls_shadow = val;
1411}
1412
1413static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1414{
1415	if (vmx->vm_exit_controls_shadow != val)
1416		vm_exit_controls_init(vmx, val);
1417}
1418
1419static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1420{
1421	return vmx->vm_exit_controls_shadow;
1422}
1423
1424
1425static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1426{
1427	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1428}
1429
1430static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1431{
1432	vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1433}
1434
1435static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1436{
1437	vmx->segment_cache.bitmask = 0;
1438}
1439
1440static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1441				       unsigned field)
1442{
1443	bool ret;
1444	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1445
1446	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1447		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1448		vmx->segment_cache.bitmask = 0;
1449	}
1450	ret = vmx->segment_cache.bitmask & mask;
1451	vmx->segment_cache.bitmask |= mask;
1452	return ret;
1453}
1454
1455static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1456{
1457	u16 *p = &vmx->segment_cache.seg[seg].selector;
1458
1459	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1460		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1461	return *p;
1462}
1463
1464static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1465{
1466	ulong *p = &vmx->segment_cache.seg[seg].base;
1467
1468	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1469		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1470	return *p;
1471}
1472
1473static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1474{
1475	u32 *p = &vmx->segment_cache.seg[seg].limit;
1476
1477	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1478		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1479	return *p;
1480}
1481
1482static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1483{
1484	u32 *p = &vmx->segment_cache.seg[seg].ar;
1485
1486	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1487		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1488	return *p;
1489}
1490
1491static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1492{
1493	u32 eb;
1494
1495	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1496	     (1u << NM_VECTOR) | (1u << DB_VECTOR);
1497	if ((vcpu->guest_debug &
1498	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1499	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1500		eb |= 1u << BP_VECTOR;
1501	if (to_vmx(vcpu)->rmode.vm86_active)
1502		eb = ~0;
1503	if (enable_ept)
1504		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1505	if (vcpu->fpu_active)
1506		eb &= ~(1u << NM_VECTOR);
1507
1508	/* When we are running a nested L2 guest and L1 specified for it a
1509	 * certain exception bitmap, we must trap the same exceptions and pass
1510	 * them to L1. When running L2, we will only handle the exceptions
1511	 * specified above if L1 did not want them.
1512	 */
1513	if (is_guest_mode(vcpu))
1514		eb |= get_vmcs12(vcpu)->exception_bitmap;
1515
1516	vmcs_write32(EXCEPTION_BITMAP, eb);
1517}
1518
1519static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1520		unsigned long entry, unsigned long exit)
1521{
1522	vm_entry_controls_clearbit(vmx, entry);
1523	vm_exit_controls_clearbit(vmx, exit);
1524}
1525
1526static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1527{
1528	unsigned i;
1529	struct msr_autoload *m = &vmx->msr_autoload;
1530
1531	switch (msr) {
1532	case MSR_EFER:
1533		if (cpu_has_load_ia32_efer) {
1534			clear_atomic_switch_msr_special(vmx,
1535					VM_ENTRY_LOAD_IA32_EFER,
1536					VM_EXIT_LOAD_IA32_EFER);
1537			return;
1538		}
1539		break;
1540	case MSR_CORE_PERF_GLOBAL_CTRL:
1541		if (cpu_has_load_perf_global_ctrl) {
1542			clear_atomic_switch_msr_special(vmx,
1543					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1544					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1545			return;
1546		}
1547		break;
1548	}
1549
1550	for (i = 0; i < m->nr; ++i)
1551		if (m->guest[i].index == msr)
1552			break;
1553
1554	if (i == m->nr)
1555		return;
1556	--m->nr;
1557	m->guest[i] = m->guest[m->nr];
1558	m->host[i] = m->host[m->nr];
1559	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1560	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1561}
1562
1563static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1564		unsigned long entry, unsigned long exit,
1565		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1566		u64 guest_val, u64 host_val)
1567{
1568	vmcs_write64(guest_val_vmcs, guest_val);
1569	vmcs_write64(host_val_vmcs, host_val);
1570	vm_entry_controls_setbit(vmx, entry);
1571	vm_exit_controls_setbit(vmx, exit);
1572}
1573
1574static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1575				  u64 guest_val, u64 host_val)
1576{
1577	unsigned i;
1578	struct msr_autoload *m = &vmx->msr_autoload;
1579
1580	switch (msr) {
1581	case MSR_EFER:
1582		if (cpu_has_load_ia32_efer) {
1583			add_atomic_switch_msr_special(vmx,
1584					VM_ENTRY_LOAD_IA32_EFER,
1585					VM_EXIT_LOAD_IA32_EFER,
1586					GUEST_IA32_EFER,
1587					HOST_IA32_EFER,
1588					guest_val, host_val);
1589			return;
1590		}
1591		break;
1592	case MSR_CORE_PERF_GLOBAL_CTRL:
1593		if (cpu_has_load_perf_global_ctrl) {
1594			add_atomic_switch_msr_special(vmx,
1595					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1596					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1597					GUEST_IA32_PERF_GLOBAL_CTRL,
1598					HOST_IA32_PERF_GLOBAL_CTRL,
1599					guest_val, host_val);
1600			return;
1601		}
1602		break;
1603	}
1604
1605	for (i = 0; i < m->nr; ++i)
1606		if (m->guest[i].index == msr)
1607			break;
1608
1609	if (i == NR_AUTOLOAD_MSRS) {
1610		printk_once(KERN_WARNING "Not enough msr switch entries. "
1611				"Can't add msr %x\n", msr);
1612		return;
1613	} else if (i == m->nr) {
1614		++m->nr;
1615		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1616		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1617	}
1618
1619	m->guest[i].index = msr;
1620	m->guest[i].value = guest_val;
1621	m->host[i].index = msr;
1622	m->host[i].value = host_val;
1623}
1624
1625static void reload_tss(void)
1626{
1627	/*
1628	 * VT restores TR but not its size.  Useless.
1629	 */
1630	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1631	struct desc_struct *descs;
1632
1633	descs = (void *)gdt->address;
1634	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1635	load_TR_desc();
1636}
1637
1638static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1639{
1640	u64 guest_efer;
1641	u64 ignore_bits;
1642
1643	guest_efer = vmx->vcpu.arch.efer;
1644
1645	/*
1646	 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1647	 * outside long mode
1648	 */
1649	ignore_bits = EFER_NX | EFER_SCE;
1650#ifdef CONFIG_X86_64
1651	ignore_bits |= EFER_LMA | EFER_LME;
1652	/* SCE is meaningful only in long mode on Intel */
1653	if (guest_efer & EFER_LMA)
1654		ignore_bits &= ~(u64)EFER_SCE;
1655#endif
1656	guest_efer &= ~ignore_bits;
1657	guest_efer |= host_efer & ignore_bits;
1658	vmx->guest_msrs[efer_offset].data = guest_efer;
1659	vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1660
1661	clear_atomic_switch_msr(vmx, MSR_EFER);
1662	/* On ept, can't emulate nx, and must switch nx atomically */
1663	if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1664		guest_efer = vmx->vcpu.arch.efer;
1665		if (!(guest_efer & EFER_LMA))
1666			guest_efer &= ~EFER_LME;
1667		add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1668		return false;
1669	}
1670
1671	return true;
1672}
1673
1674static unsigned long segment_base(u16 selector)
1675{
1676	struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1677	struct desc_struct *d;
1678	unsigned long table_base;
1679	unsigned long v;
1680
1681	if (!(selector & ~3))
1682		return 0;
1683
1684	table_base = gdt->address;
1685
1686	if (selector & 4) {           /* from ldt */
1687		u16 ldt_selector = kvm_read_ldt();
1688
1689		if (!(ldt_selector & ~3))
1690			return 0;
1691
1692		table_base = segment_base(ldt_selector);
1693	}
1694	d = (struct desc_struct *)(table_base + (selector & ~7));
1695	v = get_desc_base(d);
1696#ifdef CONFIG_X86_64
1697       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1698               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1699#endif
1700	return v;
1701}
1702
1703static inline unsigned long kvm_read_tr_base(void)
1704{
1705	u16 tr;
1706	asm("str %0" : "=g"(tr));
1707	return segment_base(tr);
1708}
1709
1710static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1711{
1712	struct vcpu_vmx *vmx = to_vmx(vcpu);
1713	int i;
1714
1715	if (vmx->host_state.loaded)
1716		return;
1717
1718	vmx->host_state.loaded = 1;
1719	/*
1720	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1721	 * allow segment selectors with cpl > 0 or ti == 1.
1722	 */
1723	vmx->host_state.ldt_sel = kvm_read_ldt();
1724	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1725	savesegment(fs, vmx->host_state.fs_sel);
1726	if (!(vmx->host_state.fs_sel & 7)) {
1727		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1728		vmx->host_state.fs_reload_needed = 0;
1729	} else {
1730		vmcs_write16(HOST_FS_SELECTOR, 0);
1731		vmx->host_state.fs_reload_needed = 1;
1732	}
1733	savesegment(gs, vmx->host_state.gs_sel);
1734	if (!(vmx->host_state.gs_sel & 7))
1735		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1736	else {
1737		vmcs_write16(HOST_GS_SELECTOR, 0);
1738		vmx->host_state.gs_ldt_reload_needed = 1;
1739	}
1740
1741#ifdef CONFIG_X86_64
1742	savesegment(ds, vmx->host_state.ds_sel);
1743	savesegment(es, vmx->host_state.es_sel);
1744#endif
1745
1746#ifdef CONFIG_X86_64
1747	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1748	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1749#else
1750	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1751	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1752#endif
1753
1754#ifdef CONFIG_X86_64
1755	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1756	if (is_long_mode(&vmx->vcpu))
1757		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1758#endif
1759	if (boot_cpu_has(X86_FEATURE_MPX))
1760		rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1761	for (i = 0; i < vmx->save_nmsrs; ++i)
1762		kvm_set_shared_msr(vmx->guest_msrs[i].index,
1763				   vmx->guest_msrs[i].data,
1764				   vmx->guest_msrs[i].mask);
1765}
1766
1767static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1768{
1769	if (!vmx->host_state.loaded)
1770		return;
1771
1772	++vmx->vcpu.stat.host_state_reload;
1773	vmx->host_state.loaded = 0;
1774#ifdef CONFIG_X86_64
1775	if (is_long_mode(&vmx->vcpu))
1776		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1777#endif
1778	if (vmx->host_state.gs_ldt_reload_needed) {
1779		kvm_load_ldt(vmx->host_state.ldt_sel);
1780#ifdef CONFIG_X86_64
1781		load_gs_index(vmx->host_state.gs_sel);
1782#else
1783		loadsegment(gs, vmx->host_state.gs_sel);
1784#endif
1785	}
1786	if (vmx->host_state.fs_reload_needed)
1787		loadsegment(fs, vmx->host_state.fs_sel);
1788#ifdef CONFIG_X86_64
1789	if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1790		loadsegment(ds, vmx->host_state.ds_sel);
1791		loadsegment(es, vmx->host_state.es_sel);
1792	}
1793#endif
1794	reload_tss();
1795#ifdef CONFIG_X86_64
1796	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1797#endif
1798	if (vmx->host_state.msr_host_bndcfgs)
1799		wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
1800	/*
1801	 * If the FPU is not active (through the host task or
1802	 * the guest vcpu), then restore the cr0.TS bit.
1803	 */
1804	if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1805		stts();
1806	load_gdt(this_cpu_ptr(&host_gdt));
1807}
1808
1809static void vmx_load_host_state(struct vcpu_vmx *vmx)
1810{
1811	preempt_disable();
1812	__vmx_load_host_state(vmx);
1813	preempt_enable();
1814}
1815
1816/*
1817 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1818 * vcpu mutex is already taken.
1819 */
1820static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1821{
1822	struct vcpu_vmx *vmx = to_vmx(vcpu);
1823	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1824
1825	if (!vmm_exclusive)
1826		kvm_cpu_vmxon(phys_addr);
1827	else if (vmx->loaded_vmcs->cpu != cpu)
1828		loaded_vmcs_clear(vmx->loaded_vmcs);
1829
1830	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1831		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1832		vmcs_load(vmx->loaded_vmcs->vmcs);
1833	}
1834
1835	if (vmx->loaded_vmcs->cpu != cpu) {
1836		struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1837		unsigned long sysenter_esp;
1838
1839		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1840		local_irq_disable();
1841		crash_disable_local_vmclear(cpu);
1842
1843		/*
1844		 * Read loaded_vmcs->cpu should be before fetching
1845		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1846		 * See the comments in __loaded_vmcs_clear().
1847		 */
1848		smp_rmb();
1849
1850		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1851			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1852		crash_enable_local_vmclear(cpu);
1853		local_irq_enable();
1854
1855		/*
1856		 * Linux uses per-cpu TSS and GDT, so set these when switching
1857		 * processors.
1858		 */
1859		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1860		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1861
1862		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1863		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1864		vmx->loaded_vmcs->cpu = cpu;
1865	}
1866}
1867
1868static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1869{
1870	__vmx_load_host_state(to_vmx(vcpu));
1871	if (!vmm_exclusive) {
1872		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1873		vcpu->cpu = -1;
1874		kvm_cpu_vmxoff();
1875	}
1876}
1877
1878static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1879{
1880	ulong cr0;
1881
1882	if (vcpu->fpu_active)
1883		return;
1884	vcpu->fpu_active = 1;
1885	cr0 = vmcs_readl(GUEST_CR0);
1886	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1887	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1888	vmcs_writel(GUEST_CR0, cr0);
1889	update_exception_bitmap(vcpu);
1890	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1891	if (is_guest_mode(vcpu))
1892		vcpu->arch.cr0_guest_owned_bits &=
1893			~get_vmcs12(vcpu)->cr0_guest_host_mask;
1894	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1895}
1896
1897static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1898
1899/*
1900 * Return the cr0 value that a nested guest would read. This is a combination
1901 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1902 * its hypervisor (cr0_read_shadow).
1903 */
1904static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1905{
1906	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1907		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1908}
1909static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1910{
1911	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1912		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1913}
1914
1915static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1916{
1917	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
1918	 * set this *before* calling this function.
1919	 */
1920	vmx_decache_cr0_guest_bits(vcpu);
1921	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1922	update_exception_bitmap(vcpu);
1923	vcpu->arch.cr0_guest_owned_bits = 0;
1924	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1925	if (is_guest_mode(vcpu)) {
1926		/*
1927		 * L1's specified read shadow might not contain the TS bit,
1928		 * so now that we turned on shadowing of this bit, we need to
1929		 * set this bit of the shadow. Like in nested_vmx_run we need
1930		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1931		 * up-to-date here because we just decached cr0.TS (and we'll
1932		 * only update vmcs12->guest_cr0 on nested exit).
1933		 */
1934		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1935		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1936			(vcpu->arch.cr0 & X86_CR0_TS);
1937		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1938	} else
1939		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1940}
1941
1942static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1943{
1944	unsigned long rflags, save_rflags;
1945
1946	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1947		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1948		rflags = vmcs_readl(GUEST_RFLAGS);
1949		if (to_vmx(vcpu)->rmode.vm86_active) {
1950			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1951			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1952			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1953		}
1954		to_vmx(vcpu)->rflags = rflags;
1955	}
1956	return to_vmx(vcpu)->rflags;
1957}
1958
1959static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1960{
1961	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1962	to_vmx(vcpu)->rflags = rflags;
1963	if (to_vmx(vcpu)->rmode.vm86_active) {
1964		to_vmx(vcpu)->rmode.save_rflags = rflags;
1965		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1966	}
1967	vmcs_writel(GUEST_RFLAGS, rflags);
1968}
1969
1970static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1971{
1972	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1973	int ret = 0;
1974
1975	if (interruptibility & GUEST_INTR_STATE_STI)
1976		ret |= KVM_X86_SHADOW_INT_STI;
1977	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1978		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1979
1980	return ret;
1981}
1982
1983static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1984{
1985	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1986	u32 interruptibility = interruptibility_old;
1987
1988	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1989
1990	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1991		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1992	else if (mask & KVM_X86_SHADOW_INT_STI)
1993		interruptibility |= GUEST_INTR_STATE_STI;
1994
1995	if ((interruptibility != interruptibility_old))
1996		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1997}
1998
1999static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2000{
2001	unsigned long rip;
2002
2003	rip = kvm_rip_read(vcpu);
2004	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2005	kvm_rip_write(vcpu, rip);
2006
2007	/* skipping an emulated instruction also counts */
2008	vmx_set_interrupt_shadow(vcpu, 0);
2009}
2010
2011/*
2012 * KVM wants to inject page-faults which it got to the guest. This function
2013 * checks whether in a nested guest, we need to inject them to L1 or L2.
2014 */
2015static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2016{
2017	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2018
2019	if (!(vmcs12->exception_bitmap & (1u << nr)))
2020		return 0;
2021
2022	nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2023			  vmcs_read32(VM_EXIT_INTR_INFO),
2024			  vmcs_readl(EXIT_QUALIFICATION));
2025	return 1;
2026}
2027
2028static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2029				bool has_error_code, u32 error_code,
2030				bool reinject)
2031{
2032	struct vcpu_vmx *vmx = to_vmx(vcpu);
2033	u32 intr_info = nr | INTR_INFO_VALID_MASK;
2034
2035	if (!reinject && is_guest_mode(vcpu) &&
2036	    nested_vmx_check_exception(vcpu, nr))
2037		return;
2038
2039	if (has_error_code) {
2040		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2041		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2042	}
2043
2044	if (vmx->rmode.vm86_active) {
2045		int inc_eip = 0;
2046		if (kvm_exception_is_soft(nr))
2047			inc_eip = vcpu->arch.event_exit_inst_len;
2048		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2049			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2050		return;
2051	}
2052
2053	if (kvm_exception_is_soft(nr)) {
2054		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2055			     vmx->vcpu.arch.event_exit_inst_len);
2056		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2057	} else
2058		intr_info |= INTR_TYPE_HARD_EXCEPTION;
2059
2060	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2061}
2062
2063static bool vmx_rdtscp_supported(void)
2064{
2065	return cpu_has_vmx_rdtscp();
2066}
2067
2068static bool vmx_invpcid_supported(void)
2069{
2070	return cpu_has_vmx_invpcid() && enable_ept;
2071}
2072
2073/*
2074 * Swap MSR entry in host/guest MSR entry array.
2075 */
2076static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2077{
2078	struct shared_msr_entry tmp;
2079
2080	tmp = vmx->guest_msrs[to];
2081	vmx->guest_msrs[to] = vmx->guest_msrs[from];
2082	vmx->guest_msrs[from] = tmp;
2083}
2084
2085static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2086{
2087	unsigned long *msr_bitmap;
2088
2089	if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
2090		if (is_long_mode(vcpu))
2091			msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2092		else
2093			msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2094	} else {
2095		if (is_long_mode(vcpu))
2096			msr_bitmap = vmx_msr_bitmap_longmode;
2097		else
2098			msr_bitmap = vmx_msr_bitmap_legacy;
2099	}
2100
2101	vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2102}
2103
2104/*
2105 * Set up the vmcs to automatically save and restore system
2106 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2107 * mode, as fiddling with msrs is very expensive.
2108 */
2109static void setup_msrs(struct vcpu_vmx *vmx)
2110{
2111	int save_nmsrs, index;
2112
2113	save_nmsrs = 0;
2114#ifdef CONFIG_X86_64
2115	if (is_long_mode(&vmx->vcpu)) {
2116		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2117		if (index >= 0)
2118			move_msr_up(vmx, index, save_nmsrs++);
2119		index = __find_msr_index(vmx, MSR_LSTAR);
2120		if (index >= 0)
2121			move_msr_up(vmx, index, save_nmsrs++);
2122		index = __find_msr_index(vmx, MSR_CSTAR);
2123		if (index >= 0)
2124			move_msr_up(vmx, index, save_nmsrs++);
2125		index = __find_msr_index(vmx, MSR_TSC_AUX);
2126		if (index >= 0 && vmx->rdtscp_enabled)
2127			move_msr_up(vmx, index, save_nmsrs++);
2128		/*
2129		 * MSR_STAR is only needed on long mode guests, and only
2130		 * if efer.sce is enabled.
2131		 */
2132		index = __find_msr_index(vmx, MSR_STAR);
2133		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2134			move_msr_up(vmx, index, save_nmsrs++);
2135	}
2136#endif
2137	index = __find_msr_index(vmx, MSR_EFER);
2138	if (index >= 0 && update_transition_efer(vmx, index))
2139		move_msr_up(vmx, index, save_nmsrs++);
2140
2141	vmx->save_nmsrs = save_nmsrs;
2142
2143	if (cpu_has_vmx_msr_bitmap())
2144		vmx_set_msr_bitmap(&vmx->vcpu);
2145}
2146
2147/*
2148 * reads and returns guest's timestamp counter "register"
2149 * guest_tsc = host_tsc + tsc_offset    -- 21.3
2150 */
2151static u64 guest_read_tsc(void)
2152{
2153	u64 host_tsc, tsc_offset;
2154
2155	rdtscll(host_tsc);
2156	tsc_offset = vmcs_read64(TSC_OFFSET);
2157	return host_tsc + tsc_offset;
2158}
2159
2160/*
2161 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2162 * counter, even if a nested guest (L2) is currently running.
2163 */
2164static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2165{
2166	u64 tsc_offset;
2167
2168	tsc_offset = is_guest_mode(vcpu) ?
2169		to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2170		vmcs_read64(TSC_OFFSET);
2171	return host_tsc + tsc_offset;
2172}
2173
2174/*
2175 * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2176 * software catchup for faster rates on slower CPUs.
2177 */
2178static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2179{
2180	if (!scale)
2181		return;
2182
2183	if (user_tsc_khz > tsc_khz) {
2184		vcpu->arch.tsc_catchup = 1;
2185		vcpu->arch.tsc_always_catchup = 1;
2186	} else
2187		WARN(1, "user requested TSC rate below hardware speed\n");
2188}
2189
2190static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2191{
2192	return vmcs_read64(TSC_OFFSET);
2193}
2194
2195/*
2196 * writes 'offset' into guest's timestamp counter offset register
2197 */
2198static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2199{
2200	if (is_guest_mode(vcpu)) {
2201		/*
2202		 * We're here if L1 chose not to trap WRMSR to TSC. According
2203		 * to the spec, this should set L1's TSC; The offset that L1
2204		 * set for L2 remains unchanged, and still needs to be added
2205		 * to the newly set TSC to get L2's TSC.
2206		 */
2207		struct vmcs12 *vmcs12;
2208		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2209		/* recalculate vmcs02.TSC_OFFSET: */
2210		vmcs12 = get_vmcs12(vcpu);
2211		vmcs_write64(TSC_OFFSET, offset +
2212			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2213			 vmcs12->tsc_offset : 0));
2214	} else {
2215		trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2216					   vmcs_read64(TSC_OFFSET), offset);
2217		vmcs_write64(TSC_OFFSET, offset);
2218	}
2219}
2220
2221static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2222{
2223	u64 offset = vmcs_read64(TSC_OFFSET);
2224
2225	vmcs_write64(TSC_OFFSET, offset + adjustment);
2226	if (is_guest_mode(vcpu)) {
2227		/* Even when running L2, the adjustment needs to apply to L1 */
2228		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2229	} else
2230		trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2231					   offset + adjustment);
2232}
2233
2234static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2235{
2236	return target_tsc - native_read_tsc();
2237}
2238
2239static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2240{
2241	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2242	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2243}
2244
2245/*
2246 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2247 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2248 * all guests if the "nested" module option is off, and can also be disabled
2249 * for a single guest by disabling its VMX cpuid bit.
2250 */
2251static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2252{
2253	return nested && guest_cpuid_has_vmx(vcpu);
2254}
2255
2256/*
2257 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2258 * returned for the various VMX controls MSRs when nested VMX is enabled.
2259 * The same values should also be used to verify that vmcs12 control fields are
2260 * valid during nested entry from L1 to L2.
2261 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2262 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2263 * bit in the high half is on if the corresponding bit in the control field
2264 * may be on. See also vmx_control_verify().
2265 * TODO: allow these variables to be modified (downgraded) by module options
2266 * or other means.
2267 */
2268static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2269static u32 nested_vmx_true_procbased_ctls_low;
2270static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2271static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2272static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2273static u32 nested_vmx_true_exit_ctls_low;
2274static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2275static u32 nested_vmx_true_entry_ctls_low;
2276static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2277static u32 nested_vmx_ept_caps;
2278static __init void nested_vmx_setup_ctls_msrs(void)
2279{
2280	/*
2281	 * Note that as a general rule, the high half of the MSRs (bits in
2282	 * the control fields which may be 1) should be initialized by the
2283	 * intersection of the underlying hardware's MSR (i.e., features which
2284	 * can be supported) and the list of features we want to expose -
2285	 * because they are known to be properly supported in our code.
2286	 * Also, usually, the low half of the MSRs (bits which must be 1) can
2287	 * be set to 0, meaning that L1 may turn off any of these bits. The
2288	 * reason is that if one of these bits is necessary, it will appear
2289	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2290	 * fields of vmcs01 and vmcs02, will turn these bits off - and
2291	 * nested_vmx_exit_handled() will not pass related exits to L1.
2292	 * These rules have exceptions below.
2293	 */
2294
2295	/* pin-based controls */
2296	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2297	      nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2298	nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2299	nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2300		PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS;
2301	nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2302		PIN_BASED_VMX_PREEMPTION_TIMER;
2303
2304	/* exit controls */
2305	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2306		nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high);
2307	nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2308
2309	nested_vmx_exit_ctls_high &=
2310#ifdef CONFIG_X86_64
2311		VM_EXIT_HOST_ADDR_SPACE_SIZE |
2312#endif
2313		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2314	nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2315		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2316		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2317
2318	if (vmx_mpx_supported())
2319		nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2320
2321	/* We support free control of debug control saving. */
2322	nested_vmx_true_exit_ctls_low = nested_vmx_exit_ctls_low &
2323		~VM_EXIT_SAVE_DEBUG_CONTROLS;
2324
2325	/* entry controls */
2326	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2327		nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2328	nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2329	nested_vmx_entry_ctls_high &=
2330#ifdef CONFIG_X86_64
2331		VM_ENTRY_IA32E_MODE |
2332#endif
2333		VM_ENTRY_LOAD_IA32_PAT;
2334	nested_vmx_entry_ctls_high |= (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR |
2335				       VM_ENTRY_LOAD_IA32_EFER);
2336	if (vmx_mpx_supported())
2337		nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2338
2339	/* We support free control of debug control loading. */
2340	nested_vmx_true_entry_ctls_low = nested_vmx_entry_ctls_low &
2341		~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2342
2343	/* cpu-based controls */
2344	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2345		nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2346	nested_vmx_procbased_ctls_low = CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2347	nested_vmx_procbased_ctls_high &=
2348		CPU_BASED_VIRTUAL_INTR_PENDING |
2349		CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2350		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2351		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2352		CPU_BASED_CR3_STORE_EXITING |
2353#ifdef CONFIG_X86_64
2354		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2355#endif
2356		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2357		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2358		CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2359		CPU_BASED_PAUSE_EXITING | CPU_BASED_TPR_SHADOW |
2360		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2361	/*
2362	 * We can allow some features even when not supported by the
2363	 * hardware. For example, L1 can specify an MSR bitmap - and we
2364	 * can use it to avoid exits to L1 - even when L0 runs L2
2365	 * without MSR bitmaps.
2366	 */
2367	nested_vmx_procbased_ctls_high |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2368		CPU_BASED_USE_MSR_BITMAPS;
2369
2370	/* We support free control of CR3 access interception. */
2371	nested_vmx_true_procbased_ctls_low = nested_vmx_procbased_ctls_low &
2372		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2373
2374	/* secondary cpu-based controls */
2375	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2376		nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2377	nested_vmx_secondary_ctls_low = 0;
2378	nested_vmx_secondary_ctls_high &=
2379		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2380		SECONDARY_EXEC_UNRESTRICTED_GUEST |
2381		SECONDARY_EXEC_WBINVD_EXITING;
2382
2383	if (enable_ept) {
2384		/* nested EPT: emulate EPT also to L1 */
2385		nested_vmx_secondary_ctls_high |= SECONDARY_EXEC_ENABLE_EPT;
2386		nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2387			 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2388			 VMX_EPT_INVEPT_BIT;
2389		nested_vmx_ept_caps &= vmx_capability.ept;
2390		/*
2391		 * For nested guests, we don't do anything specific
2392		 * for single context invalidation. Hence, only advertise
2393		 * support for global context invalidation.
2394		 */
2395		nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
2396	} else
2397		nested_vmx_ept_caps = 0;
2398
2399	/* miscellaneous data */
2400	rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2401	nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2402	nested_vmx_misc_low |= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2403		VMX_MISC_ACTIVITY_HLT;
2404	nested_vmx_misc_high = 0;
2405}
2406
2407static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2408{
2409	/*
2410	 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2411	 */
2412	return ((control & high) | low) == control;
2413}
2414
2415static inline u64 vmx_control_msr(u32 low, u32 high)
2416{
2417	return low | ((u64)high << 32);
2418}
2419
2420/* Returns 0 on success, non-0 otherwise. */
2421static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2422{
2423	switch (msr_index) {
2424	case MSR_IA32_VMX_BASIC:
2425		/*
2426		 * This MSR reports some information about VMX support. We
2427		 * should return information about the VMX we emulate for the
2428		 * guest, and the VMCS structure we give it - not about the
2429		 * VMX support of the underlying hardware.
2430		 */
2431		*pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2432			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2433			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2434		break;
2435	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2436	case MSR_IA32_VMX_PINBASED_CTLS:
2437		*pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2438					nested_vmx_pinbased_ctls_high);
2439		break;
2440	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2441		*pdata = vmx_control_msr(nested_vmx_true_procbased_ctls_low,
2442					nested_vmx_procbased_ctls_high);
2443		break;
2444	case MSR_IA32_VMX_PROCBASED_CTLS:
2445		*pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2446					nested_vmx_procbased_ctls_high);
2447		break;
2448	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2449		*pdata = vmx_control_msr(nested_vmx_true_exit_ctls_low,
2450					nested_vmx_exit_ctls_high);
2451		break;
2452	case MSR_IA32_VMX_EXIT_CTLS:
2453		*pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2454					nested_vmx_exit_ctls_high);
2455		break;
2456	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2457		*pdata = vmx_control_msr(nested_vmx_true_entry_ctls_low,
2458					nested_vmx_entry_ctls_high);
2459		break;
2460	case MSR_IA32_VMX_ENTRY_CTLS:
2461		*pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2462					nested_vmx_entry_ctls_high);
2463		break;
2464	case MSR_IA32_VMX_MISC:
2465		*pdata = vmx_control_msr(nested_vmx_misc_low,
2466					 nested_vmx_misc_high);
2467		break;
2468	/*
2469	 * These MSRs specify bits which the guest must keep fixed (on or off)
2470	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2471	 * We picked the standard core2 setting.
2472	 */
2473#define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2474#define VMXON_CR4_ALWAYSON	X86_CR4_VMXE
2475	case MSR_IA32_VMX_CR0_FIXED0:
2476		*pdata = VMXON_CR0_ALWAYSON;
2477		break;
2478	case MSR_IA32_VMX_CR0_FIXED1:
2479		*pdata = -1ULL;
2480		break;
2481	case MSR_IA32_VMX_CR4_FIXED0:
2482		*pdata = VMXON_CR4_ALWAYSON;
2483		break;
2484	case MSR_IA32_VMX_CR4_FIXED1:
2485		*pdata = -1ULL;
2486		break;
2487	case MSR_IA32_VMX_VMCS_ENUM:
2488		*pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2489		break;
2490	case MSR_IA32_VMX_PROCBASED_CTLS2:
2491		*pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2492					nested_vmx_secondary_ctls_high);
2493		break;
2494	case MSR_IA32_VMX_EPT_VPID_CAP:
2495		/* Currently, no nested vpid support */
2496		*pdata = nested_vmx_ept_caps;
2497		break;
2498	default:
2499		return 1;
2500	}
2501
2502	return 0;
2503}
2504
2505/*
2506 * Reads an msr value (of 'msr_index') into 'pdata'.
2507 * Returns 0 on success, non-0 otherwise.
2508 * Assumes vcpu_load() was already called.
2509 */
2510static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2511{
2512	u64 data;
2513	struct shared_msr_entry *msr;
2514
2515	if (!pdata) {
2516		printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2517		return -EINVAL;
2518	}
2519
2520	switch (msr_index) {
2521#ifdef CONFIG_X86_64
2522	case MSR_FS_BASE:
2523		data = vmcs_readl(GUEST_FS_BASE);
2524		break;
2525	case MSR_GS_BASE:
2526		data = vmcs_readl(GUEST_GS_BASE);
2527		break;
2528	case MSR_KERNEL_GS_BASE:
2529		vmx_load_host_state(to_vmx(vcpu));
2530		data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2531		break;
2532#endif
2533	case MSR_EFER:
2534		return kvm_get_msr_common(vcpu, msr_index, pdata);
2535	case MSR_IA32_TSC:
2536		data = guest_read_tsc();
2537		break;
2538	case MSR_IA32_SYSENTER_CS:
2539		data = vmcs_read32(GUEST_SYSENTER_CS);
2540		break;
2541	case MSR_IA32_SYSENTER_EIP:
2542		data = vmcs_readl(GUEST_SYSENTER_EIP);
2543		break;
2544	case MSR_IA32_SYSENTER_ESP:
2545		data = vmcs_readl(GUEST_SYSENTER_ESP);
2546		break;
2547	case MSR_IA32_BNDCFGS:
2548		if (!vmx_mpx_supported())
2549			return 1;
2550		data = vmcs_read64(GUEST_BNDCFGS);
2551		break;
2552	case MSR_IA32_FEATURE_CONTROL:
2553		if (!nested_vmx_allowed(vcpu))
2554			return 1;
2555		data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2556		break;
2557	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2558		if (!nested_vmx_allowed(vcpu))
2559			return 1;
2560		return vmx_get_vmx_msr(vcpu, msr_index, pdata);
2561	case MSR_TSC_AUX:
2562		if (!to_vmx(vcpu)->rdtscp_enabled)
2563			return 1;
2564		/* Otherwise falls through */
2565	default:
2566		msr = find_msr_entry(to_vmx(vcpu), msr_index);
2567		if (msr) {
2568			data = msr->data;
2569			break;
2570		}
2571		return kvm_get_msr_common(vcpu, msr_index, pdata);
2572	}
2573
2574	*pdata = data;
2575	return 0;
2576}
2577
2578static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2579
2580/*
2581 * Writes msr value into into the appropriate "register".
2582 * Returns 0 on success, non-0 otherwise.
2583 * Assumes vcpu_load() was already called.
2584 */
2585static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2586{
2587	struct vcpu_vmx *vmx = to_vmx(vcpu);
2588	struct shared_msr_entry *msr;
2589	int ret = 0;
2590	u32 msr_index = msr_info->index;
2591	u64 data = msr_info->data;
2592
2593	switch (msr_index) {
2594	case MSR_EFER:
2595		ret = kvm_set_msr_common(vcpu, msr_info);
2596		break;
2597#ifdef CONFIG_X86_64
2598	case MSR_FS_BASE:
2599		vmx_segment_cache_clear(vmx);
2600		vmcs_writel(GUEST_FS_BASE, data);
2601		break;
2602	case MSR_GS_BASE:
2603		vmx_segment_cache_clear(vmx);
2604		vmcs_writel(GUEST_GS_BASE, data);
2605		break;
2606	case MSR_KERNEL_GS_BASE:
2607		vmx_load_host_state(vmx);
2608		vmx->msr_guest_kernel_gs_base = data;
2609		break;
2610#endif
2611	case MSR_IA32_SYSENTER_CS:
2612		vmcs_write32(GUEST_SYSENTER_CS, data);
2613		break;
2614	case MSR_IA32_SYSENTER_EIP:
2615		vmcs_writel(GUEST_SYSENTER_EIP, data);
2616		break;
2617	case MSR_IA32_SYSENTER_ESP:
2618		vmcs_writel(GUEST_SYSENTER_ESP, data);
2619		break;
2620	case MSR_IA32_BNDCFGS:
2621		if (!vmx_mpx_supported())
2622			return 1;
2623		vmcs_write64(GUEST_BNDCFGS, data);
2624		break;
2625	case MSR_IA32_TSC:
2626		kvm_write_tsc(vcpu, msr_info);
2627		break;
2628	case MSR_IA32_CR_PAT:
2629		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2630			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2631				return 1;
2632			vmcs_write64(GUEST_IA32_PAT, data);
2633			vcpu->arch.pat = data;
2634			break;
2635		}
2636		ret = kvm_set_msr_common(vcpu, msr_info);
2637		break;
2638	case MSR_IA32_TSC_ADJUST:
2639		ret = kvm_set_msr_common(vcpu, msr_info);
2640		break;
2641	case MSR_IA32_FEATURE_CONTROL:
2642		if (!nested_vmx_allowed(vcpu) ||
2643		    (to_vmx(vcpu)->nested.msr_ia32_feature_control &
2644		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2645			return 1;
2646		vmx->nested.msr_ia32_feature_control = data;
2647		if (msr_info->host_initiated && data == 0)
2648			vmx_leave_nested(vcpu);
2649		break;
2650	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2651		return 1; /* they are read-only */
2652	case MSR_TSC_AUX:
2653		if (!vmx->rdtscp_enabled)
2654			return 1;
2655		/* Check reserved bit, higher 32 bits should be zero */
2656		if ((data >> 32) != 0)
2657			return 1;
2658		/* Otherwise falls through */
2659	default:
2660		msr = find_msr_entry(vmx, msr_index);
2661		if (msr) {
2662			u64 old_msr_data = msr->data;
2663			msr->data = data;
2664			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2665				preempt_disable();
2666				ret = kvm_set_shared_msr(msr->index, msr->data,
2667							 msr->mask);
2668				preempt_enable();
2669				if (ret)
2670					msr->data = old_msr_data;
2671			}
2672			break;
2673		}
2674		ret = kvm_set_msr_common(vcpu, msr_info);
2675	}
2676
2677	return ret;
2678}
2679
2680static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2681{
2682	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2683	switch (reg) {
2684	case VCPU_REGS_RSP:
2685		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2686		break;
2687	case VCPU_REGS_RIP:
2688		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2689		break;
2690	case VCPU_EXREG_PDPTR:
2691		if (enable_ept)
2692			ept_save_pdptrs(vcpu);
2693		break;
2694	default:
2695		break;
2696	}
2697}
2698
2699static __init int cpu_has_kvm_support(void)
2700{
2701	return cpu_has_vmx();
2702}
2703
2704static __init int vmx_disabled_by_bios(void)
2705{
2706	u64 msr;
2707
2708	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2709	if (msr & FEATURE_CONTROL_LOCKED) {
2710		/* launched w/ TXT and VMX disabled */
2711		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2712			&& tboot_enabled())
2713			return 1;
2714		/* launched w/o TXT and VMX only enabled w/ TXT */
2715		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2716			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2717			&& !tboot_enabled()) {
2718			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2719				"activate TXT before enabling KVM\n");
2720			return 1;
2721		}
2722		/* launched w/o TXT and VMX disabled */
2723		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2724			&& !tboot_enabled())
2725			return 1;
2726	}
2727
2728	return 0;
2729}
2730
2731static void kvm_cpu_vmxon(u64 addr)
2732{
2733	asm volatile (ASM_VMX_VMXON_RAX
2734			: : "a"(&addr), "m"(addr)
2735			: "memory", "cc");
2736}
2737
2738static int hardware_enable(void)
2739{
2740	int cpu = raw_smp_processor_id();
2741	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2742	u64 old, test_bits;
2743
2744	if (read_cr4() & X86_CR4_VMXE)
2745		return -EBUSY;
2746
2747	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2748
2749	/*
2750	 * Now we can enable the vmclear operation in kdump
2751	 * since the loaded_vmcss_on_cpu list on this cpu
2752	 * has been initialized.
2753	 *
2754	 * Though the cpu is not in VMX operation now, there
2755	 * is no problem to enable the vmclear operation
2756	 * for the loaded_vmcss_on_cpu list is empty!
2757	 */
2758	crash_enable_local_vmclear(cpu);
2759
2760	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2761
2762	test_bits = FEATURE_CONTROL_LOCKED;
2763	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2764	if (tboot_enabled())
2765		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2766
2767	if ((old & test_bits) != test_bits) {
2768		/* enable and lock */
2769		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2770	}
2771	write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2772
2773	if (vmm_exclusive) {
2774		kvm_cpu_vmxon(phys_addr);
2775		ept_sync_global();
2776	}
2777
2778	native_store_gdt(this_cpu_ptr(&host_gdt));
2779
2780	return 0;
2781}
2782
2783static void vmclear_local_loaded_vmcss(void)
2784{
2785	int cpu = raw_smp_processor_id();
2786	struct loaded_vmcs *v, *n;
2787
2788	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2789				 loaded_vmcss_on_cpu_link)
2790		__loaded_vmcs_clear(v);
2791}
2792
2793
2794/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2795 * tricks.
2796 */
2797static void kvm_cpu_vmxoff(void)
2798{
2799	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2800}
2801
2802static void hardware_disable(void)
2803{
2804	if (vmm_exclusive) {
2805		vmclear_local_loaded_vmcss();
2806		kvm_cpu_vmxoff();
2807	}
2808	write_cr4(read_cr4() & ~X86_CR4_VMXE);
2809}
2810
2811static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2812				      u32 msr, u32 *result)
2813{
2814	u32 vmx_msr_low, vmx_msr_high;
2815	u32 ctl = ctl_min | ctl_opt;
2816
2817	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2818
2819	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2820	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2821
2822	/* Ensure minimum (required) set of control bits are supported. */
2823	if (ctl_min & ~ctl)
2824		return -EIO;
2825
2826	*result = ctl;
2827	return 0;
2828}
2829
2830static __init bool allow_1_setting(u32 msr, u32 ctl)
2831{
2832	u32 vmx_msr_low, vmx_msr_high;
2833
2834	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2835	return vmx_msr_high & ctl;
2836}
2837
2838static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2839{
2840	u32 vmx_msr_low, vmx_msr_high;
2841	u32 min, opt, min2, opt2;
2842	u32 _pin_based_exec_control = 0;
2843	u32 _cpu_based_exec_control = 0;
2844	u32 _cpu_based_2nd_exec_control = 0;
2845	u32 _vmexit_control = 0;
2846	u32 _vmentry_control = 0;
2847
2848	min = CPU_BASED_HLT_EXITING |
2849#ifdef CONFIG_X86_64
2850	      CPU_BASED_CR8_LOAD_EXITING |
2851	      CPU_BASED_CR8_STORE_EXITING |
2852#endif
2853	      CPU_BASED_CR3_LOAD_EXITING |
2854	      CPU_BASED_CR3_STORE_EXITING |
2855	      CPU_BASED_USE_IO_BITMAPS |
2856	      CPU_BASED_MOV_DR_EXITING |
2857	      CPU_BASED_USE_TSC_OFFSETING |
2858	      CPU_BASED_MWAIT_EXITING |
2859	      CPU_BASED_MONITOR_EXITING |
2860	      CPU_BASED_INVLPG_EXITING |
2861	      CPU_BASED_RDPMC_EXITING;
2862
2863	opt = CPU_BASED_TPR_SHADOW |
2864	      CPU_BASED_USE_MSR_BITMAPS |
2865	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2866	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2867				&_cpu_based_exec_control) < 0)
2868		return -EIO;
2869#ifdef CONFIG_X86_64
2870	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2871		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2872					   ~CPU_BASED_CR8_STORE_EXITING;
2873#endif
2874	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2875		min2 = 0;
2876		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2877			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2878			SECONDARY_EXEC_WBINVD_EXITING |
2879			SECONDARY_EXEC_ENABLE_VPID |
2880			SECONDARY_EXEC_ENABLE_EPT |
2881			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2882			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2883			SECONDARY_EXEC_RDTSCP |
2884			SECONDARY_EXEC_ENABLE_INVPCID |
2885			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2886			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2887			SECONDARY_EXEC_SHADOW_VMCS;
2888		if (adjust_vmx_controls(min2, opt2,
2889					MSR_IA32_VMX_PROCBASED_CTLS2,
2890					&_cpu_based_2nd_exec_control) < 0)
2891			return -EIO;
2892	}
2893#ifndef CONFIG_X86_64
2894	if (!(_cpu_based_2nd_exec_control &
2895				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2896		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2897#endif
2898
2899	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2900		_cpu_based_2nd_exec_control &= ~(
2901				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2902				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2903				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2904
2905	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2906		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2907		   enabled */
2908		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2909					     CPU_BASED_CR3_STORE_EXITING |
2910					     CPU_BASED_INVLPG_EXITING);
2911		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2912		      vmx_capability.ept, vmx_capability.vpid);
2913	}
2914
2915	min = VM_EXIT_SAVE_DEBUG_CONTROLS;
2916#ifdef CONFIG_X86_64
2917	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2918#endif
2919	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2920		VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
2921	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2922				&_vmexit_control) < 0)
2923		return -EIO;
2924
2925	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2926	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2927	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2928				&_pin_based_exec_control) < 0)
2929		return -EIO;
2930
2931	if (!(_cpu_based_2nd_exec_control &
2932		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2933		!(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2934		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2935
2936	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2937	opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
2938	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2939				&_vmentry_control) < 0)
2940		return -EIO;
2941
2942	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2943
2944	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2945	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2946		return -EIO;
2947
2948#ifdef CONFIG_X86_64
2949	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2950	if (vmx_msr_high & (1u<<16))
2951		return -EIO;
2952#endif
2953
2954	/* Require Write-Back (WB) memory type for VMCS accesses. */
2955	if (((vmx_msr_high >> 18) & 15) != 6)
2956		return -EIO;
2957
2958	vmcs_conf->size = vmx_msr_high & 0x1fff;
2959	vmcs_conf->order = get_order(vmcs_config.size);
2960	vmcs_conf->revision_id = vmx_msr_low;
2961
2962	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2963	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2964	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2965	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2966	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2967
2968	cpu_has_load_ia32_efer =
2969		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2970				VM_ENTRY_LOAD_IA32_EFER)
2971		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2972				   VM_EXIT_LOAD_IA32_EFER);
2973
2974	cpu_has_load_perf_global_ctrl =
2975		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2976				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2977		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2978				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2979
2980	/*
2981	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2982	 * but due to arrata below it can't be used. Workaround is to use
2983	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2984	 *
2985	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2986	 *
2987	 * AAK155             (model 26)
2988	 * AAP115             (model 30)
2989	 * AAT100             (model 37)
2990	 * BC86,AAY89,BD102   (model 44)
2991	 * BA97               (model 46)
2992	 *
2993	 */
2994	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2995		switch (boot_cpu_data.x86_model) {
2996		case 26:
2997		case 30:
2998		case 37:
2999		case 44:
3000		case 46:
3001			cpu_has_load_perf_global_ctrl = false;
3002			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3003					"does not work properly. Using workaround\n");
3004			break;
3005		default:
3006			break;
3007		}
3008	}
3009
3010	return 0;
3011}
3012
3013static struct vmcs *alloc_vmcs_cpu(int cpu)
3014{
3015	int node = cpu_to_node(cpu);
3016	struct page *pages;
3017	struct vmcs *vmcs;
3018
3019	pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
3020	if (!pages)
3021		return NULL;
3022	vmcs = page_address(pages);
3023	memset(vmcs, 0, vmcs_config.size);
3024	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3025	return vmcs;
3026}
3027
3028static struct vmcs *alloc_vmcs(void)
3029{
3030	return alloc_vmcs_cpu(raw_smp_processor_id());
3031}
3032
3033static void free_vmcs(struct vmcs *vmcs)
3034{
3035	free_pages((unsigned long)vmcs, vmcs_config.order);
3036}
3037
3038/*
3039 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3040 */
3041static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3042{
3043	if (!loaded_vmcs->vmcs)
3044		return;
3045	loaded_vmcs_clear(loaded_vmcs);
3046	free_vmcs(loaded_vmcs->vmcs);
3047	loaded_vmcs->vmcs = NULL;
3048}
3049
3050static void free_kvm_area(void)
3051{
3052	int cpu;
3053
3054	for_each_possible_cpu(cpu) {
3055		free_vmcs(per_cpu(vmxarea, cpu));
3056		per_cpu(vmxarea, cpu) = NULL;
3057	}
3058}
3059
3060static void init_vmcs_shadow_fields(void)
3061{
3062	int i, j;
3063
3064	/* No checks for read only fields yet */
3065
3066	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3067		switch (shadow_read_write_fields[i]) {
3068		case GUEST_BNDCFGS:
3069			if (!vmx_mpx_supported())
3070				continue;
3071			break;
3072		default:
3073			break;
3074		}
3075
3076		if (j < i)
3077			shadow_read_write_fields[j] =
3078				shadow_read_write_fields[i];
3079		j++;
3080	}
3081	max_shadow_read_write_fields = j;
3082
3083	/* shadowed fields guest access without vmexit */
3084	for (i = 0; i < max_shadow_read_write_fields; i++) {
3085		clear_bit(shadow_read_write_fields[i],
3086			  vmx_vmwrite_bitmap);
3087		clear_bit(shadow_read_write_fields[i],
3088			  vmx_vmread_bitmap);
3089	}
3090	for (i = 0; i < max_shadow_read_only_fields; i++)
3091		clear_bit(shadow_read_only_fields[i],
3092			  vmx_vmread_bitmap);
3093}
3094
3095static __init int alloc_kvm_area(void)
3096{
3097	int cpu;
3098
3099	for_each_possible_cpu(cpu) {
3100		struct vmcs *vmcs;
3101
3102		vmcs = alloc_vmcs_cpu(cpu);
3103		if (!vmcs) {
3104			free_kvm_area();
3105			return -ENOMEM;
3106		}
3107
3108		per_cpu(vmxarea, cpu) = vmcs;
3109	}
3110	return 0;
3111}
3112
3113static __init int hardware_setup(void)
3114{
3115	if (setup_vmcs_config(&vmcs_config) < 0)
3116		return -EIO;
3117
3118	if (boot_cpu_has(X86_FEATURE_NX))
3119		kvm_enable_efer_bits(EFER_NX);
3120
3121	if (!cpu_has_vmx_vpid())
3122		enable_vpid = 0;
3123	if (!cpu_has_vmx_shadow_vmcs())
3124		enable_shadow_vmcs = 0;
3125	if (enable_shadow_vmcs)
3126		init_vmcs_shadow_fields();
3127
3128	if (!cpu_has_vmx_ept() ||
3129	    !cpu_has_vmx_ept_4levels()) {
3130		enable_ept = 0;
3131		enable_unrestricted_guest = 0;
3132		enable_ept_ad_bits = 0;
3133	}
3134
3135	if (!cpu_has_vmx_ept_ad_bits())
3136		enable_ept_ad_bits = 0;
3137
3138	if (!cpu_has_vmx_unrestricted_guest())
3139		enable_unrestricted_guest = 0;
3140
3141	if (!cpu_has_vmx_flexpriority()) {
3142		flexpriority_enabled = 0;
3143
3144		/*
3145		 * set_apic_access_page_addr() is used to reload apic access
3146		 * page upon invalidation.  No need to do anything if the
3147		 * processor does not have the APIC_ACCESS_ADDR VMCS field.
3148		 */
3149		kvm_x86_ops->set_apic_access_page_addr = NULL;
3150	}
3151
3152	if (!cpu_has_vmx_tpr_shadow())
3153		kvm_x86_ops->update_cr8_intercept = NULL;
3154
3155	if (enable_ept && !cpu_has_vmx_ept_2m_page())
3156		kvm_disable_largepages();
3157
3158	if (!cpu_has_vmx_ple())
3159		ple_gap = 0;
3160
3161	if (!cpu_has_vmx_apicv())
3162		enable_apicv = 0;
3163
3164	if (enable_apicv)
3165		kvm_x86_ops->update_cr8_intercept = NULL;
3166	else {
3167		kvm_x86_ops->hwapic_irr_update = NULL;
3168		kvm_x86_ops->deliver_posted_interrupt = NULL;
3169		kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
3170	}
3171
3172	if (nested)
3173		nested_vmx_setup_ctls_msrs();
3174
3175	return alloc_kvm_area();
3176}
3177
3178static __exit void hardware_unsetup(void)
3179{
3180	free_kvm_area();
3181}
3182
3183static bool emulation_required(struct kvm_vcpu *vcpu)
3184{
3185	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3186}
3187
3188static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3189		struct kvm_segment *save)
3190{
3191	if (!emulate_invalid_guest_state) {
3192		/*
3193		 * CS and SS RPL should be equal during guest entry according
3194		 * to VMX spec, but in reality it is not always so. Since vcpu
3195		 * is in the middle of the transition from real mode to
3196		 * protected mode it is safe to assume that RPL 0 is a good
3197		 * default value.
3198		 */
3199		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3200			save->selector &= ~SELECTOR_RPL_MASK;
3201		save->dpl = save->selector & SELECTOR_RPL_MASK;
3202		save->s = 1;
3203	}
3204	vmx_set_segment(vcpu, save, seg);
3205}
3206
3207static void enter_pmode(struct kvm_vcpu *vcpu)
3208{
3209	unsigned long flags;
3210	struct vcpu_vmx *vmx = to_vmx(vcpu);
3211
3212	/*
3213	 * Update real mode segment cache. It may be not up-to-date if sement
3214	 * register was written while vcpu was in a guest mode.
3215	 */
3216	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3217	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3218	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3219	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3220	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3221	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3222
3223	vmx->rmode.vm86_active = 0;
3224
3225	vmx_segment_cache_clear(vmx);
3226
3227	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3228
3229	flags = vmcs_readl(GUEST_RFLAGS);
3230	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3231	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3232	vmcs_writel(GUEST_RFLAGS, flags);
3233
3234	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3235			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3236
3237	update_exception_bitmap(vcpu);
3238
3239	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3240	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3241	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3242	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3243	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3244	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3245}
3246
3247static void fix_rmode_seg(int seg, struct kvm_segment *save)
3248{
3249	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3250	struct kvm_segment var = *save;
3251
3252	var.dpl = 0x3;
3253	if (seg == VCPU_SREG_CS)
3254		var.type = 0x3;
3255
3256	if (!emulate_invalid_guest_state) {
3257		var.selector = var.base >> 4;
3258		var.base = var.base & 0xffff0;
3259		var.limit = 0xffff;
3260		var.g = 0;
3261		var.db = 0;
3262		var.present = 1;
3263		var.s = 1;
3264		var.l = 0;
3265		var.unusable = 0;
3266		var.type = 0x3;
3267		var.avl = 0;
3268		if (save->base & 0xf)
3269			printk_once(KERN_WARNING "kvm: segment base is not "
3270					"paragraph aligned when entering "
3271					"protected mode (seg=%d)", seg);
3272	}
3273
3274	vmcs_write16(sf->selector, var.selector);
3275	vmcs_write32(sf->base, var.base);
3276	vmcs_write32(sf->limit, var.limit);
3277	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3278}
3279
3280static void enter_rmode(struct kvm_vcpu *vcpu)
3281{
3282	unsigned long flags;
3283	struct vcpu_vmx *vmx = to_vmx(vcpu);
3284
3285	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3286	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3287	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3288	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3289	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3290	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3291	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3292
3293	vmx->rmode.vm86_active = 1;
3294
3295	/*
3296	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3297	 * vcpu. Warn the user that an update is overdue.
3298	 */
3299	if (!vcpu->kvm->arch.tss_addr)
3300		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3301			     "called before entering vcpu\n");
3302
3303	vmx_segment_cache_clear(vmx);
3304
3305	vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3306	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3307	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3308
3309	flags = vmcs_readl(GUEST_RFLAGS);
3310	vmx->rmode.save_rflags = flags;
3311
3312	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3313
3314	vmcs_writel(GUEST_RFLAGS, flags);
3315	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3316	update_exception_bitmap(vcpu);
3317
3318	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3319	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3320	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3321	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3322	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3323	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3324
3325	kvm_mmu_reset_context(vcpu);
3326}
3327
3328static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3329{
3330	struct vcpu_vmx *vmx = to_vmx(vcpu);
3331	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3332
3333	if (!msr)
3334		return;
3335
3336	/*
3337	 * Force kernel_gs_base reloading before EFER changes, as control
3338	 * of this msr depends on is_long_mode().
3339	 */
3340	vmx_load_host_state(to_vmx(vcpu));
3341	vcpu->arch.efer = efer;
3342	if (efer & EFER_LMA) {
3343		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3344		msr->data = efer;
3345	} else {
3346		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3347
3348		msr->data = efer & ~EFER_LME;
3349	}
3350	setup_msrs(vmx);
3351}
3352
3353#ifdef CONFIG_X86_64
3354
3355static void enter_lmode(struct kvm_vcpu *vcpu)
3356{
3357	u32 guest_tr_ar;
3358
3359	vmx_segment_cache_clear(to_vmx(vcpu));
3360
3361	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3362	if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3363		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3364				     __func__);
3365		vmcs_write32(GUEST_TR_AR_BYTES,
3366			     (guest_tr_ar & ~AR_TYPE_MASK)
3367			     | AR_TYPE_BUSY_64_TSS);
3368	}
3369	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3370}
3371
3372static void exit_lmode(struct kvm_vcpu *vcpu)
3373{
3374	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3375	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3376}
3377
3378#endif
3379
3380static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3381{
3382	vpid_sync_context(to_vmx(vcpu));
3383	if (enable_ept) {
3384		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3385			return;
3386		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3387	}
3388}
3389
3390static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3391{
3392	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3393
3394	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3395	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3396}
3397
3398static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3399{
3400	if (enable_ept && is_paging(vcpu))
3401		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3402	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3403}
3404
3405static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3406{
3407	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3408
3409	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3410	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3411}
3412
3413static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3414{
3415	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3416
3417	if (!test_bit(VCPU_EXREG_PDPTR,
3418		      (unsigned long *)&vcpu->arch.regs_dirty))
3419		return;
3420
3421	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3422		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3423		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3424		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3425		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3426	}
3427}
3428
3429static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3430{
3431	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3432
3433	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3434		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3435		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3436		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3437		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3438	}
3439
3440	__set_bit(VCPU_EXREG_PDPTR,
3441		  (unsigned long *)&vcpu->arch.regs_avail);
3442	__set_bit(VCPU_EXREG_PDPTR,
3443		  (unsigned long *)&vcpu->arch.regs_dirty);
3444}
3445
3446static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3447
3448static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3449					unsigned long cr0,
3450					struct kvm_vcpu *vcpu)
3451{
3452	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3453		vmx_decache_cr3(vcpu);
3454	if (!(cr0 & X86_CR0_PG)) {
3455		/* From paging/starting to nonpaging */
3456		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3457			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3458			     (CPU_BASED_CR3_LOAD_EXITING |
3459			      CPU_BASED_CR3_STORE_EXITING));
3460		vcpu->arch.cr0 = cr0;
3461		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3462	} else if (!is_paging(vcpu)) {
3463		/* From nonpaging to paging */
3464		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3465			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3466			     ~(CPU_BASED_CR3_LOAD_EXITING |
3467			       CPU_BASED_CR3_STORE_EXITING));
3468		vcpu->arch.cr0 = cr0;
3469		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3470	}
3471
3472	if (!(cr0 & X86_CR0_WP))
3473		*hw_cr0 &= ~X86_CR0_WP;
3474}
3475
3476static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3477{
3478	struct vcpu_vmx *vmx = to_vmx(vcpu);
3479	unsigned long hw_cr0;
3480
3481	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3482	if (enable_unrestricted_guest)
3483		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3484	else {
3485		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3486
3487		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3488			enter_pmode(vcpu);
3489
3490		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3491			enter_rmode(vcpu);
3492	}
3493
3494#ifdef CONFIG_X86_64
3495	if (vcpu->arch.efer & EFER_LME) {
3496		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3497			enter_lmode(vcpu);
3498		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3499			exit_lmode(vcpu);
3500	}
3501#endif
3502
3503	if (enable_ept)
3504		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3505
3506	if (!vcpu->fpu_active)
3507		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3508
3509	vmcs_writel(CR0_READ_SHADOW, cr0);
3510	vmcs_writel(GUEST_CR0, hw_cr0);
3511	vcpu->arch.cr0 = cr0;
3512
3513	/* depends on vcpu->arch.cr0 to be set to a new value */
3514	vmx->emulation_required = emulation_required(vcpu);
3515}
3516
3517static u64 construct_eptp(unsigned long root_hpa)
3518{
3519	u64 eptp;
3520
3521	/* TODO write the value reading from MSR */
3522	eptp = VMX_EPT_DEFAULT_MT |
3523		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3524	if (enable_ept_ad_bits)
3525		eptp |= VMX_EPT_AD_ENABLE_BIT;
3526	eptp |= (root_hpa & PAGE_MASK);
3527
3528	return eptp;
3529}
3530
3531static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3532{
3533	unsigned long guest_cr3;
3534	u64 eptp;
3535
3536	guest_cr3 = cr3;
3537	if (enable_ept) {
3538		eptp = construct_eptp(cr3);
3539		vmcs_write64(EPT_POINTER, eptp);
3540		if (is_paging(vcpu) || is_guest_mode(vcpu))
3541			guest_cr3 = kvm_read_cr3(vcpu);
3542		else
3543			guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3544		ept_load_pdptrs(vcpu);
3545	}
3546
3547	vmx_flush_tlb(vcpu);
3548	vmcs_writel(GUEST_CR3, guest_cr3);
3549}
3550
3551static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3552{
3553	unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3554		    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3555
3556	if (cr4 & X86_CR4_VMXE) {
3557		/*
3558		 * To use VMXON (and later other VMX instructions), a guest
3559		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3560		 * So basically the check on whether to allow nested VMX
3561		 * is here.
3562		 */
3563		if (!nested_vmx_allowed(vcpu))
3564			return 1;
3565	}
3566	if (to_vmx(vcpu)->nested.vmxon &&
3567	    ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3568		return 1;
3569
3570	vcpu->arch.cr4 = cr4;
3571	if (enable_ept) {
3572		if (!is_paging(vcpu)) {
3573			hw_cr4 &= ~X86_CR4_PAE;
3574			hw_cr4 |= X86_CR4_PSE;
3575			/*
3576			 * SMEP/SMAP is disabled if CPU is in non-paging mode
3577			 * in hardware. However KVM always uses paging mode to
3578			 * emulate guest non-paging mode with TDP.
3579			 * To emulate this behavior, SMEP/SMAP needs to be
3580			 * manually disabled when guest switches to non-paging
3581			 * mode.
3582			 */
3583			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP);
3584		} else if (!(cr4 & X86_CR4_PAE)) {
3585			hw_cr4 &= ~X86_CR4_PAE;
3586		}
3587	}
3588
3589	vmcs_writel(CR4_READ_SHADOW, cr4);
3590	vmcs_writel(GUEST_CR4, hw_cr4);
3591	return 0;
3592}
3593
3594static void vmx_get_segment(struct kvm_vcpu *vcpu,
3595			    struct kvm_segment *var, int seg)
3596{
3597	struct vcpu_vmx *vmx = to_vmx(vcpu);
3598	u32 ar;
3599
3600	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3601		*var = vmx->rmode.segs[seg];
3602		if (seg == VCPU_SREG_TR
3603		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3604			return;
3605		var->base = vmx_read_guest_seg_base(vmx, seg);
3606		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3607		return;
3608	}
3609	var->base = vmx_read_guest_seg_base(vmx, seg);
3610	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3611	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3612	ar = vmx_read_guest_seg_ar(vmx, seg);
3613	var->unusable = (ar >> 16) & 1;
3614	var->type = ar & 15;
3615	var->s = (ar >> 4) & 1;
3616	var->dpl = (ar >> 5) & 3;
3617	/*
3618	 * Some userspaces do not preserve unusable property. Since usable
3619	 * segment has to be present according to VMX spec we can use present
3620	 * property to amend userspace bug by making unusable segment always
3621	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3622	 * segment as unusable.
3623	 */
3624	var->present = !var->unusable;
3625	var->avl = (ar >> 12) & 1;
3626	var->l = (ar >> 13) & 1;
3627	var->db = (ar >> 14) & 1;
3628	var->g = (ar >> 15) & 1;
3629}
3630
3631static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3632{
3633	struct kvm_segment s;
3634
3635	if (to_vmx(vcpu)->rmode.vm86_active) {
3636		vmx_get_segment(vcpu, &s, seg);
3637		return s.base;
3638	}
3639	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3640}
3641
3642static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3643{
3644	struct vcpu_vmx *vmx = to_vmx(vcpu);
3645
3646	if (unlikely(vmx->rmode.vm86_active))
3647		return 0;
3648	else {
3649		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3650		return AR_DPL(ar);
3651	}
3652}
3653
3654static u32 vmx_segment_access_rights(struct kvm_segment *var)
3655{
3656	u32 ar;
3657
3658	if (var->unusable || !var->present)
3659		ar = 1 << 16;
3660	else {
3661		ar = var->type & 15;
3662		ar |= (var->s & 1) << 4;
3663		ar |= (var->dpl & 3) << 5;
3664		ar |= (var->present & 1) << 7;
3665		ar |= (var->avl & 1) << 12;
3666		ar |= (var->l & 1) << 13;
3667		ar |= (var->db & 1) << 14;
3668		ar |= (var->g & 1) << 15;
3669	}
3670
3671	return ar;
3672}
3673
3674static void vmx_set_segment(struct kvm_vcpu *vcpu,
3675			    struct kvm_segment *var, int seg)
3676{
3677	struct vcpu_vmx *vmx = to_vmx(vcpu);
3678	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3679
3680	vmx_segment_cache_clear(vmx);
3681
3682	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3683		vmx->rmode.segs[seg] = *var;
3684		if (seg == VCPU_SREG_TR)
3685			vmcs_write16(sf->selector, var->selector);
3686		else if (var->s)
3687			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3688		goto out;
3689	}
3690
3691	vmcs_writel(sf->base, var->base);
3692	vmcs_write32(sf->limit, var->limit);
3693	vmcs_write16(sf->selector, var->selector);
3694
3695	/*
3696	 *   Fix the "Accessed" bit in AR field of segment registers for older
3697	 * qemu binaries.
3698	 *   IA32 arch specifies that at the time of processor reset the
3699	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3700	 * is setting it to 0 in the userland code. This causes invalid guest
3701	 * state vmexit when "unrestricted guest" mode is turned on.
3702	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3703	 * tree. Newer qemu binaries with that qemu fix would not need this
3704	 * kvm hack.
3705	 */
3706	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3707		var->type |= 0x1; /* Accessed */
3708
3709	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3710
3711out:
3712	vmx->emulation_required = emulation_required(vcpu);
3713}
3714
3715static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3716{
3717	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3718
3719	*db = (ar >> 14) & 1;
3720	*l = (ar >> 13) & 1;
3721}
3722
3723static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3724{
3725	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3726	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3727}
3728
3729static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3730{
3731	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3732	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3733}
3734
3735static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3736{
3737	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3738	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3739}
3740
3741static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3742{
3743	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3744	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3745}
3746
3747static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3748{
3749	struct kvm_segment var;
3750	u32 ar;
3751
3752	vmx_get_segment(vcpu, &var, seg);
3753	var.dpl = 0x3;
3754	if (seg == VCPU_SREG_CS)
3755		var.type = 0x3;
3756	ar = vmx_segment_access_rights(&var);
3757
3758	if (var.base != (var.selector << 4))
3759		return false;
3760	if (var.limit != 0xffff)
3761		return false;
3762	if (ar != 0xf3)
3763		return false;
3764
3765	return true;
3766}
3767
3768static bool code_segment_valid(struct kvm_vcpu *vcpu)
3769{
3770	struct kvm_segment cs;
3771	unsigned int cs_rpl;
3772
3773	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3774	cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3775
3776	if (cs.unusable)
3777		return false;
3778	if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3779		return false;
3780	if (!cs.s)
3781		return false;
3782	if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3783		if (cs.dpl > cs_rpl)
3784			return false;
3785	} else {
3786		if (cs.dpl != cs_rpl)
3787			return false;
3788	}
3789	if (!cs.present)
3790		return false;
3791
3792	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3793	return true;
3794}
3795
3796static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3797{
3798	struct kvm_segment ss;
3799	unsigned int ss_rpl;
3800
3801	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3802	ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3803
3804	if (ss.unusable)
3805		return true;
3806	if (ss.type != 3 && ss.type != 7)
3807		return false;
3808	if (!ss.s)
3809		return false;
3810	if (ss.dpl != ss_rpl) /* DPL != RPL */
3811		return false;
3812	if (!ss.present)
3813		return false;
3814
3815	return true;
3816}
3817
3818static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3819{
3820	struct kvm_segment var;
3821	unsigned int rpl;
3822
3823	vmx_get_segment(vcpu, &var, seg);
3824	rpl = var.selector & SELECTOR_RPL_MASK;
3825
3826	if (var.unusable)
3827		return true;
3828	if (!var.s)
3829		return false;
3830	if (!var.present)
3831		return false;
3832	if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3833		if (var.dpl < rpl) /* DPL < RPL */
3834			return false;
3835	}
3836
3837	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3838	 * rights flags
3839	 */
3840	return true;
3841}
3842
3843static bool tr_valid(struct kvm_vcpu *vcpu)
3844{
3845	struct kvm_segment tr;
3846
3847	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3848
3849	if (tr.unusable)
3850		return false;
3851	if (tr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
3852		return false;
3853	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3854		return false;
3855	if (!tr.present)
3856		return false;
3857
3858	return true;
3859}
3860
3861static bool ldtr_valid(struct kvm_vcpu *vcpu)
3862{
3863	struct kvm_segment ldtr;
3864
3865	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3866
3867	if (ldtr.unusable)
3868		return true;
3869	if (ldtr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
3870		return false;
3871	if (ldtr.type != 2)
3872		return false;
3873	if (!ldtr.present)
3874		return false;
3875
3876	return true;
3877}
3878
3879static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3880{
3881	struct kvm_segment cs, ss;
3882
3883	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3884	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3885
3886	return ((cs.selector & SELECTOR_RPL_MASK) ==
3887		 (ss.selector & SELECTOR_RPL_MASK));
3888}
3889
3890/*
3891 * Check if guest state is valid. Returns true if valid, false if
3892 * not.
3893 * We assume that registers are always usable
3894 */
3895static bool guest_state_valid(struct kvm_vcpu *vcpu)
3896{
3897	if (enable_unrestricted_guest)
3898		return true;
3899
3900	/* real mode guest state checks */
3901	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3902		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3903			return false;
3904		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3905			return false;
3906		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3907			return false;
3908		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3909			return false;
3910		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3911			return false;
3912		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3913			return false;
3914	} else {
3915	/* protected mode guest state checks */
3916		if (!cs_ss_rpl_check(vcpu))
3917			return false;
3918		if (!code_segment_valid(vcpu))
3919			return false;
3920		if (!stack_segment_valid(vcpu))
3921			return false;
3922		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3923			return false;
3924		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3925			return false;
3926		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3927			return false;
3928		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3929			return false;
3930		if (!tr_valid(vcpu))
3931			return false;
3932		if (!ldtr_valid(vcpu))
3933			return false;
3934	}
3935	/* TODO:
3936	 * - Add checks on RIP
3937	 * - Add checks on RFLAGS
3938	 */
3939
3940	return true;
3941}
3942
3943static int init_rmode_tss(struct kvm *kvm)
3944{
3945	gfn_t fn;
3946	u16 data = 0;
3947	int idx, r;
3948
3949	idx = srcu_read_lock(&kvm->srcu);
3950	fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3951	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3952	if (r < 0)
3953		goto out;
3954	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3955	r = kvm_write_guest_page(kvm, fn++, &data,
3956			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3957	if (r < 0)
3958		goto out;
3959	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3960	if (r < 0)
3961		goto out;
3962	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3963	if (r < 0)
3964		goto out;
3965	data = ~0;
3966	r = kvm_write_guest_page(kvm, fn, &data,
3967				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3968				 sizeof(u8));
3969out:
3970	srcu_read_unlock(&kvm->srcu, idx);
3971	return r;
3972}
3973
3974static int init_rmode_identity_map(struct kvm *kvm)
3975{
3976	int i, idx, r = 0;
3977	pfn_t identity_map_pfn;
3978	u32 tmp;
3979
3980	if (!enable_ept)
3981		return 0;
3982
3983	/* Protect kvm->arch.ept_identity_pagetable_done. */
3984	mutex_lock(&kvm->slots_lock);
3985
3986	if (likely(kvm->arch.ept_identity_pagetable_done))
3987		goto out2;
3988
3989	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3990
3991	r = alloc_identity_pagetable(kvm);
3992	if (r < 0)
3993		goto out2;
3994
3995	idx = srcu_read_lock(&kvm->srcu);
3996	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3997	if (r < 0)
3998		goto out;
3999	/* Set up identity-mapping pagetable for EPT in real mode */
4000	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4001		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4002			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4003		r = kvm_write_guest_page(kvm, identity_map_pfn,
4004				&tmp, i * sizeof(tmp), sizeof(tmp));
4005		if (r < 0)
4006			goto out;
4007	}
4008	kvm->arch.ept_identity_pagetable_done = true;
4009
4010out:
4011	srcu_read_unlock(&kvm->srcu, idx);
4012
4013out2:
4014	mutex_unlock(&kvm->slots_lock);
4015	return r;
4016}
4017
4018static void seg_setup(int seg)
4019{
4020	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4021	unsigned int ar;
4022
4023	vmcs_write16(sf->selector, 0);
4024	vmcs_writel(sf->base, 0);
4025	vmcs_write32(sf->limit, 0xffff);
4026	ar = 0x93;
4027	if (seg == VCPU_SREG_CS)
4028		ar |= 0x08; /* code segment */
4029
4030	vmcs_write32(sf->ar_bytes, ar);
4031}
4032
4033static int alloc_apic_access_page(struct kvm *kvm)
4034{
4035	struct page *page;
4036	struct kvm_userspace_memory_region kvm_userspace_mem;
4037	int r = 0;
4038
4039	mutex_lock(&kvm->slots_lock);
4040	if (kvm->arch.apic_access_page_done)
4041		goto out;
4042	kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
4043	kvm_userspace_mem.flags = 0;
4044	kvm_userspace_mem.guest_phys_addr = APIC_DEFAULT_PHYS_BASE;
4045	kvm_userspace_mem.memory_size = PAGE_SIZE;
4046	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4047	if (r)
4048		goto out;
4049
4050	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4051	if (is_error_page(page)) {
4052		r = -EFAULT;
4053		goto out;
4054	}
4055
4056	/*
4057	 * Do not pin the page in memory, so that memory hot-unplug
4058	 * is able to migrate it.
4059	 */
4060	put_page(page);
4061	kvm->arch.apic_access_page_done = true;
4062out:
4063	mutex_unlock(&kvm->slots_lock);
4064	return r;
4065}
4066
4067static int alloc_identity_pagetable(struct kvm *kvm)
4068{
4069	/* Called with kvm->slots_lock held. */
4070
4071	struct kvm_userspace_memory_region kvm_userspace_mem;
4072	int r = 0;
4073
4074	BUG_ON(kvm->arch.ept_identity_pagetable_done);
4075
4076	kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
4077	kvm_userspace_mem.flags = 0;
4078	kvm_userspace_mem.guest_phys_addr =
4079		kvm->arch.ept_identity_map_addr;
4080	kvm_userspace_mem.memory_size = PAGE_SIZE;
4081	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
4082
4083	return r;
4084}
4085
4086static void allocate_vpid(struct vcpu_vmx *vmx)
4087{
4088	int vpid;
4089
4090	vmx->vpid = 0;
4091	if (!enable_vpid)
4092		return;
4093	spin_lock(&vmx_vpid_lock);
4094	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4095	if (vpid < VMX_NR_VPIDS) {
4096		vmx->vpid = vpid;
4097		__set_bit(vpid, vmx_vpid_bitmap);
4098	}
4099	spin_unlock(&vmx_vpid_lock);
4100}
4101
4102static void free_vpid(struct vcpu_vmx *vmx)
4103{
4104	if (!enable_vpid)
4105		return;
4106	spin_lock(&vmx_vpid_lock);
4107	if (vmx->vpid != 0)
4108		__clear_bit(vmx->vpid, vmx_vpid_bitmap);
4109	spin_unlock(&vmx_vpid_lock);
4110}
4111
4112#define MSR_TYPE_R	1
4113#define MSR_TYPE_W	2
4114static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4115						u32 msr, int type)
4116{
4117	int f = sizeof(unsigned long);
4118
4119	if (!cpu_has_vmx_msr_bitmap())
4120		return;
4121
4122	/*
4123	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4124	 * have the write-low and read-high bitmap offsets the wrong way round.
4125	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4126	 */
4127	if (msr <= 0x1fff) {
4128		if (type & MSR_TYPE_R)
4129			/* read-low */
4130			__clear_bit(msr, msr_bitmap + 0x000 / f);
4131
4132		if (type & MSR_TYPE_W)
4133			/* write-low */
4134			__clear_bit(msr, msr_bitmap + 0x800 / f);
4135
4136	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4137		msr &= 0x1fff;
4138		if (type & MSR_TYPE_R)
4139			/* read-high */
4140			__clear_bit(msr, msr_bitmap + 0x400 / f);
4141
4142		if (type & MSR_TYPE_W)
4143			/* write-high */
4144			__clear_bit(msr, msr_bitmap + 0xc00 / f);
4145
4146	}
4147}
4148
4149static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4150						u32 msr, int type)
4151{
4152	int f = sizeof(unsigned long);
4153
4154	if (!cpu_has_vmx_msr_bitmap())
4155		return;
4156
4157	/*
4158	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4159	 * have the write-low and read-high bitmap offsets the wrong way round.
4160	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4161	 */
4162	if (msr <= 0x1fff) {
4163		if (type & MSR_TYPE_R)
4164			/* read-low */
4165			__set_bit(msr, msr_bitmap + 0x000 / f);
4166
4167		if (type & MSR_TYPE_W)
4168			/* write-low */
4169			__set_bit(msr, msr_bitmap + 0x800 / f);
4170
4171	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4172		msr &= 0x1fff;
4173		if (type & MSR_TYPE_R)
4174			/* read-high */
4175			__set_bit(msr, msr_bitmap + 0x400 / f);
4176
4177		if (type & MSR_TYPE_W)
4178			/* write-high */
4179			__set_bit(msr, msr_bitmap + 0xc00 / f);
4180
4181	}
4182}
4183
4184static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4185{
4186	if (!longmode_only)
4187		__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4188						msr, MSR_TYPE_R | MSR_TYPE_W);
4189	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4190						msr, MSR_TYPE_R | MSR_TYPE_W);
4191}
4192
4193static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4194{
4195	__vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4196			msr, MSR_TYPE_R);
4197	__vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4198			msr, MSR_TYPE_R);
4199}
4200
4201static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4202{
4203	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4204			msr, MSR_TYPE_R);
4205	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4206			msr, MSR_TYPE_R);
4207}
4208
4209static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4210{
4211	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4212			msr, MSR_TYPE_W);
4213	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4214			msr, MSR_TYPE_W);
4215}
4216
4217static int vmx_vm_has_apicv(struct kvm *kvm)
4218{
4219	return enable_apicv && irqchip_in_kernel(kvm);
4220}
4221
4222/*
4223 * Send interrupt to vcpu via posted interrupt way.
4224 * 1. If target vcpu is running(non-root mode), send posted interrupt
4225 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4226 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4227 * interrupt from PIR in next vmentry.
4228 */
4229static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4230{
4231	struct vcpu_vmx *vmx = to_vmx(vcpu);
4232	int r;
4233
4234	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4235		return;
4236
4237	r = pi_test_and_set_on(&vmx->pi_desc);
4238	kvm_make_request(KVM_REQ_EVENT, vcpu);
4239#ifdef CONFIG_SMP
4240	if (!r && (vcpu->mode == IN_GUEST_MODE))
4241		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4242				POSTED_INTR_VECTOR);
4243	else
4244#endif
4245		kvm_vcpu_kick(vcpu);
4246}
4247
4248static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4249{
4250	struct vcpu_vmx *vmx = to_vmx(vcpu);
4251
4252	if (!pi_test_and_clear_on(&vmx->pi_desc))
4253		return;
4254
4255	kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4256}
4257
4258static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4259{
4260	return;
4261}
4262
4263/*
4264 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4265 * will not change in the lifetime of the guest.
4266 * Note that host-state that does change is set elsewhere. E.g., host-state
4267 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4268 */
4269static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4270{
4271	u32 low32, high32;
4272	unsigned long tmpl;
4273	struct desc_ptr dt;
4274	unsigned long cr4;
4275
4276	vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4277	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4278
4279	/* Save the most likely value for this task's CR4 in the VMCS. */
4280	cr4 = read_cr4();
4281	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4282	vmx->host_state.vmcs_host_cr4 = cr4;
4283
4284	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4285#ifdef CONFIG_X86_64
4286	/*
4287	 * Load null selectors, so we can avoid reloading them in
4288	 * __vmx_load_host_state(), in case userspace uses the null selectors
4289	 * too (the expected case).
4290	 */
4291	vmcs_write16(HOST_DS_SELECTOR, 0);
4292	vmcs_write16(HOST_ES_SELECTOR, 0);
4293#else
4294	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4295	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4296#endif
4297	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4298	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4299
4300	native_store_idt(&dt);
4301	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4302	vmx->host_idt_base = dt.address;
4303
4304	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4305
4306	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4307	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4308	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4309	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4310
4311	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4312		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4313		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4314	}
4315}
4316
4317static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4318{
4319	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4320	if (enable_ept)
4321		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4322	if (is_guest_mode(&vmx->vcpu))
4323		vmx->vcpu.arch.cr4_guest_owned_bits &=
4324			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4325	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4326}
4327
4328static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4329{
4330	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4331
4332	if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4333		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4334	return pin_based_exec_ctrl;
4335}
4336
4337static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4338{
4339	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4340
4341	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4342		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4343
4344	if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4345		exec_control &= ~CPU_BASED_TPR_SHADOW;
4346#ifdef CONFIG_X86_64
4347		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4348				CPU_BASED_CR8_LOAD_EXITING;
4349#endif
4350	}
4351	if (!enable_ept)
4352		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4353				CPU_BASED_CR3_LOAD_EXITING  |
4354				CPU_BASED_INVLPG_EXITING;
4355	return exec_control;
4356}
4357
4358static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4359{
4360	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4361	if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4362		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4363	if (vmx->vpid == 0)
4364		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4365	if (!enable_ept) {
4366		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4367		enable_unrestricted_guest = 0;
4368		/* Enable INVPCID for non-ept guests may cause performance regression. */
4369		exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4370	}
4371	if (!enable_unrestricted_guest)
4372		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4373	if (!ple_gap)
4374		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4375	if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4376		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4377				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4378	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4379	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4380	   (handle_vmptrld).
4381	   We can NOT enable shadow_vmcs here because we don't have yet
4382	   a current VMCS12
4383	*/
4384	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4385	return exec_control;
4386}
4387
4388static void ept_set_mmio_spte_mask(void)
4389{
4390	/*
4391	 * EPT Misconfigurations can be generated if the value of bits 2:0
4392	 * of an EPT paging-structure entry is 110b (write/execute).
4393	 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4394	 * spte.
4395	 */
4396	kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4397}
4398
4399/*
4400 * Sets up the vmcs for emulated real mode.
4401 */
4402static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4403{
4404#ifdef CONFIG_X86_64
4405	unsigned long a;
4406#endif
4407	int i;
4408
4409	/* I/O */
4410	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4411	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4412
4413	if (enable_shadow_vmcs) {
4414		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4415		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4416	}
4417	if (cpu_has_vmx_msr_bitmap())
4418		vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4419
4420	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4421
4422	/* Control */
4423	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4424
4425	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4426
4427	if (cpu_has_secondary_exec_ctrls()) {
4428		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4429				vmx_secondary_exec_control(vmx));
4430	}
4431
4432	if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4433		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4434		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4435		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4436		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4437
4438		vmcs_write16(GUEST_INTR_STATUS, 0);
4439
4440		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4441		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4442	}
4443
4444	if (ple_gap) {
4445		vmcs_write32(PLE_GAP, ple_gap);
4446		vmx->ple_window = ple_window;
4447		vmx->ple_window_dirty = true;
4448	}
4449
4450	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4451	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4452	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4453
4454	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4455	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4456	vmx_set_constant_host_state(vmx);
4457#ifdef CONFIG_X86_64
4458	rdmsrl(MSR_FS_BASE, a);
4459	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4460	rdmsrl(MSR_GS_BASE, a);
4461	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4462#else
4463	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4464	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4465#endif
4466
4467	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4468	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4469	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4470	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4471	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4472
4473	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4474		u32 msr_low, msr_high;
4475		u64 host_pat;
4476		rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4477		host_pat = msr_low | ((u64) msr_high << 32);
4478		/* Write the default value follow host pat */
4479		vmcs_write64(GUEST_IA32_PAT, host_pat);
4480		/* Keep arch.pat sync with GUEST_IA32_PAT */
4481		vmx->vcpu.arch.pat = host_pat;
4482	}
4483
4484	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4485		u32 index = vmx_msr_index[i];
4486		u32 data_low, data_high;
4487		int j = vmx->nmsrs;
4488
4489		if (rdmsr_safe(index, &data_low, &data_high) < 0)
4490			continue;
4491		if (wrmsr_safe(index, data_low, data_high) < 0)
4492			continue;
4493		vmx->guest_msrs[j].index = i;
4494		vmx->guest_msrs[j].data = 0;
4495		vmx->guest_msrs[j].mask = -1ull;
4496		++vmx->nmsrs;
4497	}
4498
4499
4500	vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
4501
4502	/* 22.2.1, 20.8.1 */
4503	vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
4504
4505	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4506	set_cr4_guest_host_mask(vmx);
4507
4508	return 0;
4509}
4510
4511static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4512{
4513	struct vcpu_vmx *vmx = to_vmx(vcpu);
4514	struct msr_data apic_base_msr;
4515
4516	vmx->rmode.vm86_active = 0;
4517
4518	vmx->soft_vnmi_blocked = 0;
4519
4520	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4521	kvm_set_cr8(&vmx->vcpu, 0);
4522	apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE;
4523	if (kvm_vcpu_is_bsp(&vmx->vcpu))
4524		apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4525	apic_base_msr.host_initiated = true;
4526	kvm_set_apic_base(&vmx->vcpu, &apic_base_msr);
4527
4528	vmx_segment_cache_clear(vmx);
4529
4530	seg_setup(VCPU_SREG_CS);
4531	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4532	vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4533
4534	seg_setup(VCPU_SREG_DS);
4535	seg_setup(VCPU_SREG_ES);
4536	seg_setup(VCPU_SREG_FS);
4537	seg_setup(VCPU_SREG_GS);
4538	seg_setup(VCPU_SREG_SS);
4539
4540	vmcs_write16(GUEST_TR_SELECTOR, 0);
4541	vmcs_writel(GUEST_TR_BASE, 0);
4542	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4543	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4544
4545	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4546	vmcs_writel(GUEST_LDTR_BASE, 0);
4547	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4548	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4549
4550	vmcs_write32(GUEST_SYSENTER_CS, 0);
4551	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4552	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4553
4554	vmcs_writel(GUEST_RFLAGS, 0x02);
4555	kvm_rip_write(vcpu, 0xfff0);
4556
4557	vmcs_writel(GUEST_GDTR_BASE, 0);
4558	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4559
4560	vmcs_writel(GUEST_IDTR_BASE, 0);
4561	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4562
4563	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4564	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4565	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4566
4567	/* Special registers */
4568	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4569
4570	setup_msrs(vmx);
4571
4572	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4573
4574	if (cpu_has_vmx_tpr_shadow()) {
4575		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4576		if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4577			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4578				     __pa(vmx->vcpu.arch.apic->regs));
4579		vmcs_write32(TPR_THRESHOLD, 0);
4580	}
4581
4582	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4583
4584	if (vmx_vm_has_apicv(vcpu->kvm))
4585		memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4586
4587	if (vmx->vpid != 0)
4588		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4589
4590	vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4591	vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4592	vmx_set_cr4(&vmx->vcpu, 0);
4593	vmx_set_efer(&vmx->vcpu, 0);
4594	vmx_fpu_activate(&vmx->vcpu);
4595	update_exception_bitmap(&vmx->vcpu);
4596
4597	vpid_sync_context(vmx);
4598}
4599
4600/*
4601 * In nested virtualization, check if L1 asked to exit on external interrupts.
4602 * For most existing hypervisors, this will always return true.
4603 */
4604static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4605{
4606	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4607		PIN_BASED_EXT_INTR_MASK;
4608}
4609
4610/*
4611 * In nested virtualization, check if L1 has set
4612 * VM_EXIT_ACK_INTR_ON_EXIT
4613 */
4614static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
4615{
4616	return get_vmcs12(vcpu)->vm_exit_controls &
4617		VM_EXIT_ACK_INTR_ON_EXIT;
4618}
4619
4620static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4621{
4622	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4623		PIN_BASED_NMI_EXITING;
4624}
4625
4626static void enable_irq_window(struct kvm_vcpu *vcpu)
4627{
4628	u32 cpu_based_vm_exec_control;
4629
4630	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4631	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4632	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4633}
4634
4635static void enable_nmi_window(struct kvm_vcpu *vcpu)
4636{
4637	u32 cpu_based_vm_exec_control;
4638
4639	if (!cpu_has_virtual_nmis() ||
4640	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4641		enable_irq_window(vcpu);
4642		return;
4643	}
4644
4645	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4646	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4647	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4648}
4649
4650static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4651{
4652	struct vcpu_vmx *vmx = to_vmx(vcpu);
4653	uint32_t intr;
4654	int irq = vcpu->arch.interrupt.nr;
4655
4656	trace_kvm_inj_virq(irq);
4657
4658	++vcpu->stat.irq_injections;
4659	if (vmx->rmode.vm86_active) {
4660		int inc_eip = 0;
4661		if (vcpu->arch.interrupt.soft)
4662			inc_eip = vcpu->arch.event_exit_inst_len;
4663		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4664			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4665		return;
4666	}
4667	intr = irq | INTR_INFO_VALID_MASK;
4668	if (vcpu->arch.interrupt.soft) {
4669		intr |= INTR_TYPE_SOFT_INTR;
4670		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4671			     vmx->vcpu.arch.event_exit_inst_len);
4672	} else
4673		intr |= INTR_TYPE_EXT_INTR;
4674	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4675}
4676
4677static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4678{
4679	struct vcpu_vmx *vmx = to_vmx(vcpu);
4680
4681	if (is_guest_mode(vcpu))
4682		return;
4683
4684	if (!cpu_has_virtual_nmis()) {
4685		/*
4686		 * Tracking the NMI-blocked state in software is built upon
4687		 * finding the next open IRQ window. This, in turn, depends on
4688		 * well-behaving guests: They have to keep IRQs disabled at
4689		 * least as long as the NMI handler runs. Otherwise we may
4690		 * cause NMI nesting, maybe breaking the guest. But as this is
4691		 * highly unlikely, we can live with the residual risk.
4692		 */
4693		vmx->soft_vnmi_blocked = 1;
4694		vmx->vnmi_blocked_time = 0;
4695	}
4696
4697	++vcpu->stat.nmi_injections;
4698	vmx->nmi_known_unmasked = false;
4699	if (vmx->rmode.vm86_active) {
4700		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4701			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4702		return;
4703	}
4704	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4705			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4706}
4707
4708static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4709{
4710	if (!cpu_has_virtual_nmis())
4711		return to_vmx(vcpu)->soft_vnmi_blocked;
4712	if (to_vmx(vcpu)->nmi_known_unmasked)
4713		return false;
4714	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
4715}
4716
4717static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4718{
4719	struct vcpu_vmx *vmx = to_vmx(vcpu);
4720
4721	if (!cpu_has_virtual_nmis()) {
4722		if (vmx->soft_vnmi_blocked != masked) {
4723			vmx->soft_vnmi_blocked = masked;
4724			vmx->vnmi_blocked_time = 0;
4725		}
4726	} else {
4727		vmx->nmi_known_unmasked = !masked;
4728		if (masked)
4729			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4730				      GUEST_INTR_STATE_NMI);
4731		else
4732			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4733					GUEST_INTR_STATE_NMI);
4734	}
4735}
4736
4737static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4738{
4739	if (to_vmx(vcpu)->nested.nested_run_pending)
4740		return 0;
4741
4742	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4743		return 0;
4744
4745	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4746		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4747		   | GUEST_INTR_STATE_NMI));
4748}
4749
4750static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4751{
4752	return (!to_vmx(vcpu)->nested.nested_run_pending &&
4753		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4754		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4755			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4756}
4757
4758static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4759{
4760	int ret;
4761	struct kvm_userspace_memory_region tss_mem = {
4762		.slot = TSS_PRIVATE_MEMSLOT,
4763		.guest_phys_addr = addr,
4764		.memory_size = PAGE_SIZE * 3,
4765		.flags = 0,
4766	};
4767
4768	ret = kvm_set_memory_region(kvm, &tss_mem);
4769	if (ret)
4770		return ret;
4771	kvm->arch.tss_addr = addr;
4772	return init_rmode_tss(kvm);
4773}
4774
4775static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4776{
4777	switch (vec) {
4778	case BP_VECTOR:
4779		/*
4780		 * Update instruction length as we may reinject the exception
4781		 * from user space while in guest debugging mode.
4782		 */
4783		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4784			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4785		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4786			return false;
4787		/* fall through */
4788	case DB_VECTOR:
4789		if (vcpu->guest_debug &
4790			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4791			return false;
4792		/* fall through */
4793	case DE_VECTOR:
4794	case OF_VECTOR:
4795	case BR_VECTOR:
4796	case UD_VECTOR:
4797	case DF_VECTOR:
4798	case SS_VECTOR:
4799	case GP_VECTOR:
4800	case MF_VECTOR:
4801		return true;
4802	break;
4803	}
4804	return false;
4805}
4806
4807static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4808				  int vec, u32 err_code)
4809{
4810	/*
4811	 * Instruction with address size override prefix opcode 0x67
4812	 * Cause the #SS fault with 0 error code in VM86 mode.
4813	 */
4814	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4815		if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4816			if (vcpu->arch.halt_request) {
4817				vcpu->arch.halt_request = 0;
4818				return kvm_emulate_halt(vcpu);
4819			}
4820			return 1;
4821		}
4822		return 0;
4823	}
4824
4825	/*
4826	 * Forward all other exceptions that are valid in real mode.
4827	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4828	 *        the required debugging infrastructure rework.
4829	 */
4830	kvm_queue_exception(vcpu, vec);
4831	return 1;
4832}
4833
4834/*
4835 * Trigger machine check on the host. We assume all the MSRs are already set up
4836 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4837 * We pass a fake environment to the machine check handler because we want
4838 * the guest to be always treated like user space, no matter what context
4839 * it used internally.
4840 */
4841static void kvm_machine_check(void)
4842{
4843#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4844	struct pt_regs regs = {
4845		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4846		.flags = X86_EFLAGS_IF,
4847	};
4848
4849	do_machine_check(&regs, 0);
4850#endif
4851}
4852
4853static int handle_machine_check(struct kvm_vcpu *vcpu)
4854{
4855	/* already handled by vcpu_run */
4856	return 1;
4857}
4858
4859static int handle_exception(struct kvm_vcpu *vcpu)
4860{
4861	struct vcpu_vmx *vmx = to_vmx(vcpu);
4862	struct kvm_run *kvm_run = vcpu->run;
4863	u32 intr_info, ex_no, error_code;
4864	unsigned long cr2, rip, dr6;
4865	u32 vect_info;
4866	enum emulation_result er;
4867
4868	vect_info = vmx->idt_vectoring_info;
4869	intr_info = vmx->exit_intr_info;
4870
4871	if (is_machine_check(intr_info))
4872		return handle_machine_check(vcpu);
4873
4874	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4875		return 1;  /* already handled by vmx_vcpu_run() */
4876
4877	if (is_no_device(intr_info)) {
4878		vmx_fpu_activate(vcpu);
4879		return 1;
4880	}
4881
4882	if (is_invalid_opcode(intr_info)) {
4883		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4884		if (er != EMULATE_DONE)
4885			kvm_queue_exception(vcpu, UD_VECTOR);
4886		return 1;
4887	}
4888
4889	error_code = 0;
4890	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4891		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4892
4893	/*
4894	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4895	 * MMIO, it is better to report an internal error.
4896	 * See the comments in vmx_handle_exit.
4897	 */
4898	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4899	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4900		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4901		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4902		vcpu->run->internal.ndata = 2;
4903		vcpu->run->internal.data[0] = vect_info;
4904		vcpu->run->internal.data[1] = intr_info;
4905		return 0;
4906	}
4907
4908	if (is_page_fault(intr_info)) {
4909		/* EPT won't cause page fault directly */
4910		BUG_ON(enable_ept);
4911		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4912		trace_kvm_page_fault(cr2, error_code);
4913
4914		if (kvm_event_needs_reinjection(vcpu))
4915			kvm_mmu_unprotect_page_virt(vcpu, cr2);
4916		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4917	}
4918
4919	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4920
4921	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4922		return handle_rmode_exception(vcpu, ex_no, error_code);
4923
4924	switch (ex_no) {
4925	case DB_VECTOR:
4926		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4927		if (!(vcpu->guest_debug &
4928		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4929			vcpu->arch.dr6 &= ~15;
4930			vcpu->arch.dr6 |= dr6 | DR6_RTM;
4931			if (!(dr6 & ~DR6_RESERVED)) /* icebp */
4932				skip_emulated_instruction(vcpu);
4933
4934			kvm_queue_exception(vcpu, DB_VECTOR);
4935			return 1;
4936		}
4937		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4938		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4939		/* fall through */
4940	case BP_VECTOR:
4941		/*
4942		 * Update instruction length as we may reinject #BP from
4943		 * user space while in guest debugging mode. Reading it for
4944		 * #DB as well causes no harm, it is not used in that case.
4945		 */
4946		vmx->vcpu.arch.event_exit_inst_len =
4947			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4948		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4949		rip = kvm_rip_read(vcpu);
4950		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4951		kvm_run->debug.arch.exception = ex_no;
4952		break;
4953	default:
4954		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4955		kvm_run->ex.exception = ex_no;
4956		kvm_run->ex.error_code = error_code;
4957		break;
4958	}
4959	return 0;
4960}
4961
4962static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4963{
4964	++vcpu->stat.irq_exits;
4965	return 1;
4966}
4967
4968static int handle_triple_fault(struct kvm_vcpu *vcpu)
4969{
4970	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4971	return 0;
4972}
4973
4974static int handle_io(struct kvm_vcpu *vcpu)
4975{
4976	unsigned long exit_qualification;
4977	int size, in, string;
4978	unsigned port;
4979
4980	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4981	string = (exit_qualification & 16) != 0;
4982	in = (exit_qualification & 8) != 0;
4983
4984	++vcpu->stat.io_exits;
4985
4986	if (string || in)
4987		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4988
4989	port = exit_qualification >> 16;
4990	size = (exit_qualification & 7) + 1;
4991	skip_emulated_instruction(vcpu);
4992
4993	return kvm_fast_pio_out(vcpu, size, port);
4994}
4995
4996static void
4997vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4998{
4999	/*
5000	 * Patch in the VMCALL instruction:
5001	 */
5002	hypercall[0] = 0x0f;
5003	hypercall[1] = 0x01;
5004	hypercall[2] = 0xc1;
5005}
5006
5007static bool nested_cr0_valid(struct vmcs12 *vmcs12, unsigned long val)
5008{
5009	unsigned long always_on = VMXON_CR0_ALWAYSON;
5010
5011	if (nested_vmx_secondary_ctls_high &
5012		SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5013	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5014		always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5015	return (val & always_on) == always_on;
5016}
5017
5018/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5019static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5020{
5021	if (is_guest_mode(vcpu)) {
5022		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5023		unsigned long orig_val = val;
5024
5025		/*
5026		 * We get here when L2 changed cr0 in a way that did not change
5027		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5028		 * but did change L0 shadowed bits. So we first calculate the
5029		 * effective cr0 value that L1 would like to write into the
5030		 * hardware. It consists of the L2-owned bits from the new
5031		 * value combined with the L1-owned bits from L1's guest_cr0.
5032		 */
5033		val = (val & ~vmcs12->cr0_guest_host_mask) |
5034			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5035
5036		if (!nested_cr0_valid(vmcs12, val))
5037			return 1;
5038
5039		if (kvm_set_cr0(vcpu, val))
5040			return 1;
5041		vmcs_writel(CR0_READ_SHADOW, orig_val);
5042		return 0;
5043	} else {
5044		if (to_vmx(vcpu)->nested.vmxon &&
5045		    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5046			return 1;
5047		return kvm_set_cr0(vcpu, val);
5048	}
5049}
5050
5051static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5052{
5053	if (is_guest_mode(vcpu)) {
5054		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5055		unsigned long orig_val = val;
5056
5057		/* analogously to handle_set_cr0 */
5058		val = (val & ~vmcs12->cr4_guest_host_mask) |
5059			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5060		if (kvm_set_cr4(vcpu, val))
5061			return 1;
5062		vmcs_writel(CR4_READ_SHADOW, orig_val);
5063		return 0;
5064	} else
5065		return kvm_set_cr4(vcpu, val);
5066}
5067
5068/* called to set cr0 as approriate for clts instruction exit. */
5069static void handle_clts(struct kvm_vcpu *vcpu)
5070{
5071	if (is_guest_mode(vcpu)) {
5072		/*
5073		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5074		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5075		 * just pretend it's off (also in arch.cr0 for fpu_activate).
5076		 */
5077		vmcs_writel(CR0_READ_SHADOW,
5078			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5079		vcpu->arch.cr0 &= ~X86_CR0_TS;
5080	} else
5081		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5082}
5083
5084static int handle_cr(struct kvm_vcpu *vcpu)
5085{
5086	unsigned long exit_qualification, val;
5087	int cr;
5088	int reg;
5089	int err;
5090
5091	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5092	cr = exit_qualification & 15;
5093	reg = (exit_qualification >> 8) & 15;
5094	switch ((exit_qualification >> 4) & 3) {
5095	case 0: /* mov to cr */
5096		val = kvm_register_readl(vcpu, reg);
5097		trace_kvm_cr_write(cr, val);
5098		switch (cr) {
5099		case 0:
5100			err = handle_set_cr0(vcpu, val);
5101			kvm_complete_insn_gp(vcpu, err);
5102			return 1;
5103		case 3:
5104			err = kvm_set_cr3(vcpu, val);
5105			kvm_complete_insn_gp(vcpu, err);
5106			return 1;
5107		case 4:
5108			err = handle_set_cr4(vcpu, val);
5109			kvm_complete_insn_gp(vcpu, err);
5110			return 1;
5111		case 8: {
5112				u8 cr8_prev = kvm_get_cr8(vcpu);
5113				u8 cr8 = (u8)val;
5114				err = kvm_set_cr8(vcpu, cr8);
5115				kvm_complete_insn_gp(vcpu, err);
5116				if (irqchip_in_kernel(vcpu->kvm))
5117					return 1;
5118				if (cr8_prev <= cr8)
5119					return 1;
5120				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5121				return 0;
5122			}
5123		}
5124		break;
5125	case 2: /* clts */
5126		handle_clts(vcpu);
5127		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5128		skip_emulated_instruction(vcpu);
5129		vmx_fpu_activate(vcpu);
5130		return 1;
5131	case 1: /*mov from cr*/
5132		switch (cr) {
5133		case 3:
5134			val = kvm_read_cr3(vcpu);
5135			kvm_register_write(vcpu, reg, val);
5136			trace_kvm_cr_read(cr, val);
5137			skip_emulated_instruction(vcpu);
5138			return 1;
5139		case 8:
5140			val = kvm_get_cr8(vcpu);
5141			kvm_register_write(vcpu, reg, val);
5142			trace_kvm_cr_read(cr, val);
5143			skip_emulated_instruction(vcpu);
5144			return 1;
5145		}
5146		break;
5147	case 3: /* lmsw */
5148		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5149		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5150		kvm_lmsw(vcpu, val);
5151
5152		skip_emulated_instruction(vcpu);
5153		return 1;
5154	default:
5155		break;
5156	}
5157	vcpu->run->exit_reason = 0;
5158	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5159	       (int)(exit_qualification >> 4) & 3, cr);
5160	return 0;
5161}
5162
5163static int handle_dr(struct kvm_vcpu *vcpu)
5164{
5165	unsigned long exit_qualification;
5166	int dr, reg;
5167
5168	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5169	if (!kvm_require_cpl(vcpu, 0))
5170		return 1;
5171	dr = vmcs_readl(GUEST_DR7);
5172	if (dr & DR7_GD) {
5173		/*
5174		 * As the vm-exit takes precedence over the debug trap, we
5175		 * need to emulate the latter, either for the host or the
5176		 * guest debugging itself.
5177		 */
5178		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5179			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5180			vcpu->run->debug.arch.dr7 = dr;
5181			vcpu->run->debug.arch.pc =
5182				vmcs_readl(GUEST_CS_BASE) +
5183				vmcs_readl(GUEST_RIP);
5184			vcpu->run->debug.arch.exception = DB_VECTOR;
5185			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5186			return 0;
5187		} else {
5188			vcpu->arch.dr7 &= ~DR7_GD;
5189			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5190			vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5191			kvm_queue_exception(vcpu, DB_VECTOR);
5192			return 1;
5193		}
5194	}
5195
5196	if (vcpu->guest_debug == 0) {
5197		u32 cpu_based_vm_exec_control;
5198
5199		cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5200		cpu_based_vm_exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5201		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5202
5203		/*
5204		 * No more DR vmexits; force a reload of the debug registers
5205		 * and reenter on this instruction.  The next vmexit will
5206		 * retrieve the full state of the debug registers.
5207		 */
5208		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5209		return 1;
5210	}
5211
5212	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5213	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5214	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5215	if (exit_qualification & TYPE_MOV_FROM_DR) {
5216		unsigned long val;
5217
5218		if (kvm_get_dr(vcpu, dr, &val))
5219			return 1;
5220		kvm_register_write(vcpu, reg, val);
5221	} else
5222		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5223			return 1;
5224
5225	skip_emulated_instruction(vcpu);
5226	return 1;
5227}
5228
5229static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5230{
5231	return vcpu->arch.dr6;
5232}
5233
5234static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5235{
5236}
5237
5238static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5239{
5240	u32 cpu_based_vm_exec_control;
5241
5242	get_debugreg(vcpu->arch.db[0], 0);
5243	get_debugreg(vcpu->arch.db[1], 1);
5244	get_debugreg(vcpu->arch.db[2], 2);
5245	get_debugreg(vcpu->arch.db[3], 3);
5246	get_debugreg(vcpu->arch.dr6, 6);
5247	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5248
5249	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5250
5251	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5252	cpu_based_vm_exec_control |= CPU_BASED_MOV_DR_EXITING;
5253	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5254}
5255
5256static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5257{
5258	vmcs_writel(GUEST_DR7, val);
5259}
5260
5261static int handle_cpuid(struct kvm_vcpu *vcpu)
5262{
5263	kvm_emulate_cpuid(vcpu);
5264	return 1;
5265}
5266
5267static int handle_rdmsr(struct kvm_vcpu *vcpu)
5268{
5269	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5270	u64 data;
5271
5272	if (vmx_get_msr(vcpu, ecx, &data)) {
5273		trace_kvm_msr_read_ex(ecx);
5274		kvm_inject_gp(vcpu, 0);
5275		return 1;
5276	}
5277
5278	trace_kvm_msr_read(ecx, data);
5279
5280	/* FIXME: handling of bits 32:63 of rax, rdx */
5281	vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5282	vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5283	skip_emulated_instruction(vcpu);
5284	return 1;
5285}
5286
5287static int handle_wrmsr(struct kvm_vcpu *vcpu)
5288{
5289	struct msr_data msr;
5290	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5291	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5292		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5293
5294	msr.data = data;
5295	msr.index = ecx;
5296	msr.host_initiated = false;
5297	if (kvm_set_msr(vcpu, &msr) != 0) {
5298		trace_kvm_msr_write_ex(ecx, data);
5299		kvm_inject_gp(vcpu, 0);
5300		return 1;
5301	}
5302
5303	trace_kvm_msr_write(ecx, data);
5304	skip_emulated_instruction(vcpu);
5305	return 1;
5306}
5307
5308static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5309{
5310	kvm_make_request(KVM_REQ_EVENT, vcpu);
5311	return 1;
5312}
5313
5314static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5315{
5316	u32 cpu_based_vm_exec_control;
5317
5318	/* clear pending irq */
5319	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5320	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5321	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5322
5323	kvm_make_request(KVM_REQ_EVENT, vcpu);
5324
5325	++vcpu->stat.irq_window_exits;
5326
5327	/*
5328	 * If the user space waits to inject interrupts, exit as soon as
5329	 * possible
5330	 */
5331	if (!irqchip_in_kernel(vcpu->kvm) &&
5332	    vcpu->run->request_interrupt_window &&
5333	    !kvm_cpu_has_interrupt(vcpu)) {
5334		vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5335		return 0;
5336	}
5337	return 1;
5338}
5339
5340static int handle_halt(struct kvm_vcpu *vcpu)
5341{
5342	skip_emulated_instruction(vcpu);
5343	return kvm_emulate_halt(vcpu);
5344}
5345
5346static int handle_vmcall(struct kvm_vcpu *vcpu)
5347{
5348	skip_emulated_instruction(vcpu);
5349	kvm_emulate_hypercall(vcpu);
5350	return 1;
5351}
5352
5353static int handle_invd(struct kvm_vcpu *vcpu)
5354{
5355	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5356}
5357
5358static int handle_invlpg(struct kvm_vcpu *vcpu)
5359{
5360	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5361
5362	kvm_mmu_invlpg(vcpu, exit_qualification);
5363	skip_emulated_instruction(vcpu);
5364	return 1;
5365}
5366
5367static int handle_rdpmc(struct kvm_vcpu *vcpu)
5368{
5369	int err;
5370
5371	err = kvm_rdpmc(vcpu);
5372	kvm_complete_insn_gp(vcpu, err);
5373
5374	return 1;
5375}
5376
5377static int handle_wbinvd(struct kvm_vcpu *vcpu)
5378{
5379	skip_emulated_instruction(vcpu);
5380	kvm_emulate_wbinvd(vcpu);
5381	return 1;
5382}
5383
5384static int handle_xsetbv(struct kvm_vcpu *vcpu)
5385{
5386	u64 new_bv = kvm_read_edx_eax(vcpu);
5387	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5388
5389	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5390		skip_emulated_instruction(vcpu);
5391	return 1;
5392}
5393
5394static int handle_apic_access(struct kvm_vcpu *vcpu)
5395{
5396	if (likely(fasteoi)) {
5397		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5398		int access_type, offset;
5399
5400		access_type = exit_qualification & APIC_ACCESS_TYPE;
5401		offset = exit_qualification & APIC_ACCESS_OFFSET;
5402		/*
5403		 * Sane guest uses MOV to write EOI, with written value
5404		 * not cared. So make a short-circuit here by avoiding
5405		 * heavy instruction emulation.
5406		 */
5407		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5408		    (offset == APIC_EOI)) {
5409			kvm_lapic_set_eoi(vcpu);
5410			skip_emulated_instruction(vcpu);
5411			return 1;
5412		}
5413	}
5414	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5415}
5416
5417static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5418{
5419	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5420	int vector = exit_qualification & 0xff;
5421
5422	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5423	kvm_apic_set_eoi_accelerated(vcpu, vector);
5424	return 1;
5425}
5426
5427static int handle_apic_write(struct kvm_vcpu *vcpu)
5428{
5429	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5430	u32 offset = exit_qualification & 0xfff;
5431
5432	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5433	kvm_apic_write_nodecode(vcpu, offset);
5434	return 1;
5435}
5436
5437static int handle_task_switch(struct kvm_vcpu *vcpu)
5438{
5439	struct vcpu_vmx *vmx = to_vmx(vcpu);
5440	unsigned long exit_qualification;
5441	bool has_error_code = false;
5442	u32 error_code = 0;
5443	u16 tss_selector;
5444	int reason, type, idt_v, idt_index;
5445
5446	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5447	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5448	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5449
5450	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5451
5452	reason = (u32)exit_qualification >> 30;
5453	if (reason == TASK_SWITCH_GATE && idt_v) {
5454		switch (type) {
5455		case INTR_TYPE_NMI_INTR:
5456			vcpu->arch.nmi_injected = false;
5457			vmx_set_nmi_mask(vcpu, true);
5458			break;
5459		case INTR_TYPE_EXT_INTR:
5460		case INTR_TYPE_SOFT_INTR:
5461			kvm_clear_interrupt_queue(vcpu);
5462			break;
5463		case INTR_TYPE_HARD_EXCEPTION:
5464			if (vmx->idt_vectoring_info &
5465			    VECTORING_INFO_DELIVER_CODE_MASK) {
5466				has_error_code = true;
5467				error_code =
5468					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5469			}
5470			/* fall through */
5471		case INTR_TYPE_SOFT_EXCEPTION:
5472			kvm_clear_exception_queue(vcpu);
5473			break;
5474		default:
5475			break;
5476		}
5477	}
5478	tss_selector = exit_qualification;
5479
5480	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5481		       type != INTR_TYPE_EXT_INTR &&
5482		       type != INTR_TYPE_NMI_INTR))
5483		skip_emulated_instruction(vcpu);
5484
5485	if (kvm_task_switch(vcpu, tss_selector,
5486			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5487			    has_error_code, error_code) == EMULATE_FAIL) {
5488		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5489		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5490		vcpu->run->internal.ndata = 0;
5491		return 0;
5492	}
5493
5494	/* clear all local breakpoint enable flags */
5495	vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~0x55);
5496
5497	/*
5498	 * TODO: What about debug traps on tss switch?
5499	 *       Are we supposed to inject them and update dr6?
5500	 */
5501
5502	return 1;
5503}
5504
5505static int handle_ept_violation(struct kvm_vcpu *vcpu)
5506{
5507	unsigned long exit_qualification;
5508	gpa_t gpa;
5509	u32 error_code;
5510	int gla_validity;
5511
5512	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5513
5514	gla_validity = (exit_qualification >> 7) & 0x3;
5515	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5516		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5517		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5518			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5519			vmcs_readl(GUEST_LINEAR_ADDRESS));
5520		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5521			(long unsigned int)exit_qualification);
5522		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5523		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5524		return 0;
5525	}
5526
5527	/*
5528	 * EPT violation happened while executing iret from NMI,
5529	 * "blocked by NMI" bit has to be set before next VM entry.
5530	 * There are errata that may cause this bit to not be set:
5531	 * AAK134, BY25.
5532	 */
5533	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5534			cpu_has_virtual_nmis() &&
5535			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5536		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5537
5538	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5539	trace_kvm_page_fault(gpa, exit_qualification);
5540
5541	/* It is a write fault? */
5542	error_code = exit_qualification & (1U << 1);
5543	/* It is a fetch fault? */
5544	error_code |= (exit_qualification & (1U << 2)) << 2;
5545	/* ept page table is present? */
5546	error_code |= (exit_qualification >> 3) & 0x1;
5547
5548	vcpu->arch.exit_qualification = exit_qualification;
5549
5550	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5551}
5552
5553static u64 ept_rsvd_mask(u64 spte, int level)
5554{
5555	int i;
5556	u64 mask = 0;
5557
5558	for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5559		mask |= (1ULL << i);
5560
5561	if (level == 4)
5562		/* bits 7:3 reserved */
5563		mask |= 0xf8;
5564	else if (spte & (1ULL << 7))
5565		/*
5566		 * 1GB/2MB page, bits 29:12 or 20:12 reserved respectively,
5567		 * level == 1 if the hypervisor is using the ignored bit 7.
5568		 */
5569		mask |= (PAGE_SIZE << ((level - 1) * 9)) - PAGE_SIZE;
5570	else if (level > 1)
5571		/* bits 6:3 reserved */
5572		mask |= 0x78;
5573
5574	return mask;
5575}
5576
5577static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5578				       int level)
5579{
5580	printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5581
5582	/* 010b (write-only) */
5583	WARN_ON((spte & 0x7) == 0x2);
5584
5585	/* 110b (write/execute) */
5586	WARN_ON((spte & 0x7) == 0x6);
5587
5588	/* 100b (execute-only) and value not supported by logical processor */
5589	if (!cpu_has_vmx_ept_execute_only())
5590		WARN_ON((spte & 0x7) == 0x4);
5591
5592	/* not 000b */
5593	if ((spte & 0x7)) {
5594		u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5595
5596		if (rsvd_bits != 0) {
5597			printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5598					 __func__, rsvd_bits);
5599			WARN_ON(1);
5600		}
5601
5602		/* bits 5:3 are _not_ reserved for large page or leaf page */
5603		if ((rsvd_bits & 0x38) == 0) {
5604			u64 ept_mem_type = (spte & 0x38) >> 3;
5605
5606			if (ept_mem_type == 2 || ept_mem_type == 3 ||
5607			    ept_mem_type == 7) {
5608				printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5609						__func__, ept_mem_type);
5610				WARN_ON(1);
5611			}
5612		}
5613	}
5614}
5615
5616static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5617{
5618	u64 sptes[4];
5619	int nr_sptes, i, ret;
5620	gpa_t gpa;
5621
5622	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5623	if (!kvm_io_bus_write(vcpu->kvm, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5624		skip_emulated_instruction(vcpu);
5625		return 1;
5626	}
5627
5628	ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5629	if (likely(ret == RET_MMIO_PF_EMULATE))
5630		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5631					      EMULATE_DONE;
5632
5633	if (unlikely(ret == RET_MMIO_PF_INVALID))
5634		return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5635
5636	if (unlikely(ret == RET_MMIO_PF_RETRY))
5637		return 1;
5638
5639	/* It is the real ept misconfig */
5640	printk(KERN_ERR "EPT: Misconfiguration.\n");
5641	printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5642
5643	nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5644
5645	for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5646		ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5647
5648	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5649	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5650
5651	return 0;
5652}
5653
5654static int handle_nmi_window(struct kvm_vcpu *vcpu)
5655{
5656	u32 cpu_based_vm_exec_control;
5657
5658	/* clear pending NMI */
5659	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5660	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5661	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5662	++vcpu->stat.nmi_window_exits;
5663	kvm_make_request(KVM_REQ_EVENT, vcpu);
5664
5665	return 1;
5666}
5667
5668static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5669{
5670	struct vcpu_vmx *vmx = to_vmx(vcpu);
5671	enum emulation_result err = EMULATE_DONE;
5672	int ret = 1;
5673	u32 cpu_exec_ctrl;
5674	bool intr_window_requested;
5675	unsigned count = 130;
5676
5677	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5678	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5679
5680	while (vmx->emulation_required && count-- != 0) {
5681		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5682			return handle_interrupt_window(&vmx->vcpu);
5683
5684		if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5685			return 1;
5686
5687		err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5688
5689		if (err == EMULATE_USER_EXIT) {
5690			++vcpu->stat.mmio_exits;
5691			ret = 0;
5692			goto out;
5693		}
5694
5695		if (err != EMULATE_DONE) {
5696			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5697			vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5698			vcpu->run->internal.ndata = 0;
5699			return 0;
5700		}
5701
5702		if (vcpu->arch.halt_request) {
5703			vcpu->arch.halt_request = 0;
5704			ret = kvm_emulate_halt(vcpu);
5705			goto out;
5706		}
5707
5708		if (signal_pending(current))
5709			goto out;
5710		if (need_resched())
5711			schedule();
5712	}
5713
5714out:
5715	return ret;
5716}
5717
5718static int __grow_ple_window(int val)
5719{
5720	if (ple_window_grow < 1)
5721		return ple_window;
5722
5723	val = min(val, ple_window_actual_max);
5724
5725	if (ple_window_grow < ple_window)
5726		val *= ple_window_grow;
5727	else
5728		val += ple_window_grow;
5729
5730	return val;
5731}
5732
5733static int __shrink_ple_window(int val, int modifier, int minimum)
5734{
5735	if (modifier < 1)
5736		return ple_window;
5737
5738	if (modifier < ple_window)
5739		val /= modifier;
5740	else
5741		val -= modifier;
5742
5743	return max(val, minimum);
5744}
5745
5746static void grow_ple_window(struct kvm_vcpu *vcpu)
5747{
5748	struct vcpu_vmx *vmx = to_vmx(vcpu);
5749	int old = vmx->ple_window;
5750
5751	vmx->ple_window = __grow_ple_window(old);
5752
5753	if (vmx->ple_window != old)
5754		vmx->ple_window_dirty = true;
5755
5756	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5757}
5758
5759static void shrink_ple_window(struct kvm_vcpu *vcpu)
5760{
5761	struct vcpu_vmx *vmx = to_vmx(vcpu);
5762	int old = vmx->ple_window;
5763
5764	vmx->ple_window = __shrink_ple_window(old,
5765	                                      ple_window_shrink, ple_window);
5766
5767	if (vmx->ple_window != old)
5768		vmx->ple_window_dirty = true;
5769
5770	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5771}
5772
5773/*
5774 * ple_window_actual_max is computed to be one grow_ple_window() below
5775 * ple_window_max. (See __grow_ple_window for the reason.)
5776 * This prevents overflows, because ple_window_max is int.
5777 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
5778 * this process.
5779 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
5780 */
5781static void update_ple_window_actual_max(void)
5782{
5783	ple_window_actual_max =
5784			__shrink_ple_window(max(ple_window_max, ple_window),
5785			                    ple_window_grow, INT_MIN);
5786}
5787
5788/*
5789 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5790 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5791 */
5792static int handle_pause(struct kvm_vcpu *vcpu)
5793{
5794	if (ple_gap)
5795		grow_ple_window(vcpu);
5796
5797	skip_emulated_instruction(vcpu);
5798	kvm_vcpu_on_spin(vcpu);
5799
5800	return 1;
5801}
5802
5803static int handle_nop(struct kvm_vcpu *vcpu)
5804{
5805	skip_emulated_instruction(vcpu);
5806	return 1;
5807}
5808
5809static int handle_mwait(struct kvm_vcpu *vcpu)
5810{
5811	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5812	return handle_nop(vcpu);
5813}
5814
5815static int handle_monitor(struct kvm_vcpu *vcpu)
5816{
5817	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5818	return handle_nop(vcpu);
5819}
5820
5821/*
5822 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5823 * We could reuse a single VMCS for all the L2 guests, but we also want the
5824 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5825 * allows keeping them loaded on the processor, and in the future will allow
5826 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5827 * every entry if they never change.
5828 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5829 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5830 *
5831 * The following functions allocate and free a vmcs02 in this pool.
5832 */
5833
5834/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5835static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5836{
5837	struct vmcs02_list *item;
5838	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5839		if (item->vmptr == vmx->nested.current_vmptr) {
5840			list_move(&item->list, &vmx->nested.vmcs02_pool);
5841			return &item->vmcs02;
5842		}
5843
5844	if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5845		/* Recycle the least recently used VMCS. */
5846		item = list_entry(vmx->nested.vmcs02_pool.prev,
5847			struct vmcs02_list, list);
5848		item->vmptr = vmx->nested.current_vmptr;
5849		list_move(&item->list, &vmx->nested.vmcs02_pool);
5850		return &item->vmcs02;
5851	}
5852
5853	/* Create a new VMCS */
5854	item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5855	if (!item)
5856		return NULL;
5857	item->vmcs02.vmcs = alloc_vmcs();
5858	if (!item->vmcs02.vmcs) {
5859		kfree(item);
5860		return NULL;
5861	}
5862	loaded_vmcs_init(&item->vmcs02);
5863	item->vmptr = vmx->nested.current_vmptr;
5864	list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5865	vmx->nested.vmcs02_num++;
5866	return &item->vmcs02;
5867}
5868
5869/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5870static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5871{
5872	struct vmcs02_list *item;
5873	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5874		if (item->vmptr == vmptr) {
5875			free_loaded_vmcs(&item->vmcs02);
5876			list_del(&item->list);
5877			kfree(item);
5878			vmx->nested.vmcs02_num--;
5879			return;
5880		}
5881}
5882
5883/*
5884 * Free all VMCSs saved for this vcpu, except the one pointed by
5885 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
5886 * must be &vmx->vmcs01.
5887 */
5888static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5889{
5890	struct vmcs02_list *item, *n;
5891
5892	WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
5893	list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5894		/*
5895		 * Something will leak if the above WARN triggers.  Better than
5896		 * a use-after-free.
5897		 */
5898		if (vmx->loaded_vmcs == &item->vmcs02)
5899			continue;
5900
5901		free_loaded_vmcs(&item->vmcs02);
5902		list_del(&item->list);
5903		kfree(item);
5904		vmx->nested.vmcs02_num--;
5905	}
5906}
5907
5908/*
5909 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5910 * set the success or error code of an emulated VMX instruction, as specified
5911 * by Vol 2B, VMX Instruction Reference, "Conventions".
5912 */
5913static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5914{
5915	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5916			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5917			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5918}
5919
5920static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5921{
5922	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5923			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5924			    X86_EFLAGS_SF | X86_EFLAGS_OF))
5925			| X86_EFLAGS_CF);
5926}
5927
5928static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5929					u32 vm_instruction_error)
5930{
5931	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5932		/*
5933		 * failValid writes the error number to the current VMCS, which
5934		 * can't be done there isn't a current VMCS.
5935		 */
5936		nested_vmx_failInvalid(vcpu);
5937		return;
5938	}
5939	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5940			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5941			    X86_EFLAGS_SF | X86_EFLAGS_OF))
5942			| X86_EFLAGS_ZF);
5943	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5944	/*
5945	 * We don't need to force a shadow sync because
5946	 * VM_INSTRUCTION_ERROR is not shadowed
5947	 */
5948}
5949
5950static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
5951{
5952	struct vcpu_vmx *vmx =
5953		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
5954
5955	vmx->nested.preemption_timer_expired = true;
5956	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
5957	kvm_vcpu_kick(&vmx->vcpu);
5958
5959	return HRTIMER_NORESTART;
5960}
5961
5962/*
5963 * Decode the memory-address operand of a vmx instruction, as recorded on an
5964 * exit caused by such an instruction (run by a guest hypervisor).
5965 * On success, returns 0. When the operand is invalid, returns 1 and throws
5966 * #UD or #GP.
5967 */
5968static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5969				 unsigned long exit_qualification,
5970				 u32 vmx_instruction_info, gva_t *ret)
5971{
5972	/*
5973	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5974	 * Execution", on an exit, vmx_instruction_info holds most of the
5975	 * addressing components of the operand. Only the displacement part
5976	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5977	 * For how an actual address is calculated from all these components,
5978	 * refer to Vol. 1, "Operand Addressing".
5979	 */
5980	int  scaling = vmx_instruction_info & 3;
5981	int  addr_size = (vmx_instruction_info >> 7) & 7;
5982	bool is_reg = vmx_instruction_info & (1u << 10);
5983	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5984	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5985	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5986	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5987	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5988
5989	if (is_reg) {
5990		kvm_queue_exception(vcpu, UD_VECTOR);
5991		return 1;
5992	}
5993
5994	/* Addr = segment_base + offset */
5995	/* offset = base + [index * scale] + displacement */
5996	*ret = vmx_get_segment_base(vcpu, seg_reg);
5997	if (base_is_valid)
5998		*ret += kvm_register_read(vcpu, base_reg);
5999	if (index_is_valid)
6000		*ret += kvm_register_read(vcpu, index_reg)<<scaling;
6001	*ret += exit_qualification; /* holds the displacement */
6002
6003	if (addr_size == 1) /* 32 bit */
6004		*ret &= 0xffffffff;
6005
6006	/*
6007	 * TODO: throw #GP (and return 1) in various cases that the VM*
6008	 * instructions require it - e.g., offset beyond segment limit,
6009	 * unusable or unreadable/unwritable segment, non-canonical 64-bit
6010	 * address, and so on. Currently these are not checked.
6011	 */
6012	return 0;
6013}
6014
6015/*
6016 * This function performs the various checks including
6017 * - if it's 4KB aligned
6018 * - No bits beyond the physical address width are set
6019 * - Returns 0 on success or else 1
6020 * (Intel SDM Section 30.3)
6021 */
6022static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6023				  gpa_t *vmpointer)
6024{
6025	gva_t gva;
6026	gpa_t vmptr;
6027	struct x86_exception e;
6028	struct page *page;
6029	struct vcpu_vmx *vmx = to_vmx(vcpu);
6030	int maxphyaddr = cpuid_maxphyaddr(vcpu);
6031
6032	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6033			vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6034		return 1;
6035
6036	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6037				sizeof(vmptr), &e)) {
6038		kvm_inject_page_fault(vcpu, &e);
6039		return 1;
6040	}
6041
6042	switch (exit_reason) {
6043	case EXIT_REASON_VMON:
6044		/*
6045		 * SDM 3: 24.11.5
6046		 * The first 4 bytes of VMXON region contain the supported
6047		 * VMCS revision identifier
6048		 *
6049		 * Note - IA32_VMX_BASIC[48] will never be 1
6050		 * for the nested case;
6051		 * which replaces physical address width with 32
6052		 *
6053		 */
6054		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6055			nested_vmx_failInvalid(vcpu);
6056			skip_emulated_instruction(vcpu);
6057			return 1;
6058		}
6059
6060		page = nested_get_page(vcpu, vmptr);
6061		if (page == NULL ||
6062		    *(u32 *)kmap(page) != VMCS12_REVISION) {
6063			nested_vmx_failInvalid(vcpu);
6064			kunmap(page);
6065			skip_emulated_instruction(vcpu);
6066			return 1;
6067		}
6068		kunmap(page);
6069		vmx->nested.vmxon_ptr = vmptr;
6070		break;
6071	case EXIT_REASON_VMCLEAR:
6072		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6073			nested_vmx_failValid(vcpu,
6074					     VMXERR_VMCLEAR_INVALID_ADDRESS);
6075			skip_emulated_instruction(vcpu);
6076			return 1;
6077		}
6078
6079		if (vmptr == vmx->nested.vmxon_ptr) {
6080			nested_vmx_failValid(vcpu,
6081					     VMXERR_VMCLEAR_VMXON_POINTER);
6082			skip_emulated_instruction(vcpu);
6083			return 1;
6084		}
6085		break;
6086	case EXIT_REASON_VMPTRLD:
6087		if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6088			nested_vmx_failValid(vcpu,
6089					     VMXERR_VMPTRLD_INVALID_ADDRESS);
6090			skip_emulated_instruction(vcpu);
6091			return 1;
6092		}
6093
6094		if (vmptr == vmx->nested.vmxon_ptr) {
6095			nested_vmx_failValid(vcpu,
6096					     VMXERR_VMCLEAR_VMXON_POINTER);
6097			skip_emulated_instruction(vcpu);
6098			return 1;
6099		}
6100		break;
6101	default:
6102		return 1; /* shouldn't happen */
6103	}
6104
6105	if (vmpointer)
6106		*vmpointer = vmptr;
6107	return 0;
6108}
6109
6110/*
6111 * Emulate the VMXON instruction.
6112 * Currently, we just remember that VMX is active, and do not save or even
6113 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6114 * do not currently need to store anything in that guest-allocated memory
6115 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6116 * argument is different from the VMXON pointer (which the spec says they do).
6117 */
6118static int handle_vmon(struct kvm_vcpu *vcpu)
6119{
6120	struct kvm_segment cs;
6121	struct vcpu_vmx *vmx = to_vmx(vcpu);
6122	struct vmcs *shadow_vmcs;
6123	const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6124		| FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6125
6126	/* The Intel VMX Instruction Reference lists a bunch of bits that
6127	 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6128	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6129	 * Otherwise, we should fail with #UD. We test these now:
6130	 */
6131	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6132	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6133	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6134		kvm_queue_exception(vcpu, UD_VECTOR);
6135		return 1;
6136	}
6137
6138	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6139	if (is_long_mode(vcpu) && !cs.l) {
6140		kvm_queue_exception(vcpu, UD_VECTOR);
6141		return 1;
6142	}
6143
6144	if (vmx_get_cpl(vcpu)) {
6145		kvm_inject_gp(vcpu, 0);
6146		return 1;
6147	}
6148
6149	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6150		return 1;
6151
6152	if (vmx->nested.vmxon) {
6153		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6154		skip_emulated_instruction(vcpu);
6155		return 1;
6156	}
6157
6158	if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6159			!= VMXON_NEEDED_FEATURES) {
6160		kvm_inject_gp(vcpu, 0);
6161		return 1;
6162	}
6163
6164	if (enable_shadow_vmcs) {
6165		shadow_vmcs = alloc_vmcs();
6166		if (!shadow_vmcs)
6167			return -ENOMEM;
6168		/* mark vmcs as shadow */
6169		shadow_vmcs->revision_id |= (1u << 31);
6170		/* init shadow vmcs */
6171		vmcs_clear(shadow_vmcs);
6172		vmx->nested.current_shadow_vmcs = shadow_vmcs;
6173	}
6174
6175	INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6176	vmx->nested.vmcs02_num = 0;
6177
6178	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6179		     HRTIMER_MODE_REL);
6180	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6181
6182	vmx->nested.vmxon = true;
6183
6184	skip_emulated_instruction(vcpu);
6185	nested_vmx_succeed(vcpu);
6186	return 1;
6187}
6188
6189/*
6190 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6191 * for running VMX instructions (except VMXON, whose prerequisites are
6192 * slightly different). It also specifies what exception to inject otherwise.
6193 */
6194static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6195{
6196	struct kvm_segment cs;
6197	struct vcpu_vmx *vmx = to_vmx(vcpu);
6198
6199	if (!vmx->nested.vmxon) {
6200		kvm_queue_exception(vcpu, UD_VECTOR);
6201		return 0;
6202	}
6203
6204	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6205	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6206	    (is_long_mode(vcpu) && !cs.l)) {
6207		kvm_queue_exception(vcpu, UD_VECTOR);
6208		return 0;
6209	}
6210
6211	if (vmx_get_cpl(vcpu)) {
6212		kvm_inject_gp(vcpu, 0);
6213		return 0;
6214	}
6215
6216	return 1;
6217}
6218
6219static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6220{
6221	u32 exec_control;
6222	if (vmx->nested.current_vmptr == -1ull)
6223		return;
6224
6225	/* current_vmptr and current_vmcs12 are always set/reset together */
6226	if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6227		return;
6228
6229	if (enable_shadow_vmcs) {
6230		/* copy to memory all shadowed fields in case
6231		   they were modified */
6232		copy_shadow_to_vmcs12(vmx);
6233		vmx->nested.sync_shadow_vmcs = false;
6234		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6235		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
6236		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6237		vmcs_write64(VMCS_LINK_POINTER, -1ull);
6238	}
6239	kunmap(vmx->nested.current_vmcs12_page);
6240	nested_release_page(vmx->nested.current_vmcs12_page);
6241	vmx->nested.current_vmptr = -1ull;
6242	vmx->nested.current_vmcs12 = NULL;
6243}
6244
6245/*
6246 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6247 * just stops using VMX.
6248 */
6249static void free_nested(struct vcpu_vmx *vmx)
6250{
6251	if (!vmx->nested.vmxon)
6252		return;
6253
6254	vmx->nested.vmxon = false;
6255	nested_release_vmcs12(vmx);
6256	if (enable_shadow_vmcs)
6257		free_vmcs(vmx->nested.current_shadow_vmcs);
6258	/* Unpin physical memory we referred to in current vmcs02 */
6259	if (vmx->nested.apic_access_page) {
6260		nested_release_page(vmx->nested.apic_access_page);
6261		vmx->nested.apic_access_page = NULL;
6262	}
6263	if (vmx->nested.virtual_apic_page) {
6264		nested_release_page(vmx->nested.virtual_apic_page);
6265		vmx->nested.virtual_apic_page = NULL;
6266	}
6267
6268	nested_free_all_saved_vmcss(vmx);
6269}
6270
6271/* Emulate the VMXOFF instruction */
6272static int handle_vmoff(struct kvm_vcpu *vcpu)
6273{
6274	if (!nested_vmx_check_permission(vcpu))
6275		return 1;
6276	free_nested(to_vmx(vcpu));
6277	skip_emulated_instruction(vcpu);
6278	nested_vmx_succeed(vcpu);
6279	return 1;
6280}
6281
6282/* Emulate the VMCLEAR instruction */
6283static int handle_vmclear(struct kvm_vcpu *vcpu)
6284{
6285	struct vcpu_vmx *vmx = to_vmx(vcpu);
6286	gpa_t vmptr;
6287	struct vmcs12 *vmcs12;
6288	struct page *page;
6289
6290	if (!nested_vmx_check_permission(vcpu))
6291		return 1;
6292
6293	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
6294		return 1;
6295
6296	if (vmptr == vmx->nested.current_vmptr)
6297		nested_release_vmcs12(vmx);
6298
6299	page = nested_get_page(vcpu, vmptr);
6300	if (page == NULL) {
6301		/*
6302		 * For accurate processor emulation, VMCLEAR beyond available
6303		 * physical memory should do nothing at all. However, it is
6304		 * possible that a nested vmx bug, not a guest hypervisor bug,
6305		 * resulted in this case, so let's shut down before doing any
6306		 * more damage:
6307		 */
6308		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6309		return 1;
6310	}
6311	vmcs12 = kmap(page);
6312	vmcs12->launch_state = 0;
6313	kunmap(page);
6314	nested_release_page(page);
6315
6316	nested_free_vmcs02(vmx, vmptr);
6317
6318	skip_emulated_instruction(vcpu);
6319	nested_vmx_succeed(vcpu);
6320	return 1;
6321}
6322
6323static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
6324
6325/* Emulate the VMLAUNCH instruction */
6326static int handle_vmlaunch(struct kvm_vcpu *vcpu)
6327{
6328	return nested_vmx_run(vcpu, true);
6329}
6330
6331/* Emulate the VMRESUME instruction */
6332static int handle_vmresume(struct kvm_vcpu *vcpu)
6333{
6334
6335	return nested_vmx_run(vcpu, false);
6336}
6337
6338enum vmcs_field_type {
6339	VMCS_FIELD_TYPE_U16 = 0,
6340	VMCS_FIELD_TYPE_U64 = 1,
6341	VMCS_FIELD_TYPE_U32 = 2,
6342	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
6343};
6344
6345static inline int vmcs_field_type(unsigned long field)
6346{
6347	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
6348		return VMCS_FIELD_TYPE_U32;
6349	return (field >> 13) & 0x3 ;
6350}
6351
6352static inline int vmcs_field_readonly(unsigned long field)
6353{
6354	return (((field >> 10) & 0x3) == 1);
6355}
6356
6357/*
6358 * Read a vmcs12 field. Since these can have varying lengths and we return
6359 * one type, we chose the biggest type (u64) and zero-extend the return value
6360 * to that size. Note that the caller, handle_vmread, might need to use only
6361 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
6362 * 64-bit fields are to be returned).
6363 */
6364static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
6365					unsigned long field, u64 *ret)
6366{
6367	short offset = vmcs_field_to_offset(field);
6368	char *p;
6369
6370	if (offset < 0)
6371		return 0;
6372
6373	p = ((char *)(get_vmcs12(vcpu))) + offset;
6374
6375	switch (vmcs_field_type(field)) {
6376	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6377		*ret = *((natural_width *)p);
6378		return 1;
6379	case VMCS_FIELD_TYPE_U16:
6380		*ret = *((u16 *)p);
6381		return 1;
6382	case VMCS_FIELD_TYPE_U32:
6383		*ret = *((u32 *)p);
6384		return 1;
6385	case VMCS_FIELD_TYPE_U64:
6386		*ret = *((u64 *)p);
6387		return 1;
6388	default:
6389		return 0; /* can never happen. */
6390	}
6391}
6392
6393
6394static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
6395				    unsigned long field, u64 field_value){
6396	short offset = vmcs_field_to_offset(field);
6397	char *p = ((char *) get_vmcs12(vcpu)) + offset;
6398	if (offset < 0)
6399		return false;
6400
6401	switch (vmcs_field_type(field)) {
6402	case VMCS_FIELD_TYPE_U16:
6403		*(u16 *)p = field_value;
6404		return true;
6405	case VMCS_FIELD_TYPE_U32:
6406		*(u32 *)p = field_value;
6407		return true;
6408	case VMCS_FIELD_TYPE_U64:
6409		*(u64 *)p = field_value;
6410		return true;
6411	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6412		*(natural_width *)p = field_value;
6413		return true;
6414	default:
6415		return false; /* can never happen. */
6416	}
6417
6418}
6419
6420static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
6421{
6422	int i;
6423	unsigned long field;
6424	u64 field_value;
6425	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6426	const unsigned long *fields = shadow_read_write_fields;
6427	const int num_fields = max_shadow_read_write_fields;
6428
6429	preempt_disable();
6430
6431	vmcs_load(shadow_vmcs);
6432
6433	for (i = 0; i < num_fields; i++) {
6434		field = fields[i];
6435		switch (vmcs_field_type(field)) {
6436		case VMCS_FIELD_TYPE_U16:
6437			field_value = vmcs_read16(field);
6438			break;
6439		case VMCS_FIELD_TYPE_U32:
6440			field_value = vmcs_read32(field);
6441			break;
6442		case VMCS_FIELD_TYPE_U64:
6443			field_value = vmcs_read64(field);
6444			break;
6445		case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6446			field_value = vmcs_readl(field);
6447			break;
6448		}
6449		vmcs12_write_any(&vmx->vcpu, field, field_value);
6450	}
6451
6452	vmcs_clear(shadow_vmcs);
6453	vmcs_load(vmx->loaded_vmcs->vmcs);
6454
6455	preempt_enable();
6456}
6457
6458static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6459{
6460	const unsigned long *fields[] = {
6461		shadow_read_write_fields,
6462		shadow_read_only_fields
6463	};
6464	const int max_fields[] = {
6465		max_shadow_read_write_fields,
6466		max_shadow_read_only_fields
6467	};
6468	int i, q;
6469	unsigned long field;
6470	u64 field_value = 0;
6471	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6472
6473	vmcs_load(shadow_vmcs);
6474
6475	for (q = 0; q < ARRAY_SIZE(fields); q++) {
6476		for (i = 0; i < max_fields[q]; i++) {
6477			field = fields[q][i];
6478			vmcs12_read_any(&vmx->vcpu, field, &field_value);
6479
6480			switch (vmcs_field_type(field)) {
6481			case VMCS_FIELD_TYPE_U16:
6482				vmcs_write16(field, (u16)field_value);
6483				break;
6484			case VMCS_FIELD_TYPE_U32:
6485				vmcs_write32(field, (u32)field_value);
6486				break;
6487			case VMCS_FIELD_TYPE_U64:
6488				vmcs_write64(field, (u64)field_value);
6489				break;
6490			case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6491				vmcs_writel(field, (long)field_value);
6492				break;
6493			}
6494		}
6495	}
6496
6497	vmcs_clear(shadow_vmcs);
6498	vmcs_load(vmx->loaded_vmcs->vmcs);
6499}
6500
6501/*
6502 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6503 * used before) all generate the same failure when it is missing.
6504 */
6505static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6506{
6507	struct vcpu_vmx *vmx = to_vmx(vcpu);
6508	if (vmx->nested.current_vmptr == -1ull) {
6509		nested_vmx_failInvalid(vcpu);
6510		skip_emulated_instruction(vcpu);
6511		return 0;
6512	}
6513	return 1;
6514}
6515
6516static int handle_vmread(struct kvm_vcpu *vcpu)
6517{
6518	unsigned long field;
6519	u64 field_value;
6520	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6521	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6522	gva_t gva = 0;
6523
6524	if (!nested_vmx_check_permission(vcpu) ||
6525	    !nested_vmx_check_vmcs12(vcpu))
6526		return 1;
6527
6528	/* Decode instruction info and find the field to read */
6529	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6530	/* Read the field, zero-extended to a u64 field_value */
6531	if (!vmcs12_read_any(vcpu, field, &field_value)) {
6532		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6533		skip_emulated_instruction(vcpu);
6534		return 1;
6535	}
6536	/*
6537	 * Now copy part of this value to register or memory, as requested.
6538	 * Note that the number of bits actually copied is 32 or 64 depending
6539	 * on the guest's mode (32 or 64 bit), not on the given field's length.
6540	 */
6541	if (vmx_instruction_info & (1u << 10)) {
6542		kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6543			field_value);
6544	} else {
6545		if (get_vmx_mem_address(vcpu, exit_qualification,
6546				vmx_instruction_info, &gva))
6547			return 1;
6548		/* _system ok, as nested_vmx_check_permission verified cpl=0 */
6549		kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6550			     &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6551	}
6552
6553	nested_vmx_succeed(vcpu);
6554	skip_emulated_instruction(vcpu);
6555	return 1;
6556}
6557
6558
6559static int handle_vmwrite(struct kvm_vcpu *vcpu)
6560{
6561	unsigned long field;
6562	gva_t gva;
6563	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6564	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6565	/* The value to write might be 32 or 64 bits, depending on L1's long
6566	 * mode, and eventually we need to write that into a field of several
6567	 * possible lengths. The code below first zero-extends the value to 64
6568	 * bit (field_value), and then copies only the approriate number of
6569	 * bits into the vmcs12 field.
6570	 */
6571	u64 field_value = 0;
6572	struct x86_exception e;
6573
6574	if (!nested_vmx_check_permission(vcpu) ||
6575	    !nested_vmx_check_vmcs12(vcpu))
6576		return 1;
6577
6578	if (vmx_instruction_info & (1u << 10))
6579		field_value = kvm_register_readl(vcpu,
6580			(((vmx_instruction_info) >> 3) & 0xf));
6581	else {
6582		if (get_vmx_mem_address(vcpu, exit_qualification,
6583				vmx_instruction_info, &gva))
6584			return 1;
6585		if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6586			   &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
6587			kvm_inject_page_fault(vcpu, &e);
6588			return 1;
6589		}
6590	}
6591
6592
6593	field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6594	if (vmcs_field_readonly(field)) {
6595		nested_vmx_failValid(vcpu,
6596			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6597		skip_emulated_instruction(vcpu);
6598		return 1;
6599	}
6600
6601	if (!vmcs12_write_any(vcpu, field, field_value)) {
6602		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6603		skip_emulated_instruction(vcpu);
6604		return 1;
6605	}
6606
6607	nested_vmx_succeed(vcpu);
6608	skip_emulated_instruction(vcpu);
6609	return 1;
6610}
6611
6612/* Emulate the VMPTRLD instruction */
6613static int handle_vmptrld(struct kvm_vcpu *vcpu)
6614{
6615	struct vcpu_vmx *vmx = to_vmx(vcpu);
6616	gpa_t vmptr;
6617	u32 exec_control;
6618
6619	if (!nested_vmx_check_permission(vcpu))
6620		return 1;
6621
6622	if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
6623		return 1;
6624
6625	if (vmx->nested.current_vmptr != vmptr) {
6626		struct vmcs12 *new_vmcs12;
6627		struct page *page;
6628		page = nested_get_page(vcpu, vmptr);
6629		if (page == NULL) {
6630			nested_vmx_failInvalid(vcpu);
6631			skip_emulated_instruction(vcpu);
6632			return 1;
6633		}
6634		new_vmcs12 = kmap(page);
6635		if (new_vmcs12->revision_id != VMCS12_REVISION) {
6636			kunmap(page);
6637			nested_release_page_clean(page);
6638			nested_vmx_failValid(vcpu,
6639				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6640			skip_emulated_instruction(vcpu);
6641			return 1;
6642		}
6643
6644		nested_release_vmcs12(vmx);
6645		vmx->nested.current_vmptr = vmptr;
6646		vmx->nested.current_vmcs12 = new_vmcs12;
6647		vmx->nested.current_vmcs12_page = page;
6648		if (enable_shadow_vmcs) {
6649			exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6650			exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6651			vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6652			vmcs_write64(VMCS_LINK_POINTER,
6653				     __pa(vmx->nested.current_shadow_vmcs));
6654			vmx->nested.sync_shadow_vmcs = true;
6655		}
6656	}
6657
6658	nested_vmx_succeed(vcpu);
6659	skip_emulated_instruction(vcpu);
6660	return 1;
6661}
6662
6663/* Emulate the VMPTRST instruction */
6664static int handle_vmptrst(struct kvm_vcpu *vcpu)
6665{
6666	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6667	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6668	gva_t vmcs_gva;
6669	struct x86_exception e;
6670
6671	if (!nested_vmx_check_permission(vcpu))
6672		return 1;
6673
6674	if (get_vmx_mem_address(vcpu, exit_qualification,
6675			vmx_instruction_info, &vmcs_gva))
6676		return 1;
6677	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6678	if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6679				 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6680				 sizeof(u64), &e)) {
6681		kvm_inject_page_fault(vcpu, &e);
6682		return 1;
6683	}
6684	nested_vmx_succeed(vcpu);
6685	skip_emulated_instruction(vcpu);
6686	return 1;
6687}
6688
6689/* Emulate the INVEPT instruction */
6690static int handle_invept(struct kvm_vcpu *vcpu)
6691{
6692	u32 vmx_instruction_info, types;
6693	unsigned long type;
6694	gva_t gva;
6695	struct x86_exception e;
6696	struct {
6697		u64 eptp, gpa;
6698	} operand;
6699
6700	if (!(nested_vmx_secondary_ctls_high & SECONDARY_EXEC_ENABLE_EPT) ||
6701	    !(nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
6702		kvm_queue_exception(vcpu, UD_VECTOR);
6703		return 1;
6704	}
6705
6706	if (!nested_vmx_check_permission(vcpu))
6707		return 1;
6708
6709	if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
6710		kvm_queue_exception(vcpu, UD_VECTOR);
6711		return 1;
6712	}
6713
6714	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6715	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
6716
6717	types = (nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
6718
6719	if (!(types & (1UL << type))) {
6720		nested_vmx_failValid(vcpu,
6721				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6722		return 1;
6723	}
6724
6725	/* According to the Intel VMX instruction reference, the memory
6726	 * operand is read even if it isn't needed (e.g., for type==global)
6727	 */
6728	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6729			vmx_instruction_info, &gva))
6730		return 1;
6731	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
6732				sizeof(operand), &e)) {
6733		kvm_inject_page_fault(vcpu, &e);
6734		return 1;
6735	}
6736
6737	switch (type) {
6738	case VMX_EPT_EXTENT_GLOBAL:
6739		kvm_mmu_sync_roots(vcpu);
6740		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6741		nested_vmx_succeed(vcpu);
6742		break;
6743	default:
6744		/* Trap single context invalidation invept calls */
6745		BUG_ON(1);
6746		break;
6747	}
6748
6749	skip_emulated_instruction(vcpu);
6750	return 1;
6751}
6752
6753static int handle_invvpid(struct kvm_vcpu *vcpu)
6754{
6755	kvm_queue_exception(vcpu, UD_VECTOR);
6756	return 1;
6757}
6758
6759/*
6760 * The exit handlers return 1 if the exit was handled fully and guest execution
6761 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6762 * to be done to userspace and return 0.
6763 */
6764static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6765	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6766	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6767	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6768	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6769	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6770	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6771	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6772	[EXIT_REASON_CPUID]                   = handle_cpuid,
6773	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
6774	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6775	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6776	[EXIT_REASON_HLT]                     = handle_halt,
6777	[EXIT_REASON_INVD]		      = handle_invd,
6778	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6779	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
6780	[EXIT_REASON_VMCALL]                  = handle_vmcall,
6781	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
6782	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6783	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6784	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6785	[EXIT_REASON_VMREAD]                  = handle_vmread,
6786	[EXIT_REASON_VMRESUME]                = handle_vmresume,
6787	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6788	[EXIT_REASON_VMOFF]                   = handle_vmoff,
6789	[EXIT_REASON_VMON]                    = handle_vmon,
6790	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6791	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6792	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6793	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6794	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
6795	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
6796	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6797	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6798	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6799	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6800	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6801	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
6802	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
6803	[EXIT_REASON_INVEPT]                  = handle_invept,
6804	[EXIT_REASON_INVVPID]                 = handle_invvpid,
6805};
6806
6807static const int kvm_vmx_max_exit_handlers =
6808	ARRAY_SIZE(kvm_vmx_exit_handlers);
6809
6810static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6811				       struct vmcs12 *vmcs12)
6812{
6813	unsigned long exit_qualification;
6814	gpa_t bitmap, last_bitmap;
6815	unsigned int port;
6816	int size;
6817	u8 b;
6818
6819	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6820		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6821
6822	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6823
6824	port = exit_qualification >> 16;
6825	size = (exit_qualification & 7) + 1;
6826
6827	last_bitmap = (gpa_t)-1;
6828	b = -1;
6829
6830	while (size > 0) {
6831		if (port < 0x8000)
6832			bitmap = vmcs12->io_bitmap_a;
6833		else if (port < 0x10000)
6834			bitmap = vmcs12->io_bitmap_b;
6835		else
6836			return 1;
6837		bitmap += (port & 0x7fff) / 8;
6838
6839		if (last_bitmap != bitmap)
6840			if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6841				return 1;
6842		if (b & (1 << (port & 7)))
6843			return 1;
6844
6845		port++;
6846		size--;
6847		last_bitmap = bitmap;
6848	}
6849
6850	return 0;
6851}
6852
6853/*
6854 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6855 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6856 * disinterest in the current event (read or write a specific MSR) by using an
6857 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6858 */
6859static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6860	struct vmcs12 *vmcs12, u32 exit_reason)
6861{
6862	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6863	gpa_t bitmap;
6864
6865	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6866		return 1;
6867
6868	/*
6869	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6870	 * for the four combinations of read/write and low/high MSR numbers.
6871	 * First we need to figure out which of the four to use:
6872	 */
6873	bitmap = vmcs12->msr_bitmap;
6874	if (exit_reason == EXIT_REASON_MSR_WRITE)
6875		bitmap += 2048;
6876	if (msr_index >= 0xc0000000) {
6877		msr_index -= 0xc0000000;
6878		bitmap += 1024;
6879	}
6880
6881	/* Then read the msr_index'th bit from this bitmap: */
6882	if (msr_index < 1024*8) {
6883		unsigned char b;
6884		if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6885			return 1;
6886		return 1 & (b >> (msr_index & 7));
6887	} else
6888		return 1; /* let L1 handle the wrong parameter */
6889}
6890
6891/*
6892 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6893 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6894 * intercept (via guest_host_mask etc.) the current event.
6895 */
6896static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6897	struct vmcs12 *vmcs12)
6898{
6899	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6900	int cr = exit_qualification & 15;
6901	int reg = (exit_qualification >> 8) & 15;
6902	unsigned long val = kvm_register_readl(vcpu, reg);
6903
6904	switch ((exit_qualification >> 4) & 3) {
6905	case 0: /* mov to cr */
6906		switch (cr) {
6907		case 0:
6908			if (vmcs12->cr0_guest_host_mask &
6909			    (val ^ vmcs12->cr0_read_shadow))
6910				return 1;
6911			break;
6912		case 3:
6913			if ((vmcs12->cr3_target_count >= 1 &&
6914					vmcs12->cr3_target_value0 == val) ||
6915				(vmcs12->cr3_target_count >= 2 &&
6916					vmcs12->cr3_target_value1 == val) ||
6917				(vmcs12->cr3_target_count >= 3 &&
6918					vmcs12->cr3_target_value2 == val) ||
6919				(vmcs12->cr3_target_count >= 4 &&
6920					vmcs12->cr3_target_value3 == val))
6921				return 0;
6922			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6923				return 1;
6924			break;
6925		case 4:
6926			if (vmcs12->cr4_guest_host_mask &
6927			    (vmcs12->cr4_read_shadow ^ val))
6928				return 1;
6929			break;
6930		case 8:
6931			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6932				return 1;
6933			break;
6934		}
6935		break;
6936	case 2: /* clts */
6937		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6938		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6939			return 1;
6940		break;
6941	case 1: /* mov from cr */
6942		switch (cr) {
6943		case 3:
6944			if (vmcs12->cpu_based_vm_exec_control &
6945			    CPU_BASED_CR3_STORE_EXITING)
6946				return 1;
6947			break;
6948		case 8:
6949			if (vmcs12->cpu_based_vm_exec_control &
6950			    CPU_BASED_CR8_STORE_EXITING)
6951				return 1;
6952			break;
6953		}
6954		break;
6955	case 3: /* lmsw */
6956		/*
6957		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6958		 * cr0. Other attempted changes are ignored, with no exit.
6959		 */
6960		if (vmcs12->cr0_guest_host_mask & 0xe &
6961		    (val ^ vmcs12->cr0_read_shadow))
6962			return 1;
6963		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6964		    !(vmcs12->cr0_read_shadow & 0x1) &&
6965		    (val & 0x1))
6966			return 1;
6967		break;
6968	}
6969	return 0;
6970}
6971
6972/*
6973 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6974 * should handle it ourselves in L0 (and then continue L2). Only call this
6975 * when in is_guest_mode (L2).
6976 */
6977static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6978{
6979	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6980	struct vcpu_vmx *vmx = to_vmx(vcpu);
6981	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6982	u32 exit_reason = vmx->exit_reason;
6983
6984	trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
6985				vmcs_readl(EXIT_QUALIFICATION),
6986				vmx->idt_vectoring_info,
6987				intr_info,
6988				vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6989				KVM_ISA_VMX);
6990
6991	if (vmx->nested.nested_run_pending)
6992		return 0;
6993
6994	if (unlikely(vmx->fail)) {
6995		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6996				    vmcs_read32(VM_INSTRUCTION_ERROR));
6997		return 1;
6998	}
6999
7000	switch (exit_reason) {
7001	case EXIT_REASON_EXCEPTION_NMI:
7002		if (!is_exception(intr_info))
7003			return 0;
7004		else if (is_page_fault(intr_info))
7005			return enable_ept;
7006		else if (is_no_device(intr_info) &&
7007			 !(vmcs12->guest_cr0 & X86_CR0_TS))
7008			return 0;
7009		return vmcs12->exception_bitmap &
7010				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
7011	case EXIT_REASON_EXTERNAL_INTERRUPT:
7012		return 0;
7013	case EXIT_REASON_TRIPLE_FAULT:
7014		return 1;
7015	case EXIT_REASON_PENDING_INTERRUPT:
7016		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7017	case EXIT_REASON_NMI_WINDOW:
7018		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
7019	case EXIT_REASON_TASK_SWITCH:
7020		return 1;
7021	case EXIT_REASON_CPUID:
7022		if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
7023			return 0;
7024		return 1;
7025	case EXIT_REASON_HLT:
7026		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7027	case EXIT_REASON_INVD:
7028		return 1;
7029	case EXIT_REASON_INVLPG:
7030		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7031	case EXIT_REASON_RDPMC:
7032		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
7033	case EXIT_REASON_RDTSC:
7034		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7035	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7036	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7037	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7038	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7039	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
7040	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
7041		/*
7042		 * VMX instructions trap unconditionally. This allows L1 to
7043		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7044		 */
7045		return 1;
7046	case EXIT_REASON_CR_ACCESS:
7047		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7048	case EXIT_REASON_DR_ACCESS:
7049		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7050	case EXIT_REASON_IO_INSTRUCTION:
7051		return nested_vmx_exit_handled_io(vcpu, vmcs12);
7052	case EXIT_REASON_MSR_READ:
7053	case EXIT_REASON_MSR_WRITE:
7054		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7055	case EXIT_REASON_INVALID_STATE:
7056		return 1;
7057	case EXIT_REASON_MWAIT_INSTRUCTION:
7058		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
7059	case EXIT_REASON_MONITOR_INSTRUCTION:
7060		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7061	case EXIT_REASON_PAUSE_INSTRUCTION:
7062		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7063			nested_cpu_has2(vmcs12,
7064				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7065	case EXIT_REASON_MCE_DURING_VMENTRY:
7066		return 0;
7067	case EXIT_REASON_TPR_BELOW_THRESHOLD:
7068		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
7069	case EXIT_REASON_APIC_ACCESS:
7070		return nested_cpu_has2(vmcs12,
7071			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
7072	case EXIT_REASON_EPT_VIOLATION:
7073		/*
7074		 * L0 always deals with the EPT violation. If nested EPT is
7075		 * used, and the nested mmu code discovers that the address is
7076		 * missing in the guest EPT table (EPT12), the EPT violation
7077		 * will be injected with nested_ept_inject_page_fault()
7078		 */
7079		return 0;
7080	case EXIT_REASON_EPT_MISCONFIG:
7081		/*
7082		 * L2 never uses directly L1's EPT, but rather L0's own EPT
7083		 * table (shadow on EPT) or a merged EPT table that L0 built
7084		 * (EPT on EPT). So any problems with the structure of the
7085		 * table is L0's fault.
7086		 */
7087		return 0;
7088	case EXIT_REASON_WBINVD:
7089		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7090	case EXIT_REASON_XSETBV:
7091		return 1;
7092	default:
7093		return 1;
7094	}
7095}
7096
7097static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7098{
7099	*info1 = vmcs_readl(EXIT_QUALIFICATION);
7100	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7101}
7102
7103/*
7104 * The guest has exited.  See if we can fix it or if we need userspace
7105 * assistance.
7106 */
7107static int vmx_handle_exit(struct kvm_vcpu *vcpu)
7108{
7109	struct vcpu_vmx *vmx = to_vmx(vcpu);
7110	u32 exit_reason = vmx->exit_reason;
7111	u32 vectoring_info = vmx->idt_vectoring_info;
7112
7113	/* If guest state is invalid, start emulating */
7114	if (vmx->emulation_required)
7115		return handle_invalid_guest_state(vcpu);
7116
7117	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
7118		nested_vmx_vmexit(vcpu, exit_reason,
7119				  vmcs_read32(VM_EXIT_INTR_INFO),
7120				  vmcs_readl(EXIT_QUALIFICATION));
7121		return 1;
7122	}
7123
7124	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
7125		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7126		vcpu->run->fail_entry.hardware_entry_failure_reason
7127			= exit_reason;
7128		return 0;
7129	}
7130
7131	if (unlikely(vmx->fail)) {
7132		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
7133		vcpu->run->fail_entry.hardware_entry_failure_reason
7134			= vmcs_read32(VM_INSTRUCTION_ERROR);
7135		return 0;
7136	}
7137
7138	/*
7139	 * Note:
7140	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
7141	 * delivery event since it indicates guest is accessing MMIO.
7142	 * The vm-exit can be triggered again after return to guest that
7143	 * will cause infinite loop.
7144	 */
7145	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
7146			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
7147			exit_reason != EXIT_REASON_EPT_VIOLATION &&
7148			exit_reason != EXIT_REASON_TASK_SWITCH)) {
7149		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7150		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
7151		vcpu->run->internal.ndata = 2;
7152		vcpu->run->internal.data[0] = vectoring_info;
7153		vcpu->run->internal.data[1] = exit_reason;
7154		return 0;
7155	}
7156
7157	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
7158	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
7159					get_vmcs12(vcpu))))) {
7160		if (vmx_interrupt_allowed(vcpu)) {
7161			vmx->soft_vnmi_blocked = 0;
7162		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
7163			   vcpu->arch.nmi_pending) {
7164			/*
7165			 * This CPU don't support us in finding the end of an
7166			 * NMI-blocked window if the guest runs with IRQs
7167			 * disabled. So we pull the trigger after 1 s of
7168			 * futile waiting, but inform the user about this.
7169			 */
7170			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
7171			       "state on VCPU %d after 1 s timeout\n",
7172			       __func__, vcpu->vcpu_id);
7173			vmx->soft_vnmi_blocked = 0;
7174		}
7175	}
7176
7177	if (exit_reason < kvm_vmx_max_exit_handlers
7178	    && kvm_vmx_exit_handlers[exit_reason])
7179		return kvm_vmx_exit_handlers[exit_reason](vcpu);
7180	else {
7181		WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
7182		kvm_queue_exception(vcpu, UD_VECTOR);
7183		return 1;
7184	}
7185}
7186
7187static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
7188{
7189	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7190
7191	if (is_guest_mode(vcpu) &&
7192		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
7193		return;
7194
7195	if (irr == -1 || tpr < irr) {
7196		vmcs_write32(TPR_THRESHOLD, 0);
7197		return;
7198	}
7199
7200	vmcs_write32(TPR_THRESHOLD, irr);
7201}
7202
7203static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
7204{
7205	u32 sec_exec_control;
7206
7207	/*
7208	 * There is not point to enable virtualize x2apic without enable
7209	 * apicv
7210	 */
7211	if (!cpu_has_vmx_virtualize_x2apic_mode() ||
7212				!vmx_vm_has_apicv(vcpu->kvm))
7213		return;
7214
7215	if (!vm_need_tpr_shadow(vcpu->kvm))
7216		return;
7217
7218	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7219
7220	if (set) {
7221		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7222		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7223	} else {
7224		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
7225		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7226	}
7227	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
7228
7229	vmx_set_msr_bitmap(vcpu);
7230}
7231
7232static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
7233{
7234	struct vcpu_vmx *vmx = to_vmx(vcpu);
7235
7236	/*
7237	 * Currently we do not handle the nested case where L2 has an
7238	 * APIC access page of its own; that page is still pinned.
7239	 * Hence, we skip the case where the VCPU is in guest mode _and_
7240	 * L1 prepared an APIC access page for L2.
7241	 *
7242	 * For the case where L1 and L2 share the same APIC access page
7243	 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
7244	 * in the vmcs12), this function will only update either the vmcs01
7245	 * or the vmcs02.  If the former, the vmcs02 will be updated by
7246	 * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
7247	 * the next L2->L1 exit.
7248	 */
7249	if (!is_guest_mode(vcpu) ||
7250	    !nested_cpu_has2(vmx->nested.current_vmcs12,
7251			     SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
7252		vmcs_write64(APIC_ACCESS_ADDR, hpa);
7253}
7254
7255static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
7256{
7257	u16 status;
7258	u8 old;
7259
7260	if (!vmx_vm_has_apicv(kvm))
7261		return;
7262
7263	if (isr == -1)
7264		isr = 0;
7265
7266	status = vmcs_read16(GUEST_INTR_STATUS);
7267	old = status >> 8;
7268	if (isr != old) {
7269		status &= 0xff;
7270		status |= isr << 8;
7271		vmcs_write16(GUEST_INTR_STATUS, status);
7272	}
7273}
7274
7275static void vmx_set_rvi(int vector)
7276{
7277	u16 status;
7278	u8 old;
7279
7280	status = vmcs_read16(GUEST_INTR_STATUS);
7281	old = (u8)status & 0xff;
7282	if ((u8)vector != old) {
7283		status &= ~0xff;
7284		status |= (u8)vector;
7285		vmcs_write16(GUEST_INTR_STATUS, status);
7286	}
7287}
7288
7289static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
7290{
7291	if (max_irr == -1)
7292		return;
7293
7294	/*
7295	 * If a vmexit is needed, vmx_check_nested_events handles it.
7296	 */
7297	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
7298		return;
7299
7300	if (!is_guest_mode(vcpu)) {
7301		vmx_set_rvi(max_irr);
7302		return;
7303	}
7304
7305	/*
7306	 * Fall back to pre-APICv interrupt injection since L2
7307	 * is run without virtual interrupt delivery.
7308	 */
7309	if (!kvm_event_needs_reinjection(vcpu) &&
7310	    vmx_interrupt_allowed(vcpu)) {
7311		kvm_queue_interrupt(vcpu, max_irr, false);
7312		vmx_inject_irq(vcpu);
7313	}
7314}
7315
7316static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
7317{
7318	if (!vmx_vm_has_apicv(vcpu->kvm))
7319		return;
7320
7321	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
7322	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
7323	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
7324	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
7325}
7326
7327static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
7328{
7329	u32 exit_intr_info;
7330
7331	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
7332	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
7333		return;
7334
7335	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7336	exit_intr_info = vmx->exit_intr_info;
7337
7338	/* Handle machine checks before interrupts are enabled */
7339	if (is_machine_check(exit_intr_info))
7340		kvm_machine_check();
7341
7342	/* We need to handle NMIs before interrupts are enabled */
7343	if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
7344	    (exit_intr_info & INTR_INFO_VALID_MASK)) {
7345		kvm_before_handle_nmi(&vmx->vcpu);
7346		asm("int $2");
7347		kvm_after_handle_nmi(&vmx->vcpu);
7348	}
7349}
7350
7351static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
7352{
7353	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7354
7355	/*
7356	 * If external interrupt exists, IF bit is set in rflags/eflags on the
7357	 * interrupt stack frame, and interrupt will be enabled on a return
7358	 * from interrupt handler.
7359	 */
7360	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
7361			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
7362		unsigned int vector;
7363		unsigned long entry;
7364		gate_desc *desc;
7365		struct vcpu_vmx *vmx = to_vmx(vcpu);
7366#ifdef CONFIG_X86_64
7367		unsigned long tmp;
7368#endif
7369
7370		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
7371		desc = (gate_desc *)vmx->host_idt_base + vector;
7372		entry = gate_offset(*desc);
7373		asm volatile(
7374#ifdef CONFIG_X86_64
7375			"mov %%" _ASM_SP ", %[sp]\n\t"
7376			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
7377			"push $%c[ss]\n\t"
7378			"push %[sp]\n\t"
7379#endif
7380			"pushf\n\t"
7381			"orl $0x200, (%%" _ASM_SP ")\n\t"
7382			__ASM_SIZE(push) " $%c[cs]\n\t"
7383			"call *%[entry]\n\t"
7384			:
7385#ifdef CONFIG_X86_64
7386			[sp]"=&r"(tmp)
7387#endif
7388			:
7389			[entry]"r"(entry),
7390			[ss]"i"(__KERNEL_DS),
7391			[cs]"i"(__KERNEL_CS)
7392			);
7393	} else
7394		local_irq_enable();
7395}
7396
7397static bool vmx_mpx_supported(void)
7398{
7399	return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
7400		(vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
7401}
7402
7403static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7404{
7405	u32 exit_intr_info;
7406	bool unblock_nmi;
7407	u8 vector;
7408	bool idtv_info_valid;
7409
7410	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7411
7412	if (cpu_has_virtual_nmis()) {
7413		if (vmx->nmi_known_unmasked)
7414			return;
7415		/*
7416		 * Can't use vmx->exit_intr_info since we're not sure what
7417		 * the exit reason is.
7418		 */
7419		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7420		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7421		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7422		/*
7423		 * SDM 3: 27.7.1.2 (September 2008)
7424		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7425		 * a guest IRET fault.
7426		 * SDM 3: 23.2.2 (September 2008)
7427		 * Bit 12 is undefined in any of the following cases:
7428		 *  If the VM exit sets the valid bit in the IDT-vectoring
7429		 *   information field.
7430		 *  If the VM exit is due to a double fault.
7431		 */
7432		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7433		    vector != DF_VECTOR && !idtv_info_valid)
7434			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7435				      GUEST_INTR_STATE_NMI);
7436		else
7437			vmx->nmi_known_unmasked =
7438				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7439				  & GUEST_INTR_STATE_NMI);
7440	} else if (unlikely(vmx->soft_vnmi_blocked))
7441		vmx->vnmi_blocked_time +=
7442			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
7443}
7444
7445static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7446				      u32 idt_vectoring_info,
7447				      int instr_len_field,
7448				      int error_code_field)
7449{
7450	u8 vector;
7451	int type;
7452	bool idtv_info_valid;
7453
7454	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7455
7456	vcpu->arch.nmi_injected = false;
7457	kvm_clear_exception_queue(vcpu);
7458	kvm_clear_interrupt_queue(vcpu);
7459
7460	if (!idtv_info_valid)
7461		return;
7462
7463	kvm_make_request(KVM_REQ_EVENT, vcpu);
7464
7465	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7466	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7467
7468	switch (type) {
7469	case INTR_TYPE_NMI_INTR:
7470		vcpu->arch.nmi_injected = true;
7471		/*
7472		 * SDM 3: 27.7.1.2 (September 2008)
7473		 * Clear bit "block by NMI" before VM entry if a NMI
7474		 * delivery faulted.
7475		 */
7476		vmx_set_nmi_mask(vcpu, false);
7477		break;
7478	case INTR_TYPE_SOFT_EXCEPTION:
7479		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7480		/* fall through */
7481	case INTR_TYPE_HARD_EXCEPTION:
7482		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7483			u32 err = vmcs_read32(error_code_field);
7484			kvm_requeue_exception_e(vcpu, vector, err);
7485		} else
7486			kvm_requeue_exception(vcpu, vector);
7487		break;
7488	case INTR_TYPE_SOFT_INTR:
7489		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7490		/* fall through */
7491	case INTR_TYPE_EXT_INTR:
7492		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7493		break;
7494	default:
7495		break;
7496	}
7497}
7498
7499static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7500{
7501	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7502				  VM_EXIT_INSTRUCTION_LEN,
7503				  IDT_VECTORING_ERROR_CODE);
7504}
7505
7506static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7507{
7508	__vmx_complete_interrupts(vcpu,
7509				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7510				  VM_ENTRY_INSTRUCTION_LEN,
7511				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7512
7513	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7514}
7515
7516static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7517{
7518	int i, nr_msrs;
7519	struct perf_guest_switch_msr *msrs;
7520
7521	msrs = perf_guest_get_msrs(&nr_msrs);
7522
7523	if (!msrs)
7524		return;
7525
7526	for (i = 0; i < nr_msrs; i++)
7527		if (msrs[i].host == msrs[i].guest)
7528			clear_atomic_switch_msr(vmx, msrs[i].msr);
7529		else
7530			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7531					msrs[i].host);
7532}
7533
7534static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
7535{
7536	struct vcpu_vmx *vmx = to_vmx(vcpu);
7537	unsigned long debugctlmsr, cr4;
7538
7539	/* Record the guest's net vcpu time for enforced NMI injections. */
7540	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
7541		vmx->entry_time = ktime_get();
7542
7543	/* Don't enter VMX if guest state is invalid, let the exit handler
7544	   start emulation until we arrive back to a valid state */
7545	if (vmx->emulation_required)
7546		return;
7547
7548	if (vmx->ple_window_dirty) {
7549		vmx->ple_window_dirty = false;
7550		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7551	}
7552
7553	if (vmx->nested.sync_shadow_vmcs) {
7554		copy_vmcs12_to_shadow(vmx);
7555		vmx->nested.sync_shadow_vmcs = false;
7556	}
7557
7558	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7559		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7560	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7561		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7562
7563	cr4 = read_cr4();
7564	if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
7565		vmcs_writel(HOST_CR4, cr4);
7566		vmx->host_state.vmcs_host_cr4 = cr4;
7567	}
7568
7569	/* When single-stepping over STI and MOV SS, we must clear the
7570	 * corresponding interruptibility bits in the guest state. Otherwise
7571	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7572	 * exceptions being set, but that's not correct for the guest debugging
7573	 * case. */
7574	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7575		vmx_set_interrupt_shadow(vcpu, 0);
7576
7577	atomic_switch_perf_msrs(vmx);
7578	debugctlmsr = get_debugctlmsr();
7579
7580	vmx->__launched = vmx->loaded_vmcs->launched;
7581	asm(
7582		/* Store host registers */
7583		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
7584		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7585		"push %%" _ASM_CX " \n\t"
7586		"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7587		"je 1f \n\t"
7588		"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
7589		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
7590		"1: \n\t"
7591		/* Reload cr2 if changed */
7592		"mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7593		"mov %%cr2, %%" _ASM_DX " \n\t"
7594		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
7595		"je 2f \n\t"
7596		"mov %%" _ASM_AX", %%cr2 \n\t"
7597		"2: \n\t"
7598		/* Check if vmlaunch of vmresume is needed */
7599		"cmpl $0, %c[launched](%0) \n\t"
7600		/* Load guest registers.  Don't clobber flags. */
7601		"mov %c[rax](%0), %%" _ASM_AX " \n\t"
7602		"mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7603		"mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7604		"mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7605		"mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7606		"mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7607#ifdef CONFIG_X86_64
7608		"mov %c[r8](%0),  %%r8  \n\t"
7609		"mov %c[r9](%0),  %%r9  \n\t"
7610		"mov %c[r10](%0), %%r10 \n\t"
7611		"mov %c[r11](%0), %%r11 \n\t"
7612		"mov %c[r12](%0), %%r12 \n\t"
7613		"mov %c[r13](%0), %%r13 \n\t"
7614		"mov %c[r14](%0), %%r14 \n\t"
7615		"mov %c[r15](%0), %%r15 \n\t"
7616#endif
7617		"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7618
7619		/* Enter guest mode */
7620		"jne 1f \n\t"
7621		__ex(ASM_VMX_VMLAUNCH) "\n\t"
7622		"jmp 2f \n\t"
7623		"1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7624		"2: "
7625		/* Save guest registers, load host registers, keep flags */
7626		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7627		"pop %0 \n\t"
7628		"mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7629		"mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7630		__ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7631		"mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7632		"mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7633		"mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7634		"mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7635#ifdef CONFIG_X86_64
7636		"mov %%r8,  %c[r8](%0) \n\t"
7637		"mov %%r9,  %c[r9](%0) \n\t"
7638		"mov %%r10, %c[r10](%0) \n\t"
7639		"mov %%r11, %c[r11](%0) \n\t"
7640		"mov %%r12, %c[r12](%0) \n\t"
7641		"mov %%r13, %c[r13](%0) \n\t"
7642		"mov %%r14, %c[r14](%0) \n\t"
7643		"mov %%r15, %c[r15](%0) \n\t"
7644#endif
7645		"mov %%cr2, %%" _ASM_AX "   \n\t"
7646		"mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7647
7648		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7649		"setbe %c[fail](%0) \n\t"
7650		".pushsection .rodata \n\t"
7651		".global vmx_return \n\t"
7652		"vmx_return: " _ASM_PTR " 2b \n\t"
7653		".popsection"
7654	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7655		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7656		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
7657		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7658		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7659		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7660		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7661		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7662		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7663		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7664		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7665#ifdef CONFIG_X86_64
7666		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7667		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7668		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7669		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7670		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7671		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7672		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7673		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7674#endif
7675		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7676		[wordsize]"i"(sizeof(ulong))
7677	      : "cc", "memory"
7678#ifdef CONFIG_X86_64
7679		, "rax", "rbx", "rdi", "rsi"
7680		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7681#else
7682		, "eax", "ebx", "edi", "esi"
7683#endif
7684	      );
7685
7686	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7687	if (debugctlmsr)
7688		update_debugctlmsr(debugctlmsr);
7689
7690#ifndef CONFIG_X86_64
7691	/*
7692	 * The sysexit path does not restore ds/es, so we must set them to
7693	 * a reasonable value ourselves.
7694	 *
7695	 * We can't defer this to vmx_load_host_state() since that function
7696	 * may be executed in interrupt context, which saves and restore segments
7697	 * around it, nullifying its effect.
7698	 */
7699	loadsegment(ds, __USER_DS);
7700	loadsegment(es, __USER_DS);
7701#endif
7702
7703	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7704				  | (1 << VCPU_EXREG_RFLAGS)
7705				  | (1 << VCPU_EXREG_PDPTR)
7706				  | (1 << VCPU_EXREG_SEGMENTS)
7707				  | (1 << VCPU_EXREG_CR3));
7708	vcpu->arch.regs_dirty = 0;
7709
7710	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7711
7712	vmx->loaded_vmcs->launched = 1;
7713
7714	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7715	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7716
7717	/*
7718	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
7719	 * we did not inject a still-pending event to L1 now because of
7720	 * nested_run_pending, we need to re-enable this bit.
7721	 */
7722	if (vmx->nested.nested_run_pending)
7723		kvm_make_request(KVM_REQ_EVENT, vcpu);
7724
7725	vmx->nested.nested_run_pending = 0;
7726
7727	vmx_complete_atomic_exit(vmx);
7728	vmx_recover_nmi_blocking(vmx);
7729	vmx_complete_interrupts(vmx);
7730}
7731
7732static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
7733{
7734	struct vcpu_vmx *vmx = to_vmx(vcpu);
7735	int cpu;
7736
7737	if (vmx->loaded_vmcs == &vmx->vmcs01)
7738		return;
7739
7740	cpu = get_cpu();
7741	vmx->loaded_vmcs = &vmx->vmcs01;
7742	vmx_vcpu_put(vcpu);
7743	vmx_vcpu_load(vcpu, cpu);
7744	vcpu->cpu = cpu;
7745	put_cpu();
7746}
7747
7748static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7749{
7750	struct vcpu_vmx *vmx = to_vmx(vcpu);
7751
7752	free_vpid(vmx);
7753	leave_guest_mode(vcpu);
7754	vmx_load_vmcs01(vcpu);
7755	free_nested(vmx);
7756	free_loaded_vmcs(vmx->loaded_vmcs);
7757	kfree(vmx->guest_msrs);
7758	kvm_vcpu_uninit(vcpu);
7759	kmem_cache_free(kvm_vcpu_cache, vmx);
7760}
7761
7762static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7763{
7764	int err;
7765	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7766	int cpu;
7767
7768	if (!vmx)
7769		return ERR_PTR(-ENOMEM);
7770
7771	allocate_vpid(vmx);
7772
7773	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7774	if (err)
7775		goto free_vcpu;
7776
7777	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7778	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
7779		     > PAGE_SIZE);
7780
7781	err = -ENOMEM;
7782	if (!vmx->guest_msrs) {
7783		goto uninit_vcpu;
7784	}
7785
7786	vmx->loaded_vmcs = &vmx->vmcs01;
7787	vmx->loaded_vmcs->vmcs = alloc_vmcs();
7788	if (!vmx->loaded_vmcs->vmcs)
7789		goto free_msrs;
7790	if (!vmm_exclusive)
7791		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7792	loaded_vmcs_init(vmx->loaded_vmcs);
7793	if (!vmm_exclusive)
7794		kvm_cpu_vmxoff();
7795
7796	cpu = get_cpu();
7797	vmx_vcpu_load(&vmx->vcpu, cpu);
7798	vmx->vcpu.cpu = cpu;
7799	err = vmx_vcpu_setup(vmx);
7800	vmx_vcpu_put(&vmx->vcpu);
7801	put_cpu();
7802	if (err)
7803		goto free_vmcs;
7804	if (vm_need_virtualize_apic_accesses(kvm)) {
7805		err = alloc_apic_access_page(kvm);
7806		if (err)
7807			goto free_vmcs;
7808	}
7809
7810	if (enable_ept) {
7811		if (!kvm->arch.ept_identity_map_addr)
7812			kvm->arch.ept_identity_map_addr =
7813				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7814		err = init_rmode_identity_map(kvm);
7815		if (err)
7816			goto free_vmcs;
7817	}
7818
7819	vmx->nested.current_vmptr = -1ull;
7820	vmx->nested.current_vmcs12 = NULL;
7821
7822	return &vmx->vcpu;
7823
7824free_vmcs:
7825	free_loaded_vmcs(vmx->loaded_vmcs);
7826free_msrs:
7827	kfree(vmx->guest_msrs);
7828uninit_vcpu:
7829	kvm_vcpu_uninit(&vmx->vcpu);
7830free_vcpu:
7831	free_vpid(vmx);
7832	kmem_cache_free(kvm_vcpu_cache, vmx);
7833	return ERR_PTR(err);
7834}
7835
7836static void __init vmx_check_processor_compat(void *rtn)
7837{
7838	struct vmcs_config vmcs_conf;
7839
7840	*(int *)rtn = 0;
7841	if (setup_vmcs_config(&vmcs_conf) < 0)
7842		*(int *)rtn = -EIO;
7843	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7844		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7845				smp_processor_id());
7846		*(int *)rtn = -EIO;
7847	}
7848}
7849
7850static int get_ept_level(void)
7851{
7852	return VMX_EPT_DEFAULT_GAW + 1;
7853}
7854
7855static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7856{
7857	u64 ret;
7858
7859	/* For VT-d and EPT combination
7860	 * 1. MMIO: always map as UC
7861	 * 2. EPT with VT-d:
7862	 *   a. VT-d without snooping control feature: can't guarantee the
7863	 *	result, try to trust guest.
7864	 *   b. VT-d with snooping control feature: snooping control feature of
7865	 *	VT-d engine can guarantee the cache correctness. Just set it
7866	 *	to WB to keep consistent with host. So the same as item 3.
7867	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7868	 *    consistent with host MTRR
7869	 */
7870	if (is_mmio)
7871		ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7872	else if (kvm_arch_has_noncoherent_dma(vcpu->kvm))
7873		ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7874		      VMX_EPT_MT_EPTE_SHIFT;
7875	else
7876		ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7877			| VMX_EPT_IPAT_BIT;
7878
7879	return ret;
7880}
7881
7882static int vmx_get_lpage_level(void)
7883{
7884	if (enable_ept && !cpu_has_vmx_ept_1g_page())
7885		return PT_DIRECTORY_LEVEL;
7886	else
7887		/* For shadow and EPT supported 1GB page */
7888		return PT_PDPE_LEVEL;
7889}
7890
7891static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7892{
7893	struct kvm_cpuid_entry2 *best;
7894	struct vcpu_vmx *vmx = to_vmx(vcpu);
7895	u32 exec_control;
7896
7897	vmx->rdtscp_enabled = false;
7898	if (vmx_rdtscp_supported()) {
7899		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7900		if (exec_control & SECONDARY_EXEC_RDTSCP) {
7901			best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7902			if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7903				vmx->rdtscp_enabled = true;
7904			else {
7905				exec_control &= ~SECONDARY_EXEC_RDTSCP;
7906				vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7907						exec_control);
7908			}
7909		}
7910	}
7911
7912	/* Exposing INVPCID only when PCID is exposed */
7913	best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7914	if (vmx_invpcid_supported() &&
7915	    best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7916	    guest_cpuid_has_pcid(vcpu)) {
7917		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7918		exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7919		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7920			     exec_control);
7921	} else {
7922		if (cpu_has_secondary_exec_ctrls()) {
7923			exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7924			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7925			vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7926				     exec_control);
7927		}
7928		if (best)
7929			best->ebx &= ~bit(X86_FEATURE_INVPCID);
7930	}
7931}
7932
7933static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7934{
7935	if (func == 1 && nested)
7936		entry->ecx |= bit(X86_FEATURE_VMX);
7937}
7938
7939static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
7940		struct x86_exception *fault)
7941{
7942	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7943	u32 exit_reason;
7944
7945	if (fault->error_code & PFERR_RSVD_MASK)
7946		exit_reason = EXIT_REASON_EPT_MISCONFIG;
7947	else
7948		exit_reason = EXIT_REASON_EPT_VIOLATION;
7949	nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
7950	vmcs12->guest_physical_address = fault->address;
7951}
7952
7953/* Callbacks for nested_ept_init_mmu_context: */
7954
7955static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
7956{
7957	/* return the page table to be shadowed - in our case, EPT12 */
7958	return get_vmcs12(vcpu)->ept_pointer;
7959}
7960
7961static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
7962{
7963	kvm_init_shadow_ept_mmu(vcpu, &vcpu->arch.mmu,
7964			nested_vmx_ept_caps & VMX_EPT_EXECUTE_ONLY_BIT);
7965
7966	vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
7967	vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
7968	vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
7969
7970	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
7971}
7972
7973static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
7974{
7975	vcpu->arch.walk_mmu = &vcpu->arch.mmu;
7976}
7977
7978static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
7979		struct x86_exception *fault)
7980{
7981	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7982
7983	WARN_ON(!is_guest_mode(vcpu));
7984
7985	/* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
7986	if (vmcs12->exception_bitmap & (1u << PF_VECTOR))
7987		nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
7988				  vmcs_read32(VM_EXIT_INTR_INFO),
7989				  vmcs_readl(EXIT_QUALIFICATION));
7990	else
7991		kvm_inject_page_fault(vcpu, fault);
7992}
7993
7994static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
7995					struct vmcs12 *vmcs12)
7996{
7997	struct vcpu_vmx *vmx = to_vmx(vcpu);
7998
7999	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
8000		/* TODO: Also verify bits beyond physical address width are 0 */
8001		if (!PAGE_ALIGNED(vmcs12->apic_access_addr))
8002			return false;
8003
8004		/*
8005		 * Translate L1 physical address to host physical
8006		 * address for vmcs02. Keep the page pinned, so this
8007		 * physical address remains valid. We keep a reference
8008		 * to it so we can release it later.
8009		 */
8010		if (vmx->nested.apic_access_page) /* shouldn't happen */
8011			nested_release_page(vmx->nested.apic_access_page);
8012		vmx->nested.apic_access_page =
8013			nested_get_page(vcpu, vmcs12->apic_access_addr);
8014	}
8015
8016	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
8017		/* TODO: Also verify bits beyond physical address width are 0 */
8018		if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr))
8019			return false;
8020
8021		if (vmx->nested.virtual_apic_page) /* shouldn't happen */
8022			nested_release_page(vmx->nested.virtual_apic_page);
8023		vmx->nested.virtual_apic_page =
8024			nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
8025
8026		/*
8027		 * Failing the vm entry is _not_ what the processor does
8028		 * but it's basically the only possibility we have.
8029		 * We could still enter the guest if CR8 load exits are
8030		 * enabled, CR8 store exits are enabled, and virtualize APIC
8031		 * access is disabled; in this case the processor would never
8032		 * use the TPR shadow and we could simply clear the bit from
8033		 * the execution control.  But such a configuration is useless,
8034		 * so let's keep the code simple.
8035		 */
8036		if (!vmx->nested.virtual_apic_page)
8037			return false;
8038	}
8039
8040	return true;
8041}
8042
8043static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
8044{
8045	u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
8046	struct vcpu_vmx *vmx = to_vmx(vcpu);
8047
8048	if (vcpu->arch.virtual_tsc_khz == 0)
8049		return;
8050
8051	/* Make sure short timeouts reliably trigger an immediate vmexit.
8052	 * hrtimer_start does not guarantee this. */
8053	if (preemption_timeout <= 1) {
8054		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
8055		return;
8056	}
8057
8058	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8059	preemption_timeout *= 1000000;
8060	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
8061	hrtimer_start(&vmx->nested.preemption_timer,
8062		      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
8063}
8064
8065/*
8066 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
8067 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
8068 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
8069 * guest in a way that will both be appropriate to L1's requests, and our
8070 * needs. In addition to modifying the active vmcs (which is vmcs02), this
8071 * function also has additional necessary side-effects, like setting various
8072 * vcpu->arch fields.
8073 */
8074static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8075{
8076	struct vcpu_vmx *vmx = to_vmx(vcpu);
8077	u32 exec_control;
8078
8079	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
8080	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
8081	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
8082	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
8083	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
8084	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
8085	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
8086	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
8087	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
8088	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
8089	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
8090	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
8091	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
8092	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
8093	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
8094	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
8095	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
8096	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
8097	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
8098	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
8099	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
8100	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
8101	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
8102	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
8103	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
8104	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
8105	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
8106	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
8107	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
8108	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
8109	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
8110	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
8111	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
8112	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
8113	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
8114	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
8115
8116	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
8117		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
8118		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
8119	} else {
8120		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
8121		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
8122	}
8123	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
8124		vmcs12->vm_entry_intr_info_field);
8125	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
8126		vmcs12->vm_entry_exception_error_code);
8127	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
8128		vmcs12->vm_entry_instruction_len);
8129	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
8130		vmcs12->guest_interruptibility_info);
8131	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
8132	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
8133	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
8134		vmcs12->guest_pending_dbg_exceptions);
8135	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
8136	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
8137
8138	vmcs_write64(VMCS_LINK_POINTER, -1ull);
8139
8140	exec_control = vmcs12->pin_based_vm_exec_control;
8141	exec_control |= vmcs_config.pin_based_exec_ctrl;
8142	exec_control &= ~(PIN_BASED_VMX_PREEMPTION_TIMER |
8143                          PIN_BASED_POSTED_INTR);
8144	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
8145
8146	vmx->nested.preemption_timer_expired = false;
8147	if (nested_cpu_has_preemption_timer(vmcs12))
8148		vmx_start_preemption_timer(vcpu);
8149
8150	/*
8151	 * Whether page-faults are trapped is determined by a combination of
8152	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
8153	 * If enable_ept, L0 doesn't care about page faults and we should
8154	 * set all of these to L1's desires. However, if !enable_ept, L0 does
8155	 * care about (at least some) page faults, and because it is not easy
8156	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
8157	 * to exit on each and every L2 page fault. This is done by setting
8158	 * MASK=MATCH=0 and (see below) EB.PF=1.
8159	 * Note that below we don't need special code to set EB.PF beyond the
8160	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
8161	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
8162	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
8163	 *
8164	 * A problem with this approach (when !enable_ept) is that L1 may be
8165	 * injected with more page faults than it asked for. This could have
8166	 * caused problems, but in practice existing hypervisors don't care.
8167	 * To fix this, we will need to emulate the PFEC checking (on the L1
8168	 * page tables), using walk_addr(), when injecting PFs to L1.
8169	 */
8170	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
8171		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
8172	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
8173		enable_ept ? vmcs12->page_fault_error_code_match : 0);
8174
8175	if (cpu_has_secondary_exec_ctrls()) {
8176		exec_control = vmx_secondary_exec_control(vmx);
8177		if (!vmx->rdtscp_enabled)
8178			exec_control &= ~SECONDARY_EXEC_RDTSCP;
8179		/* Take the following fields only from vmcs12 */
8180		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8181				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8182                                  SECONDARY_EXEC_APIC_REGISTER_VIRT);
8183		if (nested_cpu_has(vmcs12,
8184				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
8185			exec_control |= vmcs12->secondary_vm_exec_control;
8186
8187		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
8188			/*
8189			 * If translation failed, no matter: This feature asks
8190			 * to exit when accessing the given address, and if it
8191			 * can never be accessed, this feature won't do
8192			 * anything anyway.
8193			 */
8194			if (!vmx->nested.apic_access_page)
8195				exec_control &=
8196				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8197			else
8198				vmcs_write64(APIC_ACCESS_ADDR,
8199				  page_to_phys(vmx->nested.apic_access_page));
8200		} else if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) {
8201			exec_control |=
8202				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8203			kvm_vcpu_reload_apic_access_page(vcpu);
8204		}
8205
8206		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
8207	}
8208
8209
8210	/*
8211	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
8212	 * Some constant fields are set here by vmx_set_constant_host_state().
8213	 * Other fields are different per CPU, and will be set later when
8214	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
8215	 */
8216	vmx_set_constant_host_state(vmx);
8217
8218	/*
8219	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
8220	 * entry, but only if the current (host) sp changed from the value
8221	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
8222	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
8223	 * here we just force the write to happen on entry.
8224	 */
8225	vmx->host_rsp = 0;
8226
8227	exec_control = vmx_exec_control(vmx); /* L0's desires */
8228	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
8229	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
8230	exec_control &= ~CPU_BASED_TPR_SHADOW;
8231	exec_control |= vmcs12->cpu_based_vm_exec_control;
8232
8233	if (exec_control & CPU_BASED_TPR_SHADOW) {
8234		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
8235				page_to_phys(vmx->nested.virtual_apic_page));
8236		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
8237	}
8238
8239	/*
8240	 * Merging of IO and MSR bitmaps not currently supported.
8241	 * Rather, exit every time.
8242	 */
8243	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
8244	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
8245	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
8246
8247	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
8248
8249	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
8250	 * bitwise-or of what L1 wants to trap for L2, and what we want to
8251	 * trap. Note that CR0.TS also needs updating - we do this later.
8252	 */
8253	update_exception_bitmap(vcpu);
8254	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
8255	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8256
8257	/* L2->L1 exit controls are emulated - the hardware exit is to L0 so
8258	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
8259	 * bits are further modified by vmx_set_efer() below.
8260	 */
8261	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8262
8263	/* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
8264	 * emulated by vmx_set_efer(), below.
8265	 */
8266	vm_entry_controls_init(vmx,
8267		(vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
8268			~VM_ENTRY_IA32E_MODE) |
8269		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
8270
8271	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
8272		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
8273		vcpu->arch.pat = vmcs12->guest_ia32_pat;
8274	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
8275		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
8276
8277
8278	set_cr4_guest_host_mask(vmx);
8279
8280	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
8281		vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
8282
8283	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
8284		vmcs_write64(TSC_OFFSET,
8285			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
8286	else
8287		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8288
8289	if (enable_vpid) {
8290		/*
8291		 * Trivially support vpid by letting L2s share their parent
8292		 * L1's vpid. TODO: move to a more elaborate solution, giving
8293		 * each L2 its own vpid and exposing the vpid feature to L1.
8294		 */
8295		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
8296		vmx_flush_tlb(vcpu);
8297	}
8298
8299	if (nested_cpu_has_ept(vmcs12)) {
8300		kvm_mmu_unload(vcpu);
8301		nested_ept_init_mmu_context(vcpu);
8302	}
8303
8304	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
8305		vcpu->arch.efer = vmcs12->guest_ia32_efer;
8306	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
8307		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8308	else
8309		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8310	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
8311	vmx_set_efer(vcpu, vcpu->arch.efer);
8312
8313	/*
8314	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
8315	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
8316	 * The CR0_READ_SHADOW is what L2 should have expected to read given
8317	 * the specifications by L1; It's not enough to take
8318	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
8319	 * have more bits than L1 expected.
8320	 */
8321	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
8322	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
8323
8324	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
8325	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
8326
8327	/* shadow page tables on either EPT or shadow page tables */
8328	kvm_set_cr3(vcpu, vmcs12->guest_cr3);
8329	kvm_mmu_reset_context(vcpu);
8330
8331	if (!enable_ept)
8332		vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
8333
8334	/*
8335	 * L1 may access the L2's PDPTR, so save them to construct vmcs12
8336	 */
8337	if (enable_ept) {
8338		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
8339		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
8340		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
8341		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
8342	}
8343
8344	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
8345	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
8346}
8347
8348/*
8349 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
8350 * for running an L2 nested guest.
8351 */
8352static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
8353{
8354	struct vmcs12 *vmcs12;
8355	struct vcpu_vmx *vmx = to_vmx(vcpu);
8356	int cpu;
8357	struct loaded_vmcs *vmcs02;
8358	bool ia32e;
8359
8360	if (!nested_vmx_check_permission(vcpu) ||
8361	    !nested_vmx_check_vmcs12(vcpu))
8362		return 1;
8363
8364	skip_emulated_instruction(vcpu);
8365	vmcs12 = get_vmcs12(vcpu);
8366
8367	if (enable_shadow_vmcs)
8368		copy_shadow_to_vmcs12(vmx);
8369
8370	/*
8371	 * The nested entry process starts with enforcing various prerequisites
8372	 * on vmcs12 as required by the Intel SDM, and act appropriately when
8373	 * they fail: As the SDM explains, some conditions should cause the
8374	 * instruction to fail, while others will cause the instruction to seem
8375	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
8376	 * To speed up the normal (success) code path, we should avoid checking
8377	 * for misconfigurations which will anyway be caught by the processor
8378	 * when using the merged vmcs02.
8379	 */
8380	if (vmcs12->launch_state == launch) {
8381		nested_vmx_failValid(vcpu,
8382			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
8383			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
8384		return 1;
8385	}
8386
8387	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
8388	    vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
8389		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8390		return 1;
8391	}
8392
8393	if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
8394			!PAGE_ALIGNED(vmcs12->msr_bitmap)) {
8395		/*TODO: Also verify bits beyond physical address width are 0*/
8396		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8397		return 1;
8398	}
8399
8400	if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
8401		/*TODO: Also verify bits beyond physical address width are 0*/
8402		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8403		return 1;
8404	}
8405
8406	if (vmcs12->vm_entry_msr_load_count > 0 ||
8407	    vmcs12->vm_exit_msr_load_count > 0 ||
8408	    vmcs12->vm_exit_msr_store_count > 0) {
8409		pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
8410				    __func__);
8411		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8412		return 1;
8413	}
8414
8415	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
8416				nested_vmx_true_procbased_ctls_low,
8417				nested_vmx_procbased_ctls_high) ||
8418	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
8419	      nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
8420	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
8421	      nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
8422	    !vmx_control_verify(vmcs12->vm_exit_controls,
8423				nested_vmx_true_exit_ctls_low,
8424				nested_vmx_exit_ctls_high) ||
8425	    !vmx_control_verify(vmcs12->vm_entry_controls,
8426				nested_vmx_true_entry_ctls_low,
8427				nested_vmx_entry_ctls_high))
8428	{
8429		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
8430		return 1;
8431	}
8432
8433	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
8434	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8435		nested_vmx_failValid(vcpu,
8436			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
8437		return 1;
8438	}
8439
8440	if (!nested_cr0_valid(vmcs12, vmcs12->guest_cr0) ||
8441	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
8442		nested_vmx_entry_failure(vcpu, vmcs12,
8443			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8444		return 1;
8445	}
8446	if (vmcs12->vmcs_link_pointer != -1ull) {
8447		nested_vmx_entry_failure(vcpu, vmcs12,
8448			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
8449		return 1;
8450	}
8451
8452	/*
8453	 * If the load IA32_EFER VM-entry control is 1, the following checks
8454	 * are performed on the field for the IA32_EFER MSR:
8455	 * - Bits reserved in the IA32_EFER MSR must be 0.
8456	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
8457	 *   the IA-32e mode guest VM-exit control. It must also be identical
8458	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
8459	 *   CR0.PG) is 1.
8460	 */
8461	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
8462		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
8463		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
8464		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
8465		    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
8466		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
8467			nested_vmx_entry_failure(vcpu, vmcs12,
8468				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8469			return 1;
8470		}
8471	}
8472
8473	/*
8474	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
8475	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
8476	 * the values of the LMA and LME bits in the field must each be that of
8477	 * the host address-space size VM-exit control.
8478	 */
8479	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
8480		ia32e = (vmcs12->vm_exit_controls &
8481			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
8482		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
8483		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
8484		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
8485			nested_vmx_entry_failure(vcpu, vmcs12,
8486				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
8487			return 1;
8488		}
8489	}
8490
8491	/*
8492	 * We're finally done with prerequisite checking, and can start with
8493	 * the nested entry.
8494	 */
8495
8496	vmcs02 = nested_get_current_vmcs02(vmx);
8497	if (!vmcs02)
8498		return -ENOMEM;
8499
8500	enter_guest_mode(vcpu);
8501
8502	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
8503
8504	if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
8505		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8506
8507	cpu = get_cpu();
8508	vmx->loaded_vmcs = vmcs02;
8509	vmx_vcpu_put(vcpu);
8510	vmx_vcpu_load(vcpu, cpu);
8511	vcpu->cpu = cpu;
8512	put_cpu();
8513
8514	vmx_segment_cache_clear(vmx);
8515
8516	vmcs12->launch_state = 1;
8517
8518	prepare_vmcs02(vcpu, vmcs12);
8519
8520	if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
8521		return kvm_emulate_halt(vcpu);
8522
8523	vmx->nested.nested_run_pending = 1;
8524
8525	/*
8526	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
8527	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
8528	 * returned as far as L1 is concerned. It will only return (and set
8529	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
8530	 */
8531	return 1;
8532}
8533
8534/*
8535 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
8536 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
8537 * This function returns the new value we should put in vmcs12.guest_cr0.
8538 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
8539 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
8540 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
8541 *     didn't trap the bit, because if L1 did, so would L0).
8542 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
8543 *     been modified by L2, and L1 knows it. So just leave the old value of
8544 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
8545 *     isn't relevant, because if L0 traps this bit it can set it to anything.
8546 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
8547 *     changed these bits, and therefore they need to be updated, but L0
8548 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
8549 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
8550 */
8551static inline unsigned long
8552vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8553{
8554	return
8555	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
8556	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
8557	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
8558			vcpu->arch.cr0_guest_owned_bits));
8559}
8560
8561static inline unsigned long
8562vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
8563{
8564	return
8565	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
8566	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
8567	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
8568			vcpu->arch.cr4_guest_owned_bits));
8569}
8570
8571static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
8572				       struct vmcs12 *vmcs12)
8573{
8574	u32 idt_vectoring;
8575	unsigned int nr;
8576
8577	if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
8578		nr = vcpu->arch.exception.nr;
8579		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8580
8581		if (kvm_exception_is_soft(nr)) {
8582			vmcs12->vm_exit_instruction_len =
8583				vcpu->arch.event_exit_inst_len;
8584			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
8585		} else
8586			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
8587
8588		if (vcpu->arch.exception.has_error_code) {
8589			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
8590			vmcs12->idt_vectoring_error_code =
8591				vcpu->arch.exception.error_code;
8592		}
8593
8594		vmcs12->idt_vectoring_info_field = idt_vectoring;
8595	} else if (vcpu->arch.nmi_injected) {
8596		vmcs12->idt_vectoring_info_field =
8597			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
8598	} else if (vcpu->arch.interrupt.pending) {
8599		nr = vcpu->arch.interrupt.nr;
8600		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
8601
8602		if (vcpu->arch.interrupt.soft) {
8603			idt_vectoring |= INTR_TYPE_SOFT_INTR;
8604			vmcs12->vm_entry_instruction_len =
8605				vcpu->arch.event_exit_inst_len;
8606		} else
8607			idt_vectoring |= INTR_TYPE_EXT_INTR;
8608
8609		vmcs12->idt_vectoring_info_field = idt_vectoring;
8610	}
8611}
8612
8613static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
8614{
8615	struct vcpu_vmx *vmx = to_vmx(vcpu);
8616
8617	if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
8618	    vmx->nested.preemption_timer_expired) {
8619		if (vmx->nested.nested_run_pending)
8620			return -EBUSY;
8621		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
8622		return 0;
8623	}
8624
8625	if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
8626		if (vmx->nested.nested_run_pending ||
8627		    vcpu->arch.interrupt.pending)
8628			return -EBUSY;
8629		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
8630				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
8631				  INTR_INFO_VALID_MASK, 0);
8632		/*
8633		 * The NMI-triggered VM exit counts as injection:
8634		 * clear this one and block further NMIs.
8635		 */
8636		vcpu->arch.nmi_pending = 0;
8637		vmx_set_nmi_mask(vcpu, true);
8638		return 0;
8639	}
8640
8641	if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
8642	    nested_exit_on_intr(vcpu)) {
8643		if (vmx->nested.nested_run_pending)
8644			return -EBUSY;
8645		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
8646	}
8647
8648	return 0;
8649}
8650
8651static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
8652{
8653	ktime_t remaining =
8654		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
8655	u64 value;
8656
8657	if (ktime_to_ns(remaining) <= 0)
8658		return 0;
8659
8660	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
8661	do_div(value, 1000000);
8662	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
8663}
8664
8665/*
8666 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
8667 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
8668 * and this function updates it to reflect the changes to the guest state while
8669 * L2 was running (and perhaps made some exits which were handled directly by L0
8670 * without going back to L1), and to reflect the exit reason.
8671 * Note that we do not have to copy here all VMCS fields, just those that
8672 * could have changed by the L2 guest or the exit - i.e., the guest-state and
8673 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
8674 * which already writes to vmcs12 directly.
8675 */
8676static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
8677			   u32 exit_reason, u32 exit_intr_info,
8678			   unsigned long exit_qualification)
8679{
8680	/* update guest state fields: */
8681	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
8682	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
8683
8684	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
8685	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
8686	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
8687
8688	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
8689	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
8690	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
8691	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
8692	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
8693	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
8694	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
8695	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
8696	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
8697	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
8698	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
8699	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
8700	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
8701	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
8702	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
8703	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
8704	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
8705	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
8706	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
8707	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
8708	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
8709	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
8710	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
8711	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
8712	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
8713	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
8714	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
8715	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
8716	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
8717	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
8718	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
8719	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
8720	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
8721	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
8722	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
8723	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
8724
8725	vmcs12->guest_interruptibility_info =
8726		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
8727	vmcs12->guest_pending_dbg_exceptions =
8728		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
8729	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
8730		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
8731	else
8732		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
8733
8734	if (nested_cpu_has_preemption_timer(vmcs12)) {
8735		if (vmcs12->vm_exit_controls &
8736		    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
8737			vmcs12->vmx_preemption_timer_value =
8738				vmx_get_preemption_timer_value(vcpu);
8739		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
8740	}
8741
8742	/*
8743	 * In some cases (usually, nested EPT), L2 is allowed to change its
8744	 * own CR3 without exiting. If it has changed it, we must keep it.
8745	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
8746	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
8747	 *
8748	 * Additionally, restore L2's PDPTR to vmcs12.
8749	 */
8750	if (enable_ept) {
8751		vmcs12->guest_cr3 = vmcs_read64(GUEST_CR3);
8752		vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
8753		vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
8754		vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
8755		vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
8756	}
8757
8758	vmcs12->vm_entry_controls =
8759		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
8760		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
8761
8762	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
8763		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
8764		vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
8765	}
8766
8767	/* TODO: These cannot have changed unless we have MSR bitmaps and
8768	 * the relevant bit asks not to trap the change */
8769	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
8770		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
8771	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
8772		vmcs12->guest_ia32_efer = vcpu->arch.efer;
8773	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
8774	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
8775	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
8776	if (vmx_mpx_supported())
8777		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
8778
8779	/* update exit information fields: */
8780
8781	vmcs12->vm_exit_reason = exit_reason;
8782	vmcs12->exit_qualification = exit_qualification;
8783
8784	vmcs12->vm_exit_intr_info = exit_intr_info;
8785	if ((vmcs12->vm_exit_intr_info &
8786	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8787	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
8788		vmcs12->vm_exit_intr_error_code =
8789			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8790	vmcs12->idt_vectoring_info_field = 0;
8791	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
8792	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8793
8794	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
8795		/* vm_entry_intr_info_field is cleared on exit. Emulate this
8796		 * instead of reading the real value. */
8797		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
8798
8799		/*
8800		 * Transfer the event that L0 or L1 may wanted to inject into
8801		 * L2 to IDT_VECTORING_INFO_FIELD.
8802		 */
8803		vmcs12_save_pending_event(vcpu, vmcs12);
8804	}
8805
8806	/*
8807	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
8808	 * preserved above and would only end up incorrectly in L1.
8809	 */
8810	vcpu->arch.nmi_injected = false;
8811	kvm_clear_exception_queue(vcpu);
8812	kvm_clear_interrupt_queue(vcpu);
8813}
8814
8815/*
8816 * A part of what we need to when the nested L2 guest exits and we want to
8817 * run its L1 parent, is to reset L1's guest state to the host state specified
8818 * in vmcs12.
8819 * This function is to be called not only on normal nested exit, but also on
8820 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
8821 * Failures During or After Loading Guest State").
8822 * This function should be called when the active VMCS is L1's (vmcs01).
8823 */
8824static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
8825				   struct vmcs12 *vmcs12)
8826{
8827	struct kvm_segment seg;
8828
8829	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
8830		vcpu->arch.efer = vmcs12->host_ia32_efer;
8831	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8832		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
8833	else
8834		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
8835	vmx_set_efer(vcpu, vcpu->arch.efer);
8836
8837	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
8838	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
8839	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
8840	/*
8841	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
8842	 * actually changed, because it depends on the current state of
8843	 * fpu_active (which may have changed).
8844	 * Note that vmx_set_cr0 refers to efer set above.
8845	 */
8846	vmx_set_cr0(vcpu, vmcs12->host_cr0);
8847	/*
8848	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
8849	 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
8850	 * but we also need to update cr0_guest_host_mask and exception_bitmap.
8851	 */
8852	update_exception_bitmap(vcpu);
8853	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
8854	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8855
8856	/*
8857	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8858	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8859	 */
8860	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8861	kvm_set_cr4(vcpu, vmcs12->host_cr4);
8862
8863	nested_ept_uninit_mmu_context(vcpu);
8864
8865	kvm_set_cr3(vcpu, vmcs12->host_cr3);
8866	kvm_mmu_reset_context(vcpu);
8867
8868	if (!enable_ept)
8869		vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
8870
8871	if (enable_vpid) {
8872		/*
8873		 * Trivially support vpid by letting L2s share their parent
8874		 * L1's vpid. TODO: move to a more elaborate solution, giving
8875		 * each L2 its own vpid and exposing the vpid feature to L1.
8876		 */
8877		vmx_flush_tlb(vcpu);
8878	}
8879
8880
8881	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8882	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8883	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8884	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8885	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
8886
8887	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
8888	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
8889		vmcs_write64(GUEST_BNDCFGS, 0);
8890
8891	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
8892		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8893		vcpu->arch.pat = vmcs12->host_ia32_pat;
8894	}
8895	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8896		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8897			vmcs12->host_ia32_perf_global_ctrl);
8898
8899	/* Set L1 segment info according to Intel SDM
8900	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
8901	seg = (struct kvm_segment) {
8902		.base = 0,
8903		.limit = 0xFFFFFFFF,
8904		.selector = vmcs12->host_cs_selector,
8905		.type = 11,
8906		.present = 1,
8907		.s = 1,
8908		.g = 1
8909	};
8910	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8911		seg.l = 1;
8912	else
8913		seg.db = 1;
8914	vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8915	seg = (struct kvm_segment) {
8916		.base = 0,
8917		.limit = 0xFFFFFFFF,
8918		.type = 3,
8919		.present = 1,
8920		.s = 1,
8921		.db = 1,
8922		.g = 1
8923	};
8924	seg.selector = vmcs12->host_ds_selector;
8925	vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8926	seg.selector = vmcs12->host_es_selector;
8927	vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8928	seg.selector = vmcs12->host_ss_selector;
8929	vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8930	seg.selector = vmcs12->host_fs_selector;
8931	seg.base = vmcs12->host_fs_base;
8932	vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8933	seg.selector = vmcs12->host_gs_selector;
8934	seg.base = vmcs12->host_gs_base;
8935	vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8936	seg = (struct kvm_segment) {
8937		.base = vmcs12->host_tr_base,
8938		.limit = 0x67,
8939		.selector = vmcs12->host_tr_selector,
8940		.type = 11,
8941		.present = 1
8942	};
8943	vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8944
8945	kvm_set_dr(vcpu, 7, 0x400);
8946	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8947}
8948
8949/*
8950 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8951 * and modify vmcs12 to make it see what it would expect to see there if
8952 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8953 */
8954static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
8955			      u32 exit_intr_info,
8956			      unsigned long exit_qualification)
8957{
8958	struct vcpu_vmx *vmx = to_vmx(vcpu);
8959	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8960
8961	/* trying to cancel vmlaunch/vmresume is a bug */
8962	WARN_ON_ONCE(vmx->nested.nested_run_pending);
8963
8964	leave_guest_mode(vcpu);
8965	prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
8966		       exit_qualification);
8967
8968	vmx_load_vmcs01(vcpu);
8969
8970	if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
8971	    && nested_exit_intr_ack_set(vcpu)) {
8972		int irq = kvm_cpu_get_interrupt(vcpu);
8973		WARN_ON(irq < 0);
8974		vmcs12->vm_exit_intr_info = irq |
8975			INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
8976	}
8977
8978	trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
8979				       vmcs12->exit_qualification,
8980				       vmcs12->idt_vectoring_info_field,
8981				       vmcs12->vm_exit_intr_info,
8982				       vmcs12->vm_exit_intr_error_code,
8983				       KVM_ISA_VMX);
8984
8985	vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
8986	vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
8987	vmx_segment_cache_clear(vmx);
8988
8989	/* if no vmcs02 cache requested, remove the one we used */
8990	if (VMCS02_POOL_SIZE == 0)
8991		nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8992
8993	load_vmcs12_host_state(vcpu, vmcs12);
8994
8995	/* Update TSC_OFFSET if TSC was changed while L2 ran */
8996	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8997
8998	/* This is needed for same reason as it was needed in prepare_vmcs02 */
8999	vmx->host_rsp = 0;
9000
9001	/* Unpin physical memory we referred to in vmcs02 */
9002	if (vmx->nested.apic_access_page) {
9003		nested_release_page(vmx->nested.apic_access_page);
9004		vmx->nested.apic_access_page = NULL;
9005	}
9006	if (vmx->nested.virtual_apic_page) {
9007		nested_release_page(vmx->nested.virtual_apic_page);
9008		vmx->nested.virtual_apic_page = NULL;
9009	}
9010
9011	/*
9012	 * We are now running in L2, mmu_notifier will force to reload the
9013	 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
9014	 */
9015	kvm_vcpu_reload_apic_access_page(vcpu);
9016
9017	/*
9018	 * Exiting from L2 to L1, we're now back to L1 which thinks it just
9019	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
9020	 * success or failure flag accordingly.
9021	 */
9022	if (unlikely(vmx->fail)) {
9023		vmx->fail = 0;
9024		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
9025	} else
9026		nested_vmx_succeed(vcpu);
9027	if (enable_shadow_vmcs)
9028		vmx->nested.sync_shadow_vmcs = true;
9029
9030	/* in case we halted in L2 */
9031	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9032}
9033
9034/*
9035 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
9036 */
9037static void vmx_leave_nested(struct kvm_vcpu *vcpu)
9038{
9039	if (is_guest_mode(vcpu))
9040		nested_vmx_vmexit(vcpu, -1, 0, 0);
9041	free_nested(to_vmx(vcpu));
9042}
9043
9044/*
9045 * L1's failure to enter L2 is a subset of a normal exit, as explained in
9046 * 23.7 "VM-entry failures during or after loading guest state" (this also
9047 * lists the acceptable exit-reason and exit-qualification parameters).
9048 * It should only be called before L2 actually succeeded to run, and when
9049 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
9050 */
9051static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
9052			struct vmcs12 *vmcs12,
9053			u32 reason, unsigned long qualification)
9054{
9055	load_vmcs12_host_state(vcpu, vmcs12);
9056	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
9057	vmcs12->exit_qualification = qualification;
9058	nested_vmx_succeed(vcpu);
9059	if (enable_shadow_vmcs)
9060		to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
9061}
9062
9063static int vmx_check_intercept(struct kvm_vcpu *vcpu,
9064			       struct x86_instruction_info *info,
9065			       enum x86_intercept_stage stage)
9066{
9067	return X86EMUL_CONTINUE;
9068}
9069
9070static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
9071{
9072	if (ple_gap)
9073		shrink_ple_window(vcpu);
9074}
9075
9076static struct kvm_x86_ops vmx_x86_ops = {
9077	.cpu_has_kvm_support = cpu_has_kvm_support,
9078	.disabled_by_bios = vmx_disabled_by_bios,
9079	.hardware_setup = hardware_setup,
9080	.hardware_unsetup = hardware_unsetup,
9081	.check_processor_compatibility = vmx_check_processor_compat,
9082	.hardware_enable = hardware_enable,
9083	.hardware_disable = hardware_disable,
9084	.cpu_has_accelerated_tpr = report_flexpriority,
9085
9086	.vcpu_create = vmx_create_vcpu,
9087	.vcpu_free = vmx_free_vcpu,
9088	.vcpu_reset = vmx_vcpu_reset,
9089
9090	.prepare_guest_switch = vmx_save_host_state,
9091	.vcpu_load = vmx_vcpu_load,
9092	.vcpu_put = vmx_vcpu_put,
9093
9094	.update_db_bp_intercept = update_exception_bitmap,
9095	.get_msr = vmx_get_msr,
9096	.set_msr = vmx_set_msr,
9097	.get_segment_base = vmx_get_segment_base,
9098	.get_segment = vmx_get_segment,
9099	.set_segment = vmx_set_segment,
9100	.get_cpl = vmx_get_cpl,
9101	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
9102	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
9103	.decache_cr3 = vmx_decache_cr3,
9104	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
9105	.set_cr0 = vmx_set_cr0,
9106	.set_cr3 = vmx_set_cr3,
9107	.set_cr4 = vmx_set_cr4,
9108	.set_efer = vmx_set_efer,
9109	.get_idt = vmx_get_idt,
9110	.set_idt = vmx_set_idt,
9111	.get_gdt = vmx_get_gdt,
9112	.set_gdt = vmx_set_gdt,
9113	.get_dr6 = vmx_get_dr6,
9114	.set_dr6 = vmx_set_dr6,
9115	.set_dr7 = vmx_set_dr7,
9116	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
9117	.cache_reg = vmx_cache_reg,
9118	.get_rflags = vmx_get_rflags,
9119	.set_rflags = vmx_set_rflags,
9120	.fpu_deactivate = vmx_fpu_deactivate,
9121
9122	.tlb_flush = vmx_flush_tlb,
9123
9124	.run = vmx_vcpu_run,
9125	.handle_exit = vmx_handle_exit,
9126	.skip_emulated_instruction = skip_emulated_instruction,
9127	.set_interrupt_shadow = vmx_set_interrupt_shadow,
9128	.get_interrupt_shadow = vmx_get_interrupt_shadow,
9129	.patch_hypercall = vmx_patch_hypercall,
9130	.set_irq = vmx_inject_irq,
9131	.set_nmi = vmx_inject_nmi,
9132	.queue_exception = vmx_queue_exception,
9133	.cancel_injection = vmx_cancel_injection,
9134	.interrupt_allowed = vmx_interrupt_allowed,
9135	.nmi_allowed = vmx_nmi_allowed,
9136	.get_nmi_mask = vmx_get_nmi_mask,
9137	.set_nmi_mask = vmx_set_nmi_mask,
9138	.enable_nmi_window = enable_nmi_window,
9139	.enable_irq_window = enable_irq_window,
9140	.update_cr8_intercept = update_cr8_intercept,
9141	.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
9142	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
9143	.vm_has_apicv = vmx_vm_has_apicv,
9144	.load_eoi_exitmap = vmx_load_eoi_exitmap,
9145	.hwapic_irr_update = vmx_hwapic_irr_update,
9146	.hwapic_isr_update = vmx_hwapic_isr_update,
9147	.sync_pir_to_irr = vmx_sync_pir_to_irr,
9148	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
9149
9150	.set_tss_addr = vmx_set_tss_addr,
9151	.get_tdp_level = get_ept_level,
9152	.get_mt_mask = vmx_get_mt_mask,
9153
9154	.get_exit_info = vmx_get_exit_info,
9155
9156	.get_lpage_level = vmx_get_lpage_level,
9157
9158	.cpuid_update = vmx_cpuid_update,
9159
9160	.rdtscp_supported = vmx_rdtscp_supported,
9161	.invpcid_supported = vmx_invpcid_supported,
9162
9163	.set_supported_cpuid = vmx_set_supported_cpuid,
9164
9165	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
9166
9167	.set_tsc_khz = vmx_set_tsc_khz,
9168	.read_tsc_offset = vmx_read_tsc_offset,
9169	.write_tsc_offset = vmx_write_tsc_offset,
9170	.adjust_tsc_offset = vmx_adjust_tsc_offset,
9171	.compute_tsc_offset = vmx_compute_tsc_offset,
9172	.read_l1_tsc = vmx_read_l1_tsc,
9173
9174	.set_tdp_cr3 = vmx_set_cr3,
9175
9176	.check_intercept = vmx_check_intercept,
9177	.handle_external_intr = vmx_handle_external_intr,
9178	.mpx_supported = vmx_mpx_supported,
9179
9180	.check_nested_events = vmx_check_nested_events,
9181
9182	.sched_in = vmx_sched_in,
9183};
9184
9185static int __init vmx_init(void)
9186{
9187	int r, i, msr;
9188
9189	rdmsrl_safe(MSR_EFER, &host_efer);
9190
9191	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
9192		kvm_define_shared_msr(i, vmx_msr_index[i]);
9193
9194	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
9195	if (!vmx_io_bitmap_a)
9196		return -ENOMEM;
9197
9198	r = -ENOMEM;
9199
9200	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
9201	if (!vmx_io_bitmap_b)
9202		goto out;
9203
9204	vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
9205	if (!vmx_msr_bitmap_legacy)
9206		goto out1;
9207
9208	vmx_msr_bitmap_legacy_x2apic =
9209				(unsigned long *)__get_free_page(GFP_KERNEL);
9210	if (!vmx_msr_bitmap_legacy_x2apic)
9211		goto out2;
9212
9213	vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
9214	if (!vmx_msr_bitmap_longmode)
9215		goto out3;
9216
9217	vmx_msr_bitmap_longmode_x2apic =
9218				(unsigned long *)__get_free_page(GFP_KERNEL);
9219	if (!vmx_msr_bitmap_longmode_x2apic)
9220		goto out4;
9221	vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9222	if (!vmx_vmread_bitmap)
9223		goto out5;
9224
9225	vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
9226	if (!vmx_vmwrite_bitmap)
9227		goto out6;
9228
9229	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
9230	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
9231
9232	/*
9233	 * Allow direct access to the PC debug port (it is often used for I/O
9234	 * delays, but the vmexits simply slow things down).
9235	 */
9236	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
9237	clear_bit(0x80, vmx_io_bitmap_a);
9238
9239	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
9240
9241	memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
9242	memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
9243
9244	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
9245
9246	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
9247		     __alignof__(struct vcpu_vmx), THIS_MODULE);
9248	if (r)
9249		goto out7;
9250
9251#ifdef CONFIG_KEXEC
9252	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
9253			   crash_vmclear_local_loaded_vmcss);
9254#endif
9255
9256	vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
9257	vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
9258	vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
9259	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
9260	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
9261	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
9262	vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
9263
9264	memcpy(vmx_msr_bitmap_legacy_x2apic,
9265			vmx_msr_bitmap_legacy, PAGE_SIZE);
9266	memcpy(vmx_msr_bitmap_longmode_x2apic,
9267			vmx_msr_bitmap_longmode, PAGE_SIZE);
9268
9269	if (enable_apicv) {
9270		for (msr = 0x800; msr <= 0x8ff; msr++)
9271			vmx_disable_intercept_msr_read_x2apic(msr);
9272
9273		/* According SDM, in x2apic mode, the whole id reg is used.
9274		 * But in KVM, it only use the highest eight bits. Need to
9275		 * intercept it */
9276		vmx_enable_intercept_msr_read_x2apic(0x802);
9277		/* TMCCT */
9278		vmx_enable_intercept_msr_read_x2apic(0x839);
9279		/* TPR */
9280		vmx_disable_intercept_msr_write_x2apic(0x808);
9281		/* EOI */
9282		vmx_disable_intercept_msr_write_x2apic(0x80b);
9283		/* SELF-IPI */
9284		vmx_disable_intercept_msr_write_x2apic(0x83f);
9285	}
9286
9287	if (enable_ept) {
9288		kvm_mmu_set_mask_ptes(0ull,
9289			(enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
9290			(enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
9291			0ull, VMX_EPT_EXECUTABLE_MASK);
9292		ept_set_mmio_spte_mask();
9293		kvm_enable_tdp();
9294	} else
9295		kvm_disable_tdp();
9296
9297	update_ple_window_actual_max();
9298
9299	return 0;
9300
9301out7:
9302	free_page((unsigned long)vmx_vmwrite_bitmap);
9303out6:
9304	free_page((unsigned long)vmx_vmread_bitmap);
9305out5:
9306	free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9307out4:
9308	free_page((unsigned long)vmx_msr_bitmap_longmode);
9309out3:
9310	free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9311out2:
9312	free_page((unsigned long)vmx_msr_bitmap_legacy);
9313out1:
9314	free_page((unsigned long)vmx_io_bitmap_b);
9315out:
9316	free_page((unsigned long)vmx_io_bitmap_a);
9317	return r;
9318}
9319
9320static void __exit vmx_exit(void)
9321{
9322	free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
9323	free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
9324	free_page((unsigned long)vmx_msr_bitmap_legacy);
9325	free_page((unsigned long)vmx_msr_bitmap_longmode);
9326	free_page((unsigned long)vmx_io_bitmap_b);
9327	free_page((unsigned long)vmx_io_bitmap_a);
9328	free_page((unsigned long)vmx_vmwrite_bitmap);
9329	free_page((unsigned long)vmx_vmread_bitmap);
9330
9331#ifdef CONFIG_KEXEC
9332	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
9333	synchronize_rcu();
9334#endif
9335
9336	kvm_exit();
9337}
9338
9339module_init(vmx_init)
9340module_exit(vmx_exit)
9341