tlb_uv.c revision ca444564a947034557a85357b3911d067cac4b8f
1/*
2 *	SGI UltraViolet TLB flush routines.
3 *
4 *	(c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
5 *
6 *	This code is released under the GNU General Public License version 2 or
7 *	later.
8 */
9#include <linux/seq_file.h>
10#include <linux/proc_fs.h>
11#include <linux/debugfs.h>
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/delay.h>
15
16#include <asm/mmu_context.h>
17#include <asm/uv/uv.h>
18#include <asm/uv/uv_mmrs.h>
19#include <asm/uv/uv_hub.h>
20#include <asm/uv/uv_bau.h>
21#include <asm/apic.h>
22#include <asm/idle.h>
23#include <asm/tsc.h>
24#include <asm/irq_vectors.h>
25#include <asm/timer.h>
26
27/* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28static int timeout_base_ns[] = {
29		20,
30		160,
31		1280,
32		10240,
33		81920,
34		655360,
35		5242880,
36		167772160
37};
38static int timeout_us;
39static int nobau;
40static int baudisabled;
41static spinlock_t disable_lock;
42static cycles_t congested_cycles;
43
44/* tunables: */
45static int max_bau_concurrent = MAX_BAU_CONCURRENT;
46static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT;
47static int plugged_delay = PLUGGED_DELAY;
48static int plugsb4reset = PLUGSB4RESET;
49static int timeoutsb4reset = TIMEOUTSB4RESET;
50static int ipi_reset_limit = IPI_RESET_LIMIT;
51static int complete_threshold = COMPLETE_THRESHOLD;
52static int congested_response_us = CONGESTED_RESPONSE_US;
53static int congested_reps = CONGESTED_REPS;
54static int congested_period = CONGESTED_PERIOD;
55static struct dentry *tunables_dir;
56static struct dentry *tunables_file;
57
58static int __init setup_nobau(char *arg)
59{
60	nobau = 1;
61	return 0;
62}
63early_param("nobau", setup_nobau);
64
65/* base pnode in this partition */
66static int uv_partition_base_pnode __read_mostly;
67/* position of pnode (which is nasid>>1): */
68static int uv_nshift __read_mostly;
69static unsigned long uv_mmask __read_mostly;
70
71static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
72static DEFINE_PER_CPU(struct bau_control, bau_control);
73static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
74
75/*
76 * Determine the first node on a uvhub. 'Nodes' are used for kernel
77 * memory allocation.
78 */
79static int __init uvhub_to_first_node(int uvhub)
80{
81	int node, b;
82
83	for_each_online_node(node) {
84		b = uv_node_to_blade_id(node);
85		if (uvhub == b)
86			return node;
87	}
88	return -1;
89}
90
91/*
92 * Determine the apicid of the first cpu on a uvhub.
93 */
94static int __init uvhub_to_first_apicid(int uvhub)
95{
96	int cpu;
97
98	for_each_present_cpu(cpu)
99		if (uvhub == uv_cpu_to_blade_id(cpu))
100			return per_cpu(x86_cpu_to_apicid, cpu);
101	return -1;
102}
103
104/*
105 * Free a software acknowledge hardware resource by clearing its Pending
106 * bit. This will return a reply to the sender.
107 * If the message has timed out, a reply has already been sent by the
108 * hardware but the resource has not been released. In that case our
109 * clear of the Timeout bit (as well) will free the resource. No reply will
110 * be sent (the hardware will only do one reply per message).
111 */
112static inline void uv_reply_to_message(struct msg_desc *mdp,
113				       struct bau_control *bcp)
114{
115	unsigned long dw;
116	struct bau_payload_queue_entry *msg;
117
118	msg = mdp->msg;
119	if (!msg->canceled) {
120		dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
121						msg->sw_ack_vector;
122		uv_write_local_mmr(
123				UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
124	}
125	msg->replied_to = 1;
126	msg->sw_ack_vector = 0;
127}
128
129/*
130 * Process the receipt of a RETRY message
131 */
132static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
133					    struct bau_control *bcp)
134{
135	int i;
136	int cancel_count = 0;
137	int slot2;
138	unsigned long msg_res;
139	unsigned long mmr = 0;
140	struct bau_payload_queue_entry *msg;
141	struct bau_payload_queue_entry *msg2;
142	struct ptc_stats *stat;
143
144	msg = mdp->msg;
145	stat = bcp->statp;
146	stat->d_retries++;
147	/*
148	 * cancel any message from msg+1 to the retry itself
149	 */
150	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
151		if (msg2 > mdp->va_queue_last)
152			msg2 = mdp->va_queue_first;
153		if (msg2 == msg)
154			break;
155
156		/* same conditions for cancellation as uv_do_reset */
157		if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
158		    (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
159			msg->sw_ack_vector) == 0) &&
160		    (msg2->sending_cpu == msg->sending_cpu) &&
161		    (msg2->msg_type != MSG_NOOP)) {
162			slot2 = msg2 - mdp->va_queue_first;
163			mmr = uv_read_local_mmr
164				(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
165			msg_res = msg2->sw_ack_vector;
166			/*
167			 * This is a message retry; clear the resources held
168			 * by the previous message only if they timed out.
169			 * If it has not timed out we have an unexpected
170			 * situation to report.
171			 */
172			if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
173				/*
174				 * is the resource timed out?
175				 * make everyone ignore the cancelled message.
176				 */
177				msg2->canceled = 1;
178				stat->d_canceled++;
179				cancel_count++;
180				uv_write_local_mmr(
181				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
182					(msg_res << UV_SW_ACK_NPENDING) |
183					 msg_res);
184			}
185		}
186	}
187	if (!cancel_count)
188		stat->d_nocanceled++;
189}
190
191/*
192 * Do all the things a cpu should do for a TLB shootdown message.
193 * Other cpu's may come here at the same time for this message.
194 */
195static void uv_bau_process_message(struct msg_desc *mdp,
196				   struct bau_control *bcp)
197{
198	int msg_ack_count;
199	short socket_ack_count = 0;
200	struct ptc_stats *stat;
201	struct bau_payload_queue_entry *msg;
202	struct bau_control *smaster = bcp->socket_master;
203
204	/*
205	 * This must be a normal message, or retry of a normal message
206	 */
207	msg = mdp->msg;
208	stat = bcp->statp;
209	if (msg->address == TLB_FLUSH_ALL) {
210		local_flush_tlb();
211		stat->d_alltlb++;
212	} else {
213		__flush_tlb_one(msg->address);
214		stat->d_onetlb++;
215	}
216	stat->d_requestee++;
217
218	/*
219	 * One cpu on each uvhub has the additional job on a RETRY
220	 * of releasing the resource held by the message that is
221	 * being retried.  That message is identified by sending
222	 * cpu number.
223	 */
224	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
225		uv_bau_process_retry_msg(mdp, bcp);
226
227	/*
228	 * This is a sw_ack message, so we have to reply to it.
229	 * Count each responding cpu on the socket. This avoids
230	 * pinging the count's cache line back and forth between
231	 * the sockets.
232	 */
233	socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
234			&smaster->socket_acknowledge_count[mdp->msg_slot]);
235	if (socket_ack_count == bcp->cpus_in_socket) {
236		/*
237		 * Both sockets dump their completed count total into
238		 * the message's count.
239		 */
240		smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
241		msg_ack_count = atomic_add_short_return(socket_ack_count,
242				(struct atomic_short *)&msg->acknowledge_count);
243
244		if (msg_ack_count == bcp->cpus_in_uvhub) {
245			/*
246			 * All cpus in uvhub saw it; reply
247			 */
248			uv_reply_to_message(mdp, bcp);
249		}
250	}
251
252	return;
253}
254
255/*
256 * Determine the first cpu on a uvhub.
257 */
258static int uvhub_to_first_cpu(int uvhub)
259{
260	int cpu;
261	for_each_present_cpu(cpu)
262		if (uvhub == uv_cpu_to_blade_id(cpu))
263			return cpu;
264	return -1;
265}
266
267/*
268 * Last resort when we get a large number of destination timeouts is
269 * to clear resources held by a given cpu.
270 * Do this with IPI so that all messages in the BAU message queue
271 * can be identified by their nonzero sw_ack_vector field.
272 *
273 * This is entered for a single cpu on the uvhub.
274 * The sender want's this uvhub to free a specific message's
275 * sw_ack resources.
276 */
277static void
278uv_do_reset(void *ptr)
279{
280	int i;
281	int slot;
282	int count = 0;
283	unsigned long mmr;
284	unsigned long msg_res;
285	struct bau_control *bcp;
286	struct reset_args *rap;
287	struct bau_payload_queue_entry *msg;
288	struct ptc_stats *stat;
289
290	bcp = &per_cpu(bau_control, smp_processor_id());
291	rap = (struct reset_args *)ptr;
292	stat = bcp->statp;
293	stat->d_resets++;
294
295	/*
296	 * We're looking for the given sender, and
297	 * will free its sw_ack resource.
298	 * If all cpu's finally responded after the timeout, its
299	 * message 'replied_to' was set.
300	 */
301	for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
302		/* uv_do_reset: same conditions for cancellation as
303		   uv_bau_process_retry_msg() */
304		if ((msg->replied_to == 0) &&
305		    (msg->canceled == 0) &&
306		    (msg->sending_cpu == rap->sender) &&
307		    (msg->sw_ack_vector) &&
308		    (msg->msg_type != MSG_NOOP)) {
309			/*
310			 * make everyone else ignore this message
311			 */
312			msg->canceled = 1;
313			slot = msg - bcp->va_queue_first;
314			count++;
315			/*
316			 * only reset the resource if it is still pending
317			 */
318			mmr = uv_read_local_mmr
319					(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
320			msg_res = msg->sw_ack_vector;
321			if (mmr & msg_res) {
322				stat->d_rcanceled++;
323				uv_write_local_mmr(
324				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
325					(msg_res << UV_SW_ACK_NPENDING) |
326					 msg_res);
327			}
328		}
329	}
330	return;
331}
332
333/*
334 * Use IPI to get all target uvhubs to release resources held by
335 * a given sending cpu number.
336 */
337static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
338			      int sender)
339{
340	int uvhub;
341	int cpu;
342	cpumask_t mask;
343	struct reset_args reset_args;
344
345	reset_args.sender = sender;
346
347	cpus_clear(mask);
348	/* find a single cpu for each uvhub in this distribution mask */
349	for (uvhub = 0;
350		    uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
351		    uvhub++) {
352		if (!bau_uvhub_isset(uvhub, distribution))
353			continue;
354		/* find a cpu for this uvhub */
355		cpu = uvhub_to_first_cpu(uvhub);
356		cpu_set(cpu, mask);
357	}
358	/* IPI all cpus; Preemption is already disabled */
359	smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
360	return;
361}
362
363static inline unsigned long
364cycles_2_us(unsigned long long cyc)
365{
366	unsigned long long ns;
367	unsigned long us;
368	ns =  (cyc * per_cpu(cyc2ns, smp_processor_id()))
369						>> CYC2NS_SCALE_FACTOR;
370	us = ns / 1000;
371	return us;
372}
373
374/*
375 * wait for all cpus on this hub to finish their sends and go quiet
376 * leaves uvhub_quiesce set so that no new broadcasts are started by
377 * bau_flush_send_and_wait()
378 */
379static inline void
380quiesce_local_uvhub(struct bau_control *hmaster)
381{
382	atomic_add_short_return(1, (struct atomic_short *)
383		 &hmaster->uvhub_quiesce);
384}
385
386/*
387 * mark this quiet-requestor as done
388 */
389static inline void
390end_uvhub_quiesce(struct bau_control *hmaster)
391{
392	atomic_add_short_return(-1, (struct atomic_short *)
393		&hmaster->uvhub_quiesce);
394}
395
396/*
397 * Wait for completion of a broadcast software ack message
398 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
399 */
400static int uv_wait_completion(struct bau_desc *bau_desc,
401	unsigned long mmr_offset, int right_shift, int this_cpu,
402	struct bau_control *bcp, struct bau_control *smaster, long try)
403{
404	unsigned long descriptor_status;
405	cycles_t ttime;
406	struct ptc_stats *stat = bcp->statp;
407	struct bau_control *hmaster;
408
409	hmaster = bcp->uvhub_master;
410
411	/* spin on the status MMR, waiting for it to go idle */
412	while ((descriptor_status = (((unsigned long)
413		uv_read_local_mmr(mmr_offset) >>
414			right_shift) & UV_ACT_STATUS_MASK)) !=
415			DESC_STATUS_IDLE) {
416		/*
417		 * Our software ack messages may be blocked because there are
418		 * no swack resources available.  As long as none of them
419		 * has timed out hardware will NACK our message and its
420		 * state will stay IDLE.
421		 */
422		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
423			stat->s_stimeout++;
424			return FLUSH_GIVEUP;
425		} else if (descriptor_status ==
426					DESC_STATUS_DESTINATION_TIMEOUT) {
427			stat->s_dtimeout++;
428			ttime = get_cycles();
429
430			/*
431			 * Our retries may be blocked by all destination
432			 * swack resources being consumed, and a timeout
433			 * pending.  In that case hardware returns the
434			 * ERROR that looks like a destination timeout.
435			 */
436			if (cycles_2_us(ttime - bcp->send_message) <
437							timeout_us) {
438				bcp->conseccompletes = 0;
439				return FLUSH_RETRY_PLUGGED;
440			}
441
442			bcp->conseccompletes = 0;
443			return FLUSH_RETRY_TIMEOUT;
444		} else {
445			/*
446			 * descriptor_status is still BUSY
447			 */
448			cpu_relax();
449		}
450	}
451	bcp->conseccompletes++;
452	return FLUSH_COMPLETE;
453}
454
455static inline cycles_t
456sec_2_cycles(unsigned long sec)
457{
458	unsigned long ns;
459	cycles_t cyc;
460
461	ns = sec * 1000000000;
462	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
463	return cyc;
464}
465
466/*
467 * conditionally add 1 to *v, unless *v is >= u
468 * return 0 if we cannot add 1 to *v because it is >= u
469 * return 1 if we can add 1 to *v because it is < u
470 * the add is atomic
471 *
472 * This is close to atomic_add_unless(), but this allows the 'u' value
473 * to be lowered below the current 'v'.  atomic_add_unless can only stop
474 * on equal.
475 */
476static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
477{
478	spin_lock(lock);
479	if (atomic_read(v) >= u) {
480		spin_unlock(lock);
481		return 0;
482	}
483	atomic_inc(v);
484	spin_unlock(lock);
485	return 1;
486}
487
488/*
489 * Our retries are blocked by all destination swack resources being
490 * in use, and a timeout is pending. In that case hardware immediately
491 * returns the ERROR that looks like a destination timeout.
492 */
493static void
494destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp,
495			struct bau_control *hmaster, struct ptc_stats *stat)
496{
497	udelay(bcp->plugged_delay);
498	bcp->plugged_tries++;
499	if (bcp->plugged_tries >= bcp->plugsb4reset) {
500		bcp->plugged_tries = 0;
501		quiesce_local_uvhub(hmaster);
502		spin_lock(&hmaster->queue_lock);
503		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
504		spin_unlock(&hmaster->queue_lock);
505		end_uvhub_quiesce(hmaster);
506		bcp->ipi_attempts++;
507		stat->s_resets_plug++;
508	}
509}
510
511static void
512destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp,
513			struct bau_control *hmaster, struct ptc_stats *stat)
514{
515	hmaster->max_bau_concurrent = 1;
516	bcp->timeout_tries++;
517	if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
518		bcp->timeout_tries = 0;
519		quiesce_local_uvhub(hmaster);
520		spin_lock(&hmaster->queue_lock);
521		uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
522		spin_unlock(&hmaster->queue_lock);
523		end_uvhub_quiesce(hmaster);
524		bcp->ipi_attempts++;
525		stat->s_resets_timeout++;
526	}
527}
528
529/*
530 * Completions are taking a very long time due to a congested numalink
531 * network.
532 */
533static void
534disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat)
535{
536	int tcpu;
537	struct bau_control *tbcp;
538
539	/* let only one cpu do this disabling */
540	spin_lock(&disable_lock);
541	if (!baudisabled && bcp->period_requests &&
542	    ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
543		/* it becomes this cpu's job to turn on the use of the
544		   BAU again */
545		baudisabled = 1;
546		bcp->set_bau_off = 1;
547		bcp->set_bau_on_time = get_cycles() +
548			sec_2_cycles(bcp->congested_period);
549		stat->s_bau_disabled++;
550		for_each_present_cpu(tcpu) {
551			tbcp = &per_cpu(bau_control, tcpu);
552				tbcp->baudisabled = 1;
553		}
554	}
555	spin_unlock(&disable_lock);
556}
557
558/**
559 * uv_flush_send_and_wait
560 *
561 * Send a broadcast and wait for it to complete.
562 *
563 * The flush_mask contains the cpus the broadcast is to be sent to including
564 * cpus that are on the local uvhub.
565 *
566 * Returns 0 if all flushing represented in the mask was done.
567 * Returns 1 if it gives up entirely and the original cpu mask is to be
568 * returned to the kernel.
569 */
570int uv_flush_send_and_wait(struct bau_desc *bau_desc,
571			   struct cpumask *flush_mask, struct bau_control *bcp)
572{
573	int right_shift;
574	int completion_status = 0;
575	int seq_number = 0;
576	long try = 0;
577	int cpu = bcp->uvhub_cpu;
578	int this_cpu = bcp->cpu;
579	unsigned long mmr_offset;
580	unsigned long index;
581	cycles_t time1;
582	cycles_t time2;
583	cycles_t elapsed;
584	struct ptc_stats *stat = bcp->statp;
585	struct bau_control *smaster = bcp->socket_master;
586	struct bau_control *hmaster = bcp->uvhub_master;
587
588	if (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
589			&hmaster->active_descriptor_count,
590			hmaster->max_bau_concurrent)) {
591		stat->s_throttles++;
592		do {
593			cpu_relax();
594		} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
595			&hmaster->active_descriptor_count,
596			hmaster->max_bau_concurrent));
597	}
598	while (hmaster->uvhub_quiesce)
599		cpu_relax();
600
601	if (cpu < UV_CPUS_PER_ACT_STATUS) {
602		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
603		right_shift = cpu * UV_ACT_STATUS_SIZE;
604	} else {
605		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
606		right_shift =
607		    ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
608	}
609	time1 = get_cycles();
610	do {
611		if (try == 0) {
612			bau_desc->header.msg_type = MSG_REGULAR;
613			seq_number = bcp->message_number++;
614		} else {
615			bau_desc->header.msg_type = MSG_RETRY;
616			stat->s_retry_messages++;
617		}
618		bau_desc->header.sequence = seq_number;
619		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
620			bcp->uvhub_cpu;
621		bcp->send_message = get_cycles();
622		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
623		try++;
624		completion_status = uv_wait_completion(bau_desc, mmr_offset,
625			right_shift, this_cpu, bcp, smaster, try);
626
627		if (completion_status == FLUSH_RETRY_PLUGGED) {
628			destination_plugged(bau_desc, bcp, hmaster, stat);
629		} else if (completion_status == FLUSH_RETRY_TIMEOUT) {
630			destination_timeout(bau_desc, bcp, hmaster, stat);
631		}
632		if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
633			bcp->ipi_attempts = 0;
634			completion_status = FLUSH_GIVEUP;
635			break;
636		}
637		cpu_relax();
638	} while ((completion_status == FLUSH_RETRY_PLUGGED) ||
639		 (completion_status == FLUSH_RETRY_TIMEOUT));
640	time2 = get_cycles();
641	bcp->plugged_tries = 0;
642	bcp->timeout_tries = 0;
643	if ((completion_status == FLUSH_COMPLETE) &&
644	    (bcp->conseccompletes > bcp->complete_threshold) &&
645	    (hmaster->max_bau_concurrent <
646					hmaster->max_bau_concurrent_constant))
647			hmaster->max_bau_concurrent++;
648	while (hmaster->uvhub_quiesce)
649		cpu_relax();
650	atomic_dec(&hmaster->active_descriptor_count);
651	if (time2 > time1) {
652		elapsed = time2 - time1;
653		stat->s_time += elapsed;
654		if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
655			bcp->period_requests++;
656			bcp->period_time += elapsed;
657			if ((elapsed > congested_cycles) &&
658			    (bcp->period_requests > bcp->congested_reps)) {
659				disable_for_congestion(bcp, stat);
660			}
661		}
662	} else
663		stat->s_requestor--;
664	if (completion_status == FLUSH_COMPLETE && try > 1)
665		stat->s_retriesok++;
666	else if (completion_status == FLUSH_GIVEUP) {
667		stat->s_giveup++;
668		return 1;
669	}
670	return 0;
671}
672
673/**
674 * uv_flush_tlb_others - globally purge translation cache of a virtual
675 * address or all TLB's
676 * @cpumask: mask of all cpu's in which the address is to be removed
677 * @mm: mm_struct containing virtual address range
678 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
679 * @cpu: the current cpu
680 *
681 * This is the entry point for initiating any UV global TLB shootdown.
682 *
683 * Purges the translation caches of all specified processors of the given
684 * virtual address, or purges all TLB's on specified processors.
685 *
686 * The caller has derived the cpumask from the mm_struct.  This function
687 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
688 *
689 * The cpumask is converted into a uvhubmask of the uvhubs containing
690 * those cpus.
691 *
692 * Note that this function should be called with preemption disabled.
693 *
694 * Returns NULL if all remote flushing was done.
695 * Returns pointer to cpumask if some remote flushing remains to be
696 * done.  The returned pointer is valid till preemption is re-enabled.
697 */
698const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
699					  struct mm_struct *mm,
700					  unsigned long va, unsigned int cpu)
701{
702	int tcpu;
703	int uvhub;
704	int locals = 0;
705	int remotes = 0;
706	int hubs = 0;
707	struct bau_desc *bau_desc;
708	struct cpumask *flush_mask;
709	struct ptc_stats *stat;
710	struct bau_control *bcp;
711	struct bau_control *tbcp;
712
713	/* kernel was booted 'nobau' */
714	if (nobau)
715		return cpumask;
716
717	bcp = &per_cpu(bau_control, cpu);
718	stat = bcp->statp;
719
720	/* bau was disabled due to slow response */
721	if (bcp->baudisabled) {
722		/* the cpu that disabled it must re-enable it */
723		if (bcp->set_bau_off) {
724			if (get_cycles() >= bcp->set_bau_on_time) {
725				stat->s_bau_reenabled++;
726				baudisabled = 0;
727				for_each_present_cpu(tcpu) {
728					tbcp = &per_cpu(bau_control, tcpu);
729					tbcp->baudisabled = 0;
730					tbcp->period_requests = 0;
731					tbcp->period_time = 0;
732				}
733			}
734		}
735		return cpumask;
736	}
737
738	/*
739	 * Each sending cpu has a per-cpu mask which it fills from the caller's
740	 * cpu mask.  All cpus are converted to uvhubs and copied to the
741	 * activation descriptor.
742	 */
743	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
744	/* don't actually do a shootdown of the local cpu */
745	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
746	if (cpu_isset(cpu, *cpumask))
747		stat->s_ntargself++;
748
749	bau_desc = bcp->descriptor_base;
750	bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
751	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
752
753	/* cpu statistics */
754	for_each_cpu(tcpu, flush_mask) {
755		uvhub = uv_cpu_to_blade_id(tcpu);
756		bau_uvhub_set(uvhub, &bau_desc->distribution);
757		if (uvhub == bcp->uvhub)
758			locals++;
759		else
760			remotes++;
761	}
762	if ((locals + remotes) == 0)
763		return NULL;
764	stat->s_requestor++;
765	stat->s_ntargcpu += remotes + locals;
766	stat->s_ntargremotes += remotes;
767	stat->s_ntarglocals += locals;
768	remotes = bau_uvhub_weight(&bau_desc->distribution);
769
770	/* uvhub statistics */
771	hubs = bau_uvhub_weight(&bau_desc->distribution);
772	if (locals) {
773		stat->s_ntarglocaluvhub++;
774		stat->s_ntargremoteuvhub += (hubs - 1);
775	} else
776		stat->s_ntargremoteuvhub += hubs;
777	stat->s_ntarguvhub += hubs;
778	if (hubs >= 16)
779		stat->s_ntarguvhub16++;
780	else if (hubs >= 8)
781		stat->s_ntarguvhub8++;
782	else if (hubs >= 4)
783		stat->s_ntarguvhub4++;
784	else if (hubs >= 2)
785		stat->s_ntarguvhub2++;
786	else
787		stat->s_ntarguvhub1++;
788
789	bau_desc->payload.address = va;
790	bau_desc->payload.sending_cpu = cpu;
791
792	/*
793	 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
794	 * or 1 if it gave up and the original cpumask should be returned.
795	 */
796	if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
797		return NULL;
798	else
799		return cpumask;
800}
801
802/*
803 * The BAU message interrupt comes here. (registered by set_intr_gate)
804 * See entry_64.S
805 *
806 * We received a broadcast assist message.
807 *
808 * Interrupts are disabled; this interrupt could represent
809 * the receipt of several messages.
810 *
811 * All cores/threads on this hub get this interrupt.
812 * The last one to see it does the software ack.
813 * (the resource will not be freed until noninterruptable cpus see this
814 *  interrupt; hardware may timeout the s/w ack and reply ERROR)
815 */
816void uv_bau_message_interrupt(struct pt_regs *regs)
817{
818	int count = 0;
819	cycles_t time_start;
820	struct bau_payload_queue_entry *msg;
821	struct bau_control *bcp;
822	struct ptc_stats *stat;
823	struct msg_desc msgdesc;
824
825	time_start = get_cycles();
826	bcp = &per_cpu(bau_control, smp_processor_id());
827	stat = bcp->statp;
828	msgdesc.va_queue_first = bcp->va_queue_first;
829	msgdesc.va_queue_last = bcp->va_queue_last;
830	msg = bcp->bau_msg_head;
831	while (msg->sw_ack_vector) {
832		count++;
833		msgdesc.msg_slot = msg - msgdesc.va_queue_first;
834		msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
835		msgdesc.msg = msg;
836		uv_bau_process_message(&msgdesc, bcp);
837		msg++;
838		if (msg > msgdesc.va_queue_last)
839			msg = msgdesc.va_queue_first;
840		bcp->bau_msg_head = msg;
841	}
842	stat->d_time += (get_cycles() - time_start);
843	if (!count)
844		stat->d_nomsg++;
845	else if (count > 1)
846		stat->d_multmsg++;
847	ack_APIC_irq();
848}
849
850/*
851 * uv_enable_timeouts
852 *
853 * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
854 * shootdown message timeouts enabled.  The timeout does not cause
855 * an interrupt, but causes an error message to be returned to
856 * the sender.
857 */
858static void uv_enable_timeouts(void)
859{
860	int uvhub;
861	int nuvhubs;
862	int pnode;
863	unsigned long mmr_image;
864
865	nuvhubs = uv_num_possible_blades();
866
867	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
868		if (!uv_blade_nr_possible_cpus(uvhub))
869			continue;
870
871		pnode = uv_blade_to_pnode(uvhub);
872		mmr_image =
873		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
874		/*
875		 * Set the timeout period and then lock it in, in three
876		 * steps; captures and locks in the period.
877		 *
878		 * To program the period, the SOFT_ACK_MODE must be off.
879		 */
880		mmr_image &= ~((unsigned long)1 <<
881		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
882		uv_write_global_mmr64
883		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
884		/*
885		 * Set the 4-bit period.
886		 */
887		mmr_image &= ~((unsigned long)0xf <<
888		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
889		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
890		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
891		uv_write_global_mmr64
892		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
893		/*
894		 * Subsequent reversals of the timebase bit (3) cause an
895		 * immediate timeout of one or all INTD resources as
896		 * indicated in bits 2:0 (7 causes all of them to timeout).
897		 */
898		mmr_image |= ((unsigned long)1 <<
899		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
900		uv_write_global_mmr64
901		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
902	}
903}
904
905static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
906{
907	if (*offset < num_possible_cpus())
908		return offset;
909	return NULL;
910}
911
912static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
913{
914	(*offset)++;
915	if (*offset < num_possible_cpus())
916		return offset;
917	return NULL;
918}
919
920static void uv_ptc_seq_stop(struct seq_file *file, void *data)
921{
922}
923
924static inline unsigned long long
925microsec_2_cycles(unsigned long microsec)
926{
927	unsigned long ns;
928	unsigned long long cyc;
929
930	ns = microsec * 1000;
931	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
932	return cyc;
933}
934
935/*
936 * Display the statistics thru /proc.
937 * 'data' points to the cpu number
938 */
939static int uv_ptc_seq_show(struct seq_file *file, void *data)
940{
941	struct ptc_stats *stat;
942	int cpu;
943
944	cpu = *(loff_t *)data;
945
946	if (!cpu) {
947		seq_printf(file,
948			"# cpu sent stime self locals remotes ncpus localhub ");
949		seq_printf(file,
950			"remotehub numuvhubs numuvhubs16 numuvhubs8 ");
951		seq_printf(file,
952			"numuvhubs4 numuvhubs2 numuvhubs1 dto ");
953		seq_printf(file,
954			"retries rok resetp resett giveup sto bz throt ");
955		seq_printf(file,
956			"sw_ack recv rtime all ");
957		seq_printf(file,
958			"one mult none retry canc nocan reset rcan ");
959		seq_printf(file,
960			"disable enable\n");
961	}
962	if (cpu < num_possible_cpus() && cpu_online(cpu)) {
963		stat = &per_cpu(ptcstats, cpu);
964		/* source side statistics */
965		seq_printf(file,
966			"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
967			   cpu, stat->s_requestor, cycles_2_us(stat->s_time),
968			   stat->s_ntargself, stat->s_ntarglocals,
969			   stat->s_ntargremotes, stat->s_ntargcpu,
970			   stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
971			   stat->s_ntarguvhub, stat->s_ntarguvhub16);
972		seq_printf(file, "%ld %ld %ld %ld %ld ",
973			   stat->s_ntarguvhub8, stat->s_ntarguvhub4,
974			   stat->s_ntarguvhub2, stat->s_ntarguvhub1,
975			   stat->s_dtimeout);
976		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
977			   stat->s_retry_messages, stat->s_retriesok,
978			   stat->s_resets_plug, stat->s_resets_timeout,
979			   stat->s_giveup, stat->s_stimeout,
980			   stat->s_busy, stat->s_throttles);
981
982		/* destination side statistics */
983		seq_printf(file,
984			   "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
985			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
986					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
987			   stat->d_requestee, cycles_2_us(stat->d_time),
988			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
989			   stat->d_nomsg, stat->d_retries, stat->d_canceled,
990			   stat->d_nocanceled, stat->d_resets,
991			   stat->d_rcanceled);
992		seq_printf(file, "%ld %ld\n",
993			stat->s_bau_disabled, stat->s_bau_reenabled);
994	}
995
996	return 0;
997}
998
999/*
1000 * Display the tunables thru debugfs
1001 */
1002static ssize_t tunables_read(struct file *file, char __user *userbuf,
1003						size_t count, loff_t *ppos)
1004{
1005	char *buf;
1006	int ret;
1007
1008	buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1009		"max_bau_concurrent plugged_delay plugsb4reset",
1010		"timeoutsb4reset ipi_reset_limit complete_threshold",
1011		"congested_response_us congested_reps congested_period",
1012		max_bau_concurrent, plugged_delay, plugsb4reset,
1013		timeoutsb4reset, ipi_reset_limit, complete_threshold,
1014		congested_response_us, congested_reps, congested_period);
1015
1016	if (!buf)
1017		return -ENOMEM;
1018
1019	ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1020	kfree(buf);
1021	return ret;
1022}
1023
1024/*
1025 * -1: resetf the statistics
1026 *  0: display meaning of the statistics
1027 */
1028static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
1029				 size_t count, loff_t *data)
1030{
1031	int cpu;
1032	long input_arg;
1033	char optstr[64];
1034	struct ptc_stats *stat;
1035
1036	if (count == 0 || count > sizeof(optstr))
1037		return -EINVAL;
1038	if (copy_from_user(optstr, user, count))
1039		return -EFAULT;
1040	optstr[count - 1] = '\0';
1041	if (strict_strtol(optstr, 10, &input_arg) < 0) {
1042		printk(KERN_DEBUG "%s is invalid\n", optstr);
1043		return -EINVAL;
1044	}
1045
1046	if (input_arg == 0) {
1047		printk(KERN_DEBUG "# cpu:      cpu number\n");
1048		printk(KERN_DEBUG "Sender statistics:\n");
1049		printk(KERN_DEBUG
1050		"sent:     number of shootdown messages sent\n");
1051		printk(KERN_DEBUG
1052		"stime:    time spent sending messages\n");
1053		printk(KERN_DEBUG
1054		"numuvhubs: number of hubs targeted with shootdown\n");
1055		printk(KERN_DEBUG
1056		"numuvhubs16: number times 16 or more hubs targeted\n");
1057		printk(KERN_DEBUG
1058		"numuvhubs8: number times 8 or more hubs targeted\n");
1059		printk(KERN_DEBUG
1060		"numuvhubs4: number times 4 or more hubs targeted\n");
1061		printk(KERN_DEBUG
1062		"numuvhubs2: number times 2 or more hubs targeted\n");
1063		printk(KERN_DEBUG
1064		"numuvhubs1: number times 1 hub targeted\n");
1065		printk(KERN_DEBUG
1066		"numcpus:  number of cpus targeted with shootdown\n");
1067		printk(KERN_DEBUG
1068		"dto:      number of destination timeouts\n");
1069		printk(KERN_DEBUG
1070		"retries:  destination timeout retries sent\n");
1071		printk(KERN_DEBUG
1072		"rok:   :  destination timeouts successfully retried\n");
1073		printk(KERN_DEBUG
1074		"resetp:   ipi-style resource resets for plugs\n");
1075		printk(KERN_DEBUG
1076		"resett:   ipi-style resource resets for timeouts\n");
1077		printk(KERN_DEBUG
1078		"giveup:   fall-backs to ipi-style shootdowns\n");
1079		printk(KERN_DEBUG
1080		"sto:      number of source timeouts\n");
1081		printk(KERN_DEBUG
1082		"bz:       number of stay-busy's\n");
1083		printk(KERN_DEBUG
1084		"throt:    number times spun in throttle\n");
1085		printk(KERN_DEBUG "Destination side statistics:\n");
1086		printk(KERN_DEBUG
1087		"sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
1088		printk(KERN_DEBUG
1089		"recv:     shootdown messages received\n");
1090		printk(KERN_DEBUG
1091		"rtime:    time spent processing messages\n");
1092		printk(KERN_DEBUG
1093		"all:      shootdown all-tlb messages\n");
1094		printk(KERN_DEBUG
1095		"one:      shootdown one-tlb messages\n");
1096		printk(KERN_DEBUG
1097		"mult:     interrupts that found multiple messages\n");
1098		printk(KERN_DEBUG
1099		"none:     interrupts that found no messages\n");
1100		printk(KERN_DEBUG
1101		"retry:    number of retry messages processed\n");
1102		printk(KERN_DEBUG
1103		"canc:     number messages canceled by retries\n");
1104		printk(KERN_DEBUG
1105		"nocan:    number retries that found nothing to cancel\n");
1106		printk(KERN_DEBUG
1107		"reset:    number of ipi-style reset requests processed\n");
1108		printk(KERN_DEBUG
1109		"rcan:     number messages canceled by reset requests\n");
1110		printk(KERN_DEBUG
1111		"disable:  number times use of the BAU was disabled\n");
1112		printk(KERN_DEBUG
1113		"enable:   number times use of the BAU was re-enabled\n");
1114	} else if (input_arg == -1) {
1115		for_each_present_cpu(cpu) {
1116			stat = &per_cpu(ptcstats, cpu);
1117			memset(stat, 0, sizeof(struct ptc_stats));
1118		}
1119	}
1120
1121	return count;
1122}
1123
1124static int local_atoi(const char *name)
1125{
1126	int val = 0;
1127
1128	for (;; name++) {
1129		switch (*name) {
1130		case '0' ... '9':
1131			val = 10*val+(*name-'0');
1132			break;
1133		default:
1134			return val;
1135		}
1136	}
1137}
1138
1139/*
1140 * set the tunables
1141 * 0 values reset them to defaults
1142 */
1143static ssize_t tunables_write(struct file *file, const char __user *user,
1144				 size_t count, loff_t *data)
1145{
1146	int cpu;
1147	int cnt = 0;
1148	int val;
1149	char *p;
1150	char *q;
1151	char instr[64];
1152	struct bau_control *bcp;
1153
1154	if (count == 0 || count > sizeof(instr)-1)
1155		return -EINVAL;
1156	if (copy_from_user(instr, user, count))
1157		return -EFAULT;
1158
1159	instr[count] = '\0';
1160	/* count the fields */
1161	p = instr + strspn(instr, WHITESPACE);
1162	q = p;
1163	for (; *p; p = q + strspn(q, WHITESPACE)) {
1164		q = p + strcspn(p, WHITESPACE);
1165		cnt++;
1166		if (q == p)
1167			break;
1168	}
1169	if (cnt != 9) {
1170		printk(KERN_INFO "bau tunable error: should be 9 numbers\n");
1171		return -EINVAL;
1172	}
1173
1174	p = instr + strspn(instr, WHITESPACE);
1175	q = p;
1176	for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1177		q = p + strcspn(p, WHITESPACE);
1178		val = local_atoi(p);
1179		switch (cnt) {
1180		case 0:
1181			if (val == 0) {
1182				max_bau_concurrent = MAX_BAU_CONCURRENT;
1183				max_bau_concurrent_constant =
1184							MAX_BAU_CONCURRENT;
1185				continue;
1186			}
1187			bcp = &per_cpu(bau_control, smp_processor_id());
1188			if (val < 1 || val > bcp->cpus_in_uvhub) {
1189				printk(KERN_DEBUG
1190				"Error: BAU max concurrent %d is invalid\n",
1191				val);
1192				return -EINVAL;
1193			}
1194			max_bau_concurrent = val;
1195			max_bau_concurrent_constant = val;
1196			continue;
1197		case 1:
1198			if (val == 0)
1199				plugged_delay = PLUGGED_DELAY;
1200			else
1201				plugged_delay = val;
1202			continue;
1203		case 2:
1204			if (val == 0)
1205				plugsb4reset = PLUGSB4RESET;
1206			else
1207				plugsb4reset = val;
1208			continue;
1209		case 3:
1210			if (val == 0)
1211				timeoutsb4reset = TIMEOUTSB4RESET;
1212			else
1213				timeoutsb4reset = val;
1214			continue;
1215		case 4:
1216			if (val == 0)
1217				ipi_reset_limit = IPI_RESET_LIMIT;
1218			else
1219				ipi_reset_limit = val;
1220			continue;
1221		case 5:
1222			if (val == 0)
1223				complete_threshold = COMPLETE_THRESHOLD;
1224			else
1225				complete_threshold = val;
1226			continue;
1227		case 6:
1228			if (val == 0)
1229				congested_response_us = CONGESTED_RESPONSE_US;
1230			else
1231				congested_response_us = val;
1232			continue;
1233		case 7:
1234			if (val == 0)
1235				congested_reps = CONGESTED_REPS;
1236			else
1237				congested_reps = val;
1238			continue;
1239		case 8:
1240			if (val == 0)
1241				congested_period = CONGESTED_PERIOD;
1242			else
1243				congested_period = val;
1244			continue;
1245		}
1246		if (q == p)
1247			break;
1248	}
1249	for_each_present_cpu(cpu) {
1250		bcp = &per_cpu(bau_control, cpu);
1251		bcp->max_bau_concurrent = max_bau_concurrent;
1252		bcp->max_bau_concurrent_constant = max_bau_concurrent;
1253		bcp->plugged_delay = plugged_delay;
1254		bcp->plugsb4reset = plugsb4reset;
1255		bcp->timeoutsb4reset = timeoutsb4reset;
1256		bcp->ipi_reset_limit = ipi_reset_limit;
1257		bcp->complete_threshold = complete_threshold;
1258		bcp->congested_response_us = congested_response_us;
1259		bcp->congested_reps = congested_reps;
1260		bcp->congested_period = congested_period;
1261	}
1262	return count;
1263}
1264
1265static const struct seq_operations uv_ptc_seq_ops = {
1266	.start		= uv_ptc_seq_start,
1267	.next		= uv_ptc_seq_next,
1268	.stop		= uv_ptc_seq_stop,
1269	.show		= uv_ptc_seq_show
1270};
1271
1272static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1273{
1274	return seq_open(file, &uv_ptc_seq_ops);
1275}
1276
1277static int tunables_open(struct inode *inode, struct file *file)
1278{
1279	return 0;
1280}
1281
1282static const struct file_operations proc_uv_ptc_operations = {
1283	.open		= uv_ptc_proc_open,
1284	.read		= seq_read,
1285	.write		= uv_ptc_proc_write,
1286	.llseek		= seq_lseek,
1287	.release	= seq_release,
1288};
1289
1290static const struct file_operations tunables_fops = {
1291	.open		= tunables_open,
1292	.read		= tunables_read,
1293	.write		= tunables_write,
1294	.llseek		= default_llseek,
1295};
1296
1297static int __init uv_ptc_init(void)
1298{
1299	struct proc_dir_entry *proc_uv_ptc;
1300
1301	if (!is_uv_system())
1302		return 0;
1303
1304	proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1305				  &proc_uv_ptc_operations);
1306	if (!proc_uv_ptc) {
1307		printk(KERN_ERR "unable to create %s proc entry\n",
1308		       UV_PTC_BASENAME);
1309		return -EINVAL;
1310	}
1311
1312	tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1313	if (!tunables_dir) {
1314		printk(KERN_ERR "unable to create debugfs directory %s\n",
1315		       UV_BAU_TUNABLES_DIR);
1316		return -EINVAL;
1317	}
1318	tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1319			tunables_dir, NULL, &tunables_fops);
1320	if (!tunables_file) {
1321		printk(KERN_ERR "unable to create debugfs file %s\n",
1322		       UV_BAU_TUNABLES_FILE);
1323		return -EINVAL;
1324	}
1325	return 0;
1326}
1327
1328/*
1329 * initialize the sending side's sending buffers
1330 */
1331static void
1332uv_activation_descriptor_init(int node, int pnode)
1333{
1334	int i;
1335	int cpu;
1336	unsigned long pa;
1337	unsigned long m;
1338	unsigned long n;
1339	struct bau_desc *bau_desc;
1340	struct bau_desc *bd2;
1341	struct bau_control *bcp;
1342
1343	/*
1344	 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
1345	 * per cpu; and one per cpu on the uvhub (UV_ADP_SIZE)
1346	 */
1347	bau_desc = kmalloc_node(sizeof(struct bau_desc) * UV_ADP_SIZE
1348				* UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
1349	BUG_ON(!bau_desc);
1350
1351	pa = uv_gpa(bau_desc); /* need the real nasid*/
1352	n = pa >> uv_nshift;
1353	m = pa & uv_mmask;
1354
1355	uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
1356			      (n << UV_DESC_BASE_PNODE_SHIFT | m));
1357
1358	/*
1359	 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
1360	 * cpu even though we only use the first one; one descriptor can
1361	 * describe a broadcast to 256 uv hubs.
1362	 */
1363	for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
1364		i++, bd2++) {
1365		memset(bd2, 0, sizeof(struct bau_desc));
1366		bd2->header.sw_ack_flag = 1;
1367		/*
1368		 * base_dest_nodeid is the nasid of the first uvhub
1369		 * in the partition. The bit map will indicate uvhub numbers,
1370		 * which are 0-N in a partition. Pnodes are unique system-wide.
1371		 */
1372		bd2->header.base_dest_nodeid = UV_PNODE_TO_NASID(uv_partition_base_pnode);
1373		bd2->header.dest_subnodeid = 0x10; /* the LB */
1374		bd2->header.command = UV_NET_ENDPOINT_INTD;
1375		bd2->header.int_both = 1;
1376		/*
1377		 * all others need to be set to zero:
1378		 *   fairness chaining multilevel count replied_to
1379		 */
1380	}
1381	for_each_present_cpu(cpu) {
1382		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1383			continue;
1384		bcp = &per_cpu(bau_control, cpu);
1385		bcp->descriptor_base = bau_desc;
1386	}
1387}
1388
1389/*
1390 * initialize the destination side's receiving buffers
1391 * entered for each uvhub in the partition
1392 * - node is first node (kernel memory notion) on the uvhub
1393 * - pnode is the uvhub's physical identifier
1394 */
1395static void
1396uv_payload_queue_init(int node, int pnode)
1397{
1398	int pn;
1399	int cpu;
1400	char *cp;
1401	unsigned long pa;
1402	struct bau_payload_queue_entry *pqp;
1403	struct bau_payload_queue_entry *pqp_malloc;
1404	struct bau_control *bcp;
1405
1406	pqp = kmalloc_node((DEST_Q_SIZE + 1)
1407			   * sizeof(struct bau_payload_queue_entry),
1408			   GFP_KERNEL, node);
1409	BUG_ON(!pqp);
1410	pqp_malloc = pqp;
1411
1412	cp = (char *)pqp + 31;
1413	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
1414
1415	for_each_present_cpu(cpu) {
1416		if (pnode != uv_cpu_to_pnode(cpu))
1417			continue;
1418		/* for every cpu on this pnode: */
1419		bcp = &per_cpu(bau_control, cpu);
1420		bcp->va_queue_first = pqp;
1421		bcp->bau_msg_head = pqp;
1422		bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
1423	}
1424	/*
1425	 * need the pnode of where the memory was really allocated
1426	 */
1427	pa = uv_gpa(pqp);
1428	pn = pa >> uv_nshift;
1429	uv_write_global_mmr64(pnode,
1430			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
1431			      ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
1432			      uv_physnodeaddr(pqp));
1433	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
1434			      uv_physnodeaddr(pqp));
1435	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
1436			      (unsigned long)
1437			      uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
1438	/* in effect, all msg_type's are set to MSG_NOOP */
1439	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
1440}
1441
1442/*
1443 * Initialization of each UV hub's structures
1444 */
1445static void __init uv_init_uvhub(int uvhub, int vector)
1446{
1447	int node;
1448	int pnode;
1449	unsigned long apicid;
1450
1451	node = uvhub_to_first_node(uvhub);
1452	pnode = uv_blade_to_pnode(uvhub);
1453	uv_activation_descriptor_init(node, pnode);
1454	uv_payload_queue_init(node, pnode);
1455	/*
1456	 * the below initialization can't be in firmware because the
1457	 * messaging IRQ will be determined by the OS
1458	 */
1459	apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1460	uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
1461				      ((apicid << 32) | vector));
1462}
1463
1464/*
1465 * We will set BAU_MISC_CONTROL with a timeout period.
1466 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1467 * So the destination timeout period has be be calculated from them.
1468 */
1469static int
1470calculate_destination_timeout(void)
1471{
1472	unsigned long mmr_image;
1473	int mult1;
1474	int mult2;
1475	int index;
1476	int base;
1477	int ret;
1478	unsigned long ts_ns;
1479
1480	mult1 = UV_INTD_SOFT_ACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1481	mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1482	index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1483	mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1484	mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1485	base = timeout_base_ns[index];
1486	ts_ns = base * mult1 * mult2;
1487	ret = ts_ns / 1000;
1488	return ret;
1489}
1490
1491/*
1492 * initialize the bau_control structure for each cpu
1493 */
1494static int __init uv_init_per_cpu(int nuvhubs)
1495{
1496	int i;
1497	int cpu;
1498	int pnode;
1499	int uvhub;
1500	int have_hmaster;
1501	short socket = 0;
1502	unsigned short socket_mask;
1503	unsigned char *uvhub_mask;
1504	struct bau_control *bcp;
1505	struct uvhub_desc *bdp;
1506	struct socket_desc *sdp;
1507	struct bau_control *hmaster = NULL;
1508	struct bau_control *smaster = NULL;
1509	struct socket_desc {
1510		short num_cpus;
1511		short cpu_number[MAX_CPUS_PER_SOCKET];
1512	};
1513	struct uvhub_desc {
1514		unsigned short socket_mask;
1515		short num_cpus;
1516		short uvhub;
1517		short pnode;
1518		struct socket_desc socket[2];
1519	};
1520	struct uvhub_desc *uvhub_descs;
1521
1522	timeout_us = calculate_destination_timeout();
1523
1524	uvhub_descs = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1525	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1526	uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1527	for_each_present_cpu(cpu) {
1528		bcp = &per_cpu(bau_control, cpu);
1529		memset(bcp, 0, sizeof(struct bau_control));
1530		pnode = uv_cpu_hub_info(cpu)->pnode;
1531		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1532		*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1533		bdp = &uvhub_descs[uvhub];
1534		bdp->num_cpus++;
1535		bdp->uvhub = uvhub;
1536		bdp->pnode = pnode;
1537		/* kludge: 'assuming' one node per socket, and assuming that
1538		   disabling a socket just leaves a gap in node numbers */
1539		socket = (cpu_to_node(cpu) & 1);
1540		bdp->socket_mask |= (1 << socket);
1541		sdp = &bdp->socket[socket];
1542		sdp->cpu_number[sdp->num_cpus] = cpu;
1543		sdp->num_cpus++;
1544		if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1545			printk(KERN_EMERG "%d cpus per socket invalid\n", sdp->num_cpus);
1546			return 1;
1547		}
1548	}
1549	for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1550		if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1551			continue;
1552		have_hmaster = 0;
1553		bdp = &uvhub_descs[uvhub];
1554		socket_mask = bdp->socket_mask;
1555		socket = 0;
1556		while (socket_mask) {
1557			if (!(socket_mask & 1))
1558				goto nextsocket;
1559			sdp = &bdp->socket[socket];
1560			for (i = 0; i < sdp->num_cpus; i++) {
1561				cpu = sdp->cpu_number[i];
1562				bcp = &per_cpu(bau_control, cpu);
1563				bcp->cpu = cpu;
1564				if (i == 0) {
1565					smaster = bcp;
1566					if (!have_hmaster) {
1567						have_hmaster++;
1568						hmaster = bcp;
1569					}
1570				}
1571				bcp->cpus_in_uvhub = bdp->num_cpus;
1572				bcp->cpus_in_socket = sdp->num_cpus;
1573				bcp->socket_master = smaster;
1574				bcp->uvhub = bdp->uvhub;
1575				bcp->uvhub_master = hmaster;
1576				bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->
1577						blade_processor_id;
1578				if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1579					printk(KERN_EMERG
1580						"%d cpus per uvhub invalid\n",
1581						bcp->uvhub_cpu);
1582					return 1;
1583				}
1584			}
1585nextsocket:
1586			socket++;
1587			socket_mask = (socket_mask >> 1);
1588		}
1589	}
1590	kfree(uvhub_descs);
1591	kfree(uvhub_mask);
1592	for_each_present_cpu(cpu) {
1593		bcp = &per_cpu(bau_control, cpu);
1594		bcp->baudisabled = 0;
1595		bcp->statp = &per_cpu(ptcstats, cpu);
1596		/* time interval to catch a hardware stay-busy bug */
1597		bcp->timeout_interval = microsec_2_cycles(2*timeout_us);
1598		bcp->max_bau_concurrent = max_bau_concurrent;
1599		bcp->max_bau_concurrent_constant = max_bau_concurrent;
1600		bcp->plugged_delay = plugged_delay;
1601		bcp->plugsb4reset = plugsb4reset;
1602		bcp->timeoutsb4reset = timeoutsb4reset;
1603		bcp->ipi_reset_limit = ipi_reset_limit;
1604		bcp->complete_threshold = complete_threshold;
1605		bcp->congested_response_us = congested_response_us;
1606		bcp->congested_reps = congested_reps;
1607		bcp->congested_period = congested_period;
1608	}
1609	return 0;
1610}
1611
1612/*
1613 * Initialization of BAU-related structures
1614 */
1615static int __init uv_bau_init(void)
1616{
1617	int uvhub;
1618	int pnode;
1619	int nuvhubs;
1620	int cur_cpu;
1621	int vector;
1622	unsigned long mmr;
1623
1624	if (!is_uv_system())
1625		return 0;
1626
1627	if (nobau)
1628		return 0;
1629
1630	for_each_possible_cpu(cur_cpu)
1631		zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
1632				       GFP_KERNEL, cpu_to_node(cur_cpu));
1633
1634	uv_nshift = uv_hub_info->m_val;
1635	uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1636	nuvhubs = uv_num_possible_blades();
1637	spin_lock_init(&disable_lock);
1638	congested_cycles = microsec_2_cycles(congested_response_us);
1639
1640	if (uv_init_per_cpu(nuvhubs)) {
1641		nobau = 1;
1642		return 0;
1643	}
1644
1645	uv_partition_base_pnode = 0x7fffffff;
1646	for (uvhub = 0; uvhub < nuvhubs; uvhub++)
1647		if (uv_blade_nr_possible_cpus(uvhub) &&
1648			(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
1649			uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
1650
1651	vector = UV_BAU_MESSAGE;
1652	for_each_possible_blade(uvhub)
1653		if (uv_blade_nr_possible_cpus(uvhub))
1654			uv_init_uvhub(uvhub, vector);
1655
1656	uv_enable_timeouts();
1657	alloc_intr_gate(vector, uv_bau_message_intr1);
1658
1659	for_each_possible_blade(uvhub) {
1660		if (uv_blade_nr_possible_cpus(uvhub)) {
1661			pnode = uv_blade_to_pnode(uvhub);
1662			/* INIT the bau */
1663			uv_write_global_mmr64(pnode,
1664					UVH_LB_BAU_SB_ACTIVATION_CONTROL,
1665					((unsigned long)1 << 63));
1666			mmr = 1; /* should be 1 to broadcast to both sockets */
1667			uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST,
1668						mmr);
1669		}
1670	}
1671
1672	return 0;
1673}
1674core_initcall(uv_bau_init);
1675fs_initcall(uv_ptc_init);
1676