cfq-iosched.c revision 1792669cc1acc2069869b7ca41a0195240de05e0
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/hash.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15
16/*
17 * tunables
18 */
19static const int cfq_quantum = 4;		/* max queue in one round of service */
20static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21static const int cfq_back_max = 16 * 1024;	/* maximum backwards seek, in KiB */
22static const int cfq_back_penalty = 2;		/* penalty of a backwards seek */
23
24static const int cfq_slice_sync = HZ / 10;
25static int cfq_slice_async = HZ / 25;
26static const int cfq_slice_async_rq = 2;
27static int cfq_slice_idle = HZ / 125;
28
29#define CFQ_IDLE_GRACE		(HZ / 10)
30#define CFQ_SLICE_SCALE		(5)
31
32#define CFQ_KEY_ASYNC		(0)
33
34/*
35 * for the hash of cfqq inside the cfqd
36 */
37#define CFQ_QHASH_SHIFT		6
38#define CFQ_QHASH_ENTRIES	(1 << CFQ_QHASH_SHIFT)
39#define list_entry_qhash(entry)	hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41#define list_entry_cfqq(ptr)	list_entry((ptr), struct cfq_queue, cfq_list)
42
43#define RQ_CIC(rq)		((struct cfq_io_context*)(rq)->elevator_private)
44#define RQ_CFQQ(rq)		((rq)->elevator_private2)
45
46static struct kmem_cache *cfq_pool;
47static struct kmem_cache *cfq_ioc_pool;
48
49static DEFINE_PER_CPU(unsigned long, ioc_count);
50static struct completion *ioc_gone;
51
52#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
53#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56#define ASYNC			(0)
57#define SYNC			(1)
58
59#define cfq_cfqq_dispatched(cfqq)	\
60	((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62#define cfq_cfqq_class_sync(cfqq)	((cfqq)->key != CFQ_KEY_ASYNC)
63
64#define cfq_cfqq_sync(cfqq)		\
65	(cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67#define sample_valid(samples)	((samples) > 80)
68
69/*
70 * Per block device queue structure
71 */
72struct cfq_data {
73	request_queue_t *queue;
74
75	/*
76	 * rr list of queues with requests and the count of them
77	 */
78	struct list_head rr_list[CFQ_PRIO_LISTS];
79	struct list_head busy_rr;
80	struct list_head cur_rr;
81	struct list_head idle_rr;
82	unsigned int busy_queues;
83
84	/*
85	 * cfqq lookup hash
86	 */
87	struct hlist_head *cfq_hash;
88
89	int rq_in_driver;
90	int hw_tag;
91
92	/*
93	 * idle window management
94	 */
95	struct timer_list idle_slice_timer;
96	struct work_struct unplug_work;
97
98	struct cfq_queue *active_queue;
99	struct cfq_io_context *active_cic;
100	int cur_prio, cur_end_prio;
101	unsigned int dispatch_slice;
102
103	struct timer_list idle_class_timer;
104
105	sector_t last_sector;
106	unsigned long last_end_request;
107
108	/*
109	 * tunables, see top of file
110	 */
111	unsigned int cfq_quantum;
112	unsigned int cfq_fifo_expire[2];
113	unsigned int cfq_back_penalty;
114	unsigned int cfq_back_max;
115	unsigned int cfq_slice[2];
116	unsigned int cfq_slice_async_rq;
117	unsigned int cfq_slice_idle;
118
119	struct list_head cic_list;
120};
121
122/*
123 * Per process-grouping structure
124 */
125struct cfq_queue {
126	/* reference count */
127	atomic_t ref;
128	/* parent cfq_data */
129	struct cfq_data *cfqd;
130	/* cfqq lookup hash */
131	struct hlist_node cfq_hash;
132	/* hash key */
133	unsigned int key;
134	/* member of the rr/busy/cur/idle cfqd list */
135	struct list_head cfq_list;
136	/* sorted list of pending requests */
137	struct rb_root sort_list;
138	/* if fifo isn't expired, next request to serve */
139	struct request *next_rq;
140	/* requests queued in sort_list */
141	int queued[2];
142	/* currently allocated requests */
143	int allocated[2];
144	/* pending metadata requests */
145	int meta_pending;
146	/* fifo list of requests in sort_list */
147	struct list_head fifo;
148
149	unsigned long slice_end;
150	unsigned long service_last;
151	long slice_resid;
152
153	/* number of requests that are on the dispatch list */
154	int on_dispatch[2];
155
156	/* io prio of this group */
157	unsigned short ioprio, org_ioprio;
158	unsigned short ioprio_class, org_ioprio_class;
159
160	/* various state flags, see below */
161	unsigned int flags;
162};
163
164enum cfqq_state_flags {
165	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
166	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
167	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
168	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
169	CFQ_CFQQ_FLAG_must_dispatch,	/* must dispatch, even if expired */
170	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
171	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
172	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
173	CFQ_CFQQ_FLAG_queue_new,	/* queue never been serviced */
174	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
175};
176
177#define CFQ_CFQQ_FNS(name)						\
178static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
179{									\
180	cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
181}									\
182static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
183{									\
184	cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
185}									\
186static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
187{									\
188	return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
189}
190
191CFQ_CFQQ_FNS(on_rr);
192CFQ_CFQQ_FNS(wait_request);
193CFQ_CFQQ_FNS(must_alloc);
194CFQ_CFQQ_FNS(must_alloc_slice);
195CFQ_CFQQ_FNS(must_dispatch);
196CFQ_CFQQ_FNS(fifo_expire);
197CFQ_CFQQ_FNS(idle_window);
198CFQ_CFQQ_FNS(prio_changed);
199CFQ_CFQQ_FNS(queue_new);
200CFQ_CFQQ_FNS(slice_new);
201#undef CFQ_CFQQ_FNS
202
203static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
204static void cfq_dispatch_insert(request_queue_t *, struct request *);
205static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
206
207/*
208 * scheduler run of queue, if there are requests pending and no one in the
209 * driver that will restart queueing
210 */
211static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
212{
213	if (cfqd->busy_queues)
214		kblockd_schedule_work(&cfqd->unplug_work);
215}
216
217static int cfq_queue_empty(request_queue_t *q)
218{
219	struct cfq_data *cfqd = q->elevator->elevator_data;
220
221	return !cfqd->busy_queues;
222}
223
224static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
225{
226	/*
227	 * Use the per-process queue, for read requests and syncronous writes
228	 */
229	if (!(rw & REQ_RW) || is_sync)
230		return task->pid;
231
232	return CFQ_KEY_ASYNC;
233}
234
235/*
236 * Scale schedule slice based on io priority. Use the sync time slice only
237 * if a queue is marked sync and has sync io queued. A sync queue with async
238 * io only, should not get full sync slice length.
239 */
240static inline int
241cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
242{
243	const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
244
245	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
246
247	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
248}
249
250static inline void
251cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
252{
253	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
254	cfqq->slice_end += cfqq->slice_resid;
255
256	/*
257	 * Don't carry over residual for more than one slice, we only want
258	 * to slightly correct the fairness. Carrying over forever would
259	 * easily introduce oscillations.
260	 */
261	cfqq->slice_resid = 0;
262}
263
264/*
265 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
266 * isn't valid until the first request from the dispatch is activated
267 * and the slice time set.
268 */
269static inline int cfq_slice_used(struct cfq_queue *cfqq)
270{
271	if (cfq_cfqq_slice_new(cfqq))
272		return 0;
273	if (time_before(jiffies, cfqq->slice_end))
274		return 0;
275
276	return 1;
277}
278
279/*
280 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
281 * We choose the request that is closest to the head right now. Distance
282 * behind the head is penalized and only allowed to a certain extent.
283 */
284static struct request *
285cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
286{
287	sector_t last, s1, s2, d1 = 0, d2 = 0;
288	unsigned long back_max;
289#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
290#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
291	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
292
293	if (rq1 == NULL || rq1 == rq2)
294		return rq2;
295	if (rq2 == NULL)
296		return rq1;
297
298	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
299		return rq1;
300	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
301		return rq2;
302	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
303		return rq1;
304	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
305		return rq2;
306
307	s1 = rq1->sector;
308	s2 = rq2->sector;
309
310	last = cfqd->last_sector;
311
312	/*
313	 * by definition, 1KiB is 2 sectors
314	 */
315	back_max = cfqd->cfq_back_max * 2;
316
317	/*
318	 * Strict one way elevator _except_ in the case where we allow
319	 * short backward seeks which are biased as twice the cost of a
320	 * similar forward seek.
321	 */
322	if (s1 >= last)
323		d1 = s1 - last;
324	else if (s1 + back_max >= last)
325		d1 = (last - s1) * cfqd->cfq_back_penalty;
326	else
327		wrap |= CFQ_RQ1_WRAP;
328
329	if (s2 >= last)
330		d2 = s2 - last;
331	else if (s2 + back_max >= last)
332		d2 = (last - s2) * cfqd->cfq_back_penalty;
333	else
334		wrap |= CFQ_RQ2_WRAP;
335
336	/* Found required data */
337
338	/*
339	 * By doing switch() on the bit mask "wrap" we avoid having to
340	 * check two variables for all permutations: --> faster!
341	 */
342	switch (wrap) {
343	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
344		if (d1 < d2)
345			return rq1;
346		else if (d2 < d1)
347			return rq2;
348		else {
349			if (s1 >= s2)
350				return rq1;
351			else
352				return rq2;
353		}
354
355	case CFQ_RQ2_WRAP:
356		return rq1;
357	case CFQ_RQ1_WRAP:
358		return rq2;
359	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
360	default:
361		/*
362		 * Since both rqs are wrapped,
363		 * start with the one that's further behind head
364		 * (--> only *one* back seek required),
365		 * since back seek takes more time than forward.
366		 */
367		if (s1 <= s2)
368			return rq1;
369		else
370			return rq2;
371	}
372}
373
374/*
375 * would be nice to take fifo expire time into account as well
376 */
377static struct request *
378cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
379		  struct request *last)
380{
381	struct rb_node *rbnext = rb_next(&last->rb_node);
382	struct rb_node *rbprev = rb_prev(&last->rb_node);
383	struct request *next = NULL, *prev = NULL;
384
385	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
386
387	if (rbprev)
388		prev = rb_entry_rq(rbprev);
389
390	if (rbnext)
391		next = rb_entry_rq(rbnext);
392	else {
393		rbnext = rb_first(&cfqq->sort_list);
394		if (rbnext && rbnext != &last->rb_node)
395			next = rb_entry_rq(rbnext);
396	}
397
398	return cfq_choose_req(cfqd, next, prev);
399}
400
401static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
402{
403	struct cfq_data *cfqd = cfqq->cfqd;
404	struct list_head *list, *n;
405	struct cfq_queue *__cfqq;
406
407	/*
408	 * Resorting requires the cfqq to be on the RR list already.
409	 */
410	if (!cfq_cfqq_on_rr(cfqq))
411		return;
412
413	list_del(&cfqq->cfq_list);
414
415	if (cfq_class_rt(cfqq))
416		list = &cfqd->cur_rr;
417	else if (cfq_class_idle(cfqq))
418		list = &cfqd->idle_rr;
419	else {
420		/*
421		 * if cfqq has requests in flight, don't allow it to be
422		 * found in cfq_set_active_queue before it has finished them.
423		 * this is done to increase fairness between a process that
424		 * has lots of io pending vs one that only generates one
425		 * sporadically or synchronously
426		 */
427		if (cfq_cfqq_dispatched(cfqq))
428			list = &cfqd->busy_rr;
429		else
430			list = &cfqd->rr_list[cfqq->ioprio];
431	}
432
433	if (preempted || cfq_cfqq_queue_new(cfqq)) {
434		/*
435		 * If this queue was preempted or is new (never been serviced),
436		 * let it be added first for fairness but beind other new
437		 * queues.
438		 */
439		n = list;
440		while (n->next != list) {
441			__cfqq = list_entry_cfqq(n->next);
442			if (!cfq_cfqq_queue_new(__cfqq))
443				break;
444
445			n = n->next;
446		}
447		list_add_tail(&cfqq->cfq_list, n);
448	} else if (!cfq_cfqq_class_sync(cfqq)) {
449		/*
450		 * async queue always goes to the end. this wont be overly
451		 * unfair to writes, as the sort of the sync queue wont be
452		 * allowed to pass the async queue again.
453		 */
454		list_add_tail(&cfqq->cfq_list, list);
455	} else {
456		/*
457		 * sort by last service, but don't cross a new or async
458		 * queue. we don't cross a new queue because it hasn't been
459		 * service before, and we don't cross an async queue because
460		 * it gets added to the end on expire.
461		 */
462		n = list;
463		while ((n = n->prev) != list) {
464			struct cfq_queue *__cfqq = list_entry_cfqq(n);
465
466			if (!cfq_cfqq_class_sync(cfqq) || !__cfqq->service_last)
467				break;
468			if (time_before(__cfqq->service_last, cfqq->service_last))
469				break;
470		}
471		list_add(&cfqq->cfq_list, n);
472	}
473}
474
475/*
476 * add to busy list of queues for service, trying to be fair in ordering
477 * the pending list according to last request service
478 */
479static inline void
480cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
481{
482	BUG_ON(cfq_cfqq_on_rr(cfqq));
483	cfq_mark_cfqq_on_rr(cfqq);
484	cfqd->busy_queues++;
485
486	cfq_resort_rr_list(cfqq, 0);
487}
488
489static inline void
490cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
491{
492	BUG_ON(!cfq_cfqq_on_rr(cfqq));
493	cfq_clear_cfqq_on_rr(cfqq);
494	list_del_init(&cfqq->cfq_list);
495
496	BUG_ON(!cfqd->busy_queues);
497	cfqd->busy_queues--;
498}
499
500/*
501 * rb tree support functions
502 */
503static inline void cfq_del_rq_rb(struct request *rq)
504{
505	struct cfq_queue *cfqq = RQ_CFQQ(rq);
506	struct cfq_data *cfqd = cfqq->cfqd;
507	const int sync = rq_is_sync(rq);
508
509	BUG_ON(!cfqq->queued[sync]);
510	cfqq->queued[sync]--;
511
512	elv_rb_del(&cfqq->sort_list, rq);
513
514	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
515		cfq_del_cfqq_rr(cfqd, cfqq);
516}
517
518static void cfq_add_rq_rb(struct request *rq)
519{
520	struct cfq_queue *cfqq = RQ_CFQQ(rq);
521	struct cfq_data *cfqd = cfqq->cfqd;
522	struct request *__alias;
523
524	cfqq->queued[rq_is_sync(rq)]++;
525
526	/*
527	 * looks a little odd, but the first insert might return an alias.
528	 * if that happens, put the alias on the dispatch list
529	 */
530	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
531		cfq_dispatch_insert(cfqd->queue, __alias);
532
533	if (!cfq_cfqq_on_rr(cfqq))
534		cfq_add_cfqq_rr(cfqd, cfqq);
535}
536
537static inline void
538cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
539{
540	elv_rb_del(&cfqq->sort_list, rq);
541	cfqq->queued[rq_is_sync(rq)]--;
542	cfq_add_rq_rb(rq);
543}
544
545static struct request *
546cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
547{
548	struct task_struct *tsk = current;
549	pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
550	struct cfq_queue *cfqq;
551
552	cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
553	if (cfqq) {
554		sector_t sector = bio->bi_sector + bio_sectors(bio);
555
556		return elv_rb_find(&cfqq->sort_list, sector);
557	}
558
559	return NULL;
560}
561
562static void cfq_activate_request(request_queue_t *q, struct request *rq)
563{
564	struct cfq_data *cfqd = q->elevator->elevator_data;
565
566	cfqd->rq_in_driver++;
567
568	/*
569	 * If the depth is larger 1, it really could be queueing. But lets
570	 * make the mark a little higher - idling could still be good for
571	 * low queueing, and a low queueing number could also just indicate
572	 * a SCSI mid layer like behaviour where limit+1 is often seen.
573	 */
574	if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
575		cfqd->hw_tag = 1;
576}
577
578static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
579{
580	struct cfq_data *cfqd = q->elevator->elevator_data;
581
582	WARN_ON(!cfqd->rq_in_driver);
583	cfqd->rq_in_driver--;
584}
585
586static void cfq_remove_request(struct request *rq)
587{
588	struct cfq_queue *cfqq = RQ_CFQQ(rq);
589
590	if (cfqq->next_rq == rq)
591		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
592
593	list_del_init(&rq->queuelist);
594	cfq_del_rq_rb(rq);
595
596	if (rq_is_meta(rq)) {
597		WARN_ON(!cfqq->meta_pending);
598		cfqq->meta_pending--;
599	}
600}
601
602static int
603cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
604{
605	struct cfq_data *cfqd = q->elevator->elevator_data;
606	struct request *__rq;
607
608	__rq = cfq_find_rq_fmerge(cfqd, bio);
609	if (__rq && elv_rq_merge_ok(__rq, bio)) {
610		*req = __rq;
611		return ELEVATOR_FRONT_MERGE;
612	}
613
614	return ELEVATOR_NO_MERGE;
615}
616
617static void cfq_merged_request(request_queue_t *q, struct request *req,
618			       int type)
619{
620	if (type == ELEVATOR_FRONT_MERGE) {
621		struct cfq_queue *cfqq = RQ_CFQQ(req);
622
623		cfq_reposition_rq_rb(cfqq, req);
624	}
625}
626
627static void
628cfq_merged_requests(request_queue_t *q, struct request *rq,
629		    struct request *next)
630{
631	/*
632	 * reposition in fifo if next is older than rq
633	 */
634	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
635	    time_before(next->start_time, rq->start_time))
636		list_move(&rq->queuelist, &next->queuelist);
637
638	cfq_remove_request(next);
639}
640
641static int cfq_allow_merge(request_queue_t *q, struct request *rq,
642			   struct bio *bio)
643{
644	struct cfq_data *cfqd = q->elevator->elevator_data;
645	const int rw = bio_data_dir(bio);
646	struct cfq_queue *cfqq;
647	pid_t key;
648
649	/*
650	 * Disallow merge of a sync bio into an async request.
651	 */
652	if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
653		return 0;
654
655	/*
656	 * Lookup the cfqq that this bio will be queued with. Allow
657	 * merge only if rq is queued there.
658	 */
659	key = cfq_queue_pid(current, rw, bio_sync(bio));
660	cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
661
662	if (cfqq == RQ_CFQQ(rq))
663		return 1;
664
665	return 0;
666}
667
668static inline void
669__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
670{
671	if (cfqq) {
672		/*
673		 * stop potential idle class queues waiting service
674		 */
675		del_timer(&cfqd->idle_class_timer);
676
677		cfqq->slice_end = 0;
678		cfq_clear_cfqq_must_alloc_slice(cfqq);
679		cfq_clear_cfqq_fifo_expire(cfqq);
680		cfq_mark_cfqq_slice_new(cfqq);
681	}
682
683	cfqd->active_queue = cfqq;
684}
685
686/*
687 * current cfqq expired its slice (or was too idle), select new one
688 */
689static void
690__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
691		    int preempted)
692{
693	if (cfq_cfqq_wait_request(cfqq))
694		del_timer(&cfqd->idle_slice_timer);
695
696	if (!preempted && !cfq_cfqq_dispatched(cfqq))
697		cfq_schedule_dispatch(cfqd);
698
699	cfq_clear_cfqq_must_dispatch(cfqq);
700	cfq_clear_cfqq_wait_request(cfqq);
701	cfq_clear_cfqq_queue_new(cfqq);
702
703	/*
704	 * store what was left of this slice, if the queue idled out
705	 * or was preempted
706	 */
707	if (!cfq_cfqq_slice_new(cfqq))
708		cfqq->slice_resid = cfqq->slice_end - jiffies;
709
710	cfq_resort_rr_list(cfqq, preempted);
711
712	if (cfqq == cfqd->active_queue)
713		cfqd->active_queue = NULL;
714
715	if (cfqd->active_cic) {
716		put_io_context(cfqd->active_cic->ioc);
717		cfqd->active_cic = NULL;
718	}
719
720	cfqd->dispatch_slice = 0;
721}
722
723static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
724{
725	struct cfq_queue *cfqq = cfqd->active_queue;
726
727	if (cfqq)
728		__cfq_slice_expired(cfqd, cfqq, preempted);
729}
730
731/*
732 * 0
733 * 0,1
734 * 0,1,2
735 * 0,1,2,3
736 * 0,1,2,3,4
737 * 0,1,2,3,4,5
738 * 0,1,2,3,4,5,6
739 * 0,1,2,3,4,5,6,7
740 */
741static int cfq_get_next_prio_level(struct cfq_data *cfqd)
742{
743	int prio, wrap;
744
745	prio = -1;
746	wrap = 0;
747	do {
748		int p;
749
750		for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
751			if (!list_empty(&cfqd->rr_list[p])) {
752				prio = p;
753				break;
754			}
755		}
756
757		if (prio != -1)
758			break;
759		cfqd->cur_prio = 0;
760		if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
761			cfqd->cur_end_prio = 0;
762			if (wrap)
763				break;
764			wrap = 1;
765		}
766	} while (1);
767
768	if (unlikely(prio == -1))
769		return -1;
770
771	BUG_ON(prio >= CFQ_PRIO_LISTS);
772
773	list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
774
775	cfqd->cur_prio = prio + 1;
776	if (cfqd->cur_prio > cfqd->cur_end_prio) {
777		cfqd->cur_end_prio = cfqd->cur_prio;
778		cfqd->cur_prio = 0;
779	}
780	if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
781		cfqd->cur_prio = 0;
782		cfqd->cur_end_prio = 0;
783	}
784
785	return prio;
786}
787
788static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
789{
790	struct cfq_queue *cfqq = NULL;
791
792	if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
793		/*
794		 * if current list is non-empty, grab first entry. if it is
795		 * empty, get next prio level and grab first entry then if any
796		 * are spliced
797		 */
798		cfqq = list_entry_cfqq(cfqd->cur_rr.next);
799	} else if (!list_empty(&cfqd->busy_rr)) {
800		/*
801		 * If no new queues are available, check if the busy list has
802		 * some before falling back to idle io.
803		 */
804		cfqq = list_entry_cfqq(cfqd->busy_rr.next);
805	} else if (!list_empty(&cfqd->idle_rr)) {
806		/*
807		 * if we have idle queues and no rt or be queues had pending
808		 * requests, either allow immediate service if the grace period
809		 * has passed or arm the idle grace timer
810		 */
811		unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
812
813		if (time_after_eq(jiffies, end))
814			cfqq = list_entry_cfqq(cfqd->idle_rr.next);
815		else
816			mod_timer(&cfqd->idle_class_timer, end);
817	}
818
819	__cfq_set_active_queue(cfqd, cfqq);
820	return cfqq;
821}
822
823#define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
824
825static int cfq_arm_slice_timer(struct cfq_data *cfqd)
826{
827	struct cfq_queue *cfqq = cfqd->active_queue;
828	struct cfq_io_context *cic;
829	unsigned long sl;
830
831	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
832
833	/*
834	 * idle is disabled, either manually or by past process history
835	 */
836	if (!cfqd->cfq_slice_idle)
837		return 0;
838	if (!cfq_cfqq_idle_window(cfqq))
839		return 0;
840	/*
841	 * task has exited, don't wait
842	 */
843	cic = cfqd->active_cic;
844	if (!cic || !cic->ioc->task)
845		return 0;
846
847	cfq_mark_cfqq_must_dispatch(cfqq);
848	cfq_mark_cfqq_wait_request(cfqq);
849
850	sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
851
852	/*
853	 * we don't want to idle for seeks, but we do want to allow
854	 * fair distribution of slice time for a process doing back-to-back
855	 * seeks. so allow a little bit of time for him to submit a new rq
856	 */
857	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
858		sl = min(sl, msecs_to_jiffies(2));
859
860	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
861	return 1;
862}
863
864static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
865{
866	struct cfq_data *cfqd = q->elevator->elevator_data;
867	struct cfq_queue *cfqq = RQ_CFQQ(rq);
868
869	cfq_remove_request(rq);
870	cfqq->on_dispatch[rq_is_sync(rq)]++;
871	elv_dispatch_sort(q, rq);
872
873	rq = list_entry(q->queue_head.prev, struct request, queuelist);
874	cfqd->last_sector = rq->sector + rq->nr_sectors;
875}
876
877/*
878 * return expired entry, or NULL to just start from scratch in rbtree
879 */
880static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
881{
882	struct cfq_data *cfqd = cfqq->cfqd;
883	struct request *rq;
884	int fifo;
885
886	if (cfq_cfqq_fifo_expire(cfqq))
887		return NULL;
888	if (list_empty(&cfqq->fifo))
889		return NULL;
890
891	fifo = cfq_cfqq_class_sync(cfqq);
892	rq = rq_entry_fifo(cfqq->fifo.next);
893
894	if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
895		cfq_mark_cfqq_fifo_expire(cfqq);
896		return rq;
897	}
898
899	return NULL;
900}
901
902static inline int
903cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
904{
905	const int base_rq = cfqd->cfq_slice_async_rq;
906
907	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
908
909	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
910}
911
912/*
913 * get next queue for service
914 */
915static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
916{
917	struct cfq_queue *cfqq;
918
919	cfqq = cfqd->active_queue;
920	if (!cfqq)
921		goto new_queue;
922
923	/*
924	 * slice has expired
925	 */
926	if (!cfq_cfqq_must_dispatch(cfqq) && cfq_slice_used(cfqq))
927		goto expire;
928
929	/*
930	 * if queue has requests, dispatch one. if not, check if
931	 * enough slice is left to wait for one
932	 */
933	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
934		goto keep_queue;
935	else if (cfq_cfqq_slice_new(cfqq) || cfq_cfqq_dispatched(cfqq)) {
936		cfqq = NULL;
937		goto keep_queue;
938	} else if (cfq_cfqq_class_sync(cfqq)) {
939		if (cfq_arm_slice_timer(cfqd))
940			return NULL;
941	}
942
943expire:
944	cfq_slice_expired(cfqd, 0);
945new_queue:
946	cfqq = cfq_set_active_queue(cfqd);
947keep_queue:
948	return cfqq;
949}
950
951static int
952__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
953			int max_dispatch)
954{
955	int dispatched = 0;
956
957	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
958
959	do {
960		struct request *rq;
961
962		/*
963		 * follow expired path, else get first next available
964		 */
965		if ((rq = cfq_check_fifo(cfqq)) == NULL)
966			rq = cfqq->next_rq;
967
968		/*
969		 * finally, insert request into driver dispatch list
970		 */
971		cfq_dispatch_insert(cfqd->queue, rq);
972
973		cfqd->dispatch_slice++;
974		dispatched++;
975
976		if (!cfqd->active_cic) {
977			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
978			cfqd->active_cic = RQ_CIC(rq);
979		}
980
981		if (RB_EMPTY_ROOT(&cfqq->sort_list))
982			break;
983
984	} while (dispatched < max_dispatch);
985
986	/*
987	 * expire an async queue immediately if it has used up its slice. idle
988	 * queue always expire after 1 dispatch round.
989	 */
990	if ((!cfq_cfqq_sync(cfqq) &&
991	    cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
992	    cfq_class_idle(cfqq)) {
993		cfqq->slice_end = jiffies + 1;
994		cfq_slice_expired(cfqd, 0);
995	}
996
997	return dispatched;
998}
999
1000static int
1001cfq_forced_dispatch_cfqqs(struct list_head *list)
1002{
1003	struct cfq_queue *cfqq, *next;
1004	int dispatched;
1005
1006	dispatched = 0;
1007	list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1008		while (cfqq->next_rq) {
1009			cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1010			dispatched++;
1011		}
1012		BUG_ON(!list_empty(&cfqq->fifo));
1013	}
1014
1015	return dispatched;
1016}
1017
1018static int
1019cfq_forced_dispatch(struct cfq_data *cfqd)
1020{
1021	int i, dispatched = 0;
1022
1023	for (i = 0; i < CFQ_PRIO_LISTS; i++)
1024		dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1025
1026	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1027	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1028	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1029
1030	cfq_slice_expired(cfqd, 0);
1031
1032	BUG_ON(cfqd->busy_queues);
1033
1034	return dispatched;
1035}
1036
1037static int
1038cfq_dispatch_requests(request_queue_t *q, int force)
1039{
1040	struct cfq_data *cfqd = q->elevator->elevator_data;
1041	struct cfq_queue *cfqq, *prev_cfqq;
1042	int dispatched;
1043
1044	if (!cfqd->busy_queues)
1045		return 0;
1046
1047	if (unlikely(force))
1048		return cfq_forced_dispatch(cfqd);
1049
1050	dispatched = 0;
1051	prev_cfqq = NULL;
1052	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1053		int max_dispatch;
1054
1055		/*
1056		 * Don't repeat dispatch from the previous queue.
1057		 */
1058		if (prev_cfqq == cfqq)
1059			break;
1060
1061		cfq_clear_cfqq_must_dispatch(cfqq);
1062		cfq_clear_cfqq_wait_request(cfqq);
1063		del_timer(&cfqd->idle_slice_timer);
1064
1065		max_dispatch = cfqd->cfq_quantum;
1066		if (cfq_class_idle(cfqq))
1067			max_dispatch = 1;
1068
1069		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1070
1071		/*
1072		 * If the dispatch cfqq has idling enabled and is still
1073		 * the active queue, break out.
1074		 */
1075		if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1076			break;
1077
1078		prev_cfqq = cfqq;
1079	}
1080
1081	return dispatched;
1082}
1083
1084/*
1085 * task holds one reference to the queue, dropped when task exits. each rq
1086 * in-flight on this queue also holds a reference, dropped when rq is freed.
1087 *
1088 * queue lock must be held here.
1089 */
1090static void cfq_put_queue(struct cfq_queue *cfqq)
1091{
1092	struct cfq_data *cfqd = cfqq->cfqd;
1093
1094	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1095
1096	if (!atomic_dec_and_test(&cfqq->ref))
1097		return;
1098
1099	BUG_ON(rb_first(&cfqq->sort_list));
1100	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1101	BUG_ON(cfq_cfqq_on_rr(cfqq));
1102
1103	if (unlikely(cfqd->active_queue == cfqq))
1104		__cfq_slice_expired(cfqd, cfqq, 0);
1105
1106	/*
1107	 * it's on the empty list and still hashed
1108	 */
1109	list_del(&cfqq->cfq_list);
1110	hlist_del(&cfqq->cfq_hash);
1111	kmem_cache_free(cfq_pool, cfqq);
1112}
1113
1114static struct cfq_queue *
1115__cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1116		    const int hashval)
1117{
1118	struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1119	struct hlist_node *entry;
1120	struct cfq_queue *__cfqq;
1121
1122	hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1123		const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1124
1125		if (__cfqq->key == key && (__p == prio || !prio))
1126			return __cfqq;
1127	}
1128
1129	return NULL;
1130}
1131
1132static struct cfq_queue *
1133cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1134{
1135	return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1136}
1137
1138static void cfq_free_io_context(struct io_context *ioc)
1139{
1140	struct cfq_io_context *__cic;
1141	struct rb_node *n;
1142	int freed = 0;
1143
1144	while ((n = rb_first(&ioc->cic_root)) != NULL) {
1145		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1146		rb_erase(&__cic->rb_node, &ioc->cic_root);
1147		kmem_cache_free(cfq_ioc_pool, __cic);
1148		freed++;
1149	}
1150
1151	elv_ioc_count_mod(ioc_count, -freed);
1152
1153	if (ioc_gone && !elv_ioc_count_read(ioc_count))
1154		complete(ioc_gone);
1155}
1156
1157static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1158{
1159	if (unlikely(cfqq == cfqd->active_queue))
1160		__cfq_slice_expired(cfqd, cfqq, 0);
1161
1162	cfq_put_queue(cfqq);
1163}
1164
1165static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1166					 struct cfq_io_context *cic)
1167{
1168	list_del_init(&cic->queue_list);
1169	smp_wmb();
1170	cic->key = NULL;
1171
1172	if (cic->cfqq[ASYNC]) {
1173		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1174		cic->cfqq[ASYNC] = NULL;
1175	}
1176
1177	if (cic->cfqq[SYNC]) {
1178		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1179		cic->cfqq[SYNC] = NULL;
1180	}
1181}
1182
1183
1184/*
1185 * Called with interrupts disabled
1186 */
1187static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1188{
1189	struct cfq_data *cfqd = cic->key;
1190
1191	if (cfqd) {
1192		request_queue_t *q = cfqd->queue;
1193
1194		spin_lock_irq(q->queue_lock);
1195		__cfq_exit_single_io_context(cfqd, cic);
1196		spin_unlock_irq(q->queue_lock);
1197	}
1198}
1199
1200static void cfq_exit_io_context(struct io_context *ioc)
1201{
1202	struct cfq_io_context *__cic;
1203	struct rb_node *n;
1204
1205	/*
1206	 * put the reference this task is holding to the various queues
1207	 */
1208
1209	n = rb_first(&ioc->cic_root);
1210	while (n != NULL) {
1211		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1212
1213		cfq_exit_single_io_context(__cic);
1214		n = rb_next(n);
1215	}
1216}
1217
1218static struct cfq_io_context *
1219cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1220{
1221	struct cfq_io_context *cic;
1222
1223	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1224	if (cic) {
1225		memset(cic, 0, sizeof(*cic));
1226		cic->last_end_request = jiffies;
1227		INIT_LIST_HEAD(&cic->queue_list);
1228		cic->dtor = cfq_free_io_context;
1229		cic->exit = cfq_exit_io_context;
1230		elv_ioc_count_inc(ioc_count);
1231	}
1232
1233	return cic;
1234}
1235
1236static void cfq_init_prio_data(struct cfq_queue *cfqq)
1237{
1238	struct task_struct *tsk = current;
1239	int ioprio_class;
1240
1241	if (!cfq_cfqq_prio_changed(cfqq))
1242		return;
1243
1244	ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1245	switch (ioprio_class) {
1246		default:
1247			printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1248		case IOPRIO_CLASS_NONE:
1249			/*
1250			 * no prio set, place us in the middle of the BE classes
1251			 */
1252			cfqq->ioprio = task_nice_ioprio(tsk);
1253			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1254			break;
1255		case IOPRIO_CLASS_RT:
1256			cfqq->ioprio = task_ioprio(tsk);
1257			cfqq->ioprio_class = IOPRIO_CLASS_RT;
1258			break;
1259		case IOPRIO_CLASS_BE:
1260			cfqq->ioprio = task_ioprio(tsk);
1261			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1262			break;
1263		case IOPRIO_CLASS_IDLE:
1264			cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1265			cfqq->ioprio = 7;
1266			cfq_clear_cfqq_idle_window(cfqq);
1267			break;
1268	}
1269
1270	/*
1271	 * keep track of original prio settings in case we have to temporarily
1272	 * elevate the priority of this queue
1273	 */
1274	cfqq->org_ioprio = cfqq->ioprio;
1275	cfqq->org_ioprio_class = cfqq->ioprio_class;
1276
1277	cfq_resort_rr_list(cfqq, 0);
1278	cfq_clear_cfqq_prio_changed(cfqq);
1279}
1280
1281static inline void changed_ioprio(struct cfq_io_context *cic)
1282{
1283	struct cfq_data *cfqd = cic->key;
1284	struct cfq_queue *cfqq;
1285	unsigned long flags;
1286
1287	if (unlikely(!cfqd))
1288		return;
1289
1290	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1291
1292	cfqq = cic->cfqq[ASYNC];
1293	if (cfqq) {
1294		struct cfq_queue *new_cfqq;
1295		new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1296					 GFP_ATOMIC);
1297		if (new_cfqq) {
1298			cic->cfqq[ASYNC] = new_cfqq;
1299			cfq_put_queue(cfqq);
1300		}
1301	}
1302
1303	cfqq = cic->cfqq[SYNC];
1304	if (cfqq)
1305		cfq_mark_cfqq_prio_changed(cfqq);
1306
1307	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1308}
1309
1310static void cfq_ioc_set_ioprio(struct io_context *ioc)
1311{
1312	struct cfq_io_context *cic;
1313	struct rb_node *n;
1314
1315	ioc->ioprio_changed = 0;
1316
1317	n = rb_first(&ioc->cic_root);
1318	while (n != NULL) {
1319		cic = rb_entry(n, struct cfq_io_context, rb_node);
1320
1321		changed_ioprio(cic);
1322		n = rb_next(n);
1323	}
1324}
1325
1326static struct cfq_queue *
1327cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1328	      gfp_t gfp_mask)
1329{
1330	const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1331	struct cfq_queue *cfqq, *new_cfqq = NULL;
1332	unsigned short ioprio;
1333
1334retry:
1335	ioprio = tsk->ioprio;
1336	cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1337
1338	if (!cfqq) {
1339		if (new_cfqq) {
1340			cfqq = new_cfqq;
1341			new_cfqq = NULL;
1342		} else if (gfp_mask & __GFP_WAIT) {
1343			/*
1344			 * Inform the allocator of the fact that we will
1345			 * just repeat this allocation if it fails, to allow
1346			 * the allocator to do whatever it needs to attempt to
1347			 * free memory.
1348			 */
1349			spin_unlock_irq(cfqd->queue->queue_lock);
1350			new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1351			spin_lock_irq(cfqd->queue->queue_lock);
1352			goto retry;
1353		} else {
1354			cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1355			if (!cfqq)
1356				goto out;
1357		}
1358
1359		memset(cfqq, 0, sizeof(*cfqq));
1360
1361		INIT_HLIST_NODE(&cfqq->cfq_hash);
1362		INIT_LIST_HEAD(&cfqq->cfq_list);
1363		INIT_LIST_HEAD(&cfqq->fifo);
1364
1365		cfqq->key = key;
1366		hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1367		atomic_set(&cfqq->ref, 0);
1368		cfqq->cfqd = cfqd;
1369
1370		cfq_mark_cfqq_idle_window(cfqq);
1371		cfq_mark_cfqq_prio_changed(cfqq);
1372		cfq_mark_cfqq_queue_new(cfqq);
1373		cfq_init_prio_data(cfqq);
1374	}
1375
1376	if (new_cfqq)
1377		kmem_cache_free(cfq_pool, new_cfqq);
1378
1379	atomic_inc(&cfqq->ref);
1380out:
1381	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1382	return cfqq;
1383}
1384
1385static void
1386cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1387{
1388	WARN_ON(!list_empty(&cic->queue_list));
1389	rb_erase(&cic->rb_node, &ioc->cic_root);
1390	kmem_cache_free(cfq_ioc_pool, cic);
1391	elv_ioc_count_dec(ioc_count);
1392}
1393
1394static struct cfq_io_context *
1395cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1396{
1397	struct rb_node *n;
1398	struct cfq_io_context *cic;
1399	void *k, *key = cfqd;
1400
1401restart:
1402	n = ioc->cic_root.rb_node;
1403	while (n) {
1404		cic = rb_entry(n, struct cfq_io_context, rb_node);
1405		/* ->key must be copied to avoid race with cfq_exit_queue() */
1406		k = cic->key;
1407		if (unlikely(!k)) {
1408			cfq_drop_dead_cic(ioc, cic);
1409			goto restart;
1410		}
1411
1412		if (key < k)
1413			n = n->rb_left;
1414		else if (key > k)
1415			n = n->rb_right;
1416		else
1417			return cic;
1418	}
1419
1420	return NULL;
1421}
1422
1423static inline void
1424cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1425	     struct cfq_io_context *cic)
1426{
1427	struct rb_node **p;
1428	struct rb_node *parent;
1429	struct cfq_io_context *__cic;
1430	unsigned long flags;
1431	void *k;
1432
1433	cic->ioc = ioc;
1434	cic->key = cfqd;
1435
1436restart:
1437	parent = NULL;
1438	p = &ioc->cic_root.rb_node;
1439	while (*p) {
1440		parent = *p;
1441		__cic = rb_entry(parent, struct cfq_io_context, rb_node);
1442		/* ->key must be copied to avoid race with cfq_exit_queue() */
1443		k = __cic->key;
1444		if (unlikely(!k)) {
1445			cfq_drop_dead_cic(ioc, __cic);
1446			goto restart;
1447		}
1448
1449		if (cic->key < k)
1450			p = &(*p)->rb_left;
1451		else if (cic->key > k)
1452			p = &(*p)->rb_right;
1453		else
1454			BUG();
1455	}
1456
1457	rb_link_node(&cic->rb_node, parent, p);
1458	rb_insert_color(&cic->rb_node, &ioc->cic_root);
1459
1460	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1461	list_add(&cic->queue_list, &cfqd->cic_list);
1462	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1463}
1464
1465/*
1466 * Setup general io context and cfq io context. There can be several cfq
1467 * io contexts per general io context, if this process is doing io to more
1468 * than one device managed by cfq.
1469 */
1470static struct cfq_io_context *
1471cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1472{
1473	struct io_context *ioc = NULL;
1474	struct cfq_io_context *cic;
1475
1476	might_sleep_if(gfp_mask & __GFP_WAIT);
1477
1478	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1479	if (!ioc)
1480		return NULL;
1481
1482	cic = cfq_cic_rb_lookup(cfqd, ioc);
1483	if (cic)
1484		goto out;
1485
1486	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1487	if (cic == NULL)
1488		goto err;
1489
1490	cfq_cic_link(cfqd, ioc, cic);
1491out:
1492	smp_read_barrier_depends();
1493	if (unlikely(ioc->ioprio_changed))
1494		cfq_ioc_set_ioprio(ioc);
1495
1496	return cic;
1497err:
1498	put_io_context(ioc);
1499	return NULL;
1500}
1501
1502static void
1503cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1504{
1505	unsigned long elapsed = jiffies - cic->last_end_request;
1506	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1507
1508	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1509	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1510	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1511}
1512
1513static void
1514cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1515{
1516	sector_t sdist;
1517	u64 total;
1518
1519	if (cic->last_request_pos < rq->sector)
1520		sdist = rq->sector - cic->last_request_pos;
1521	else
1522		sdist = cic->last_request_pos - rq->sector;
1523
1524	/*
1525	 * Don't allow the seek distance to get too large from the
1526	 * odd fragment, pagein, etc
1527	 */
1528	if (cic->seek_samples <= 60) /* second&third seek */
1529		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1530	else
1531		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1532
1533	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1534	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1535	total = cic->seek_total + (cic->seek_samples/2);
1536	do_div(total, cic->seek_samples);
1537	cic->seek_mean = (sector_t)total;
1538}
1539
1540/*
1541 * Disable idle window if the process thinks too long or seeks so much that
1542 * it doesn't matter
1543 */
1544static void
1545cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1546		       struct cfq_io_context *cic)
1547{
1548	int enable_idle = cfq_cfqq_idle_window(cfqq);
1549
1550	if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1551	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1552		enable_idle = 0;
1553	else if (sample_valid(cic->ttime_samples)) {
1554		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1555			enable_idle = 0;
1556		else
1557			enable_idle = 1;
1558	}
1559
1560	if (enable_idle)
1561		cfq_mark_cfqq_idle_window(cfqq);
1562	else
1563		cfq_clear_cfqq_idle_window(cfqq);
1564}
1565
1566
1567/*
1568 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1569 * no or if we aren't sure, a 1 will cause a preempt.
1570 */
1571static int
1572cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1573		   struct request *rq)
1574{
1575	struct cfq_queue *cfqq = cfqd->active_queue;
1576
1577	if (cfq_class_idle(new_cfqq))
1578		return 0;
1579
1580	if (!cfqq)
1581		return 0;
1582
1583	if (cfq_class_idle(cfqq))
1584		return 1;
1585	if (!cfq_cfqq_wait_request(new_cfqq))
1586		return 0;
1587	/*
1588	 * if the new request is sync, but the currently running queue is
1589	 * not, let the sync request have priority.
1590	 */
1591	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1592		return 1;
1593	/*
1594	 * So both queues are sync. Let the new request get disk time if
1595	 * it's a metadata request and the current queue is doing regular IO.
1596	 */
1597	if (rq_is_meta(rq) && !cfqq->meta_pending)
1598		return 1;
1599
1600	return 0;
1601}
1602
1603/*
1604 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1605 * let it have half of its nominal slice.
1606 */
1607static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1608{
1609	cfq_slice_expired(cfqd, 1);
1610
1611	/*
1612	 * Put the new queue at the front of the of the current list,
1613	 * so we know that it will be selected next.
1614	 */
1615	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1616	list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1617
1618	cfqq->slice_end = 0;
1619	cfq_mark_cfqq_slice_new(cfqq);
1620}
1621
1622/*
1623 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1624 * something we should do about it
1625 */
1626static void
1627cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1628		struct request *rq)
1629{
1630	struct cfq_io_context *cic = RQ_CIC(rq);
1631
1632	if (rq_is_meta(rq))
1633		cfqq->meta_pending++;
1634
1635	/*
1636	 * check if this request is a better next-serve candidate)) {
1637	 */
1638	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1639	BUG_ON(!cfqq->next_rq);
1640
1641	/*
1642	 * we never wait for an async request and we don't allow preemption
1643	 * of an async request. so just return early
1644	 */
1645	if (!rq_is_sync(rq)) {
1646		/*
1647		 * sync process issued an async request, if it's waiting
1648		 * then expire it and kick rq handling.
1649		 */
1650		if (cic == cfqd->active_cic &&
1651		    del_timer(&cfqd->idle_slice_timer)) {
1652			cfq_slice_expired(cfqd, 0);
1653			blk_start_queueing(cfqd->queue);
1654		}
1655		return;
1656	}
1657
1658	cfq_update_io_thinktime(cfqd, cic);
1659	cfq_update_io_seektime(cic, rq);
1660	cfq_update_idle_window(cfqd, cfqq, cic);
1661
1662	cic->last_request_pos = rq->sector + rq->nr_sectors;
1663
1664	if (cfqq == cfqd->active_queue) {
1665		/*
1666		 * if we are waiting for a request for this queue, let it rip
1667		 * immediately and flag that we must not expire this queue
1668		 * just now
1669		 */
1670		if (cfq_cfqq_wait_request(cfqq)) {
1671			cfq_mark_cfqq_must_dispatch(cfqq);
1672			del_timer(&cfqd->idle_slice_timer);
1673			blk_start_queueing(cfqd->queue);
1674		}
1675	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1676		/*
1677		 * not the active queue - expire current slice if it is
1678		 * idle and has expired it's mean thinktime or this new queue
1679		 * has some old slice time left and is of higher priority
1680		 */
1681		cfq_preempt_queue(cfqd, cfqq);
1682		cfq_mark_cfqq_must_dispatch(cfqq);
1683		blk_start_queueing(cfqd->queue);
1684	}
1685}
1686
1687static void cfq_insert_request(request_queue_t *q, struct request *rq)
1688{
1689	struct cfq_data *cfqd = q->elevator->elevator_data;
1690	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1691
1692	cfq_init_prio_data(cfqq);
1693
1694	cfq_add_rq_rb(rq);
1695
1696	list_add_tail(&rq->queuelist, &cfqq->fifo);
1697
1698	cfq_rq_enqueued(cfqd, cfqq, rq);
1699}
1700
1701static void cfq_completed_request(request_queue_t *q, struct request *rq)
1702{
1703	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1704	struct cfq_data *cfqd = cfqq->cfqd;
1705	const int sync = rq_is_sync(rq);
1706	unsigned long now;
1707
1708	now = jiffies;
1709
1710	WARN_ON(!cfqd->rq_in_driver);
1711	WARN_ON(!cfqq->on_dispatch[sync]);
1712	cfqd->rq_in_driver--;
1713	cfqq->on_dispatch[sync]--;
1714	cfqq->service_last = now;
1715
1716	if (!cfq_class_idle(cfqq))
1717		cfqd->last_end_request = now;
1718
1719	cfq_resort_rr_list(cfqq, 0);
1720
1721	if (sync)
1722		RQ_CIC(rq)->last_end_request = now;
1723
1724	/*
1725	 * If this is the active queue, check if it needs to be expired,
1726	 * or if we want to idle in case it has no pending requests.
1727	 */
1728	if (cfqd->active_queue == cfqq) {
1729		if (cfq_cfqq_slice_new(cfqq)) {
1730			cfq_set_prio_slice(cfqd, cfqq);
1731			cfq_clear_cfqq_slice_new(cfqq);
1732		}
1733		if (cfq_slice_used(cfqq))
1734			cfq_slice_expired(cfqd, 0);
1735		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1736			if (!cfq_arm_slice_timer(cfqd))
1737				cfq_schedule_dispatch(cfqd);
1738		}
1739	}
1740}
1741
1742/*
1743 * we temporarily boost lower priority queues if they are holding fs exclusive
1744 * resources. they are boosted to normal prio (CLASS_BE/4)
1745 */
1746static void cfq_prio_boost(struct cfq_queue *cfqq)
1747{
1748	const int ioprio_class = cfqq->ioprio_class;
1749	const int ioprio = cfqq->ioprio;
1750
1751	if (has_fs_excl()) {
1752		/*
1753		 * boost idle prio on transactions that would lock out other
1754		 * users of the filesystem
1755		 */
1756		if (cfq_class_idle(cfqq))
1757			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1758		if (cfqq->ioprio > IOPRIO_NORM)
1759			cfqq->ioprio = IOPRIO_NORM;
1760	} else {
1761		/*
1762		 * check if we need to unboost the queue
1763		 */
1764		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1765			cfqq->ioprio_class = cfqq->org_ioprio_class;
1766		if (cfqq->ioprio != cfqq->org_ioprio)
1767			cfqq->ioprio = cfqq->org_ioprio;
1768	}
1769
1770	/*
1771	 * refile between round-robin lists if we moved the priority class
1772	 */
1773	if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio))
1774		cfq_resort_rr_list(cfqq, 0);
1775}
1776
1777static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1778{
1779	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1780	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1781		cfq_mark_cfqq_must_alloc_slice(cfqq);
1782		return ELV_MQUEUE_MUST;
1783	}
1784
1785	return ELV_MQUEUE_MAY;
1786}
1787
1788static int cfq_may_queue(request_queue_t *q, int rw)
1789{
1790	struct cfq_data *cfqd = q->elevator->elevator_data;
1791	struct task_struct *tsk = current;
1792	struct cfq_queue *cfqq;
1793	unsigned int key;
1794
1795	key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1796
1797	/*
1798	 * don't force setup of a queue from here, as a call to may_queue
1799	 * does not necessarily imply that a request actually will be queued.
1800	 * so just lookup a possibly existing queue, or return 'may queue'
1801	 * if that fails
1802	 */
1803	cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1804	if (cfqq) {
1805		cfq_init_prio_data(cfqq);
1806		cfq_prio_boost(cfqq);
1807
1808		return __cfq_may_queue(cfqq);
1809	}
1810
1811	return ELV_MQUEUE_MAY;
1812}
1813
1814/*
1815 * queue lock held here
1816 */
1817static void cfq_put_request(struct request *rq)
1818{
1819	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1820
1821	if (cfqq) {
1822		const int rw = rq_data_dir(rq);
1823
1824		BUG_ON(!cfqq->allocated[rw]);
1825		cfqq->allocated[rw]--;
1826
1827		put_io_context(RQ_CIC(rq)->ioc);
1828
1829		rq->elevator_private = NULL;
1830		rq->elevator_private2 = NULL;
1831
1832		cfq_put_queue(cfqq);
1833	}
1834}
1835
1836/*
1837 * Allocate cfq data structures associated with this request.
1838 */
1839static int
1840cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1841{
1842	struct cfq_data *cfqd = q->elevator->elevator_data;
1843	struct task_struct *tsk = current;
1844	struct cfq_io_context *cic;
1845	const int rw = rq_data_dir(rq);
1846	const int is_sync = rq_is_sync(rq);
1847	pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1848	struct cfq_queue *cfqq;
1849	unsigned long flags;
1850
1851	might_sleep_if(gfp_mask & __GFP_WAIT);
1852
1853	cic = cfq_get_io_context(cfqd, gfp_mask);
1854
1855	spin_lock_irqsave(q->queue_lock, flags);
1856
1857	if (!cic)
1858		goto queue_fail;
1859
1860	if (!cic->cfqq[is_sync]) {
1861		cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1862		if (!cfqq)
1863			goto queue_fail;
1864
1865		cic->cfqq[is_sync] = cfqq;
1866	} else
1867		cfqq = cic->cfqq[is_sync];
1868
1869	cfqq->allocated[rw]++;
1870	cfq_clear_cfqq_must_alloc(cfqq);
1871	atomic_inc(&cfqq->ref);
1872
1873	spin_unlock_irqrestore(q->queue_lock, flags);
1874
1875	rq->elevator_private = cic;
1876	rq->elevator_private2 = cfqq;
1877	return 0;
1878
1879queue_fail:
1880	if (cic)
1881		put_io_context(cic->ioc);
1882
1883	cfq_schedule_dispatch(cfqd);
1884	spin_unlock_irqrestore(q->queue_lock, flags);
1885	return 1;
1886}
1887
1888static void cfq_kick_queue(struct work_struct *work)
1889{
1890	struct cfq_data *cfqd =
1891		container_of(work, struct cfq_data, unplug_work);
1892	request_queue_t *q = cfqd->queue;
1893	unsigned long flags;
1894
1895	spin_lock_irqsave(q->queue_lock, flags);
1896	blk_start_queueing(q);
1897	spin_unlock_irqrestore(q->queue_lock, flags);
1898}
1899
1900/*
1901 * Timer running if the active_queue is currently idling inside its time slice
1902 */
1903static void cfq_idle_slice_timer(unsigned long data)
1904{
1905	struct cfq_data *cfqd = (struct cfq_data *) data;
1906	struct cfq_queue *cfqq;
1907	unsigned long flags;
1908
1909	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1910
1911	if ((cfqq = cfqd->active_queue) != NULL) {
1912		/*
1913		 * expired
1914		 */
1915		if (cfq_slice_used(cfqq))
1916			goto expire;
1917
1918		/*
1919		 * only expire and reinvoke request handler, if there are
1920		 * other queues with pending requests
1921		 */
1922		if (!cfqd->busy_queues)
1923			goto out_cont;
1924
1925		/*
1926		 * not expired and it has a request pending, let it dispatch
1927		 */
1928		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1929			cfq_mark_cfqq_must_dispatch(cfqq);
1930			goto out_kick;
1931		}
1932	}
1933expire:
1934	cfq_slice_expired(cfqd, 0);
1935out_kick:
1936	cfq_schedule_dispatch(cfqd);
1937out_cont:
1938	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1939}
1940
1941/*
1942 * Timer running if an idle class queue is waiting for service
1943 */
1944static void cfq_idle_class_timer(unsigned long data)
1945{
1946	struct cfq_data *cfqd = (struct cfq_data *) data;
1947	unsigned long flags, end;
1948
1949	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1950
1951	/*
1952	 * race with a non-idle queue, reset timer
1953	 */
1954	end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1955	if (!time_after_eq(jiffies, end))
1956		mod_timer(&cfqd->idle_class_timer, end);
1957	else
1958		cfq_schedule_dispatch(cfqd);
1959
1960	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1961}
1962
1963static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1964{
1965	del_timer_sync(&cfqd->idle_slice_timer);
1966	del_timer_sync(&cfqd->idle_class_timer);
1967	blk_sync_queue(cfqd->queue);
1968}
1969
1970static void cfq_exit_queue(elevator_t *e)
1971{
1972	struct cfq_data *cfqd = e->elevator_data;
1973	request_queue_t *q = cfqd->queue;
1974
1975	cfq_shutdown_timer_wq(cfqd);
1976
1977	spin_lock_irq(q->queue_lock);
1978
1979	if (cfqd->active_queue)
1980		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1981
1982	while (!list_empty(&cfqd->cic_list)) {
1983		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1984							struct cfq_io_context,
1985							queue_list);
1986
1987		__cfq_exit_single_io_context(cfqd, cic);
1988	}
1989
1990	spin_unlock_irq(q->queue_lock);
1991
1992	cfq_shutdown_timer_wq(cfqd);
1993
1994	kfree(cfqd->cfq_hash);
1995	kfree(cfqd);
1996}
1997
1998static void *cfq_init_queue(request_queue_t *q)
1999{
2000	struct cfq_data *cfqd;
2001	int i;
2002
2003	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2004	if (!cfqd)
2005		return NULL;
2006
2007	memset(cfqd, 0, sizeof(*cfqd));
2008
2009	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2010		INIT_LIST_HEAD(&cfqd->rr_list[i]);
2011
2012	INIT_LIST_HEAD(&cfqd->busy_rr);
2013	INIT_LIST_HEAD(&cfqd->cur_rr);
2014	INIT_LIST_HEAD(&cfqd->idle_rr);
2015	INIT_LIST_HEAD(&cfqd->cic_list);
2016
2017	cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2018	if (!cfqd->cfq_hash)
2019		goto out_free;
2020
2021	for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2022		INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2023
2024	cfqd->queue = q;
2025
2026	init_timer(&cfqd->idle_slice_timer);
2027	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2028	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2029
2030	init_timer(&cfqd->idle_class_timer);
2031	cfqd->idle_class_timer.function = cfq_idle_class_timer;
2032	cfqd->idle_class_timer.data = (unsigned long) cfqd;
2033
2034	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2035
2036	cfqd->cfq_quantum = cfq_quantum;
2037	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2038	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2039	cfqd->cfq_back_max = cfq_back_max;
2040	cfqd->cfq_back_penalty = cfq_back_penalty;
2041	cfqd->cfq_slice[0] = cfq_slice_async;
2042	cfqd->cfq_slice[1] = cfq_slice_sync;
2043	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2044	cfqd->cfq_slice_idle = cfq_slice_idle;
2045
2046	return cfqd;
2047out_free:
2048	kfree(cfqd);
2049	return NULL;
2050}
2051
2052static void cfq_slab_kill(void)
2053{
2054	if (cfq_pool)
2055		kmem_cache_destroy(cfq_pool);
2056	if (cfq_ioc_pool)
2057		kmem_cache_destroy(cfq_ioc_pool);
2058}
2059
2060static int __init cfq_slab_setup(void)
2061{
2062	cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2063					NULL, NULL);
2064	if (!cfq_pool)
2065		goto fail;
2066
2067	cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2068			sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2069	if (!cfq_ioc_pool)
2070		goto fail;
2071
2072	return 0;
2073fail:
2074	cfq_slab_kill();
2075	return -ENOMEM;
2076}
2077
2078/*
2079 * sysfs parts below -->
2080 */
2081
2082static ssize_t
2083cfq_var_show(unsigned int var, char *page)
2084{
2085	return sprintf(page, "%d\n", var);
2086}
2087
2088static ssize_t
2089cfq_var_store(unsigned int *var, const char *page, size_t count)
2090{
2091	char *p = (char *) page;
2092
2093	*var = simple_strtoul(p, &p, 10);
2094	return count;
2095}
2096
2097#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2098static ssize_t __FUNC(elevator_t *e, char *page)			\
2099{									\
2100	struct cfq_data *cfqd = e->elevator_data;			\
2101	unsigned int __data = __VAR;					\
2102	if (__CONV)							\
2103		__data = jiffies_to_msecs(__data);			\
2104	return cfq_var_show(__data, (page));				\
2105}
2106SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2107SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2108SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2109SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2110SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2111SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2112SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2113SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2114SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2115#undef SHOW_FUNCTION
2116
2117#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2118static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
2119{									\
2120	struct cfq_data *cfqd = e->elevator_data;			\
2121	unsigned int __data;						\
2122	int ret = cfq_var_store(&__data, (page), count);		\
2123	if (__data < (MIN))						\
2124		__data = (MIN);						\
2125	else if (__data > (MAX))					\
2126		__data = (MAX);						\
2127	if (__CONV)							\
2128		*(__PTR) = msecs_to_jiffies(__data);			\
2129	else								\
2130		*(__PTR) = __data;					\
2131	return ret;							\
2132}
2133STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2134STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2135STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2136STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2137STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2138STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2139STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2140STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2141STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2142#undef STORE_FUNCTION
2143
2144#define CFQ_ATTR(name) \
2145	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2146
2147static struct elv_fs_entry cfq_attrs[] = {
2148	CFQ_ATTR(quantum),
2149	CFQ_ATTR(fifo_expire_sync),
2150	CFQ_ATTR(fifo_expire_async),
2151	CFQ_ATTR(back_seek_max),
2152	CFQ_ATTR(back_seek_penalty),
2153	CFQ_ATTR(slice_sync),
2154	CFQ_ATTR(slice_async),
2155	CFQ_ATTR(slice_async_rq),
2156	CFQ_ATTR(slice_idle),
2157	__ATTR_NULL
2158};
2159
2160static struct elevator_type iosched_cfq = {
2161	.ops = {
2162		.elevator_merge_fn = 		cfq_merge,
2163		.elevator_merged_fn =		cfq_merged_request,
2164		.elevator_merge_req_fn =	cfq_merged_requests,
2165		.elevator_allow_merge_fn =	cfq_allow_merge,
2166		.elevator_dispatch_fn =		cfq_dispatch_requests,
2167		.elevator_add_req_fn =		cfq_insert_request,
2168		.elevator_activate_req_fn =	cfq_activate_request,
2169		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2170		.elevator_queue_empty_fn =	cfq_queue_empty,
2171		.elevator_completed_req_fn =	cfq_completed_request,
2172		.elevator_former_req_fn =	elv_rb_former_request,
2173		.elevator_latter_req_fn =	elv_rb_latter_request,
2174		.elevator_set_req_fn =		cfq_set_request,
2175		.elevator_put_req_fn =		cfq_put_request,
2176		.elevator_may_queue_fn =	cfq_may_queue,
2177		.elevator_init_fn =		cfq_init_queue,
2178		.elevator_exit_fn =		cfq_exit_queue,
2179		.trim =				cfq_free_io_context,
2180	},
2181	.elevator_attrs =	cfq_attrs,
2182	.elevator_name =	"cfq",
2183	.elevator_owner =	THIS_MODULE,
2184};
2185
2186static int __init cfq_init(void)
2187{
2188	int ret;
2189
2190	/*
2191	 * could be 0 on HZ < 1000 setups
2192	 */
2193	if (!cfq_slice_async)
2194		cfq_slice_async = 1;
2195	if (!cfq_slice_idle)
2196		cfq_slice_idle = 1;
2197
2198	if (cfq_slab_setup())
2199		return -ENOMEM;
2200
2201	ret = elv_register(&iosched_cfq);
2202	if (ret)
2203		cfq_slab_kill();
2204
2205	return ret;
2206}
2207
2208static void __exit cfq_exit(void)
2209{
2210	DECLARE_COMPLETION_ONSTACK(all_gone);
2211	elv_unregister(&iosched_cfq);
2212	ioc_gone = &all_gone;
2213	/* ioc_gone's update must be visible before reading ioc_count */
2214	smp_wmb();
2215	if (elv_ioc_count_read(ioc_count))
2216		wait_for_completion(ioc_gone);
2217	synchronize_rcu();
2218	cfq_slab_kill();
2219}
2220
2221module_init(cfq_init);
2222module_exit(cfq_exit);
2223
2224MODULE_AUTHOR("Jens Axboe");
2225MODULE_LICENSE("GPL");
2226MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2227