cfq-iosched.c revision 3a9a3f6cc55418dd1525e636dccbbe13c394f652
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY		(HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT		(2)
40
41#define CFQ_SLICE_SCALE		(5)
42#define CFQ_HW_QUEUE_MIN	(5)
43
44#define RQ_CIC(rq)		\
45	((struct cfq_io_context *) (rq)->elevator_private)
46#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
47
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
50
51static DEFINE_PER_CPU(unsigned long, ioc_count);
52static struct completion *ioc_gone;
53static DEFINE_SPINLOCK(ioc_gone_lock);
54
55#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
56#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59#define ASYNC			(0)
60#define SYNC			(1)
61
62#define sample_valid(samples)	((samples) > 80)
63
64/*
65 * Most of our rbtree usage is for sorting with min extraction, so
66 * if we cache the leftmost node we don't have to walk down the tree
67 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68 * move this into the elevator for the rq sorting as well.
69 */
70struct cfq_rb_root {
71	struct rb_root rb;
72	struct rb_node *left;
73};
74#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
75
76/*
77 * Per block device queue structure
78 */
79struct cfq_data {
80	struct request_queue *queue;
81
82	/*
83	 * rr list of queues with requests and the count of them
84	 */
85	struct cfq_rb_root service_tree;
86	unsigned int busy_queues;
87	/*
88	 * Used to track any pending rt requests so we can pre-empt current
89	 * non-RT cfqq in service when this value is non-zero.
90	 */
91	unsigned int busy_rt_queues;
92
93	int rq_in_driver;
94	int sync_flight;
95
96	/*
97	 * queue-depth detection
98	 */
99	int rq_queued;
100	int hw_tag;
101	int hw_tag_samples;
102	int rq_in_driver_peak;
103
104	/*
105	 * idle window management
106	 */
107	struct timer_list idle_slice_timer;
108	struct work_struct unplug_work;
109
110	struct cfq_queue *active_queue;
111	struct cfq_io_context *active_cic;
112
113	/*
114	 * async queue for each priority case
115	 */
116	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
117	struct cfq_queue *async_idle_cfqq;
118
119	sector_t last_position;
120	unsigned long last_end_request;
121
122	/*
123	 * tunables, see top of file
124	 */
125	unsigned int cfq_quantum;
126	unsigned int cfq_fifo_expire[2];
127	unsigned int cfq_back_penalty;
128	unsigned int cfq_back_max;
129	unsigned int cfq_slice[2];
130	unsigned int cfq_slice_async_rq;
131	unsigned int cfq_slice_idle;
132
133	struct list_head cic_list;
134};
135
136/*
137 * Per process-grouping structure
138 */
139struct cfq_queue {
140	/* reference count */
141	atomic_t ref;
142	/* various state flags, see below */
143	unsigned int flags;
144	/* parent cfq_data */
145	struct cfq_data *cfqd;
146	/* service_tree member */
147	struct rb_node rb_node;
148	/* service_tree key */
149	unsigned long rb_key;
150	/* sorted list of pending requests */
151	struct rb_root sort_list;
152	/* if fifo isn't expired, next request to serve */
153	struct request *next_rq;
154	/* requests queued in sort_list */
155	int queued[2];
156	/* currently allocated requests */
157	int allocated[2];
158	/* fifo list of requests in sort_list */
159	struct list_head fifo;
160
161	unsigned long slice_end;
162	long slice_resid;
163
164	/* pending metadata requests */
165	int meta_pending;
166	/* number of requests that are on the dispatch list or inside driver */
167	int dispatched;
168
169	/* io prio of this group */
170	unsigned short ioprio, org_ioprio;
171	unsigned short ioprio_class, org_ioprio_class;
172
173	pid_t pid;
174};
175
176enum cfqq_state_flags {
177	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
178	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
179	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
180	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
181	CFQ_CFQQ_FLAG_must_dispatch,	/* must dispatch, even if expired */
182	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
183	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
184	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
185	CFQ_CFQQ_FLAG_queue_new,	/* queue never been serviced */
186	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
187	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
188};
189
190#define CFQ_CFQQ_FNS(name)						\
191static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
192{									\
193	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
194}									\
195static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
196{									\
197	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
198}									\
199static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
200{									\
201	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
202}
203
204CFQ_CFQQ_FNS(on_rr);
205CFQ_CFQQ_FNS(wait_request);
206CFQ_CFQQ_FNS(must_alloc);
207CFQ_CFQQ_FNS(must_alloc_slice);
208CFQ_CFQQ_FNS(must_dispatch);
209CFQ_CFQQ_FNS(fifo_expire);
210CFQ_CFQQ_FNS(idle_window);
211CFQ_CFQQ_FNS(prio_changed);
212CFQ_CFQQ_FNS(queue_new);
213CFQ_CFQQ_FNS(slice_new);
214CFQ_CFQQ_FNS(sync);
215#undef CFQ_CFQQ_FNS
216
217#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
218	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
219#define cfq_log(cfqd, fmt, args...)	\
220	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
221
222static void cfq_dispatch_insert(struct request_queue *, struct request *);
223static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
224				       struct io_context *, gfp_t);
225static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
226						struct io_context *);
227
228static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
229					    int is_sync)
230{
231	return cic->cfqq[!!is_sync];
232}
233
234static inline void cic_set_cfqq(struct cfq_io_context *cic,
235				struct cfq_queue *cfqq, int is_sync)
236{
237	cic->cfqq[!!is_sync] = cfqq;
238}
239
240/*
241 * We regard a request as SYNC, if it's either a read or has the SYNC bit
242 * set (in which case it could also be direct WRITE).
243 */
244static inline int cfq_bio_sync(struct bio *bio)
245{
246	if (bio_data_dir(bio) == READ || bio_sync(bio))
247		return 1;
248
249	return 0;
250}
251
252/*
253 * scheduler run of queue, if there are requests pending and no one in the
254 * driver that will restart queueing
255 */
256static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
257{
258	if (cfqd->busy_queues) {
259		cfq_log(cfqd, "schedule dispatch");
260		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
261	}
262}
263
264static int cfq_queue_empty(struct request_queue *q)
265{
266	struct cfq_data *cfqd = q->elevator->elevator_data;
267
268	return !cfqd->busy_queues;
269}
270
271/*
272 * Scale schedule slice based on io priority. Use the sync time slice only
273 * if a queue is marked sync and has sync io queued. A sync queue with async
274 * io only, should not get full sync slice length.
275 */
276static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
277				 unsigned short prio)
278{
279	const int base_slice = cfqd->cfq_slice[sync];
280
281	WARN_ON(prio >= IOPRIO_BE_NR);
282
283	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
284}
285
286static inline int
287cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
288{
289	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
290}
291
292static inline void
293cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
294{
295	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
296	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
297}
298
299/*
300 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
301 * isn't valid until the first request from the dispatch is activated
302 * and the slice time set.
303 */
304static inline int cfq_slice_used(struct cfq_queue *cfqq)
305{
306	if (cfq_cfqq_slice_new(cfqq))
307		return 0;
308	if (time_before(jiffies, cfqq->slice_end))
309		return 0;
310
311	return 1;
312}
313
314/*
315 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
316 * We choose the request that is closest to the head right now. Distance
317 * behind the head is penalized and only allowed to a certain extent.
318 */
319static struct request *
320cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
321{
322	sector_t last, s1, s2, d1 = 0, d2 = 0;
323	unsigned long back_max;
324#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
325#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
326	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
327
328	if (rq1 == NULL || rq1 == rq2)
329		return rq2;
330	if (rq2 == NULL)
331		return rq1;
332
333	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
334		return rq1;
335	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
336		return rq2;
337	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
338		return rq1;
339	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
340		return rq2;
341
342	s1 = rq1->sector;
343	s2 = rq2->sector;
344
345	last = cfqd->last_position;
346
347	/*
348	 * by definition, 1KiB is 2 sectors
349	 */
350	back_max = cfqd->cfq_back_max * 2;
351
352	/*
353	 * Strict one way elevator _except_ in the case where we allow
354	 * short backward seeks which are biased as twice the cost of a
355	 * similar forward seek.
356	 */
357	if (s1 >= last)
358		d1 = s1 - last;
359	else if (s1 + back_max >= last)
360		d1 = (last - s1) * cfqd->cfq_back_penalty;
361	else
362		wrap |= CFQ_RQ1_WRAP;
363
364	if (s2 >= last)
365		d2 = s2 - last;
366	else if (s2 + back_max >= last)
367		d2 = (last - s2) * cfqd->cfq_back_penalty;
368	else
369		wrap |= CFQ_RQ2_WRAP;
370
371	/* Found required data */
372
373	/*
374	 * By doing switch() on the bit mask "wrap" we avoid having to
375	 * check two variables for all permutations: --> faster!
376	 */
377	switch (wrap) {
378	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
379		if (d1 < d2)
380			return rq1;
381		else if (d2 < d1)
382			return rq2;
383		else {
384			if (s1 >= s2)
385				return rq1;
386			else
387				return rq2;
388		}
389
390	case CFQ_RQ2_WRAP:
391		return rq1;
392	case CFQ_RQ1_WRAP:
393		return rq2;
394	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
395	default:
396		/*
397		 * Since both rqs are wrapped,
398		 * start with the one that's further behind head
399		 * (--> only *one* back seek required),
400		 * since back seek takes more time than forward.
401		 */
402		if (s1 <= s2)
403			return rq1;
404		else
405			return rq2;
406	}
407}
408
409/*
410 * The below is leftmost cache rbtree addon
411 */
412static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
413{
414	if (!root->left)
415		root->left = rb_first(&root->rb);
416
417	if (root->left)
418		return rb_entry(root->left, struct cfq_queue, rb_node);
419
420	return NULL;
421}
422
423static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
424{
425	if (root->left == n)
426		root->left = NULL;
427
428	rb_erase(n, &root->rb);
429	RB_CLEAR_NODE(n);
430}
431
432/*
433 * would be nice to take fifo expire time into account as well
434 */
435static struct request *
436cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
437		  struct request *last)
438{
439	struct rb_node *rbnext = rb_next(&last->rb_node);
440	struct rb_node *rbprev = rb_prev(&last->rb_node);
441	struct request *next = NULL, *prev = NULL;
442
443	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
444
445	if (rbprev)
446		prev = rb_entry_rq(rbprev);
447
448	if (rbnext)
449		next = rb_entry_rq(rbnext);
450	else {
451		rbnext = rb_first(&cfqq->sort_list);
452		if (rbnext && rbnext != &last->rb_node)
453			next = rb_entry_rq(rbnext);
454	}
455
456	return cfq_choose_req(cfqd, next, prev);
457}
458
459static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
460				      struct cfq_queue *cfqq)
461{
462	/*
463	 * just an approximation, should be ok.
464	 */
465	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
466		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
467}
468
469/*
470 * The cfqd->service_tree holds all pending cfq_queue's that have
471 * requests waiting to be processed. It is sorted in the order that
472 * we will service the queues.
473 */
474static void cfq_service_tree_add(struct cfq_data *cfqd,
475				    struct cfq_queue *cfqq, int add_front)
476{
477	struct rb_node **p, *parent;
478	struct cfq_queue *__cfqq;
479	unsigned long rb_key;
480	int left;
481
482	if (cfq_class_idle(cfqq)) {
483		rb_key = CFQ_IDLE_DELAY;
484		parent = rb_last(&cfqd->service_tree.rb);
485		if (parent && parent != &cfqq->rb_node) {
486			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
487			rb_key += __cfqq->rb_key;
488		} else
489			rb_key += jiffies;
490	} else if (!add_front) {
491		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
492		rb_key += cfqq->slice_resid;
493		cfqq->slice_resid = 0;
494	} else
495		rb_key = 0;
496
497	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
498		/*
499		 * same position, nothing more to do
500		 */
501		if (rb_key == cfqq->rb_key)
502			return;
503
504		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
505	}
506
507	left = 1;
508	parent = NULL;
509	p = &cfqd->service_tree.rb.rb_node;
510	while (*p) {
511		struct rb_node **n;
512
513		parent = *p;
514		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
515
516		/*
517		 * sort RT queues first, we always want to give
518		 * preference to them. IDLE queues goes to the back.
519		 * after that, sort on the next service time.
520		 */
521		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
522			n = &(*p)->rb_left;
523		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
524			n = &(*p)->rb_right;
525		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
526			n = &(*p)->rb_left;
527		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
528			n = &(*p)->rb_right;
529		else if (rb_key < __cfqq->rb_key)
530			n = &(*p)->rb_left;
531		else
532			n = &(*p)->rb_right;
533
534		if (n == &(*p)->rb_right)
535			left = 0;
536
537		p = n;
538	}
539
540	if (left)
541		cfqd->service_tree.left = &cfqq->rb_node;
542
543	cfqq->rb_key = rb_key;
544	rb_link_node(&cfqq->rb_node, parent, p);
545	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
546}
547
548/*
549 * Update cfqq's position in the service tree.
550 */
551static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
552{
553	/*
554	 * Resorting requires the cfqq to be on the RR list already.
555	 */
556	if (cfq_cfqq_on_rr(cfqq))
557		cfq_service_tree_add(cfqd, cfqq, 0);
558}
559
560/*
561 * add to busy list of queues for service, trying to be fair in ordering
562 * the pending list according to last request service
563 */
564static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
565{
566	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
567	BUG_ON(cfq_cfqq_on_rr(cfqq));
568	cfq_mark_cfqq_on_rr(cfqq);
569	cfqd->busy_queues++;
570	if (cfq_class_rt(cfqq))
571		cfqd->busy_rt_queues++;
572
573	cfq_resort_rr_list(cfqd, cfqq);
574}
575
576/*
577 * Called when the cfqq no longer has requests pending, remove it from
578 * the service tree.
579 */
580static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
581{
582	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
583	BUG_ON(!cfq_cfqq_on_rr(cfqq));
584	cfq_clear_cfqq_on_rr(cfqq);
585
586	if (!RB_EMPTY_NODE(&cfqq->rb_node))
587		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
588
589	BUG_ON(!cfqd->busy_queues);
590	cfqd->busy_queues--;
591	if (cfq_class_rt(cfqq))
592		cfqd->busy_rt_queues--;
593}
594
595/*
596 * rb tree support functions
597 */
598static void cfq_del_rq_rb(struct request *rq)
599{
600	struct cfq_queue *cfqq = RQ_CFQQ(rq);
601	struct cfq_data *cfqd = cfqq->cfqd;
602	const int sync = rq_is_sync(rq);
603
604	BUG_ON(!cfqq->queued[sync]);
605	cfqq->queued[sync]--;
606
607	elv_rb_del(&cfqq->sort_list, rq);
608
609	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
610		cfq_del_cfqq_rr(cfqd, cfqq);
611}
612
613static void cfq_add_rq_rb(struct request *rq)
614{
615	struct cfq_queue *cfqq = RQ_CFQQ(rq);
616	struct cfq_data *cfqd = cfqq->cfqd;
617	struct request *__alias;
618
619	cfqq->queued[rq_is_sync(rq)]++;
620
621	/*
622	 * looks a little odd, but the first insert might return an alias.
623	 * if that happens, put the alias on the dispatch list
624	 */
625	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
626		cfq_dispatch_insert(cfqd->queue, __alias);
627
628	if (!cfq_cfqq_on_rr(cfqq))
629		cfq_add_cfqq_rr(cfqd, cfqq);
630
631	/*
632	 * check if this request is a better next-serve candidate
633	 */
634	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
635	BUG_ON(!cfqq->next_rq);
636}
637
638static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
639{
640	elv_rb_del(&cfqq->sort_list, rq);
641	cfqq->queued[rq_is_sync(rq)]--;
642	cfq_add_rq_rb(rq);
643}
644
645static struct request *
646cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
647{
648	struct task_struct *tsk = current;
649	struct cfq_io_context *cic;
650	struct cfq_queue *cfqq;
651
652	cic = cfq_cic_lookup(cfqd, tsk->io_context);
653	if (!cic)
654		return NULL;
655
656	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
657	if (cfqq) {
658		sector_t sector = bio->bi_sector + bio_sectors(bio);
659
660		return elv_rb_find(&cfqq->sort_list, sector);
661	}
662
663	return NULL;
664}
665
666static void cfq_activate_request(struct request_queue *q, struct request *rq)
667{
668	struct cfq_data *cfqd = q->elevator->elevator_data;
669
670	cfqd->rq_in_driver++;
671	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
672						cfqd->rq_in_driver);
673
674	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
675}
676
677static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
678{
679	struct cfq_data *cfqd = q->elevator->elevator_data;
680
681	WARN_ON(!cfqd->rq_in_driver);
682	cfqd->rq_in_driver--;
683	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
684						cfqd->rq_in_driver);
685}
686
687static void cfq_remove_request(struct request *rq)
688{
689	struct cfq_queue *cfqq = RQ_CFQQ(rq);
690
691	if (cfqq->next_rq == rq)
692		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
693
694	list_del_init(&rq->queuelist);
695	cfq_del_rq_rb(rq);
696
697	cfqq->cfqd->rq_queued--;
698	if (rq_is_meta(rq)) {
699		WARN_ON(!cfqq->meta_pending);
700		cfqq->meta_pending--;
701	}
702}
703
704static int cfq_merge(struct request_queue *q, struct request **req,
705		     struct bio *bio)
706{
707	struct cfq_data *cfqd = q->elevator->elevator_data;
708	struct request *__rq;
709
710	__rq = cfq_find_rq_fmerge(cfqd, bio);
711	if (__rq && elv_rq_merge_ok(__rq, bio)) {
712		*req = __rq;
713		return ELEVATOR_FRONT_MERGE;
714	}
715
716	return ELEVATOR_NO_MERGE;
717}
718
719static void cfq_merged_request(struct request_queue *q, struct request *req,
720			       int type)
721{
722	if (type == ELEVATOR_FRONT_MERGE) {
723		struct cfq_queue *cfqq = RQ_CFQQ(req);
724
725		cfq_reposition_rq_rb(cfqq, req);
726	}
727}
728
729static void
730cfq_merged_requests(struct request_queue *q, struct request *rq,
731		    struct request *next)
732{
733	/*
734	 * reposition in fifo if next is older than rq
735	 */
736	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
737	    time_before(next->start_time, rq->start_time))
738		list_move(&rq->queuelist, &next->queuelist);
739
740	cfq_remove_request(next);
741}
742
743static int cfq_allow_merge(struct request_queue *q, struct request *rq,
744			   struct bio *bio)
745{
746	struct cfq_data *cfqd = q->elevator->elevator_data;
747	struct cfq_io_context *cic;
748	struct cfq_queue *cfqq;
749
750	/*
751	 * Disallow merge of a sync bio into an async request.
752	 */
753	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
754		return 0;
755
756	/*
757	 * Lookup the cfqq that this bio will be queued with. Allow
758	 * merge only if rq is queued there.
759	 */
760	cic = cfq_cic_lookup(cfqd, current->io_context);
761	if (!cic)
762		return 0;
763
764	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
765	if (cfqq == RQ_CFQQ(rq))
766		return 1;
767
768	return 0;
769}
770
771static void __cfq_set_active_queue(struct cfq_data *cfqd,
772				   struct cfq_queue *cfqq)
773{
774	if (cfqq) {
775		cfq_log_cfqq(cfqd, cfqq, "set_active");
776		cfqq->slice_end = 0;
777		cfq_clear_cfqq_must_alloc_slice(cfqq);
778		cfq_clear_cfqq_fifo_expire(cfqq);
779		cfq_mark_cfqq_slice_new(cfqq);
780		cfq_clear_cfqq_queue_new(cfqq);
781	}
782
783	cfqd->active_queue = cfqq;
784}
785
786/*
787 * current cfqq expired its slice (or was too idle), select new one
788 */
789static void
790__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
791		    int timed_out)
792{
793	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
794
795	if (cfq_cfqq_wait_request(cfqq))
796		del_timer(&cfqd->idle_slice_timer);
797
798	cfq_clear_cfqq_must_dispatch(cfqq);
799	cfq_clear_cfqq_wait_request(cfqq);
800
801	/*
802	 * store what was left of this slice, if the queue idled/timed out
803	 */
804	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
805		cfqq->slice_resid = cfqq->slice_end - jiffies;
806		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
807	}
808
809	cfq_resort_rr_list(cfqd, cfqq);
810
811	if (cfqq == cfqd->active_queue)
812		cfqd->active_queue = NULL;
813
814	if (cfqd->active_cic) {
815		put_io_context(cfqd->active_cic->ioc);
816		cfqd->active_cic = NULL;
817	}
818}
819
820static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
821{
822	struct cfq_queue *cfqq = cfqd->active_queue;
823
824	if (cfqq)
825		__cfq_slice_expired(cfqd, cfqq, timed_out);
826}
827
828/*
829 * Get next queue for service. Unless we have a queue preemption,
830 * we'll simply select the first cfqq in the service tree.
831 */
832static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
833{
834	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
835		return NULL;
836
837	return cfq_rb_first(&cfqd->service_tree);
838}
839
840/*
841 * Get and set a new active queue for service.
842 */
843static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
844{
845	struct cfq_queue *cfqq;
846
847	cfqq = cfq_get_next_queue(cfqd);
848	__cfq_set_active_queue(cfqd, cfqq);
849	return cfqq;
850}
851
852static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
853					  struct request *rq)
854{
855	if (rq->sector >= cfqd->last_position)
856		return rq->sector - cfqd->last_position;
857	else
858		return cfqd->last_position - rq->sector;
859}
860
861static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
862{
863	struct cfq_io_context *cic = cfqd->active_cic;
864
865	if (!sample_valid(cic->seek_samples))
866		return 0;
867
868	return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
869}
870
871static int cfq_close_cooperator(struct cfq_data *cfq_data,
872				struct cfq_queue *cfqq)
873{
874	/*
875	 * We should notice if some of the queues are cooperating, eg
876	 * working closely on the same area of the disk. In that case,
877	 * we can group them together and don't waste time idling.
878	 */
879	return 0;
880}
881
882#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
883
884static void cfq_arm_slice_timer(struct cfq_data *cfqd)
885{
886	struct cfq_queue *cfqq = cfqd->active_queue;
887	struct cfq_io_context *cic;
888	unsigned long sl;
889
890	/*
891	 * SSD device without seek penalty, disable idling. But only do so
892	 * for devices that support queuing, otherwise we still have a problem
893	 * with sync vs async workloads.
894	 */
895	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
896		return;
897
898	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
899	WARN_ON(cfq_cfqq_slice_new(cfqq));
900
901	/*
902	 * idle is disabled, either manually or by past process history
903	 */
904	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
905		return;
906
907	/*
908	 * still requests with the driver, don't idle
909	 */
910	if (cfqd->rq_in_driver)
911		return;
912
913	/*
914	 * task has exited, don't wait
915	 */
916	cic = cfqd->active_cic;
917	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
918		return;
919
920	/*
921	 * See if this prio level has a good candidate
922	 */
923	if (cfq_close_cooperator(cfqd, cfqq) &&
924	    (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
925		return;
926
927	cfq_mark_cfqq_must_dispatch(cfqq);
928	cfq_mark_cfqq_wait_request(cfqq);
929
930	/*
931	 * we don't want to idle for seeks, but we do want to allow
932	 * fair distribution of slice time for a process doing back-to-back
933	 * seeks. so allow a little bit of time for him to submit a new rq
934	 */
935	sl = cfqd->cfq_slice_idle;
936	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
937		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
938
939	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
940	cfq_log(cfqd, "arm_idle: %lu", sl);
941}
942
943/*
944 * Move request from internal lists to the request queue dispatch list.
945 */
946static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
947{
948	struct cfq_data *cfqd = q->elevator->elevator_data;
949	struct cfq_queue *cfqq = RQ_CFQQ(rq);
950
951	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
952
953	cfq_remove_request(rq);
954	cfqq->dispatched++;
955	elv_dispatch_sort(q, rq);
956
957	if (cfq_cfqq_sync(cfqq))
958		cfqd->sync_flight++;
959}
960
961/*
962 * return expired entry, or NULL to just start from scratch in rbtree
963 */
964static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
965{
966	struct cfq_data *cfqd = cfqq->cfqd;
967	struct request *rq;
968	int fifo;
969
970	if (cfq_cfqq_fifo_expire(cfqq))
971		return NULL;
972
973	cfq_mark_cfqq_fifo_expire(cfqq);
974
975	if (list_empty(&cfqq->fifo))
976		return NULL;
977
978	fifo = cfq_cfqq_sync(cfqq);
979	rq = rq_entry_fifo(cfqq->fifo.next);
980
981	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
982		rq = NULL;
983
984	cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
985	return rq;
986}
987
988static inline int
989cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
990{
991	const int base_rq = cfqd->cfq_slice_async_rq;
992
993	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
994
995	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
996}
997
998/*
999 * Select a queue for service. If we have a current active queue,
1000 * check whether to continue servicing it, or retrieve and set a new one.
1001 */
1002static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1003{
1004	struct cfq_queue *cfqq;
1005
1006	cfqq = cfqd->active_queue;
1007	if (!cfqq)
1008		goto new_queue;
1009
1010	/*
1011	 * The active queue has run out of time, expire it and select new.
1012	 */
1013	if (cfq_slice_used(cfqq))
1014		goto expire;
1015
1016	/*
1017	 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1018	 * cfqq.
1019	 */
1020	if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1021		/*
1022		 * We simulate this as cfqq timed out so that it gets to bank
1023		 * the remaining of its time slice.
1024		 */
1025		cfq_log_cfqq(cfqd, cfqq, "preempt");
1026		cfq_slice_expired(cfqd, 1);
1027		goto new_queue;
1028	}
1029
1030	/*
1031	 * The active queue has requests and isn't expired, allow it to
1032	 * dispatch.
1033	 */
1034	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1035		goto keep_queue;
1036
1037	/*
1038	 * No requests pending. If the active queue still has requests in
1039	 * flight or is idling for a new request, allow either of these
1040	 * conditions to happen (or time out) before selecting a new queue.
1041	 */
1042	if (timer_pending(&cfqd->idle_slice_timer) ||
1043	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1044		cfqq = NULL;
1045		goto keep_queue;
1046	}
1047
1048expire:
1049	cfq_slice_expired(cfqd, 0);
1050new_queue:
1051	cfqq = cfq_set_active_queue(cfqd);
1052keep_queue:
1053	return cfqq;
1054}
1055
1056/*
1057 * Dispatch some requests from cfqq, moving them to the request queue
1058 * dispatch list.
1059 */
1060static int
1061__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1062			int max_dispatch)
1063{
1064	int dispatched = 0;
1065
1066	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1067
1068	do {
1069		struct request *rq;
1070
1071		/*
1072		 * follow expired path, else get first next available
1073		 */
1074		rq = cfq_check_fifo(cfqq);
1075		if (rq == NULL)
1076			rq = cfqq->next_rq;
1077
1078		/*
1079		 * finally, insert request into driver dispatch list
1080		 */
1081		cfq_dispatch_insert(cfqd->queue, rq);
1082
1083		dispatched++;
1084
1085		if (!cfqd->active_cic) {
1086			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1087			cfqd->active_cic = RQ_CIC(rq);
1088		}
1089
1090		if (RB_EMPTY_ROOT(&cfqq->sort_list))
1091			break;
1092
1093		/*
1094		 * If there is a non-empty RT cfqq waiting for current
1095		 * cfqq's timeslice to complete, pre-empt this cfqq
1096		 */
1097		if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues)
1098			break;
1099
1100	} while (dispatched < max_dispatch);
1101
1102	/*
1103	 * expire an async queue immediately if it has used up its slice. idle
1104	 * queue always expire after 1 dispatch round.
1105	 */
1106	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1107	    dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1108	    cfq_class_idle(cfqq))) {
1109		cfqq->slice_end = jiffies + 1;
1110		cfq_slice_expired(cfqd, 0);
1111	}
1112
1113	return dispatched;
1114}
1115
1116static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1117{
1118	int dispatched = 0;
1119
1120	while (cfqq->next_rq) {
1121		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1122		dispatched++;
1123	}
1124
1125	BUG_ON(!list_empty(&cfqq->fifo));
1126	return dispatched;
1127}
1128
1129/*
1130 * Drain our current requests. Used for barriers and when switching
1131 * io schedulers on-the-fly.
1132 */
1133static int cfq_forced_dispatch(struct cfq_data *cfqd)
1134{
1135	struct cfq_queue *cfqq;
1136	int dispatched = 0;
1137
1138	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1139		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1140
1141	cfq_slice_expired(cfqd, 0);
1142
1143	BUG_ON(cfqd->busy_queues);
1144
1145	cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1146	return dispatched;
1147}
1148
1149static int cfq_dispatch_requests(struct request_queue *q, int force)
1150{
1151	struct cfq_data *cfqd = q->elevator->elevator_data;
1152	struct cfq_queue *cfqq;
1153	int dispatched;
1154
1155	if (!cfqd->busy_queues)
1156		return 0;
1157
1158	if (unlikely(force))
1159		return cfq_forced_dispatch(cfqd);
1160
1161	dispatched = 0;
1162	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1163		int max_dispatch;
1164
1165		max_dispatch = cfqd->cfq_quantum;
1166		if (cfq_class_idle(cfqq))
1167			max_dispatch = 1;
1168
1169		if (cfqq->dispatched >= max_dispatch && cfqd->busy_queues > 1)
1170			break;
1171
1172		if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1173			break;
1174
1175		cfq_clear_cfqq_must_dispatch(cfqq);
1176		cfq_clear_cfqq_wait_request(cfqq);
1177		del_timer(&cfqd->idle_slice_timer);
1178
1179		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1180	}
1181
1182	cfq_log(cfqd, "dispatched=%d", dispatched);
1183	return dispatched;
1184}
1185
1186/*
1187 * task holds one reference to the queue, dropped when task exits. each rq
1188 * in-flight on this queue also holds a reference, dropped when rq is freed.
1189 *
1190 * queue lock must be held here.
1191 */
1192static void cfq_put_queue(struct cfq_queue *cfqq)
1193{
1194	struct cfq_data *cfqd = cfqq->cfqd;
1195
1196	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1197
1198	if (!atomic_dec_and_test(&cfqq->ref))
1199		return;
1200
1201	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1202	BUG_ON(rb_first(&cfqq->sort_list));
1203	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1204	BUG_ON(cfq_cfqq_on_rr(cfqq));
1205
1206	if (unlikely(cfqd->active_queue == cfqq)) {
1207		__cfq_slice_expired(cfqd, cfqq, 0);
1208		cfq_schedule_dispatch(cfqd);
1209	}
1210
1211	kmem_cache_free(cfq_pool, cfqq);
1212}
1213
1214/*
1215 * Must always be called with the rcu_read_lock() held
1216 */
1217static void
1218__call_for_each_cic(struct io_context *ioc,
1219		    void (*func)(struct io_context *, struct cfq_io_context *))
1220{
1221	struct cfq_io_context *cic;
1222	struct hlist_node *n;
1223
1224	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1225		func(ioc, cic);
1226}
1227
1228/*
1229 * Call func for each cic attached to this ioc.
1230 */
1231static void
1232call_for_each_cic(struct io_context *ioc,
1233		  void (*func)(struct io_context *, struct cfq_io_context *))
1234{
1235	rcu_read_lock();
1236	__call_for_each_cic(ioc, func);
1237	rcu_read_unlock();
1238}
1239
1240static void cfq_cic_free_rcu(struct rcu_head *head)
1241{
1242	struct cfq_io_context *cic;
1243
1244	cic = container_of(head, struct cfq_io_context, rcu_head);
1245
1246	kmem_cache_free(cfq_ioc_pool, cic);
1247	elv_ioc_count_dec(ioc_count);
1248
1249	if (ioc_gone) {
1250		/*
1251		 * CFQ scheduler is exiting, grab exit lock and check
1252		 * the pending io context count. If it hits zero,
1253		 * complete ioc_gone and set it back to NULL
1254		 */
1255		spin_lock(&ioc_gone_lock);
1256		if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1257			complete(ioc_gone);
1258			ioc_gone = NULL;
1259		}
1260		spin_unlock(&ioc_gone_lock);
1261	}
1262}
1263
1264static void cfq_cic_free(struct cfq_io_context *cic)
1265{
1266	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1267}
1268
1269static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1270{
1271	unsigned long flags;
1272
1273	BUG_ON(!cic->dead_key);
1274
1275	spin_lock_irqsave(&ioc->lock, flags);
1276	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1277	hlist_del_rcu(&cic->cic_list);
1278	spin_unlock_irqrestore(&ioc->lock, flags);
1279
1280	cfq_cic_free(cic);
1281}
1282
1283/*
1284 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1285 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1286 * and ->trim() which is called with the task lock held
1287 */
1288static void cfq_free_io_context(struct io_context *ioc)
1289{
1290	/*
1291	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1292	 * so no more cic's are allowed to be linked into this ioc.  So it
1293	 * should be ok to iterate over the known list, we will see all cic's
1294	 * since no new ones are added.
1295	 */
1296	__call_for_each_cic(ioc, cic_free_func);
1297}
1298
1299static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1300{
1301	if (unlikely(cfqq == cfqd->active_queue)) {
1302		__cfq_slice_expired(cfqd, cfqq, 0);
1303		cfq_schedule_dispatch(cfqd);
1304	}
1305
1306	cfq_put_queue(cfqq);
1307}
1308
1309static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1310					 struct cfq_io_context *cic)
1311{
1312	struct io_context *ioc = cic->ioc;
1313
1314	list_del_init(&cic->queue_list);
1315
1316	/*
1317	 * Make sure key == NULL is seen for dead queues
1318	 */
1319	smp_wmb();
1320	cic->dead_key = (unsigned long) cic->key;
1321	cic->key = NULL;
1322
1323	if (ioc->ioc_data == cic)
1324		rcu_assign_pointer(ioc->ioc_data, NULL);
1325
1326	if (cic->cfqq[ASYNC]) {
1327		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1328		cic->cfqq[ASYNC] = NULL;
1329	}
1330
1331	if (cic->cfqq[SYNC]) {
1332		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1333		cic->cfqq[SYNC] = NULL;
1334	}
1335}
1336
1337static void cfq_exit_single_io_context(struct io_context *ioc,
1338				       struct cfq_io_context *cic)
1339{
1340	struct cfq_data *cfqd = cic->key;
1341
1342	if (cfqd) {
1343		struct request_queue *q = cfqd->queue;
1344		unsigned long flags;
1345
1346		spin_lock_irqsave(q->queue_lock, flags);
1347
1348		/*
1349		 * Ensure we get a fresh copy of the ->key to prevent
1350		 * race between exiting task and queue
1351		 */
1352		smp_read_barrier_depends();
1353		if (cic->key)
1354			__cfq_exit_single_io_context(cfqd, cic);
1355
1356		spin_unlock_irqrestore(q->queue_lock, flags);
1357	}
1358}
1359
1360/*
1361 * The process that ioc belongs to has exited, we need to clean up
1362 * and put the internal structures we have that belongs to that process.
1363 */
1364static void cfq_exit_io_context(struct io_context *ioc)
1365{
1366	call_for_each_cic(ioc, cfq_exit_single_io_context);
1367}
1368
1369static struct cfq_io_context *
1370cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1371{
1372	struct cfq_io_context *cic;
1373
1374	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1375							cfqd->queue->node);
1376	if (cic) {
1377		cic->last_end_request = jiffies;
1378		INIT_LIST_HEAD(&cic->queue_list);
1379		INIT_HLIST_NODE(&cic->cic_list);
1380		cic->dtor = cfq_free_io_context;
1381		cic->exit = cfq_exit_io_context;
1382		elv_ioc_count_inc(ioc_count);
1383	}
1384
1385	return cic;
1386}
1387
1388static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1389{
1390	struct task_struct *tsk = current;
1391	int ioprio_class;
1392
1393	if (!cfq_cfqq_prio_changed(cfqq))
1394		return;
1395
1396	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1397	switch (ioprio_class) {
1398	default:
1399		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1400	case IOPRIO_CLASS_NONE:
1401		/*
1402		 * no prio set, inherit CPU scheduling settings
1403		 */
1404		cfqq->ioprio = task_nice_ioprio(tsk);
1405		cfqq->ioprio_class = task_nice_ioclass(tsk);
1406		break;
1407	case IOPRIO_CLASS_RT:
1408		cfqq->ioprio = task_ioprio(ioc);
1409		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1410		break;
1411	case IOPRIO_CLASS_BE:
1412		cfqq->ioprio = task_ioprio(ioc);
1413		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1414		break;
1415	case IOPRIO_CLASS_IDLE:
1416		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1417		cfqq->ioprio = 7;
1418		cfq_clear_cfqq_idle_window(cfqq);
1419		break;
1420	}
1421
1422	/*
1423	 * keep track of original prio settings in case we have to temporarily
1424	 * elevate the priority of this queue
1425	 */
1426	cfqq->org_ioprio = cfqq->ioprio;
1427	cfqq->org_ioprio_class = cfqq->ioprio_class;
1428	cfq_clear_cfqq_prio_changed(cfqq);
1429}
1430
1431static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1432{
1433	struct cfq_data *cfqd = cic->key;
1434	struct cfq_queue *cfqq;
1435	unsigned long flags;
1436
1437	if (unlikely(!cfqd))
1438		return;
1439
1440	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1441
1442	cfqq = cic->cfqq[ASYNC];
1443	if (cfqq) {
1444		struct cfq_queue *new_cfqq;
1445		new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1446		if (new_cfqq) {
1447			cic->cfqq[ASYNC] = new_cfqq;
1448			cfq_put_queue(cfqq);
1449		}
1450	}
1451
1452	cfqq = cic->cfqq[SYNC];
1453	if (cfqq)
1454		cfq_mark_cfqq_prio_changed(cfqq);
1455
1456	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1457}
1458
1459static void cfq_ioc_set_ioprio(struct io_context *ioc)
1460{
1461	call_for_each_cic(ioc, changed_ioprio);
1462	ioc->ioprio_changed = 0;
1463}
1464
1465static struct cfq_queue *
1466cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1467		     struct io_context *ioc, gfp_t gfp_mask)
1468{
1469	struct cfq_queue *cfqq, *new_cfqq = NULL;
1470	struct cfq_io_context *cic;
1471
1472retry:
1473	cic = cfq_cic_lookup(cfqd, ioc);
1474	/* cic always exists here */
1475	cfqq = cic_to_cfqq(cic, is_sync);
1476
1477	if (!cfqq) {
1478		if (new_cfqq) {
1479			cfqq = new_cfqq;
1480			new_cfqq = NULL;
1481		} else if (gfp_mask & __GFP_WAIT) {
1482			/*
1483			 * Inform the allocator of the fact that we will
1484			 * just repeat this allocation if it fails, to allow
1485			 * the allocator to do whatever it needs to attempt to
1486			 * free memory.
1487			 */
1488			spin_unlock_irq(cfqd->queue->queue_lock);
1489			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1490					gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1491					cfqd->queue->node);
1492			spin_lock_irq(cfqd->queue->queue_lock);
1493			goto retry;
1494		} else {
1495			cfqq = kmem_cache_alloc_node(cfq_pool,
1496					gfp_mask | __GFP_ZERO,
1497					cfqd->queue->node);
1498			if (!cfqq)
1499				goto out;
1500		}
1501
1502		RB_CLEAR_NODE(&cfqq->rb_node);
1503		INIT_LIST_HEAD(&cfqq->fifo);
1504
1505		atomic_set(&cfqq->ref, 0);
1506		cfqq->cfqd = cfqd;
1507
1508		cfq_mark_cfqq_prio_changed(cfqq);
1509		cfq_mark_cfqq_queue_new(cfqq);
1510
1511		cfq_init_prio_data(cfqq, ioc);
1512
1513		if (is_sync) {
1514			if (!cfq_class_idle(cfqq))
1515				cfq_mark_cfqq_idle_window(cfqq);
1516			cfq_mark_cfqq_sync(cfqq);
1517		}
1518		cfqq->pid = current->pid;
1519		cfq_log_cfqq(cfqd, cfqq, "alloced");
1520	}
1521
1522	if (new_cfqq)
1523		kmem_cache_free(cfq_pool, new_cfqq);
1524
1525out:
1526	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1527	return cfqq;
1528}
1529
1530static struct cfq_queue **
1531cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1532{
1533	switch (ioprio_class) {
1534	case IOPRIO_CLASS_RT:
1535		return &cfqd->async_cfqq[0][ioprio];
1536	case IOPRIO_CLASS_BE:
1537		return &cfqd->async_cfqq[1][ioprio];
1538	case IOPRIO_CLASS_IDLE:
1539		return &cfqd->async_idle_cfqq;
1540	default:
1541		BUG();
1542	}
1543}
1544
1545static struct cfq_queue *
1546cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1547	      gfp_t gfp_mask)
1548{
1549	const int ioprio = task_ioprio(ioc);
1550	const int ioprio_class = task_ioprio_class(ioc);
1551	struct cfq_queue **async_cfqq = NULL;
1552	struct cfq_queue *cfqq = NULL;
1553
1554	if (!is_sync) {
1555		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1556		cfqq = *async_cfqq;
1557	}
1558
1559	if (!cfqq) {
1560		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1561		if (!cfqq)
1562			return NULL;
1563	}
1564
1565	/*
1566	 * pin the queue now that it's allocated, scheduler exit will prune it
1567	 */
1568	if (!is_sync && !(*async_cfqq)) {
1569		atomic_inc(&cfqq->ref);
1570		*async_cfqq = cfqq;
1571	}
1572
1573	atomic_inc(&cfqq->ref);
1574	return cfqq;
1575}
1576
1577/*
1578 * We drop cfq io contexts lazily, so we may find a dead one.
1579 */
1580static void
1581cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1582		  struct cfq_io_context *cic)
1583{
1584	unsigned long flags;
1585
1586	WARN_ON(!list_empty(&cic->queue_list));
1587
1588	spin_lock_irqsave(&ioc->lock, flags);
1589
1590	BUG_ON(ioc->ioc_data == cic);
1591
1592	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1593	hlist_del_rcu(&cic->cic_list);
1594	spin_unlock_irqrestore(&ioc->lock, flags);
1595
1596	cfq_cic_free(cic);
1597}
1598
1599static struct cfq_io_context *
1600cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1601{
1602	struct cfq_io_context *cic;
1603	unsigned long flags;
1604	void *k;
1605
1606	if (unlikely(!ioc))
1607		return NULL;
1608
1609	rcu_read_lock();
1610
1611	/*
1612	 * we maintain a last-hit cache, to avoid browsing over the tree
1613	 */
1614	cic = rcu_dereference(ioc->ioc_data);
1615	if (cic && cic->key == cfqd) {
1616		rcu_read_unlock();
1617		return cic;
1618	}
1619
1620	do {
1621		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1622		rcu_read_unlock();
1623		if (!cic)
1624			break;
1625		/* ->key must be copied to avoid race with cfq_exit_queue() */
1626		k = cic->key;
1627		if (unlikely(!k)) {
1628			cfq_drop_dead_cic(cfqd, ioc, cic);
1629			rcu_read_lock();
1630			continue;
1631		}
1632
1633		spin_lock_irqsave(&ioc->lock, flags);
1634		rcu_assign_pointer(ioc->ioc_data, cic);
1635		spin_unlock_irqrestore(&ioc->lock, flags);
1636		break;
1637	} while (1);
1638
1639	return cic;
1640}
1641
1642/*
1643 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1644 * the process specific cfq io context when entered from the block layer.
1645 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1646 */
1647static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1648			struct cfq_io_context *cic, gfp_t gfp_mask)
1649{
1650	unsigned long flags;
1651	int ret;
1652
1653	ret = radix_tree_preload(gfp_mask);
1654	if (!ret) {
1655		cic->ioc = ioc;
1656		cic->key = cfqd;
1657
1658		spin_lock_irqsave(&ioc->lock, flags);
1659		ret = radix_tree_insert(&ioc->radix_root,
1660						(unsigned long) cfqd, cic);
1661		if (!ret)
1662			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1663		spin_unlock_irqrestore(&ioc->lock, flags);
1664
1665		radix_tree_preload_end();
1666
1667		if (!ret) {
1668			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1669			list_add(&cic->queue_list, &cfqd->cic_list);
1670			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1671		}
1672	}
1673
1674	if (ret)
1675		printk(KERN_ERR "cfq: cic link failed!\n");
1676
1677	return ret;
1678}
1679
1680/*
1681 * Setup general io context and cfq io context. There can be several cfq
1682 * io contexts per general io context, if this process is doing io to more
1683 * than one device managed by cfq.
1684 */
1685static struct cfq_io_context *
1686cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1687{
1688	struct io_context *ioc = NULL;
1689	struct cfq_io_context *cic;
1690
1691	might_sleep_if(gfp_mask & __GFP_WAIT);
1692
1693	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1694	if (!ioc)
1695		return NULL;
1696
1697	cic = cfq_cic_lookup(cfqd, ioc);
1698	if (cic)
1699		goto out;
1700
1701	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1702	if (cic == NULL)
1703		goto err;
1704
1705	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1706		goto err_free;
1707
1708out:
1709	smp_read_barrier_depends();
1710	if (unlikely(ioc->ioprio_changed))
1711		cfq_ioc_set_ioprio(ioc);
1712
1713	return cic;
1714err_free:
1715	cfq_cic_free(cic);
1716err:
1717	put_io_context(ioc);
1718	return NULL;
1719}
1720
1721static void
1722cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1723{
1724	unsigned long elapsed = jiffies - cic->last_end_request;
1725	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1726
1727	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1728	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1729	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1730}
1731
1732static void
1733cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1734		       struct request *rq)
1735{
1736	sector_t sdist;
1737	u64 total;
1738
1739	if (cic->last_request_pos < rq->sector)
1740		sdist = rq->sector - cic->last_request_pos;
1741	else
1742		sdist = cic->last_request_pos - rq->sector;
1743
1744	/*
1745	 * Don't allow the seek distance to get too large from the
1746	 * odd fragment, pagein, etc
1747	 */
1748	if (cic->seek_samples <= 60) /* second&third seek */
1749		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1750	else
1751		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1752
1753	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1754	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1755	total = cic->seek_total + (cic->seek_samples/2);
1756	do_div(total, cic->seek_samples);
1757	cic->seek_mean = (sector_t)total;
1758}
1759
1760/*
1761 * Disable idle window if the process thinks too long or seeks so much that
1762 * it doesn't matter
1763 */
1764static void
1765cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1766		       struct cfq_io_context *cic)
1767{
1768	int old_idle, enable_idle;
1769
1770	/*
1771	 * Don't idle for async or idle io prio class
1772	 */
1773	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1774		return;
1775
1776	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1777
1778	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1779	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1780		enable_idle = 0;
1781	else if (sample_valid(cic->ttime_samples)) {
1782		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1783			enable_idle = 0;
1784		else
1785			enable_idle = 1;
1786	}
1787
1788	if (old_idle != enable_idle) {
1789		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1790		if (enable_idle)
1791			cfq_mark_cfqq_idle_window(cfqq);
1792		else
1793			cfq_clear_cfqq_idle_window(cfqq);
1794	}
1795}
1796
1797/*
1798 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1799 * no or if we aren't sure, a 1 will cause a preempt.
1800 */
1801static int
1802cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1803		   struct request *rq)
1804{
1805	struct cfq_queue *cfqq;
1806
1807	cfqq = cfqd->active_queue;
1808	if (!cfqq)
1809		return 0;
1810
1811	if (cfq_slice_used(cfqq))
1812		return 1;
1813
1814	if (cfq_class_idle(new_cfqq))
1815		return 0;
1816
1817	if (cfq_class_idle(cfqq))
1818		return 1;
1819
1820	/*
1821	 * if the new request is sync, but the currently running queue is
1822	 * not, let the sync request have priority.
1823	 */
1824	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1825		return 1;
1826
1827	/*
1828	 * So both queues are sync. Let the new request get disk time if
1829	 * it's a metadata request and the current queue is doing regular IO.
1830	 */
1831	if (rq_is_meta(rq) && !cfqq->meta_pending)
1832		return 1;
1833
1834	/*
1835	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1836	 */
1837	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
1838		return 1;
1839
1840	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1841		return 0;
1842
1843	/*
1844	 * if this request is as-good as one we would expect from the
1845	 * current cfqq, let it preempt
1846	 */
1847	if (cfq_rq_close(cfqd, rq))
1848		return 1;
1849
1850	return 0;
1851}
1852
1853/*
1854 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1855 * let it have half of its nominal slice.
1856 */
1857static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1858{
1859	cfq_log_cfqq(cfqd, cfqq, "preempt");
1860	cfq_slice_expired(cfqd, 1);
1861
1862	/*
1863	 * Put the new queue at the front of the of the current list,
1864	 * so we know that it will be selected next.
1865	 */
1866	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1867
1868	cfq_service_tree_add(cfqd, cfqq, 1);
1869
1870	cfqq->slice_end = 0;
1871	cfq_mark_cfqq_slice_new(cfqq);
1872}
1873
1874/*
1875 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1876 * something we should do about it
1877 */
1878static void
1879cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1880		struct request *rq)
1881{
1882	struct cfq_io_context *cic = RQ_CIC(rq);
1883
1884	cfqd->rq_queued++;
1885	if (rq_is_meta(rq))
1886		cfqq->meta_pending++;
1887
1888	cfq_update_io_thinktime(cfqd, cic);
1889	cfq_update_io_seektime(cfqd, cic, rq);
1890	cfq_update_idle_window(cfqd, cfqq, cic);
1891
1892	cic->last_request_pos = rq->sector + rq->nr_sectors;
1893
1894	if (cfqq == cfqd->active_queue) {
1895		/*
1896		 * if we are waiting for a request for this queue, let it rip
1897		 * immediately and flag that we must not expire this queue
1898		 * just now
1899		 */
1900		if (cfq_cfqq_wait_request(cfqq)) {
1901			cfq_mark_cfqq_must_dispatch(cfqq);
1902			del_timer(&cfqd->idle_slice_timer);
1903			blk_start_queueing(cfqd->queue);
1904		}
1905	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1906		/*
1907		 * not the active queue - expire current slice if it is
1908		 * idle and has expired it's mean thinktime or this new queue
1909		 * has some old slice time left and is of higher priority or
1910		 * this new queue is RT and the current one is BE
1911		 */
1912		cfq_preempt_queue(cfqd, cfqq);
1913		cfq_mark_cfqq_must_dispatch(cfqq);
1914		blk_start_queueing(cfqd->queue);
1915	}
1916}
1917
1918static void cfq_insert_request(struct request_queue *q, struct request *rq)
1919{
1920	struct cfq_data *cfqd = q->elevator->elevator_data;
1921	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1922
1923	cfq_log_cfqq(cfqd, cfqq, "insert_request");
1924	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1925
1926	cfq_add_rq_rb(rq);
1927
1928	list_add_tail(&rq->queuelist, &cfqq->fifo);
1929
1930	cfq_rq_enqueued(cfqd, cfqq, rq);
1931}
1932
1933/*
1934 * Update hw_tag based on peak queue depth over 50 samples under
1935 * sufficient load.
1936 */
1937static void cfq_update_hw_tag(struct cfq_data *cfqd)
1938{
1939	if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1940		cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1941
1942	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1943	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1944		return;
1945
1946	if (cfqd->hw_tag_samples++ < 50)
1947		return;
1948
1949	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1950		cfqd->hw_tag = 1;
1951	else
1952		cfqd->hw_tag = 0;
1953
1954	cfqd->hw_tag_samples = 0;
1955	cfqd->rq_in_driver_peak = 0;
1956}
1957
1958static void cfq_completed_request(struct request_queue *q, struct request *rq)
1959{
1960	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1961	struct cfq_data *cfqd = cfqq->cfqd;
1962	const int sync = rq_is_sync(rq);
1963	unsigned long now;
1964
1965	now = jiffies;
1966	cfq_log_cfqq(cfqd, cfqq, "complete");
1967
1968	cfq_update_hw_tag(cfqd);
1969
1970	WARN_ON(!cfqd->rq_in_driver);
1971	WARN_ON(!cfqq->dispatched);
1972	cfqd->rq_in_driver--;
1973	cfqq->dispatched--;
1974
1975	if (cfq_cfqq_sync(cfqq))
1976		cfqd->sync_flight--;
1977
1978	if (!cfq_class_idle(cfqq))
1979		cfqd->last_end_request = now;
1980
1981	if (sync)
1982		RQ_CIC(rq)->last_end_request = now;
1983
1984	/*
1985	 * If this is the active queue, check if it needs to be expired,
1986	 * or if we want to idle in case it has no pending requests.
1987	 */
1988	if (cfqd->active_queue == cfqq) {
1989		if (cfq_cfqq_slice_new(cfqq)) {
1990			cfq_set_prio_slice(cfqd, cfqq);
1991			cfq_clear_cfqq_slice_new(cfqq);
1992		}
1993		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1994			cfq_slice_expired(cfqd, 1);
1995		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1996			cfq_arm_slice_timer(cfqd);
1997	}
1998
1999	if (!cfqd->rq_in_driver)
2000		cfq_schedule_dispatch(cfqd);
2001}
2002
2003/*
2004 * we temporarily boost lower priority queues if they are holding fs exclusive
2005 * resources. they are boosted to normal prio (CLASS_BE/4)
2006 */
2007static void cfq_prio_boost(struct cfq_queue *cfqq)
2008{
2009	if (has_fs_excl()) {
2010		/*
2011		 * boost idle prio on transactions that would lock out other
2012		 * users of the filesystem
2013		 */
2014		if (cfq_class_idle(cfqq))
2015			cfqq->ioprio_class = IOPRIO_CLASS_BE;
2016		if (cfqq->ioprio > IOPRIO_NORM)
2017			cfqq->ioprio = IOPRIO_NORM;
2018	} else {
2019		/*
2020		 * check if we need to unboost the queue
2021		 */
2022		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2023			cfqq->ioprio_class = cfqq->org_ioprio_class;
2024		if (cfqq->ioprio != cfqq->org_ioprio)
2025			cfqq->ioprio = cfqq->org_ioprio;
2026	}
2027}
2028
2029static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2030{
2031	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2032	    !cfq_cfqq_must_alloc_slice(cfqq)) {
2033		cfq_mark_cfqq_must_alloc_slice(cfqq);
2034		return ELV_MQUEUE_MUST;
2035	}
2036
2037	return ELV_MQUEUE_MAY;
2038}
2039
2040static int cfq_may_queue(struct request_queue *q, int rw)
2041{
2042	struct cfq_data *cfqd = q->elevator->elevator_data;
2043	struct task_struct *tsk = current;
2044	struct cfq_io_context *cic;
2045	struct cfq_queue *cfqq;
2046
2047	/*
2048	 * don't force setup of a queue from here, as a call to may_queue
2049	 * does not necessarily imply that a request actually will be queued.
2050	 * so just lookup a possibly existing queue, or return 'may queue'
2051	 * if that fails
2052	 */
2053	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2054	if (!cic)
2055		return ELV_MQUEUE_MAY;
2056
2057	cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2058	if (cfqq) {
2059		cfq_init_prio_data(cfqq, cic->ioc);
2060		cfq_prio_boost(cfqq);
2061
2062		return __cfq_may_queue(cfqq);
2063	}
2064
2065	return ELV_MQUEUE_MAY;
2066}
2067
2068/*
2069 * queue lock held here
2070 */
2071static void cfq_put_request(struct request *rq)
2072{
2073	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2074
2075	if (cfqq) {
2076		const int rw = rq_data_dir(rq);
2077
2078		BUG_ON(!cfqq->allocated[rw]);
2079		cfqq->allocated[rw]--;
2080
2081		put_io_context(RQ_CIC(rq)->ioc);
2082
2083		rq->elevator_private = NULL;
2084		rq->elevator_private2 = NULL;
2085
2086		cfq_put_queue(cfqq);
2087	}
2088}
2089
2090/*
2091 * Allocate cfq data structures associated with this request.
2092 */
2093static int
2094cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2095{
2096	struct cfq_data *cfqd = q->elevator->elevator_data;
2097	struct cfq_io_context *cic;
2098	const int rw = rq_data_dir(rq);
2099	const int is_sync = rq_is_sync(rq);
2100	struct cfq_queue *cfqq;
2101	unsigned long flags;
2102
2103	might_sleep_if(gfp_mask & __GFP_WAIT);
2104
2105	cic = cfq_get_io_context(cfqd, gfp_mask);
2106
2107	spin_lock_irqsave(q->queue_lock, flags);
2108
2109	if (!cic)
2110		goto queue_fail;
2111
2112	cfqq = cic_to_cfqq(cic, is_sync);
2113	if (!cfqq) {
2114		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2115
2116		if (!cfqq)
2117			goto queue_fail;
2118
2119		cic_set_cfqq(cic, cfqq, is_sync);
2120	}
2121
2122	cfqq->allocated[rw]++;
2123	cfq_clear_cfqq_must_alloc(cfqq);
2124	atomic_inc(&cfqq->ref);
2125
2126	spin_unlock_irqrestore(q->queue_lock, flags);
2127
2128	rq->elevator_private = cic;
2129	rq->elevator_private2 = cfqq;
2130	return 0;
2131
2132queue_fail:
2133	if (cic)
2134		put_io_context(cic->ioc);
2135
2136	cfq_schedule_dispatch(cfqd);
2137	spin_unlock_irqrestore(q->queue_lock, flags);
2138	cfq_log(cfqd, "set_request fail");
2139	return 1;
2140}
2141
2142static void cfq_kick_queue(struct work_struct *work)
2143{
2144	struct cfq_data *cfqd =
2145		container_of(work, struct cfq_data, unplug_work);
2146	struct request_queue *q = cfqd->queue;
2147	unsigned long flags;
2148
2149	spin_lock_irqsave(q->queue_lock, flags);
2150	blk_start_queueing(q);
2151	spin_unlock_irqrestore(q->queue_lock, flags);
2152}
2153
2154/*
2155 * Timer running if the active_queue is currently idling inside its time slice
2156 */
2157static void cfq_idle_slice_timer(unsigned long data)
2158{
2159	struct cfq_data *cfqd = (struct cfq_data *) data;
2160	struct cfq_queue *cfqq;
2161	unsigned long flags;
2162	int timed_out = 1;
2163
2164	cfq_log(cfqd, "idle timer fired");
2165
2166	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2167
2168	cfqq = cfqd->active_queue;
2169	if (cfqq) {
2170		timed_out = 0;
2171
2172		/*
2173		 * expired
2174		 */
2175		if (cfq_slice_used(cfqq))
2176			goto expire;
2177
2178		/*
2179		 * only expire and reinvoke request handler, if there are
2180		 * other queues with pending requests
2181		 */
2182		if (!cfqd->busy_queues)
2183			goto out_cont;
2184
2185		/*
2186		 * not expired and it has a request pending, let it dispatch
2187		 */
2188		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2189			cfq_mark_cfqq_must_dispatch(cfqq);
2190			goto out_kick;
2191		}
2192	}
2193expire:
2194	cfq_slice_expired(cfqd, timed_out);
2195out_kick:
2196	cfq_schedule_dispatch(cfqd);
2197out_cont:
2198	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2199}
2200
2201static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2202{
2203	del_timer_sync(&cfqd->idle_slice_timer);
2204	cancel_work_sync(&cfqd->unplug_work);
2205}
2206
2207static void cfq_put_async_queues(struct cfq_data *cfqd)
2208{
2209	int i;
2210
2211	for (i = 0; i < IOPRIO_BE_NR; i++) {
2212		if (cfqd->async_cfqq[0][i])
2213			cfq_put_queue(cfqd->async_cfqq[0][i]);
2214		if (cfqd->async_cfqq[1][i])
2215			cfq_put_queue(cfqd->async_cfqq[1][i]);
2216	}
2217
2218	if (cfqd->async_idle_cfqq)
2219		cfq_put_queue(cfqd->async_idle_cfqq);
2220}
2221
2222static void cfq_exit_queue(struct elevator_queue *e)
2223{
2224	struct cfq_data *cfqd = e->elevator_data;
2225	struct request_queue *q = cfqd->queue;
2226
2227	cfq_shutdown_timer_wq(cfqd);
2228
2229	spin_lock_irq(q->queue_lock);
2230
2231	if (cfqd->active_queue)
2232		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2233
2234	while (!list_empty(&cfqd->cic_list)) {
2235		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2236							struct cfq_io_context,
2237							queue_list);
2238
2239		__cfq_exit_single_io_context(cfqd, cic);
2240	}
2241
2242	cfq_put_async_queues(cfqd);
2243
2244	spin_unlock_irq(q->queue_lock);
2245
2246	cfq_shutdown_timer_wq(cfqd);
2247
2248	kfree(cfqd);
2249}
2250
2251static void *cfq_init_queue(struct request_queue *q)
2252{
2253	struct cfq_data *cfqd;
2254
2255	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2256	if (!cfqd)
2257		return NULL;
2258
2259	cfqd->service_tree = CFQ_RB_ROOT;
2260	INIT_LIST_HEAD(&cfqd->cic_list);
2261
2262	cfqd->queue = q;
2263
2264	init_timer(&cfqd->idle_slice_timer);
2265	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2266	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2267
2268	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2269
2270	cfqd->last_end_request = jiffies;
2271	cfqd->cfq_quantum = cfq_quantum;
2272	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2273	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2274	cfqd->cfq_back_max = cfq_back_max;
2275	cfqd->cfq_back_penalty = cfq_back_penalty;
2276	cfqd->cfq_slice[0] = cfq_slice_async;
2277	cfqd->cfq_slice[1] = cfq_slice_sync;
2278	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2279	cfqd->cfq_slice_idle = cfq_slice_idle;
2280	cfqd->hw_tag = 1;
2281
2282	return cfqd;
2283}
2284
2285static void cfq_slab_kill(void)
2286{
2287	/*
2288	 * Caller already ensured that pending RCU callbacks are completed,
2289	 * so we should have no busy allocations at this point.
2290	 */
2291	if (cfq_pool)
2292		kmem_cache_destroy(cfq_pool);
2293	if (cfq_ioc_pool)
2294		kmem_cache_destroy(cfq_ioc_pool);
2295}
2296
2297static int __init cfq_slab_setup(void)
2298{
2299	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2300	if (!cfq_pool)
2301		goto fail;
2302
2303	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2304	if (!cfq_ioc_pool)
2305		goto fail;
2306
2307	return 0;
2308fail:
2309	cfq_slab_kill();
2310	return -ENOMEM;
2311}
2312
2313/*
2314 * sysfs parts below -->
2315 */
2316static ssize_t
2317cfq_var_show(unsigned int var, char *page)
2318{
2319	return sprintf(page, "%d\n", var);
2320}
2321
2322static ssize_t
2323cfq_var_store(unsigned int *var, const char *page, size_t count)
2324{
2325	char *p = (char *) page;
2326
2327	*var = simple_strtoul(p, &p, 10);
2328	return count;
2329}
2330
2331#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2332static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
2333{									\
2334	struct cfq_data *cfqd = e->elevator_data;			\
2335	unsigned int __data = __VAR;					\
2336	if (__CONV)							\
2337		__data = jiffies_to_msecs(__data);			\
2338	return cfq_var_show(__data, (page));				\
2339}
2340SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2341SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2342SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2343SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2344SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2345SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2346SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2347SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2348SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2349#undef SHOW_FUNCTION
2350
2351#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2352static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
2353{									\
2354	struct cfq_data *cfqd = e->elevator_data;			\
2355	unsigned int __data;						\
2356	int ret = cfq_var_store(&__data, (page), count);		\
2357	if (__data < (MIN))						\
2358		__data = (MIN);						\
2359	else if (__data > (MAX))					\
2360		__data = (MAX);						\
2361	if (__CONV)							\
2362		*(__PTR) = msecs_to_jiffies(__data);			\
2363	else								\
2364		*(__PTR) = __data;					\
2365	return ret;							\
2366}
2367STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2368STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2369		UINT_MAX, 1);
2370STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2371		UINT_MAX, 1);
2372STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2373STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2374		UINT_MAX, 0);
2375STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2376STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2377STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2378STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2379		UINT_MAX, 0);
2380#undef STORE_FUNCTION
2381
2382#define CFQ_ATTR(name) \
2383	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2384
2385static struct elv_fs_entry cfq_attrs[] = {
2386	CFQ_ATTR(quantum),
2387	CFQ_ATTR(fifo_expire_sync),
2388	CFQ_ATTR(fifo_expire_async),
2389	CFQ_ATTR(back_seek_max),
2390	CFQ_ATTR(back_seek_penalty),
2391	CFQ_ATTR(slice_sync),
2392	CFQ_ATTR(slice_async),
2393	CFQ_ATTR(slice_async_rq),
2394	CFQ_ATTR(slice_idle),
2395	__ATTR_NULL
2396};
2397
2398static struct elevator_type iosched_cfq = {
2399	.ops = {
2400		.elevator_merge_fn = 		cfq_merge,
2401		.elevator_merged_fn =		cfq_merged_request,
2402		.elevator_merge_req_fn =	cfq_merged_requests,
2403		.elevator_allow_merge_fn =	cfq_allow_merge,
2404		.elevator_dispatch_fn =		cfq_dispatch_requests,
2405		.elevator_add_req_fn =		cfq_insert_request,
2406		.elevator_activate_req_fn =	cfq_activate_request,
2407		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2408		.elevator_queue_empty_fn =	cfq_queue_empty,
2409		.elevator_completed_req_fn =	cfq_completed_request,
2410		.elevator_former_req_fn =	elv_rb_former_request,
2411		.elevator_latter_req_fn =	elv_rb_latter_request,
2412		.elevator_set_req_fn =		cfq_set_request,
2413		.elevator_put_req_fn =		cfq_put_request,
2414		.elevator_may_queue_fn =	cfq_may_queue,
2415		.elevator_init_fn =		cfq_init_queue,
2416		.elevator_exit_fn =		cfq_exit_queue,
2417		.trim =				cfq_free_io_context,
2418	},
2419	.elevator_attrs =	cfq_attrs,
2420	.elevator_name =	"cfq",
2421	.elevator_owner =	THIS_MODULE,
2422};
2423
2424static int __init cfq_init(void)
2425{
2426	/*
2427	 * could be 0 on HZ < 1000 setups
2428	 */
2429	if (!cfq_slice_async)
2430		cfq_slice_async = 1;
2431	if (!cfq_slice_idle)
2432		cfq_slice_idle = 1;
2433
2434	if (cfq_slab_setup())
2435		return -ENOMEM;
2436
2437	elv_register(&iosched_cfq);
2438
2439	return 0;
2440}
2441
2442static void __exit cfq_exit(void)
2443{
2444	DECLARE_COMPLETION_ONSTACK(all_gone);
2445	elv_unregister(&iosched_cfq);
2446	ioc_gone = &all_gone;
2447	/* ioc_gone's update must be visible before reading ioc_count */
2448	smp_wmb();
2449
2450	/*
2451	 * this also protects us from entering cfq_slab_kill() with
2452	 * pending RCU callbacks
2453	 */
2454	if (elv_ioc_count_read(ioc_count))
2455		wait_for_completion(&all_gone);
2456	cfq_slab_kill();
2457}
2458
2459module_init(cfq_init);
2460module_exit(cfq_exit);
2461
2462MODULE_AUTHOR("Jens Axboe");
2463MODULE_LICENSE("GPL");
2464MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2465