cfq-iosched.c revision 3ed9a2965c47636bc0ebafab31a39f1c105492ca
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/hash.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15
16/*
17 * tunables
18 */
19static const int cfq_quantum = 4;		/* max queue in one round of service */
20static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21static const int cfq_back_max = 16 * 1024;	/* maximum backwards seek, in KiB */
22static const int cfq_back_penalty = 2;		/* penalty of a backwards seek */
23
24static const int cfq_slice_sync = HZ / 10;
25static int cfq_slice_async = HZ / 25;
26static const int cfq_slice_async_rq = 2;
27static int cfq_slice_idle = HZ / 125;
28
29/*
30 * grace period before allowing idle class to get disk access
31 */
32#define CFQ_IDLE_GRACE		(HZ / 10)
33
34/*
35 * below this threshold, we consider thinktime immediate
36 */
37#define CFQ_MIN_TT		(2)
38
39#define CFQ_SLICE_SCALE		(5)
40
41#define CFQ_KEY_ASYNC		(0)
42
43/*
44 * for the hash of cfqq inside the cfqd
45 */
46#define CFQ_QHASH_SHIFT		6
47#define CFQ_QHASH_ENTRIES	(1 << CFQ_QHASH_SHIFT)
48
49#define RQ_CIC(rq)		((struct cfq_io_context*)(rq)->elevator_private)
50#define RQ_CFQQ(rq)		((rq)->elevator_private2)
51
52static struct kmem_cache *cfq_pool;
53static struct kmem_cache *cfq_ioc_pool;
54
55static DEFINE_PER_CPU(unsigned long, ioc_count);
56static struct completion *ioc_gone;
57
58#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
59#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
60#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
61
62#define ASYNC			(0)
63#define SYNC			(1)
64
65#define cfq_cfqq_sync(cfqq)	((cfqq)->key != CFQ_KEY_ASYNC)
66
67#define sample_valid(samples)	((samples) > 80)
68
69/*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75struct cfq_rb_root {
76	struct rb_root rb;
77	struct rb_node *left;
78};
79#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
80
81/*
82 * Per block device queue structure
83 */
84struct cfq_data {
85	request_queue_t *queue;
86
87	/*
88	 * rr list of queues with requests and the count of them
89	 */
90	struct cfq_rb_root service_tree;
91	unsigned int busy_queues;
92
93	/*
94	 * cfqq lookup hash
95	 */
96	struct hlist_head *cfq_hash;
97
98	int rq_in_driver;
99	int sync_flight;
100	int hw_tag;
101
102	/*
103	 * idle window management
104	 */
105	struct timer_list idle_slice_timer;
106	struct work_struct unplug_work;
107
108	struct cfq_queue *active_queue;
109	struct cfq_io_context *active_cic;
110
111	struct timer_list idle_class_timer;
112
113	sector_t last_position;
114	unsigned long last_end_request;
115
116	/*
117	 * tunables, see top of file
118	 */
119	unsigned int cfq_quantum;
120	unsigned int cfq_fifo_expire[2];
121	unsigned int cfq_back_penalty;
122	unsigned int cfq_back_max;
123	unsigned int cfq_slice[2];
124	unsigned int cfq_slice_async_rq;
125	unsigned int cfq_slice_idle;
126
127	struct list_head cic_list;
128
129	sector_t new_seek_mean;
130	u64 new_seek_total;
131};
132
133/*
134 * Per process-grouping structure
135 */
136struct cfq_queue {
137	/* reference count */
138	atomic_t ref;
139	/* parent cfq_data */
140	struct cfq_data *cfqd;
141	/* cfqq lookup hash */
142	struct hlist_node cfq_hash;
143	/* hash key */
144	unsigned int key;
145	/* service_tree member */
146	struct rb_node rb_node;
147	/* service_tree key */
148	unsigned long rb_key;
149	/* sorted list of pending requests */
150	struct rb_root sort_list;
151	/* if fifo isn't expired, next request to serve */
152	struct request *next_rq;
153	/* requests queued in sort_list */
154	int queued[2];
155	/* currently allocated requests */
156	int allocated[2];
157	/* pending metadata requests */
158	int meta_pending;
159	/* fifo list of requests in sort_list */
160	struct list_head fifo;
161
162	unsigned long slice_end;
163	long slice_resid;
164
165	/* number of requests that are on the dispatch list or inside driver */
166	int dispatched;
167
168	/* io prio of this group */
169	unsigned short ioprio, org_ioprio;
170	unsigned short ioprio_class, org_ioprio_class;
171
172	/* various state flags, see below */
173	unsigned int flags;
174
175	sector_t last_request_pos;
176};
177
178enum cfqq_state_flags {
179	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
180	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
181	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
182	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
183	CFQ_CFQQ_FLAG_must_dispatch,	/* must dispatch, even if expired */
184	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
185	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
186	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
187	CFQ_CFQQ_FLAG_queue_new,	/* queue never been serviced */
188	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
189};
190
191#define CFQ_CFQQ_FNS(name)						\
192static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
193{									\
194	cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
195}									\
196static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
197{									\
198	cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
199}									\
200static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
201{									\
202	return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
203}
204
205CFQ_CFQQ_FNS(on_rr);
206CFQ_CFQQ_FNS(wait_request);
207CFQ_CFQQ_FNS(must_alloc);
208CFQ_CFQQ_FNS(must_alloc_slice);
209CFQ_CFQQ_FNS(must_dispatch);
210CFQ_CFQQ_FNS(fifo_expire);
211CFQ_CFQQ_FNS(idle_window);
212CFQ_CFQQ_FNS(prio_changed);
213CFQ_CFQQ_FNS(queue_new);
214CFQ_CFQQ_FNS(slice_new);
215#undef CFQ_CFQQ_FNS
216
217static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
218static void cfq_dispatch_insert(request_queue_t *, struct request *);
219static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
220
221/*
222 * scheduler run of queue, if there are requests pending and no one in the
223 * driver that will restart queueing
224 */
225static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
226{
227	if (cfqd->busy_queues)
228		kblockd_schedule_work(&cfqd->unplug_work);
229}
230
231static int cfq_queue_empty(request_queue_t *q)
232{
233	struct cfq_data *cfqd = q->elevator->elevator_data;
234
235	return !cfqd->busy_queues;
236}
237
238static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
239{
240	/*
241	 * Use the per-process queue, for read requests and syncronous writes
242	 */
243	if (!(rw & REQ_RW) || is_sync)
244		return task->pid;
245
246	return CFQ_KEY_ASYNC;
247}
248
249/*
250 * Scale schedule slice based on io priority. Use the sync time slice only
251 * if a queue is marked sync and has sync io queued. A sync queue with async
252 * io only, should not get full sync slice length.
253 */
254static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
255				 unsigned short prio)
256{
257	const int base_slice = cfqd->cfq_slice[sync];
258
259	WARN_ON(prio >= IOPRIO_BE_NR);
260
261	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
262}
263
264static inline int
265cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
266{
267	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
268}
269
270static inline void
271cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
272{
273	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
274}
275
276/*
277 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
278 * isn't valid until the first request from the dispatch is activated
279 * and the slice time set.
280 */
281static inline int cfq_slice_used(struct cfq_queue *cfqq)
282{
283	if (cfq_cfqq_slice_new(cfqq))
284		return 0;
285	if (time_before(jiffies, cfqq->slice_end))
286		return 0;
287
288	return 1;
289}
290
291/*
292 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
293 * We choose the request that is closest to the head right now. Distance
294 * behind the head is penalized and only allowed to a certain extent.
295 */
296static struct request *
297cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
298{
299	sector_t last, s1, s2, d1 = 0, d2 = 0;
300	unsigned long back_max;
301#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
302#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
303	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
304
305	if (rq1 == NULL || rq1 == rq2)
306		return rq2;
307	if (rq2 == NULL)
308		return rq1;
309
310	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
311		return rq1;
312	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
313		return rq2;
314	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
315		return rq1;
316	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
317		return rq2;
318
319	s1 = rq1->sector;
320	s2 = rq2->sector;
321
322	last = cfqd->last_position;
323
324	/*
325	 * by definition, 1KiB is 2 sectors
326	 */
327	back_max = cfqd->cfq_back_max * 2;
328
329	/*
330	 * Strict one way elevator _except_ in the case where we allow
331	 * short backward seeks which are biased as twice the cost of a
332	 * similar forward seek.
333	 */
334	if (s1 >= last)
335		d1 = s1 - last;
336	else if (s1 + back_max >= last)
337		d1 = (last - s1) * cfqd->cfq_back_penalty;
338	else
339		wrap |= CFQ_RQ1_WRAP;
340
341	if (s2 >= last)
342		d2 = s2 - last;
343	else if (s2 + back_max >= last)
344		d2 = (last - s2) * cfqd->cfq_back_penalty;
345	else
346		wrap |= CFQ_RQ2_WRAP;
347
348	/* Found required data */
349
350	/*
351	 * By doing switch() on the bit mask "wrap" we avoid having to
352	 * check two variables for all permutations: --> faster!
353	 */
354	switch (wrap) {
355	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
356		if (d1 < d2)
357			return rq1;
358		else if (d2 < d1)
359			return rq2;
360		else {
361			if (s1 >= s2)
362				return rq1;
363			else
364				return rq2;
365		}
366
367	case CFQ_RQ2_WRAP:
368		return rq1;
369	case CFQ_RQ1_WRAP:
370		return rq2;
371	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
372	default:
373		/*
374		 * Since both rqs are wrapped,
375		 * start with the one that's further behind head
376		 * (--> only *one* back seek required),
377		 * since back seek takes more time than forward.
378		 */
379		if (s1 <= s2)
380			return rq1;
381		else
382			return rq2;
383	}
384}
385
386/*
387 * The below is leftmost cache rbtree addon
388 */
389static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
390{
391	if (!root->left)
392		root->left = rb_first(&root->rb);
393
394	return root->left;
395}
396
397static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
398{
399	if (root->left == n)
400		root->left = NULL;
401
402	rb_erase(n, &root->rb);
403	RB_CLEAR_NODE(n);
404}
405
406/*
407 * would be nice to take fifo expire time into account as well
408 */
409static struct request *
410cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
411		  struct request *last)
412{
413	struct rb_node *rbnext = rb_next(&last->rb_node);
414	struct rb_node *rbprev = rb_prev(&last->rb_node);
415	struct request *next = NULL, *prev = NULL;
416
417	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
418
419	if (rbprev)
420		prev = rb_entry_rq(rbprev);
421
422	if (rbnext)
423		next = rb_entry_rq(rbnext);
424	else {
425		rbnext = rb_first(&cfqq->sort_list);
426		if (rbnext && rbnext != &last->rb_node)
427			next = rb_entry_rq(rbnext);
428	}
429
430	return cfq_choose_req(cfqd, next, prev);
431}
432
433static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
434				      struct cfq_queue *cfqq)
435{
436	/*
437	 * just an approximation, should be ok.
438	 */
439	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
440		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
441}
442
443/*
444 * The cfqd->service_tree holds all pending cfq_queue's that have
445 * requests waiting to be processed. It is sorted in the order that
446 * we will service the queues.
447 */
448static void cfq_service_tree_add(struct cfq_data *cfqd,
449				    struct cfq_queue *cfqq, int add_front)
450{
451	struct rb_node **p = &cfqd->service_tree.rb.rb_node;
452	struct rb_node *parent = NULL;
453	unsigned long rb_key;
454	int left;
455
456	if (!add_front) {
457		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
458		rb_key += cfqq->slice_resid;
459		cfqq->slice_resid = 0;
460	} else
461		rb_key = 0;
462
463	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
464		/*
465		 * same position, nothing more to do
466		 */
467		if (rb_key == cfqq->rb_key)
468			return;
469
470		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
471	}
472
473	left = 1;
474	while (*p) {
475		struct cfq_queue *__cfqq;
476		struct rb_node **n;
477
478		parent = *p;
479		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
480
481		/*
482		 * sort RT queues first, we always want to give
483		 * preference to them. IDLE queues goes to the back.
484		 * after that, sort on the next service time.
485		 */
486		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
487			n = &(*p)->rb_left;
488		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
489			n = &(*p)->rb_right;
490		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
491			n = &(*p)->rb_left;
492		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
493			n = &(*p)->rb_right;
494		else if (rb_key < __cfqq->rb_key)
495			n = &(*p)->rb_left;
496		else
497			n = &(*p)->rb_right;
498
499		if (n == &(*p)->rb_right)
500			left = 0;
501
502		p = n;
503	}
504
505	if (left)
506		cfqd->service_tree.left = &cfqq->rb_node;
507
508	cfqq->rb_key = rb_key;
509	rb_link_node(&cfqq->rb_node, parent, p);
510	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
511}
512
513/*
514 * Update cfqq's position in the service tree.
515 */
516static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
517{
518	/*
519	 * Resorting requires the cfqq to be on the RR list already.
520	 */
521	if (cfq_cfqq_on_rr(cfqq))
522		cfq_service_tree_add(cfqd, cfqq, 0);
523}
524
525/*
526 * add to busy list of queues for service, trying to be fair in ordering
527 * the pending list according to last request service
528 */
529static inline void
530cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
531{
532	BUG_ON(cfq_cfqq_on_rr(cfqq));
533	cfq_mark_cfqq_on_rr(cfqq);
534	cfqd->busy_queues++;
535
536	cfq_resort_rr_list(cfqd, cfqq);
537}
538
539/*
540 * Called when the cfqq no longer has requests pending, remove it from
541 * the service tree.
542 */
543static inline void
544cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
545{
546	BUG_ON(!cfq_cfqq_on_rr(cfqq));
547	cfq_clear_cfqq_on_rr(cfqq);
548
549	if (!RB_EMPTY_NODE(&cfqq->rb_node))
550		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
551
552	BUG_ON(!cfqd->busy_queues);
553	cfqd->busy_queues--;
554}
555
556/*
557 * rb tree support functions
558 */
559static inline void cfq_del_rq_rb(struct request *rq)
560{
561	struct cfq_queue *cfqq = RQ_CFQQ(rq);
562	struct cfq_data *cfqd = cfqq->cfqd;
563	const int sync = rq_is_sync(rq);
564
565	BUG_ON(!cfqq->queued[sync]);
566	cfqq->queued[sync]--;
567
568	elv_rb_del(&cfqq->sort_list, rq);
569
570	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
571		cfq_del_cfqq_rr(cfqd, cfqq);
572}
573
574static void cfq_add_rq_rb(struct request *rq)
575{
576	struct cfq_queue *cfqq = RQ_CFQQ(rq);
577	struct cfq_data *cfqd = cfqq->cfqd;
578	struct request *__alias;
579
580	cfqq->queued[rq_is_sync(rq)]++;
581
582	/*
583	 * looks a little odd, but the first insert might return an alias.
584	 * if that happens, put the alias on the dispatch list
585	 */
586	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
587		cfq_dispatch_insert(cfqd->queue, __alias);
588
589	if (!cfq_cfqq_on_rr(cfqq))
590		cfq_add_cfqq_rr(cfqd, cfqq);
591
592	/*
593	 * check if this request is a better next-serve candidate
594	 */
595	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
596	BUG_ON(!cfqq->next_rq);
597}
598
599static inline void
600cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
601{
602	elv_rb_del(&cfqq->sort_list, rq);
603	cfqq->queued[rq_is_sync(rq)]--;
604	cfq_add_rq_rb(rq);
605}
606
607static struct request *
608cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
609{
610	struct task_struct *tsk = current;
611	pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
612	struct cfq_queue *cfqq;
613
614	cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
615	if (cfqq) {
616		sector_t sector = bio->bi_sector + bio_sectors(bio);
617
618		return elv_rb_find(&cfqq->sort_list, sector);
619	}
620
621	return NULL;
622}
623
624static void cfq_activate_request(request_queue_t *q, struct request *rq)
625{
626	struct cfq_data *cfqd = q->elevator->elevator_data;
627
628	cfqd->rq_in_driver++;
629
630	/*
631	 * If the depth is larger 1, it really could be queueing. But lets
632	 * make the mark a little higher - idling could still be good for
633	 * low queueing, and a low queueing number could also just indicate
634	 * a SCSI mid layer like behaviour where limit+1 is often seen.
635	 */
636	if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
637		cfqd->hw_tag = 1;
638
639	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
640}
641
642static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
643{
644	struct cfq_data *cfqd = q->elevator->elevator_data;
645
646	WARN_ON(!cfqd->rq_in_driver);
647	cfqd->rq_in_driver--;
648}
649
650static void cfq_remove_request(struct request *rq)
651{
652	struct cfq_queue *cfqq = RQ_CFQQ(rq);
653
654	if (cfqq->next_rq == rq)
655		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
656
657	list_del_init(&rq->queuelist);
658	cfq_del_rq_rb(rq);
659
660	if (rq_is_meta(rq)) {
661		WARN_ON(!cfqq->meta_pending);
662		cfqq->meta_pending--;
663	}
664}
665
666static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
667{
668	struct cfq_data *cfqd = q->elevator->elevator_data;
669	struct request *__rq;
670
671	__rq = cfq_find_rq_fmerge(cfqd, bio);
672	if (__rq && elv_rq_merge_ok(__rq, bio)) {
673		*req = __rq;
674		return ELEVATOR_FRONT_MERGE;
675	}
676
677	return ELEVATOR_NO_MERGE;
678}
679
680static void cfq_merged_request(request_queue_t *q, struct request *req,
681			       int type)
682{
683	if (type == ELEVATOR_FRONT_MERGE) {
684		struct cfq_queue *cfqq = RQ_CFQQ(req);
685
686		cfq_reposition_rq_rb(cfqq, req);
687	}
688}
689
690static void
691cfq_merged_requests(request_queue_t *q, struct request *rq,
692		    struct request *next)
693{
694	/*
695	 * reposition in fifo if next is older than rq
696	 */
697	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
698	    time_before(next->start_time, rq->start_time))
699		list_move(&rq->queuelist, &next->queuelist);
700
701	cfq_remove_request(next);
702}
703
704static int cfq_allow_merge(request_queue_t *q, struct request *rq,
705			   struct bio *bio)
706{
707	struct cfq_data *cfqd = q->elevator->elevator_data;
708	const int rw = bio_data_dir(bio);
709	struct cfq_queue *cfqq;
710	pid_t key;
711
712	/*
713	 * Disallow merge of a sync bio into an async request.
714	 */
715	if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
716		return 0;
717
718	/*
719	 * Lookup the cfqq that this bio will be queued with. Allow
720	 * merge only if rq is queued there.
721	 */
722	key = cfq_queue_pid(current, rw, bio_sync(bio));
723	cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
724
725	if (cfqq == RQ_CFQQ(rq))
726		return 1;
727
728	return 0;
729}
730
731static inline void
732__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
733{
734	if (cfqq) {
735		/*
736		 * stop potential idle class queues waiting service
737		 */
738		del_timer(&cfqd->idle_class_timer);
739
740		cfqq->slice_end = 0;
741		cfq_clear_cfqq_must_alloc_slice(cfqq);
742		cfq_clear_cfqq_fifo_expire(cfqq);
743		cfq_mark_cfqq_slice_new(cfqq);
744		cfq_clear_cfqq_queue_new(cfqq);
745	}
746
747	cfqd->active_queue = cfqq;
748}
749
750/*
751 * current cfqq expired its slice (or was too idle), select new one
752 */
753static void
754__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755		    int timed_out)
756{
757	if (cfq_cfqq_wait_request(cfqq))
758		del_timer(&cfqd->idle_slice_timer);
759
760	cfq_clear_cfqq_must_dispatch(cfqq);
761	cfq_clear_cfqq_wait_request(cfqq);
762
763	/*
764	 * store what was left of this slice, if the queue idled/timed out
765	 */
766	if (timed_out && !cfq_cfqq_slice_new(cfqq))
767		cfqq->slice_resid = cfqq->slice_end - jiffies;
768
769	cfq_resort_rr_list(cfqd, cfqq);
770
771	if (cfqq == cfqd->active_queue)
772		cfqd->active_queue = NULL;
773
774	if (cfqd->active_cic) {
775		put_io_context(cfqd->active_cic->ioc);
776		cfqd->active_cic = NULL;
777	}
778}
779
780static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
781{
782	struct cfq_queue *cfqq = cfqd->active_queue;
783
784	if (cfqq)
785		__cfq_slice_expired(cfqd, cfqq, timed_out);
786}
787
788/*
789 * Get next queue for service. Unless we have a queue preemption,
790 * we'll simply select the first cfqq in the service tree.
791 */
792static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
793{
794	struct cfq_queue *cfqq;
795	struct rb_node *n;
796
797	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
798		return NULL;
799
800	n = cfq_rb_first(&cfqd->service_tree);
801	cfqq = rb_entry(n, struct cfq_queue, rb_node);
802
803	if (cfq_class_idle(cfqq)) {
804		unsigned long end;
805
806		/*
807		 * if we have idle queues and no rt or be queues had
808		 * pending requests, either allow immediate service if
809		 * the grace period has passed or arm the idle grace
810		 * timer
811		 */
812		end = cfqd->last_end_request + CFQ_IDLE_GRACE;
813		if (time_before(jiffies, end)) {
814			mod_timer(&cfqd->idle_class_timer, end);
815			cfqq = NULL;
816		}
817	}
818
819	return cfqq;
820}
821
822/*
823 * Get and set a new active queue for service.
824 */
825static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
826{
827	struct cfq_queue *cfqq;
828
829	cfqq = cfq_get_next_queue(cfqd);
830	__cfq_set_active_queue(cfqd, cfqq);
831	return cfqq;
832}
833
834static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
835					  struct request *rq)
836{
837	if (rq->sector >= cfqd->last_position)
838		return rq->sector - cfqd->last_position;
839	else
840		return cfqd->last_position - rq->sector;
841}
842
843static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
844{
845	struct cfq_io_context *cic = cfqd->active_cic;
846
847	if (!sample_valid(cic->seek_samples))
848		return 0;
849
850	return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
851}
852
853static int cfq_close_cooperator(struct cfq_data *cfq_data,
854				struct cfq_queue *cfqq)
855{
856	/*
857	 * We should notice if some of the queues are cooperating, eg
858	 * working closely on the same area of the disk. In that case,
859	 * we can group them together and don't waste time idling.
860	 */
861	return 0;
862}
863
864#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
865
866static void cfq_arm_slice_timer(struct cfq_data *cfqd)
867{
868	struct cfq_queue *cfqq = cfqd->active_queue;
869	struct cfq_io_context *cic;
870	unsigned long sl;
871
872	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
873	WARN_ON(cfq_cfqq_slice_new(cfqq));
874
875	/*
876	 * idle is disabled, either manually or by past process history
877	 */
878	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
879		return;
880
881	/*
882	 * task has exited, don't wait
883	 */
884	cic = cfqd->active_cic;
885	if (!cic || !cic->ioc->task)
886		return;
887
888	/*
889	 * See if this prio level has a good candidate
890	 */
891	if (cfq_close_cooperator(cfqd, cfqq) &&
892	    (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
893		return;
894
895	cfq_mark_cfqq_must_dispatch(cfqq);
896	cfq_mark_cfqq_wait_request(cfqq);
897
898	/*
899	 * we don't want to idle for seeks, but we do want to allow
900	 * fair distribution of slice time for a process doing back-to-back
901	 * seeks. so allow a little bit of time for him to submit a new rq
902	 */
903	sl = cfqd->cfq_slice_idle;
904	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
905		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
906
907	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
908}
909
910/*
911 * Move request from internal lists to the request queue dispatch list.
912 */
913static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
914{
915	struct cfq_data *cfqd = q->elevator->elevator_data;
916	struct cfq_queue *cfqq = RQ_CFQQ(rq);
917
918	cfq_remove_request(rq);
919	cfqq->dispatched++;
920	elv_dispatch_sort(q, rq);
921
922	if (cfq_cfqq_sync(cfqq))
923		cfqd->sync_flight++;
924}
925
926/*
927 * return expired entry, or NULL to just start from scratch in rbtree
928 */
929static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
930{
931	struct cfq_data *cfqd = cfqq->cfqd;
932	struct request *rq;
933	int fifo;
934
935	if (cfq_cfqq_fifo_expire(cfqq))
936		return NULL;
937
938	cfq_mark_cfqq_fifo_expire(cfqq);
939
940	if (list_empty(&cfqq->fifo))
941		return NULL;
942
943	fifo = cfq_cfqq_sync(cfqq);
944	rq = rq_entry_fifo(cfqq->fifo.next);
945
946	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
947		return NULL;
948
949	return rq;
950}
951
952static inline int
953cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
954{
955	const int base_rq = cfqd->cfq_slice_async_rq;
956
957	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
958
959	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
960}
961
962/*
963 * Select a queue for service. If we have a current active queue,
964 * check whether to continue servicing it, or retrieve and set a new one.
965 */
966static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
967{
968	struct cfq_queue *cfqq;
969
970	cfqq = cfqd->active_queue;
971	if (!cfqq)
972		goto new_queue;
973
974	/*
975	 * The active queue has run out of time, expire it and select new.
976	 */
977	if (cfq_slice_used(cfqq))
978		goto expire;
979
980	/*
981	 * The active queue has requests and isn't expired, allow it to
982	 * dispatch.
983	 */
984	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
985		goto keep_queue;
986
987	/*
988	 * No requests pending. If the active queue still has requests in
989	 * flight or is idling for a new request, allow either of these
990	 * conditions to happen (or time out) before selecting a new queue.
991	 */
992	if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
993		cfqq = NULL;
994		goto keep_queue;
995	}
996
997expire:
998	cfq_slice_expired(cfqd, 0);
999new_queue:
1000	cfqq = cfq_set_active_queue(cfqd);
1001keep_queue:
1002	return cfqq;
1003}
1004
1005/*
1006 * Dispatch some requests from cfqq, moving them to the request queue
1007 * dispatch list.
1008 */
1009static int
1010__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1011			int max_dispatch)
1012{
1013	int dispatched = 0;
1014
1015	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1016
1017	do {
1018		struct request *rq;
1019
1020		/*
1021		 * follow expired path, else get first next available
1022		 */
1023		if ((rq = cfq_check_fifo(cfqq)) == NULL)
1024			rq = cfqq->next_rq;
1025
1026		/*
1027		 * finally, insert request into driver dispatch list
1028		 */
1029		cfq_dispatch_insert(cfqd->queue, rq);
1030
1031		dispatched++;
1032
1033		if (!cfqd->active_cic) {
1034			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1035			cfqd->active_cic = RQ_CIC(rq);
1036		}
1037
1038		if (RB_EMPTY_ROOT(&cfqq->sort_list))
1039			break;
1040
1041	} while (dispatched < max_dispatch);
1042
1043	/*
1044	 * expire an async queue immediately if it has used up its slice. idle
1045	 * queue always expire after 1 dispatch round.
1046	 */
1047	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1048	    dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1049	    cfq_class_idle(cfqq))) {
1050		cfqq->slice_end = jiffies + 1;
1051		cfq_slice_expired(cfqd, 0);
1052	}
1053
1054	return dispatched;
1055}
1056
1057static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1058{
1059	int dispatched = 0;
1060
1061	while (cfqq->next_rq) {
1062		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1063		dispatched++;
1064	}
1065
1066	BUG_ON(!list_empty(&cfqq->fifo));
1067	return dispatched;
1068}
1069
1070/*
1071 * Drain our current requests. Used for barriers and when switching
1072 * io schedulers on-the-fly.
1073 */
1074static int cfq_forced_dispatch(struct cfq_data *cfqd)
1075{
1076	int dispatched = 0;
1077	struct rb_node *n;
1078
1079	while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1080		struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1081
1082		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1083	}
1084
1085	cfq_slice_expired(cfqd, 0);
1086
1087	BUG_ON(cfqd->busy_queues);
1088
1089	return dispatched;
1090}
1091
1092static int cfq_dispatch_requests(request_queue_t *q, int force)
1093{
1094	struct cfq_data *cfqd = q->elevator->elevator_data;
1095	struct cfq_queue *cfqq;
1096	int dispatched;
1097
1098	if (!cfqd->busy_queues)
1099		return 0;
1100
1101	if (unlikely(force))
1102		return cfq_forced_dispatch(cfqd);
1103
1104	dispatched = 0;
1105	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1106		int max_dispatch;
1107
1108		max_dispatch = cfqd->cfq_quantum;
1109		if (cfq_class_idle(cfqq))
1110			max_dispatch = 1;
1111
1112		if (cfqq->dispatched >= max_dispatch) {
1113			if (cfqd->busy_queues > 1)
1114				break;
1115			if (cfqq->dispatched >= 4 * max_dispatch)
1116				break;
1117		}
1118
1119		if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1120			break;
1121
1122		cfq_clear_cfqq_must_dispatch(cfqq);
1123		cfq_clear_cfqq_wait_request(cfqq);
1124		del_timer(&cfqd->idle_slice_timer);
1125
1126		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1127	}
1128
1129	return dispatched;
1130}
1131
1132/*
1133 * task holds one reference to the queue, dropped when task exits. each rq
1134 * in-flight on this queue also holds a reference, dropped when rq is freed.
1135 *
1136 * queue lock must be held here.
1137 */
1138static void cfq_put_queue(struct cfq_queue *cfqq)
1139{
1140	struct cfq_data *cfqd = cfqq->cfqd;
1141
1142	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1143
1144	if (!atomic_dec_and_test(&cfqq->ref))
1145		return;
1146
1147	BUG_ON(rb_first(&cfqq->sort_list));
1148	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1149	BUG_ON(cfq_cfqq_on_rr(cfqq));
1150
1151	if (unlikely(cfqd->active_queue == cfqq)) {
1152		__cfq_slice_expired(cfqd, cfqq, 0);
1153		cfq_schedule_dispatch(cfqd);
1154	}
1155
1156	/*
1157	 * it's on the empty list and still hashed
1158	 */
1159	hlist_del(&cfqq->cfq_hash);
1160	kmem_cache_free(cfq_pool, cfqq);
1161}
1162
1163static struct cfq_queue *
1164__cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1165		    const int hashval)
1166{
1167	struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1168	struct hlist_node *entry;
1169	struct cfq_queue *__cfqq;
1170
1171	hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1172		const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1173
1174		if (__cfqq->key == key && (__p == prio || !prio))
1175			return __cfqq;
1176	}
1177
1178	return NULL;
1179}
1180
1181static struct cfq_queue *
1182cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1183{
1184	return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1185}
1186
1187static void cfq_free_io_context(struct io_context *ioc)
1188{
1189	struct cfq_io_context *__cic;
1190	struct rb_node *n;
1191	int freed = 0;
1192
1193	while ((n = rb_first(&ioc->cic_root)) != NULL) {
1194		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1195		rb_erase(&__cic->rb_node, &ioc->cic_root);
1196		kmem_cache_free(cfq_ioc_pool, __cic);
1197		freed++;
1198	}
1199
1200	elv_ioc_count_mod(ioc_count, -freed);
1201
1202	if (ioc_gone && !elv_ioc_count_read(ioc_count))
1203		complete(ioc_gone);
1204}
1205
1206static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1207{
1208	if (unlikely(cfqq == cfqd->active_queue)) {
1209		__cfq_slice_expired(cfqd, cfqq, 0);
1210		cfq_schedule_dispatch(cfqd);
1211	}
1212
1213	cfq_put_queue(cfqq);
1214}
1215
1216static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1217					 struct cfq_io_context *cic)
1218{
1219	list_del_init(&cic->queue_list);
1220	smp_wmb();
1221	cic->key = NULL;
1222
1223	if (cic->cfqq[ASYNC]) {
1224		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1225		cic->cfqq[ASYNC] = NULL;
1226	}
1227
1228	if (cic->cfqq[SYNC]) {
1229		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1230		cic->cfqq[SYNC] = NULL;
1231	}
1232}
1233
1234static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1235{
1236	struct cfq_data *cfqd = cic->key;
1237
1238	if (cfqd) {
1239		request_queue_t *q = cfqd->queue;
1240
1241		spin_lock_irq(q->queue_lock);
1242		__cfq_exit_single_io_context(cfqd, cic);
1243		spin_unlock_irq(q->queue_lock);
1244	}
1245}
1246
1247/*
1248 * The process that ioc belongs to has exited, we need to clean up
1249 * and put the internal structures we have that belongs to that process.
1250 */
1251static void cfq_exit_io_context(struct io_context *ioc)
1252{
1253	struct cfq_io_context *__cic;
1254	struct rb_node *n;
1255
1256	/*
1257	 * put the reference this task is holding to the various queues
1258	 */
1259
1260	n = rb_first(&ioc->cic_root);
1261	while (n != NULL) {
1262		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1263
1264		cfq_exit_single_io_context(__cic);
1265		n = rb_next(n);
1266	}
1267}
1268
1269static struct cfq_io_context *
1270cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1271{
1272	struct cfq_io_context *cic;
1273
1274	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1275	if (cic) {
1276		memset(cic, 0, sizeof(*cic));
1277		cic->last_end_request = jiffies;
1278		INIT_LIST_HEAD(&cic->queue_list);
1279		cic->dtor = cfq_free_io_context;
1280		cic->exit = cfq_exit_io_context;
1281		elv_ioc_count_inc(ioc_count);
1282	}
1283
1284	return cic;
1285}
1286
1287static void cfq_init_prio_data(struct cfq_queue *cfqq)
1288{
1289	struct task_struct *tsk = current;
1290	int ioprio_class;
1291
1292	if (!cfq_cfqq_prio_changed(cfqq))
1293		return;
1294
1295	ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1296	switch (ioprio_class) {
1297		default:
1298			printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1299		case IOPRIO_CLASS_NONE:
1300			/*
1301			 * no prio set, place us in the middle of the BE classes
1302			 */
1303			cfqq->ioprio = task_nice_ioprio(tsk);
1304			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1305			break;
1306		case IOPRIO_CLASS_RT:
1307			cfqq->ioprio = task_ioprio(tsk);
1308			cfqq->ioprio_class = IOPRIO_CLASS_RT;
1309			break;
1310		case IOPRIO_CLASS_BE:
1311			cfqq->ioprio = task_ioprio(tsk);
1312			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1313			break;
1314		case IOPRIO_CLASS_IDLE:
1315			cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1316			cfqq->ioprio = 7;
1317			cfq_clear_cfqq_idle_window(cfqq);
1318			break;
1319	}
1320
1321	/*
1322	 * keep track of original prio settings in case we have to temporarily
1323	 * elevate the priority of this queue
1324	 */
1325	cfqq->org_ioprio = cfqq->ioprio;
1326	cfqq->org_ioprio_class = cfqq->ioprio_class;
1327	cfq_clear_cfqq_prio_changed(cfqq);
1328}
1329
1330static inline void changed_ioprio(struct cfq_io_context *cic)
1331{
1332	struct cfq_data *cfqd = cic->key;
1333	struct cfq_queue *cfqq;
1334	unsigned long flags;
1335
1336	if (unlikely(!cfqd))
1337		return;
1338
1339	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1340
1341	cfqq = cic->cfqq[ASYNC];
1342	if (cfqq) {
1343		struct cfq_queue *new_cfqq;
1344		new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1345					 GFP_ATOMIC);
1346		if (new_cfqq) {
1347			cic->cfqq[ASYNC] = new_cfqq;
1348			cfq_put_queue(cfqq);
1349		}
1350	}
1351
1352	cfqq = cic->cfqq[SYNC];
1353	if (cfqq)
1354		cfq_mark_cfqq_prio_changed(cfqq);
1355
1356	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1357}
1358
1359static void cfq_ioc_set_ioprio(struct io_context *ioc)
1360{
1361	struct cfq_io_context *cic;
1362	struct rb_node *n;
1363
1364	ioc->ioprio_changed = 0;
1365
1366	n = rb_first(&ioc->cic_root);
1367	while (n != NULL) {
1368		cic = rb_entry(n, struct cfq_io_context, rb_node);
1369
1370		changed_ioprio(cic);
1371		n = rb_next(n);
1372	}
1373}
1374
1375static struct cfq_queue *
1376cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1377	      gfp_t gfp_mask)
1378{
1379	const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1380	struct cfq_queue *cfqq, *new_cfqq = NULL;
1381	unsigned short ioprio;
1382
1383retry:
1384	ioprio = tsk->ioprio;
1385	cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1386
1387	if (!cfqq) {
1388		if (new_cfqq) {
1389			cfqq = new_cfqq;
1390			new_cfqq = NULL;
1391		} else if (gfp_mask & __GFP_WAIT) {
1392			/*
1393			 * Inform the allocator of the fact that we will
1394			 * just repeat this allocation if it fails, to allow
1395			 * the allocator to do whatever it needs to attempt to
1396			 * free memory.
1397			 */
1398			spin_unlock_irq(cfqd->queue->queue_lock);
1399			new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1400			spin_lock_irq(cfqd->queue->queue_lock);
1401			goto retry;
1402		} else {
1403			cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1404			if (!cfqq)
1405				goto out;
1406		}
1407
1408		memset(cfqq, 0, sizeof(*cfqq));
1409
1410		INIT_HLIST_NODE(&cfqq->cfq_hash);
1411		RB_CLEAR_NODE(&cfqq->rb_node);
1412		INIT_LIST_HEAD(&cfqq->fifo);
1413
1414		cfqq->key = key;
1415		hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1416		atomic_set(&cfqq->ref, 0);
1417		cfqq->cfqd = cfqd;
1418
1419		if (key != CFQ_KEY_ASYNC)
1420			cfq_mark_cfqq_idle_window(cfqq);
1421
1422		cfq_mark_cfqq_prio_changed(cfqq);
1423		cfq_mark_cfqq_queue_new(cfqq);
1424		cfq_init_prio_data(cfqq);
1425	}
1426
1427	if (new_cfqq)
1428		kmem_cache_free(cfq_pool, new_cfqq);
1429
1430	atomic_inc(&cfqq->ref);
1431out:
1432	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1433	return cfqq;
1434}
1435
1436/*
1437 * We drop cfq io contexts lazily, so we may find a dead one.
1438 */
1439static void
1440cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1441{
1442	WARN_ON(!list_empty(&cic->queue_list));
1443	rb_erase(&cic->rb_node, &ioc->cic_root);
1444	kmem_cache_free(cfq_ioc_pool, cic);
1445	elv_ioc_count_dec(ioc_count);
1446}
1447
1448static struct cfq_io_context *
1449cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1450{
1451	struct rb_node *n;
1452	struct cfq_io_context *cic;
1453	void *k, *key = cfqd;
1454
1455restart:
1456	n = ioc->cic_root.rb_node;
1457	while (n) {
1458		cic = rb_entry(n, struct cfq_io_context, rb_node);
1459		/* ->key must be copied to avoid race with cfq_exit_queue() */
1460		k = cic->key;
1461		if (unlikely(!k)) {
1462			cfq_drop_dead_cic(ioc, cic);
1463			goto restart;
1464		}
1465
1466		if (key < k)
1467			n = n->rb_left;
1468		else if (key > k)
1469			n = n->rb_right;
1470		else
1471			return cic;
1472	}
1473
1474	return NULL;
1475}
1476
1477static inline void
1478cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1479	     struct cfq_io_context *cic)
1480{
1481	struct rb_node **p;
1482	struct rb_node *parent;
1483	struct cfq_io_context *__cic;
1484	unsigned long flags;
1485	void *k;
1486
1487	cic->ioc = ioc;
1488	cic->key = cfqd;
1489
1490restart:
1491	parent = NULL;
1492	p = &ioc->cic_root.rb_node;
1493	while (*p) {
1494		parent = *p;
1495		__cic = rb_entry(parent, struct cfq_io_context, rb_node);
1496		/* ->key must be copied to avoid race with cfq_exit_queue() */
1497		k = __cic->key;
1498		if (unlikely(!k)) {
1499			cfq_drop_dead_cic(ioc, __cic);
1500			goto restart;
1501		}
1502
1503		if (cic->key < k)
1504			p = &(*p)->rb_left;
1505		else if (cic->key > k)
1506			p = &(*p)->rb_right;
1507		else
1508			BUG();
1509	}
1510
1511	rb_link_node(&cic->rb_node, parent, p);
1512	rb_insert_color(&cic->rb_node, &ioc->cic_root);
1513
1514	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1515	list_add(&cic->queue_list, &cfqd->cic_list);
1516	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1517}
1518
1519/*
1520 * Setup general io context and cfq io context. There can be several cfq
1521 * io contexts per general io context, if this process is doing io to more
1522 * than one device managed by cfq.
1523 */
1524static struct cfq_io_context *
1525cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1526{
1527	struct io_context *ioc = NULL;
1528	struct cfq_io_context *cic;
1529
1530	might_sleep_if(gfp_mask & __GFP_WAIT);
1531
1532	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1533	if (!ioc)
1534		return NULL;
1535
1536	cic = cfq_cic_rb_lookup(cfqd, ioc);
1537	if (cic)
1538		goto out;
1539
1540	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1541	if (cic == NULL)
1542		goto err;
1543
1544	cfq_cic_link(cfqd, ioc, cic);
1545out:
1546	smp_read_barrier_depends();
1547	if (unlikely(ioc->ioprio_changed))
1548		cfq_ioc_set_ioprio(ioc);
1549
1550	return cic;
1551err:
1552	put_io_context(ioc);
1553	return NULL;
1554}
1555
1556static void
1557cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1558{
1559	unsigned long elapsed = jiffies - cic->last_end_request;
1560	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1561
1562	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1563	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1564	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1565}
1566
1567static void
1568cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1569		       struct request *rq)
1570{
1571	sector_t sdist;
1572	u64 total;
1573
1574	if (cic->last_request_pos < rq->sector)
1575		sdist = rq->sector - cic->last_request_pos;
1576	else
1577		sdist = cic->last_request_pos - rq->sector;
1578
1579	if (!cic->seek_samples) {
1580		cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1581		cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1582	}
1583
1584	/*
1585	 * Don't allow the seek distance to get too large from the
1586	 * odd fragment, pagein, etc
1587	 */
1588	if (cic->seek_samples <= 60) /* second&third seek */
1589		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1590	else
1591		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1592
1593	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1594	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1595	total = cic->seek_total + (cic->seek_samples/2);
1596	do_div(total, cic->seek_samples);
1597	cic->seek_mean = (sector_t)total;
1598}
1599
1600/*
1601 * Disable idle window if the process thinks too long or seeks so much that
1602 * it doesn't matter
1603 */
1604static void
1605cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1606		       struct cfq_io_context *cic)
1607{
1608	int enable_idle;
1609
1610	if (!cfq_cfqq_sync(cfqq))
1611		return;
1612
1613	enable_idle = cfq_cfqq_idle_window(cfqq);
1614
1615	if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1616	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1617		enable_idle = 0;
1618	else if (sample_valid(cic->ttime_samples)) {
1619		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1620			enable_idle = 0;
1621		else
1622			enable_idle = 1;
1623	}
1624
1625	if (enable_idle)
1626		cfq_mark_cfqq_idle_window(cfqq);
1627	else
1628		cfq_clear_cfqq_idle_window(cfqq);
1629}
1630
1631/*
1632 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1633 * no or if we aren't sure, a 1 will cause a preempt.
1634 */
1635static int
1636cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1637		   struct request *rq)
1638{
1639	struct cfq_queue *cfqq;
1640
1641	cfqq = cfqd->active_queue;
1642	if (!cfqq)
1643		return 0;
1644
1645	if (cfq_slice_used(cfqq))
1646		return 1;
1647
1648	if (cfq_class_idle(new_cfqq))
1649		return 0;
1650
1651	if (cfq_class_idle(cfqq))
1652		return 1;
1653
1654	/*
1655	 * if the new request is sync, but the currently running queue is
1656	 * not, let the sync request have priority.
1657	 */
1658	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1659		return 1;
1660
1661	/*
1662	 * So both queues are sync. Let the new request get disk time if
1663	 * it's a metadata request and the current queue is doing regular IO.
1664	 */
1665	if (rq_is_meta(rq) && !cfqq->meta_pending)
1666		return 1;
1667
1668	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1669		return 0;
1670
1671	/*
1672	 * if this request is as-good as one we would expect from the
1673	 * current cfqq, let it preempt
1674	 */
1675	if (cfq_rq_close(cfqd, rq))
1676		return 1;
1677
1678	return 0;
1679}
1680
1681/*
1682 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1683 * let it have half of its nominal slice.
1684 */
1685static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1686{
1687	cfq_slice_expired(cfqd, 1);
1688
1689	/*
1690	 * Put the new queue at the front of the of the current list,
1691	 * so we know that it will be selected next.
1692	 */
1693	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1694
1695	cfq_service_tree_add(cfqd, cfqq, 1);
1696
1697	cfqq->slice_end = 0;
1698	cfq_mark_cfqq_slice_new(cfqq);
1699}
1700
1701/*
1702 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1703 * something we should do about it
1704 */
1705static void
1706cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1707		struct request *rq)
1708{
1709	struct cfq_io_context *cic = RQ_CIC(rq);
1710
1711	if (rq_is_meta(rq))
1712		cfqq->meta_pending++;
1713
1714	cfq_update_io_thinktime(cfqd, cic);
1715	cfq_update_io_seektime(cfqd, cic, rq);
1716	cfq_update_idle_window(cfqd, cfqq, cic);
1717
1718	cic->last_request_pos = rq->sector + rq->nr_sectors;
1719	cfqq->last_request_pos = cic->last_request_pos;
1720
1721	if (cfqq == cfqd->active_queue) {
1722		/*
1723		 * if we are waiting for a request for this queue, let it rip
1724		 * immediately and flag that we must not expire this queue
1725		 * just now
1726		 */
1727		if (cfq_cfqq_wait_request(cfqq)) {
1728			cfq_mark_cfqq_must_dispatch(cfqq);
1729			del_timer(&cfqd->idle_slice_timer);
1730			blk_start_queueing(cfqd->queue);
1731		}
1732	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1733		/*
1734		 * not the active queue - expire current slice if it is
1735		 * idle and has expired it's mean thinktime or this new queue
1736		 * has some old slice time left and is of higher priority
1737		 */
1738		cfq_preempt_queue(cfqd, cfqq);
1739		cfq_mark_cfqq_must_dispatch(cfqq);
1740		blk_start_queueing(cfqd->queue);
1741	}
1742}
1743
1744static void cfq_insert_request(request_queue_t *q, struct request *rq)
1745{
1746	struct cfq_data *cfqd = q->elevator->elevator_data;
1747	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1748
1749	cfq_init_prio_data(cfqq);
1750
1751	cfq_add_rq_rb(rq);
1752
1753	list_add_tail(&rq->queuelist, &cfqq->fifo);
1754
1755	cfq_rq_enqueued(cfqd, cfqq, rq);
1756}
1757
1758static void cfq_completed_request(request_queue_t *q, struct request *rq)
1759{
1760	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1761	struct cfq_data *cfqd = cfqq->cfqd;
1762	const int sync = rq_is_sync(rq);
1763	unsigned long now;
1764
1765	now = jiffies;
1766
1767	WARN_ON(!cfqd->rq_in_driver);
1768	WARN_ON(!cfqq->dispatched);
1769	cfqd->rq_in_driver--;
1770	cfqq->dispatched--;
1771
1772	if (cfq_cfqq_sync(cfqq))
1773		cfqd->sync_flight--;
1774
1775	if (!cfq_class_idle(cfqq))
1776		cfqd->last_end_request = now;
1777
1778	if (sync)
1779		RQ_CIC(rq)->last_end_request = now;
1780
1781	/*
1782	 * If this is the active queue, check if it needs to be expired,
1783	 * or if we want to idle in case it has no pending requests.
1784	 */
1785	if (cfqd->active_queue == cfqq) {
1786		if (cfq_cfqq_slice_new(cfqq)) {
1787			cfq_set_prio_slice(cfqd, cfqq);
1788			cfq_clear_cfqq_slice_new(cfqq);
1789		}
1790		if (cfq_slice_used(cfqq))
1791			cfq_slice_expired(cfqd, 1);
1792		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1793			cfq_arm_slice_timer(cfqd);
1794	}
1795
1796	if (!cfqd->rq_in_driver)
1797		cfq_schedule_dispatch(cfqd);
1798}
1799
1800/*
1801 * we temporarily boost lower priority queues if they are holding fs exclusive
1802 * resources. they are boosted to normal prio (CLASS_BE/4)
1803 */
1804static void cfq_prio_boost(struct cfq_queue *cfqq)
1805{
1806	if (has_fs_excl()) {
1807		/*
1808		 * boost idle prio on transactions that would lock out other
1809		 * users of the filesystem
1810		 */
1811		if (cfq_class_idle(cfqq))
1812			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1813		if (cfqq->ioprio > IOPRIO_NORM)
1814			cfqq->ioprio = IOPRIO_NORM;
1815	} else {
1816		/*
1817		 * check if we need to unboost the queue
1818		 */
1819		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1820			cfqq->ioprio_class = cfqq->org_ioprio_class;
1821		if (cfqq->ioprio != cfqq->org_ioprio)
1822			cfqq->ioprio = cfqq->org_ioprio;
1823	}
1824}
1825
1826static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1827{
1828	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1829	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1830		cfq_mark_cfqq_must_alloc_slice(cfqq);
1831		return ELV_MQUEUE_MUST;
1832	}
1833
1834	return ELV_MQUEUE_MAY;
1835}
1836
1837static int cfq_may_queue(request_queue_t *q, int rw)
1838{
1839	struct cfq_data *cfqd = q->elevator->elevator_data;
1840	struct task_struct *tsk = current;
1841	struct cfq_queue *cfqq;
1842	unsigned int key;
1843
1844	key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1845
1846	/*
1847	 * don't force setup of a queue from here, as a call to may_queue
1848	 * does not necessarily imply that a request actually will be queued.
1849	 * so just lookup a possibly existing queue, or return 'may queue'
1850	 * if that fails
1851	 */
1852	cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1853	if (cfqq) {
1854		cfq_init_prio_data(cfqq);
1855		cfq_prio_boost(cfqq);
1856
1857		return __cfq_may_queue(cfqq);
1858	}
1859
1860	return ELV_MQUEUE_MAY;
1861}
1862
1863/*
1864 * queue lock held here
1865 */
1866static void cfq_put_request(struct request *rq)
1867{
1868	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1869
1870	if (cfqq) {
1871		const int rw = rq_data_dir(rq);
1872
1873		BUG_ON(!cfqq->allocated[rw]);
1874		cfqq->allocated[rw]--;
1875
1876		put_io_context(RQ_CIC(rq)->ioc);
1877
1878		rq->elevator_private = NULL;
1879		rq->elevator_private2 = NULL;
1880
1881		cfq_put_queue(cfqq);
1882	}
1883}
1884
1885/*
1886 * Allocate cfq data structures associated with this request.
1887 */
1888static int
1889cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1890{
1891	struct cfq_data *cfqd = q->elevator->elevator_data;
1892	struct task_struct *tsk = current;
1893	struct cfq_io_context *cic;
1894	const int rw = rq_data_dir(rq);
1895	const int is_sync = rq_is_sync(rq);
1896	pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1897	struct cfq_queue *cfqq;
1898	unsigned long flags;
1899
1900	might_sleep_if(gfp_mask & __GFP_WAIT);
1901
1902	cic = cfq_get_io_context(cfqd, gfp_mask);
1903
1904	spin_lock_irqsave(q->queue_lock, flags);
1905
1906	if (!cic)
1907		goto queue_fail;
1908
1909	if (!cic->cfqq[is_sync]) {
1910		cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1911		if (!cfqq)
1912			goto queue_fail;
1913
1914		cic->cfqq[is_sync] = cfqq;
1915	} else
1916		cfqq = cic->cfqq[is_sync];
1917
1918	cfqq->allocated[rw]++;
1919	cfq_clear_cfqq_must_alloc(cfqq);
1920	atomic_inc(&cfqq->ref);
1921
1922	spin_unlock_irqrestore(q->queue_lock, flags);
1923
1924	rq->elevator_private = cic;
1925	rq->elevator_private2 = cfqq;
1926	return 0;
1927
1928queue_fail:
1929	if (cic)
1930		put_io_context(cic->ioc);
1931
1932	cfq_schedule_dispatch(cfqd);
1933	spin_unlock_irqrestore(q->queue_lock, flags);
1934	return 1;
1935}
1936
1937static void cfq_kick_queue(struct work_struct *work)
1938{
1939	struct cfq_data *cfqd =
1940		container_of(work, struct cfq_data, unplug_work);
1941	request_queue_t *q = cfqd->queue;
1942	unsigned long flags;
1943
1944	spin_lock_irqsave(q->queue_lock, flags);
1945	blk_start_queueing(q);
1946	spin_unlock_irqrestore(q->queue_lock, flags);
1947}
1948
1949/*
1950 * Timer running if the active_queue is currently idling inside its time slice
1951 */
1952static void cfq_idle_slice_timer(unsigned long data)
1953{
1954	struct cfq_data *cfqd = (struct cfq_data *) data;
1955	struct cfq_queue *cfqq;
1956	unsigned long flags;
1957	int timed_out = 1;
1958
1959	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1960
1961	if ((cfqq = cfqd->active_queue) != NULL) {
1962		timed_out = 0;
1963
1964		/*
1965		 * expired
1966		 */
1967		if (cfq_slice_used(cfqq))
1968			goto expire;
1969
1970		/*
1971		 * only expire and reinvoke request handler, if there are
1972		 * other queues with pending requests
1973		 */
1974		if (!cfqd->busy_queues)
1975			goto out_cont;
1976
1977		/*
1978		 * not expired and it has a request pending, let it dispatch
1979		 */
1980		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1981			cfq_mark_cfqq_must_dispatch(cfqq);
1982			goto out_kick;
1983		}
1984	}
1985expire:
1986	cfq_slice_expired(cfqd, timed_out);
1987out_kick:
1988	cfq_schedule_dispatch(cfqd);
1989out_cont:
1990	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1991}
1992
1993/*
1994 * Timer running if an idle class queue is waiting for service
1995 */
1996static void cfq_idle_class_timer(unsigned long data)
1997{
1998	struct cfq_data *cfqd = (struct cfq_data *) data;
1999	unsigned long flags, end;
2000
2001	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2002
2003	/*
2004	 * race with a non-idle queue, reset timer
2005	 */
2006	end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2007	if (!time_after_eq(jiffies, end))
2008		mod_timer(&cfqd->idle_class_timer, end);
2009	else
2010		cfq_schedule_dispatch(cfqd);
2011
2012	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2013}
2014
2015static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2016{
2017	del_timer_sync(&cfqd->idle_slice_timer);
2018	del_timer_sync(&cfqd->idle_class_timer);
2019	blk_sync_queue(cfqd->queue);
2020}
2021
2022static void cfq_exit_queue(elevator_t *e)
2023{
2024	struct cfq_data *cfqd = e->elevator_data;
2025	request_queue_t *q = cfqd->queue;
2026
2027	cfq_shutdown_timer_wq(cfqd);
2028
2029	spin_lock_irq(q->queue_lock);
2030
2031	if (cfqd->active_queue)
2032		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2033
2034	while (!list_empty(&cfqd->cic_list)) {
2035		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2036							struct cfq_io_context,
2037							queue_list);
2038
2039		__cfq_exit_single_io_context(cfqd, cic);
2040	}
2041
2042	spin_unlock_irq(q->queue_lock);
2043
2044	cfq_shutdown_timer_wq(cfqd);
2045
2046	kfree(cfqd->cfq_hash);
2047	kfree(cfqd);
2048}
2049
2050static void *cfq_init_queue(request_queue_t *q)
2051{
2052	struct cfq_data *cfqd;
2053	int i;
2054
2055	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2056	if (!cfqd)
2057		return NULL;
2058
2059	memset(cfqd, 0, sizeof(*cfqd));
2060
2061	cfqd->service_tree = CFQ_RB_ROOT;
2062	INIT_LIST_HEAD(&cfqd->cic_list);
2063
2064	cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2065	if (!cfqd->cfq_hash)
2066		goto out_free;
2067
2068	for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2069		INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2070
2071	cfqd->queue = q;
2072
2073	init_timer(&cfqd->idle_slice_timer);
2074	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2075	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2076
2077	init_timer(&cfqd->idle_class_timer);
2078	cfqd->idle_class_timer.function = cfq_idle_class_timer;
2079	cfqd->idle_class_timer.data = (unsigned long) cfqd;
2080
2081	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2082
2083	cfqd->cfq_quantum = cfq_quantum;
2084	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2085	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2086	cfqd->cfq_back_max = cfq_back_max;
2087	cfqd->cfq_back_penalty = cfq_back_penalty;
2088	cfqd->cfq_slice[0] = cfq_slice_async;
2089	cfqd->cfq_slice[1] = cfq_slice_sync;
2090	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2091	cfqd->cfq_slice_idle = cfq_slice_idle;
2092
2093	return cfqd;
2094out_free:
2095	kfree(cfqd);
2096	return NULL;
2097}
2098
2099static void cfq_slab_kill(void)
2100{
2101	if (cfq_pool)
2102		kmem_cache_destroy(cfq_pool);
2103	if (cfq_ioc_pool)
2104		kmem_cache_destroy(cfq_ioc_pool);
2105}
2106
2107static int __init cfq_slab_setup(void)
2108{
2109	cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2110					NULL, NULL);
2111	if (!cfq_pool)
2112		goto fail;
2113
2114	cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2115			sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2116	if (!cfq_ioc_pool)
2117		goto fail;
2118
2119	return 0;
2120fail:
2121	cfq_slab_kill();
2122	return -ENOMEM;
2123}
2124
2125/*
2126 * sysfs parts below -->
2127 */
2128static ssize_t
2129cfq_var_show(unsigned int var, char *page)
2130{
2131	return sprintf(page, "%d\n", var);
2132}
2133
2134static ssize_t
2135cfq_var_store(unsigned int *var, const char *page, size_t count)
2136{
2137	char *p = (char *) page;
2138
2139	*var = simple_strtoul(p, &p, 10);
2140	return count;
2141}
2142
2143#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2144static ssize_t __FUNC(elevator_t *e, char *page)			\
2145{									\
2146	struct cfq_data *cfqd = e->elevator_data;			\
2147	unsigned int __data = __VAR;					\
2148	if (__CONV)							\
2149		__data = jiffies_to_msecs(__data);			\
2150	return cfq_var_show(__data, (page));				\
2151}
2152SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2153SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2154SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2155SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2156SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2157SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2158SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2159SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2160SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2161#undef SHOW_FUNCTION
2162
2163#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2164static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
2165{									\
2166	struct cfq_data *cfqd = e->elevator_data;			\
2167	unsigned int __data;						\
2168	int ret = cfq_var_store(&__data, (page), count);		\
2169	if (__data < (MIN))						\
2170		__data = (MIN);						\
2171	else if (__data > (MAX))					\
2172		__data = (MAX);						\
2173	if (__CONV)							\
2174		*(__PTR) = msecs_to_jiffies(__data);			\
2175	else								\
2176		*(__PTR) = __data;					\
2177	return ret;							\
2178}
2179STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2180STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2181STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2182STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2183STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2184STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2185STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2186STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2187STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2188#undef STORE_FUNCTION
2189
2190#define CFQ_ATTR(name) \
2191	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2192
2193static struct elv_fs_entry cfq_attrs[] = {
2194	CFQ_ATTR(quantum),
2195	CFQ_ATTR(fifo_expire_sync),
2196	CFQ_ATTR(fifo_expire_async),
2197	CFQ_ATTR(back_seek_max),
2198	CFQ_ATTR(back_seek_penalty),
2199	CFQ_ATTR(slice_sync),
2200	CFQ_ATTR(slice_async),
2201	CFQ_ATTR(slice_async_rq),
2202	CFQ_ATTR(slice_idle),
2203	__ATTR_NULL
2204};
2205
2206static struct elevator_type iosched_cfq = {
2207	.ops = {
2208		.elevator_merge_fn = 		cfq_merge,
2209		.elevator_merged_fn =		cfq_merged_request,
2210		.elevator_merge_req_fn =	cfq_merged_requests,
2211		.elevator_allow_merge_fn =	cfq_allow_merge,
2212		.elevator_dispatch_fn =		cfq_dispatch_requests,
2213		.elevator_add_req_fn =		cfq_insert_request,
2214		.elevator_activate_req_fn =	cfq_activate_request,
2215		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2216		.elevator_queue_empty_fn =	cfq_queue_empty,
2217		.elevator_completed_req_fn =	cfq_completed_request,
2218		.elevator_former_req_fn =	elv_rb_former_request,
2219		.elevator_latter_req_fn =	elv_rb_latter_request,
2220		.elevator_set_req_fn =		cfq_set_request,
2221		.elevator_put_req_fn =		cfq_put_request,
2222		.elevator_may_queue_fn =	cfq_may_queue,
2223		.elevator_init_fn =		cfq_init_queue,
2224		.elevator_exit_fn =		cfq_exit_queue,
2225		.trim =				cfq_free_io_context,
2226	},
2227	.elevator_attrs =	cfq_attrs,
2228	.elevator_name =	"cfq",
2229	.elevator_owner =	THIS_MODULE,
2230};
2231
2232static int __init cfq_init(void)
2233{
2234	int ret;
2235
2236	/*
2237	 * could be 0 on HZ < 1000 setups
2238	 */
2239	if (!cfq_slice_async)
2240		cfq_slice_async = 1;
2241	if (!cfq_slice_idle)
2242		cfq_slice_idle = 1;
2243
2244	if (cfq_slab_setup())
2245		return -ENOMEM;
2246
2247	ret = elv_register(&iosched_cfq);
2248	if (ret)
2249		cfq_slab_kill();
2250
2251	return ret;
2252}
2253
2254static void __exit cfq_exit(void)
2255{
2256	DECLARE_COMPLETION_ONSTACK(all_gone);
2257	elv_unregister(&iosched_cfq);
2258	ioc_gone = &all_gone;
2259	/* ioc_gone's update must be visible before reading ioc_count */
2260	smp_wmb();
2261	if (elv_ioc_count_read(ioc_count))
2262		wait_for_completion(ioc_gone);
2263	synchronize_rcu();
2264	cfq_slab_kill();
2265}
2266
2267module_init(cfq_init);
2268module_exit(cfq_exit);
2269
2270MODULE_AUTHOR("Jens Axboe");
2271MODULE_LICENSE("GPL");
2272MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2273