cfq-iosched.c revision 41647e7a91338dba21773a16af7474ef95e0929e
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16#include "blk-cgroup.h"
17
18/*
19 * tunables
20 */
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
28static const int cfq_slice_sync = HZ / 10;
29static int cfq_slice_async = HZ / 25;
30static const int cfq_slice_async_rq = 2;
31static int cfq_slice_idle = HZ / 125;
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
34
35/*
36 * offset from end of service tree
37 */
38#define CFQ_IDLE_DELAY		(HZ / 5)
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT		(2)
44
45#define CFQ_SLICE_SCALE		(5)
46#define CFQ_HW_QUEUE_MIN	(5)
47#define CFQ_SERVICE_SHIFT       12
48
49#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
50#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
51#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
52
53#define RQ_CIC(rq)		\
54	((struct cfq_io_context *) (rq)->elevator_private)
55#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
56
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
59
60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61static struct completion *ioc_gone;
62static DEFINE_SPINLOCK(ioc_gone_lock);
63
64#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
65#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68#define sample_valid(samples)	((samples) > 80)
69#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
70
71/*
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
76 */
77struct cfq_rb_root {
78	struct rb_root rb;
79	struct rb_node *left;
80	unsigned count;
81	u64 min_vdisktime;
82	struct rb_node *active;
83	unsigned total_weight;
84};
85#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
86
87/*
88 * Per process-grouping structure
89 */
90struct cfq_queue {
91	/* reference count */
92	atomic_t ref;
93	/* various state flags, see below */
94	unsigned int flags;
95	/* parent cfq_data */
96	struct cfq_data *cfqd;
97	/* service_tree member */
98	struct rb_node rb_node;
99	/* service_tree key */
100	unsigned long rb_key;
101	/* prio tree member */
102	struct rb_node p_node;
103	/* prio tree root we belong to, if any */
104	struct rb_root *p_root;
105	/* sorted list of pending requests */
106	struct rb_root sort_list;
107	/* if fifo isn't expired, next request to serve */
108	struct request *next_rq;
109	/* requests queued in sort_list */
110	int queued[2];
111	/* currently allocated requests */
112	int allocated[2];
113	/* fifo list of requests in sort_list */
114	struct list_head fifo;
115
116	/* time when queue got scheduled in to dispatch first request. */
117	unsigned long dispatch_start;
118	unsigned int allocated_slice;
119	unsigned int slice_dispatch;
120	/* time when first request from queue completed and slice started. */
121	unsigned long slice_start;
122	unsigned long slice_end;
123	long slice_resid;
124
125	/* pending metadata requests */
126	int meta_pending;
127	/* number of requests that are on the dispatch list or inside driver */
128	int dispatched;
129
130	/* io prio of this group */
131	unsigned short ioprio, org_ioprio;
132	unsigned short ioprio_class, org_ioprio_class;
133
134	pid_t pid;
135
136	u32 seek_history;
137	sector_t last_request_pos;
138
139	struct cfq_rb_root *service_tree;
140	struct cfq_queue *new_cfqq;
141	struct cfq_group *cfqg;
142	struct cfq_group *orig_cfqg;
143	/* Sectors dispatched in current dispatch round */
144	unsigned long nr_sectors;
145};
146
147/*
148 * First index in the service_trees.
149 * IDLE is handled separately, so it has negative index
150 */
151enum wl_prio_t {
152	BE_WORKLOAD = 0,
153	RT_WORKLOAD = 1,
154	IDLE_WORKLOAD = 2,
155};
156
157/*
158 * Second index in the service_trees.
159 */
160enum wl_type_t {
161	ASYNC_WORKLOAD = 0,
162	SYNC_NOIDLE_WORKLOAD = 1,
163	SYNC_WORKLOAD = 2
164};
165
166/* This is per cgroup per device grouping structure */
167struct cfq_group {
168	/* group service_tree member */
169	struct rb_node rb_node;
170
171	/* group service_tree key */
172	u64 vdisktime;
173	unsigned int weight;
174	bool on_st;
175
176	/* number of cfqq currently on this group */
177	int nr_cfqq;
178
179	/* Per group busy queus average. Useful for workload slice calc. */
180	unsigned int busy_queues_avg[2];
181	/*
182	 * rr lists of queues with requests, onle rr for each priority class.
183	 * Counts are embedded in the cfq_rb_root
184	 */
185	struct cfq_rb_root service_trees[2][3];
186	struct cfq_rb_root service_tree_idle;
187
188	unsigned long saved_workload_slice;
189	enum wl_type_t saved_workload;
190	enum wl_prio_t saved_serving_prio;
191	struct blkio_group blkg;
192#ifdef CONFIG_CFQ_GROUP_IOSCHED
193	struct hlist_node cfqd_node;
194	atomic_t ref;
195#endif
196};
197
198/*
199 * Per block device queue structure
200 */
201struct cfq_data {
202	struct request_queue *queue;
203	/* Root service tree for cfq_groups */
204	struct cfq_rb_root grp_service_tree;
205	struct cfq_group root_group;
206
207	/*
208	 * The priority currently being served
209	 */
210	enum wl_prio_t serving_prio;
211	enum wl_type_t serving_type;
212	unsigned long workload_expires;
213	struct cfq_group *serving_group;
214	bool noidle_tree_requires_idle;
215
216	/*
217	 * Each priority tree is sorted by next_request position.  These
218	 * trees are used when determining if two or more queues are
219	 * interleaving requests (see cfq_close_cooperator).
220	 */
221	struct rb_root prio_trees[CFQ_PRIO_LISTS];
222
223	unsigned int busy_queues;
224
225	int rq_in_driver[2];
226	int sync_flight;
227
228	/*
229	 * queue-depth detection
230	 */
231	int rq_queued;
232	int hw_tag;
233	/*
234	 * hw_tag can be
235	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
236	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
237	 *  0 => no NCQ
238	 */
239	int hw_tag_est_depth;
240	unsigned int hw_tag_samples;
241
242	/*
243	 * idle window management
244	 */
245	struct timer_list idle_slice_timer;
246	struct work_struct unplug_work;
247
248	struct cfq_queue *active_queue;
249	struct cfq_io_context *active_cic;
250
251	/*
252	 * async queue for each priority case
253	 */
254	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
255	struct cfq_queue *async_idle_cfqq;
256
257	sector_t last_position;
258
259	/*
260	 * tunables, see top of file
261	 */
262	unsigned int cfq_quantum;
263	unsigned int cfq_fifo_expire[2];
264	unsigned int cfq_back_penalty;
265	unsigned int cfq_back_max;
266	unsigned int cfq_slice[2];
267	unsigned int cfq_slice_async_rq;
268	unsigned int cfq_slice_idle;
269	unsigned int cfq_latency;
270	unsigned int cfq_group_isolation;
271
272	struct list_head cic_list;
273
274	/*
275	 * Fallback dummy cfqq for extreme OOM conditions
276	 */
277	struct cfq_queue oom_cfqq;
278
279	unsigned long last_delayed_sync;
280
281	/* List of cfq groups being managed on this device*/
282	struct hlist_head cfqg_list;
283	struct rcu_head rcu;
284};
285
286static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
287
288static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
289					    enum wl_prio_t prio,
290					    enum wl_type_t type)
291{
292	if (!cfqg)
293		return NULL;
294
295	if (prio == IDLE_WORKLOAD)
296		return &cfqg->service_tree_idle;
297
298	return &cfqg->service_trees[prio][type];
299}
300
301enum cfqq_state_flags {
302	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
303	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
304	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
305	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
306	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
307	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
308	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
309	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
310	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
311	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
312	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
313	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
314	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
315};
316
317#define CFQ_CFQQ_FNS(name)						\
318static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
319{									\
320	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
321}									\
322static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
323{									\
324	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
325}									\
326static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
327{									\
328	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
329}
330
331CFQ_CFQQ_FNS(on_rr);
332CFQ_CFQQ_FNS(wait_request);
333CFQ_CFQQ_FNS(must_dispatch);
334CFQ_CFQQ_FNS(must_alloc_slice);
335CFQ_CFQQ_FNS(fifo_expire);
336CFQ_CFQQ_FNS(idle_window);
337CFQ_CFQQ_FNS(prio_changed);
338CFQ_CFQQ_FNS(slice_new);
339CFQ_CFQQ_FNS(sync);
340CFQ_CFQQ_FNS(coop);
341CFQ_CFQQ_FNS(split_coop);
342CFQ_CFQQ_FNS(deep);
343CFQ_CFQQ_FNS(wait_busy);
344#undef CFQ_CFQQ_FNS
345
346#ifdef CONFIG_DEBUG_CFQ_IOSCHED
347#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
348	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350			blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
353	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
354				blkg_path(&(cfqg)->blkg), ##args);      \
355
356#else
357#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
358	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
360#endif
361#define cfq_log(cfqd, fmt, args...)	\
362	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364/* Traverses through cfq group service trees */
365#define for_each_cfqg_st(cfqg, i, j, st) \
366	for (i = 0; i <= IDLE_WORKLOAD; i++) \
367		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368			: &cfqg->service_tree_idle; \
369			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370			(i == IDLE_WORKLOAD && j == 0); \
371			j++, st = i < IDLE_WORKLOAD ? \
372			&cfqg->service_trees[i][j]: NULL) \
373
374
375static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376{
377	if (cfq_class_idle(cfqq))
378		return IDLE_WORKLOAD;
379	if (cfq_class_rt(cfqq))
380		return RT_WORKLOAD;
381	return BE_WORKLOAD;
382}
383
384
385static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386{
387	if (!cfq_cfqq_sync(cfqq))
388		return ASYNC_WORKLOAD;
389	if (!cfq_cfqq_idle_window(cfqq))
390		return SYNC_NOIDLE_WORKLOAD;
391	return SYNC_WORKLOAD;
392}
393
394static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395					struct cfq_data *cfqd,
396					struct cfq_group *cfqg)
397{
398	if (wl == IDLE_WORKLOAD)
399		return cfqg->service_tree_idle.count;
400
401	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404}
405
406static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
407					struct cfq_group *cfqg)
408{
409	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
410		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
411}
412
413static void cfq_dispatch_insert(struct request_queue *, struct request *);
414static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
415				       struct io_context *, gfp_t);
416static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
417						struct io_context *);
418
419static inline int rq_in_driver(struct cfq_data *cfqd)
420{
421	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
422}
423
424static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
425					    bool is_sync)
426{
427	return cic->cfqq[is_sync];
428}
429
430static inline void cic_set_cfqq(struct cfq_io_context *cic,
431				struct cfq_queue *cfqq, bool is_sync)
432{
433	cic->cfqq[is_sync] = cfqq;
434}
435
436/*
437 * We regard a request as SYNC, if it's either a read or has the SYNC bit
438 * set (in which case it could also be direct WRITE).
439 */
440static inline bool cfq_bio_sync(struct bio *bio)
441{
442	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
443}
444
445/*
446 * scheduler run of queue, if there are requests pending and no one in the
447 * driver that will restart queueing
448 */
449static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
450{
451	if (cfqd->busy_queues) {
452		cfq_log(cfqd, "schedule dispatch");
453		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
454	}
455}
456
457static int cfq_queue_empty(struct request_queue *q)
458{
459	struct cfq_data *cfqd = q->elevator->elevator_data;
460
461	return !cfqd->rq_queued;
462}
463
464/*
465 * Scale schedule slice based on io priority. Use the sync time slice only
466 * if a queue is marked sync and has sync io queued. A sync queue with async
467 * io only, should not get full sync slice length.
468 */
469static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
470				 unsigned short prio)
471{
472	const int base_slice = cfqd->cfq_slice[sync];
473
474	WARN_ON(prio >= IOPRIO_BE_NR);
475
476	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
477}
478
479static inline int
480cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
481{
482	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
483}
484
485static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
486{
487	u64 d = delta << CFQ_SERVICE_SHIFT;
488
489	d = d * BLKIO_WEIGHT_DEFAULT;
490	do_div(d, cfqg->weight);
491	return d;
492}
493
494static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
495{
496	s64 delta = (s64)(vdisktime - min_vdisktime);
497	if (delta > 0)
498		min_vdisktime = vdisktime;
499
500	return min_vdisktime;
501}
502
503static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
504{
505	s64 delta = (s64)(vdisktime - min_vdisktime);
506	if (delta < 0)
507		min_vdisktime = vdisktime;
508
509	return min_vdisktime;
510}
511
512static void update_min_vdisktime(struct cfq_rb_root *st)
513{
514	u64 vdisktime = st->min_vdisktime;
515	struct cfq_group *cfqg;
516
517	if (st->active) {
518		cfqg = rb_entry_cfqg(st->active);
519		vdisktime = cfqg->vdisktime;
520	}
521
522	if (st->left) {
523		cfqg = rb_entry_cfqg(st->left);
524		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
525	}
526
527	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
528}
529
530/*
531 * get averaged number of queues of RT/BE priority.
532 * average is updated, with a formula that gives more weight to higher numbers,
533 * to quickly follows sudden increases and decrease slowly
534 */
535
536static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
537					struct cfq_group *cfqg, bool rt)
538{
539	unsigned min_q, max_q;
540	unsigned mult  = cfq_hist_divisor - 1;
541	unsigned round = cfq_hist_divisor / 2;
542	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
543
544	min_q = min(cfqg->busy_queues_avg[rt], busy);
545	max_q = max(cfqg->busy_queues_avg[rt], busy);
546	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
547		cfq_hist_divisor;
548	return cfqg->busy_queues_avg[rt];
549}
550
551static inline unsigned
552cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
553{
554	struct cfq_rb_root *st = &cfqd->grp_service_tree;
555
556	return cfq_target_latency * cfqg->weight / st->total_weight;
557}
558
559static inline void
560cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
561{
562	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
563	if (cfqd->cfq_latency) {
564		/*
565		 * interested queues (we consider only the ones with the same
566		 * priority class in the cfq group)
567		 */
568		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
569						cfq_class_rt(cfqq));
570		unsigned sync_slice = cfqd->cfq_slice[1];
571		unsigned expect_latency = sync_slice * iq;
572		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
573
574		if (expect_latency > group_slice) {
575			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
576			/* scale low_slice according to IO priority
577			 * and sync vs async */
578			unsigned low_slice =
579				min(slice, base_low_slice * slice / sync_slice);
580			/* the adapted slice value is scaled to fit all iqs
581			 * into the target latency */
582			slice = max(slice * group_slice / expect_latency,
583				    low_slice);
584		}
585	}
586	cfqq->slice_start = jiffies;
587	cfqq->slice_end = jiffies + slice;
588	cfqq->allocated_slice = slice;
589	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
590}
591
592/*
593 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
594 * isn't valid until the first request from the dispatch is activated
595 * and the slice time set.
596 */
597static inline bool cfq_slice_used(struct cfq_queue *cfqq)
598{
599	if (cfq_cfqq_slice_new(cfqq))
600		return 0;
601	if (time_before(jiffies, cfqq->slice_end))
602		return 0;
603
604	return 1;
605}
606
607/*
608 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
609 * We choose the request that is closest to the head right now. Distance
610 * behind the head is penalized and only allowed to a certain extent.
611 */
612static struct request *
613cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
614{
615	sector_t s1, s2, d1 = 0, d2 = 0;
616	unsigned long back_max;
617#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
618#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
619	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
620
621	if (rq1 == NULL || rq1 == rq2)
622		return rq2;
623	if (rq2 == NULL)
624		return rq1;
625
626	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
627		return rq1;
628	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
629		return rq2;
630	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
631		return rq1;
632	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
633		return rq2;
634
635	s1 = blk_rq_pos(rq1);
636	s2 = blk_rq_pos(rq2);
637
638	/*
639	 * by definition, 1KiB is 2 sectors
640	 */
641	back_max = cfqd->cfq_back_max * 2;
642
643	/*
644	 * Strict one way elevator _except_ in the case where we allow
645	 * short backward seeks which are biased as twice the cost of a
646	 * similar forward seek.
647	 */
648	if (s1 >= last)
649		d1 = s1 - last;
650	else if (s1 + back_max >= last)
651		d1 = (last - s1) * cfqd->cfq_back_penalty;
652	else
653		wrap |= CFQ_RQ1_WRAP;
654
655	if (s2 >= last)
656		d2 = s2 - last;
657	else if (s2 + back_max >= last)
658		d2 = (last - s2) * cfqd->cfq_back_penalty;
659	else
660		wrap |= CFQ_RQ2_WRAP;
661
662	/* Found required data */
663
664	/*
665	 * By doing switch() on the bit mask "wrap" we avoid having to
666	 * check two variables for all permutations: --> faster!
667	 */
668	switch (wrap) {
669	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
670		if (d1 < d2)
671			return rq1;
672		else if (d2 < d1)
673			return rq2;
674		else {
675			if (s1 >= s2)
676				return rq1;
677			else
678				return rq2;
679		}
680
681	case CFQ_RQ2_WRAP:
682		return rq1;
683	case CFQ_RQ1_WRAP:
684		return rq2;
685	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
686	default:
687		/*
688		 * Since both rqs are wrapped,
689		 * start with the one that's further behind head
690		 * (--> only *one* back seek required),
691		 * since back seek takes more time than forward.
692		 */
693		if (s1 <= s2)
694			return rq1;
695		else
696			return rq2;
697	}
698}
699
700/*
701 * The below is leftmost cache rbtree addon
702 */
703static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
704{
705	/* Service tree is empty */
706	if (!root->count)
707		return NULL;
708
709	if (!root->left)
710		root->left = rb_first(&root->rb);
711
712	if (root->left)
713		return rb_entry(root->left, struct cfq_queue, rb_node);
714
715	return NULL;
716}
717
718static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
719{
720	if (!root->left)
721		root->left = rb_first(&root->rb);
722
723	if (root->left)
724		return rb_entry_cfqg(root->left);
725
726	return NULL;
727}
728
729static void rb_erase_init(struct rb_node *n, struct rb_root *root)
730{
731	rb_erase(n, root);
732	RB_CLEAR_NODE(n);
733}
734
735static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
736{
737	if (root->left == n)
738		root->left = NULL;
739	rb_erase_init(n, &root->rb);
740	--root->count;
741}
742
743/*
744 * would be nice to take fifo expire time into account as well
745 */
746static struct request *
747cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
748		  struct request *last)
749{
750	struct rb_node *rbnext = rb_next(&last->rb_node);
751	struct rb_node *rbprev = rb_prev(&last->rb_node);
752	struct request *next = NULL, *prev = NULL;
753
754	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
755
756	if (rbprev)
757		prev = rb_entry_rq(rbprev);
758
759	if (rbnext)
760		next = rb_entry_rq(rbnext);
761	else {
762		rbnext = rb_first(&cfqq->sort_list);
763		if (rbnext && rbnext != &last->rb_node)
764			next = rb_entry_rq(rbnext);
765	}
766
767	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
768}
769
770static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
771				      struct cfq_queue *cfqq)
772{
773	/*
774	 * just an approximation, should be ok.
775	 */
776	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
777		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
778}
779
780static inline s64
781cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
782{
783	return cfqg->vdisktime - st->min_vdisktime;
784}
785
786static void
787__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
788{
789	struct rb_node **node = &st->rb.rb_node;
790	struct rb_node *parent = NULL;
791	struct cfq_group *__cfqg;
792	s64 key = cfqg_key(st, cfqg);
793	int left = 1;
794
795	while (*node != NULL) {
796		parent = *node;
797		__cfqg = rb_entry_cfqg(parent);
798
799		if (key < cfqg_key(st, __cfqg))
800			node = &parent->rb_left;
801		else {
802			node = &parent->rb_right;
803			left = 0;
804		}
805	}
806
807	if (left)
808		st->left = &cfqg->rb_node;
809
810	rb_link_node(&cfqg->rb_node, parent, node);
811	rb_insert_color(&cfqg->rb_node, &st->rb);
812}
813
814static void
815cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
816{
817	struct cfq_rb_root *st = &cfqd->grp_service_tree;
818	struct cfq_group *__cfqg;
819	struct rb_node *n;
820
821	cfqg->nr_cfqq++;
822	if (cfqg->on_st)
823		return;
824
825	/*
826	 * Currently put the group at the end. Later implement something
827	 * so that groups get lesser vtime based on their weights, so that
828	 * if group does not loose all if it was not continously backlogged.
829	 */
830	n = rb_last(&st->rb);
831	if (n) {
832		__cfqg = rb_entry_cfqg(n);
833		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
834	} else
835		cfqg->vdisktime = st->min_vdisktime;
836
837	__cfq_group_service_tree_add(st, cfqg);
838	cfqg->on_st = true;
839	st->total_weight += cfqg->weight;
840}
841
842static void
843cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
844{
845	struct cfq_rb_root *st = &cfqd->grp_service_tree;
846
847	if (st->active == &cfqg->rb_node)
848		st->active = NULL;
849
850	BUG_ON(cfqg->nr_cfqq < 1);
851	cfqg->nr_cfqq--;
852
853	/* If there are other cfq queues under this group, don't delete it */
854	if (cfqg->nr_cfqq)
855		return;
856
857	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
858	cfqg->on_st = false;
859	st->total_weight -= cfqg->weight;
860	if (!RB_EMPTY_NODE(&cfqg->rb_node))
861		cfq_rb_erase(&cfqg->rb_node, st);
862	cfqg->saved_workload_slice = 0;
863	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
864}
865
866static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
867{
868	unsigned int slice_used;
869
870	/*
871	 * Queue got expired before even a single request completed or
872	 * got expired immediately after first request completion.
873	 */
874	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
875		/*
876		 * Also charge the seek time incurred to the group, otherwise
877		 * if there are mutiple queues in the group, each can dispatch
878		 * a single request on seeky media and cause lots of seek time
879		 * and group will never know it.
880		 */
881		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
882					1);
883	} else {
884		slice_used = jiffies - cfqq->slice_start;
885		if (slice_used > cfqq->allocated_slice)
886			slice_used = cfqq->allocated_slice;
887	}
888
889	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
890				cfqq->nr_sectors);
891	return slice_used;
892}
893
894static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
895				struct cfq_queue *cfqq)
896{
897	struct cfq_rb_root *st = &cfqd->grp_service_tree;
898	unsigned int used_sl, charge_sl;
899	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
900			- cfqg->service_tree_idle.count;
901
902	BUG_ON(nr_sync < 0);
903	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
904
905	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
906		charge_sl = cfqq->allocated_slice;
907
908	/* Can't update vdisktime while group is on service tree */
909	cfq_rb_erase(&cfqg->rb_node, st);
910	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
911	__cfq_group_service_tree_add(st, cfqg);
912
913	/* This group is being expired. Save the context */
914	if (time_after(cfqd->workload_expires, jiffies)) {
915		cfqg->saved_workload_slice = cfqd->workload_expires
916						- jiffies;
917		cfqg->saved_workload = cfqd->serving_type;
918		cfqg->saved_serving_prio = cfqd->serving_prio;
919	} else
920		cfqg->saved_workload_slice = 0;
921
922	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
923					st->min_vdisktime);
924	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
925						cfqq->nr_sectors);
926}
927
928#ifdef CONFIG_CFQ_GROUP_IOSCHED
929static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
930{
931	if (blkg)
932		return container_of(blkg, struct cfq_group, blkg);
933	return NULL;
934}
935
936void
937cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
938{
939	cfqg_of_blkg(blkg)->weight = weight;
940}
941
942static struct cfq_group *
943cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
944{
945	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
946	struct cfq_group *cfqg = NULL;
947	void *key = cfqd;
948	int i, j;
949	struct cfq_rb_root *st;
950	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
951	unsigned int major, minor;
952
953	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
954	if (cfqg || !create)
955		goto done;
956
957	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
958	if (!cfqg)
959		goto done;
960
961	cfqg->weight = blkcg->weight;
962	for_each_cfqg_st(cfqg, i, j, st)
963		*st = CFQ_RB_ROOT;
964	RB_CLEAR_NODE(&cfqg->rb_node);
965
966	/*
967	 * Take the initial reference that will be released on destroy
968	 * This can be thought of a joint reference by cgroup and
969	 * elevator which will be dropped by either elevator exit
970	 * or cgroup deletion path depending on who is exiting first.
971	 */
972	atomic_set(&cfqg->ref, 1);
973
974	/* Add group onto cgroup list */
975	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
976	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
977					MKDEV(major, minor));
978
979	/* Add group on cfqd list */
980	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
981
982done:
983	return cfqg;
984}
985
986/*
987 * Search for the cfq group current task belongs to. If create = 1, then also
988 * create the cfq group if it does not exist. request_queue lock must be held.
989 */
990static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
991{
992	struct cgroup *cgroup;
993	struct cfq_group *cfqg = NULL;
994
995	rcu_read_lock();
996	cgroup = task_cgroup(current, blkio_subsys_id);
997	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
998	if (!cfqg && create)
999		cfqg = &cfqd->root_group;
1000	rcu_read_unlock();
1001	return cfqg;
1002}
1003
1004static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1005{
1006	/* Currently, all async queues are mapped to root group */
1007	if (!cfq_cfqq_sync(cfqq))
1008		cfqg = &cfqq->cfqd->root_group;
1009
1010	cfqq->cfqg = cfqg;
1011	/* cfqq reference on cfqg */
1012	atomic_inc(&cfqq->cfqg->ref);
1013}
1014
1015static void cfq_put_cfqg(struct cfq_group *cfqg)
1016{
1017	struct cfq_rb_root *st;
1018	int i, j;
1019
1020	BUG_ON(atomic_read(&cfqg->ref) <= 0);
1021	if (!atomic_dec_and_test(&cfqg->ref))
1022		return;
1023	for_each_cfqg_st(cfqg, i, j, st)
1024		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1025	kfree(cfqg);
1026}
1027
1028static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1029{
1030	/* Something wrong if we are trying to remove same group twice */
1031	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1032
1033	hlist_del_init(&cfqg->cfqd_node);
1034
1035	/*
1036	 * Put the reference taken at the time of creation so that when all
1037	 * queues are gone, group can be destroyed.
1038	 */
1039	cfq_put_cfqg(cfqg);
1040}
1041
1042static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1043{
1044	struct hlist_node *pos, *n;
1045	struct cfq_group *cfqg;
1046
1047	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1048		/*
1049		 * If cgroup removal path got to blk_group first and removed
1050		 * it from cgroup list, then it will take care of destroying
1051		 * cfqg also.
1052		 */
1053		if (!blkiocg_del_blkio_group(&cfqg->blkg))
1054			cfq_destroy_cfqg(cfqd, cfqg);
1055	}
1056}
1057
1058/*
1059 * Blk cgroup controller notification saying that blkio_group object is being
1060 * delinked as associated cgroup object is going away. That also means that
1061 * no new IO will come in this group. So get rid of this group as soon as
1062 * any pending IO in the group is finished.
1063 *
1064 * This function is called under rcu_read_lock(). key is the rcu protected
1065 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1066 * read lock.
1067 *
1068 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1069 * it should not be NULL as even if elevator was exiting, cgroup deltion
1070 * path got to it first.
1071 */
1072void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1073{
1074	unsigned long  flags;
1075	struct cfq_data *cfqd = key;
1076
1077	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1078	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1079	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1080}
1081
1082#else /* GROUP_IOSCHED */
1083static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1084{
1085	return &cfqd->root_group;
1086}
1087static inline void
1088cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1089	cfqq->cfqg = cfqg;
1090}
1091
1092static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1093static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1094
1095#endif /* GROUP_IOSCHED */
1096
1097/*
1098 * The cfqd->service_trees holds all pending cfq_queue's that have
1099 * requests waiting to be processed. It is sorted in the order that
1100 * we will service the queues.
1101 */
1102static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1103				 bool add_front)
1104{
1105	struct rb_node **p, *parent;
1106	struct cfq_queue *__cfqq;
1107	unsigned long rb_key;
1108	struct cfq_rb_root *service_tree;
1109	int left;
1110	int new_cfqq = 1;
1111	int group_changed = 0;
1112
1113#ifdef CONFIG_CFQ_GROUP_IOSCHED
1114	if (!cfqd->cfq_group_isolation
1115	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1116	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1117		/* Move this cfq to root group */
1118		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1119		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1120			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1121		cfqq->orig_cfqg = cfqq->cfqg;
1122		cfqq->cfqg = &cfqd->root_group;
1123		atomic_inc(&cfqd->root_group.ref);
1124		group_changed = 1;
1125	} else if (!cfqd->cfq_group_isolation
1126		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1127		/* cfqq is sequential now needs to go to its original group */
1128		BUG_ON(cfqq->cfqg != &cfqd->root_group);
1129		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1130			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1131		cfq_put_cfqg(cfqq->cfqg);
1132		cfqq->cfqg = cfqq->orig_cfqg;
1133		cfqq->orig_cfqg = NULL;
1134		group_changed = 1;
1135		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1136	}
1137#endif
1138
1139	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1140						cfqq_type(cfqq));
1141	if (cfq_class_idle(cfqq)) {
1142		rb_key = CFQ_IDLE_DELAY;
1143		parent = rb_last(&service_tree->rb);
1144		if (parent && parent != &cfqq->rb_node) {
1145			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1146			rb_key += __cfqq->rb_key;
1147		} else
1148			rb_key += jiffies;
1149	} else if (!add_front) {
1150		/*
1151		 * Get our rb key offset. Subtract any residual slice
1152		 * value carried from last service. A negative resid
1153		 * count indicates slice overrun, and this should position
1154		 * the next service time further away in the tree.
1155		 */
1156		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1157		rb_key -= cfqq->slice_resid;
1158		cfqq->slice_resid = 0;
1159	} else {
1160		rb_key = -HZ;
1161		__cfqq = cfq_rb_first(service_tree);
1162		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1163	}
1164
1165	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1166		new_cfqq = 0;
1167		/*
1168		 * same position, nothing more to do
1169		 */
1170		if (rb_key == cfqq->rb_key &&
1171		    cfqq->service_tree == service_tree)
1172			return;
1173
1174		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1175		cfqq->service_tree = NULL;
1176	}
1177
1178	left = 1;
1179	parent = NULL;
1180	cfqq->service_tree = service_tree;
1181	p = &service_tree->rb.rb_node;
1182	while (*p) {
1183		struct rb_node **n;
1184
1185		parent = *p;
1186		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1187
1188		/*
1189		 * sort by key, that represents service time.
1190		 */
1191		if (time_before(rb_key, __cfqq->rb_key))
1192			n = &(*p)->rb_left;
1193		else {
1194			n = &(*p)->rb_right;
1195			left = 0;
1196		}
1197
1198		p = n;
1199	}
1200
1201	if (left)
1202		service_tree->left = &cfqq->rb_node;
1203
1204	cfqq->rb_key = rb_key;
1205	rb_link_node(&cfqq->rb_node, parent, p);
1206	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1207	service_tree->count++;
1208	if ((add_front || !new_cfqq) && !group_changed)
1209		return;
1210	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1211}
1212
1213static struct cfq_queue *
1214cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1215		     sector_t sector, struct rb_node **ret_parent,
1216		     struct rb_node ***rb_link)
1217{
1218	struct rb_node **p, *parent;
1219	struct cfq_queue *cfqq = NULL;
1220
1221	parent = NULL;
1222	p = &root->rb_node;
1223	while (*p) {
1224		struct rb_node **n;
1225
1226		parent = *p;
1227		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1228
1229		/*
1230		 * Sort strictly based on sector.  Smallest to the left,
1231		 * largest to the right.
1232		 */
1233		if (sector > blk_rq_pos(cfqq->next_rq))
1234			n = &(*p)->rb_right;
1235		else if (sector < blk_rq_pos(cfqq->next_rq))
1236			n = &(*p)->rb_left;
1237		else
1238			break;
1239		p = n;
1240		cfqq = NULL;
1241	}
1242
1243	*ret_parent = parent;
1244	if (rb_link)
1245		*rb_link = p;
1246	return cfqq;
1247}
1248
1249static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1250{
1251	struct rb_node **p, *parent;
1252	struct cfq_queue *__cfqq;
1253
1254	if (cfqq->p_root) {
1255		rb_erase(&cfqq->p_node, cfqq->p_root);
1256		cfqq->p_root = NULL;
1257	}
1258
1259	if (cfq_class_idle(cfqq))
1260		return;
1261	if (!cfqq->next_rq)
1262		return;
1263
1264	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1265	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1266				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1267	if (!__cfqq) {
1268		rb_link_node(&cfqq->p_node, parent, p);
1269		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1270	} else
1271		cfqq->p_root = NULL;
1272}
1273
1274/*
1275 * Update cfqq's position in the service tree.
1276 */
1277static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1278{
1279	/*
1280	 * Resorting requires the cfqq to be on the RR list already.
1281	 */
1282	if (cfq_cfqq_on_rr(cfqq)) {
1283		cfq_service_tree_add(cfqd, cfqq, 0);
1284		cfq_prio_tree_add(cfqd, cfqq);
1285	}
1286}
1287
1288/*
1289 * add to busy list of queues for service, trying to be fair in ordering
1290 * the pending list according to last request service
1291 */
1292static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1293{
1294	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1295	BUG_ON(cfq_cfqq_on_rr(cfqq));
1296	cfq_mark_cfqq_on_rr(cfqq);
1297	cfqd->busy_queues++;
1298
1299	cfq_resort_rr_list(cfqd, cfqq);
1300}
1301
1302/*
1303 * Called when the cfqq no longer has requests pending, remove it from
1304 * the service tree.
1305 */
1306static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1307{
1308	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1309	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1310	cfq_clear_cfqq_on_rr(cfqq);
1311
1312	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1313		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1314		cfqq->service_tree = NULL;
1315	}
1316	if (cfqq->p_root) {
1317		rb_erase(&cfqq->p_node, cfqq->p_root);
1318		cfqq->p_root = NULL;
1319	}
1320
1321	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1322	BUG_ON(!cfqd->busy_queues);
1323	cfqd->busy_queues--;
1324}
1325
1326/*
1327 * rb tree support functions
1328 */
1329static void cfq_del_rq_rb(struct request *rq)
1330{
1331	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1332	const int sync = rq_is_sync(rq);
1333
1334	BUG_ON(!cfqq->queued[sync]);
1335	cfqq->queued[sync]--;
1336
1337	elv_rb_del(&cfqq->sort_list, rq);
1338
1339	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1340		/*
1341		 * Queue will be deleted from service tree when we actually
1342		 * expire it later. Right now just remove it from prio tree
1343		 * as it is empty.
1344		 */
1345		if (cfqq->p_root) {
1346			rb_erase(&cfqq->p_node, cfqq->p_root);
1347			cfqq->p_root = NULL;
1348		}
1349	}
1350}
1351
1352static void cfq_add_rq_rb(struct request *rq)
1353{
1354	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1355	struct cfq_data *cfqd = cfqq->cfqd;
1356	struct request *__alias, *prev;
1357
1358	cfqq->queued[rq_is_sync(rq)]++;
1359
1360	/*
1361	 * looks a little odd, but the first insert might return an alias.
1362	 * if that happens, put the alias on the dispatch list
1363	 */
1364	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1365		cfq_dispatch_insert(cfqd->queue, __alias);
1366
1367	if (!cfq_cfqq_on_rr(cfqq))
1368		cfq_add_cfqq_rr(cfqd, cfqq);
1369
1370	/*
1371	 * check if this request is a better next-serve candidate
1372	 */
1373	prev = cfqq->next_rq;
1374	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1375
1376	/*
1377	 * adjust priority tree position, if ->next_rq changes
1378	 */
1379	if (prev != cfqq->next_rq)
1380		cfq_prio_tree_add(cfqd, cfqq);
1381
1382	BUG_ON(!cfqq->next_rq);
1383}
1384
1385static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1386{
1387	elv_rb_del(&cfqq->sort_list, rq);
1388	cfqq->queued[rq_is_sync(rq)]--;
1389	cfq_add_rq_rb(rq);
1390}
1391
1392static struct request *
1393cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1394{
1395	struct task_struct *tsk = current;
1396	struct cfq_io_context *cic;
1397	struct cfq_queue *cfqq;
1398
1399	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1400	if (!cic)
1401		return NULL;
1402
1403	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1404	if (cfqq) {
1405		sector_t sector = bio->bi_sector + bio_sectors(bio);
1406
1407		return elv_rb_find(&cfqq->sort_list, sector);
1408	}
1409
1410	return NULL;
1411}
1412
1413static void cfq_activate_request(struct request_queue *q, struct request *rq)
1414{
1415	struct cfq_data *cfqd = q->elevator->elevator_data;
1416
1417	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1418	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1419						rq_in_driver(cfqd));
1420
1421	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1422}
1423
1424static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1425{
1426	struct cfq_data *cfqd = q->elevator->elevator_data;
1427	const int sync = rq_is_sync(rq);
1428
1429	WARN_ON(!cfqd->rq_in_driver[sync]);
1430	cfqd->rq_in_driver[sync]--;
1431	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1432						rq_in_driver(cfqd));
1433}
1434
1435static void cfq_remove_request(struct request *rq)
1436{
1437	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1438
1439	if (cfqq->next_rq == rq)
1440		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1441
1442	list_del_init(&rq->queuelist);
1443	cfq_del_rq_rb(rq);
1444
1445	cfqq->cfqd->rq_queued--;
1446	if (rq_is_meta(rq)) {
1447		WARN_ON(!cfqq->meta_pending);
1448		cfqq->meta_pending--;
1449	}
1450}
1451
1452static int cfq_merge(struct request_queue *q, struct request **req,
1453		     struct bio *bio)
1454{
1455	struct cfq_data *cfqd = q->elevator->elevator_data;
1456	struct request *__rq;
1457
1458	__rq = cfq_find_rq_fmerge(cfqd, bio);
1459	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1460		*req = __rq;
1461		return ELEVATOR_FRONT_MERGE;
1462	}
1463
1464	return ELEVATOR_NO_MERGE;
1465}
1466
1467static void cfq_merged_request(struct request_queue *q, struct request *req,
1468			       int type)
1469{
1470	if (type == ELEVATOR_FRONT_MERGE) {
1471		struct cfq_queue *cfqq = RQ_CFQQ(req);
1472
1473		cfq_reposition_rq_rb(cfqq, req);
1474	}
1475}
1476
1477static void
1478cfq_merged_requests(struct request_queue *q, struct request *rq,
1479		    struct request *next)
1480{
1481	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1482	/*
1483	 * reposition in fifo if next is older than rq
1484	 */
1485	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1486	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1487		list_move(&rq->queuelist, &next->queuelist);
1488		rq_set_fifo_time(rq, rq_fifo_time(next));
1489	}
1490
1491	if (cfqq->next_rq == next)
1492		cfqq->next_rq = rq;
1493	cfq_remove_request(next);
1494}
1495
1496static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1497			   struct bio *bio)
1498{
1499	struct cfq_data *cfqd = q->elevator->elevator_data;
1500	struct cfq_io_context *cic;
1501	struct cfq_queue *cfqq;
1502
1503	/*
1504	 * Disallow merge of a sync bio into an async request.
1505	 */
1506	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1507		return false;
1508
1509	/*
1510	 * Lookup the cfqq that this bio will be queued with. Allow
1511	 * merge only if rq is queued there.
1512	 */
1513	cic = cfq_cic_lookup(cfqd, current->io_context);
1514	if (!cic)
1515		return false;
1516
1517	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1518	return cfqq == RQ_CFQQ(rq);
1519}
1520
1521static void __cfq_set_active_queue(struct cfq_data *cfqd,
1522				   struct cfq_queue *cfqq)
1523{
1524	if (cfqq) {
1525		cfq_log_cfqq(cfqd, cfqq, "set_active");
1526		cfqq->slice_start = 0;
1527		cfqq->dispatch_start = jiffies;
1528		cfqq->allocated_slice = 0;
1529		cfqq->slice_end = 0;
1530		cfqq->slice_dispatch = 0;
1531		cfqq->nr_sectors = 0;
1532
1533		cfq_clear_cfqq_wait_request(cfqq);
1534		cfq_clear_cfqq_must_dispatch(cfqq);
1535		cfq_clear_cfqq_must_alloc_slice(cfqq);
1536		cfq_clear_cfqq_fifo_expire(cfqq);
1537		cfq_mark_cfqq_slice_new(cfqq);
1538
1539		del_timer(&cfqd->idle_slice_timer);
1540	}
1541
1542	cfqd->active_queue = cfqq;
1543}
1544
1545/*
1546 * current cfqq expired its slice (or was too idle), select new one
1547 */
1548static void
1549__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1550		    bool timed_out)
1551{
1552	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1553
1554	if (cfq_cfqq_wait_request(cfqq))
1555		del_timer(&cfqd->idle_slice_timer);
1556
1557	cfq_clear_cfqq_wait_request(cfqq);
1558	cfq_clear_cfqq_wait_busy(cfqq);
1559
1560	/*
1561	 * If this cfqq is shared between multiple processes, check to
1562	 * make sure that those processes are still issuing I/Os within
1563	 * the mean seek distance.  If not, it may be time to break the
1564	 * queues apart again.
1565	 */
1566	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1567		cfq_mark_cfqq_split_coop(cfqq);
1568
1569	/*
1570	 * store what was left of this slice, if the queue idled/timed out
1571	 */
1572	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1573		cfqq->slice_resid = cfqq->slice_end - jiffies;
1574		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1575	}
1576
1577	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1578
1579	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1580		cfq_del_cfqq_rr(cfqd, cfqq);
1581
1582	cfq_resort_rr_list(cfqd, cfqq);
1583
1584	if (cfqq == cfqd->active_queue)
1585		cfqd->active_queue = NULL;
1586
1587	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1588		cfqd->grp_service_tree.active = NULL;
1589
1590	if (cfqd->active_cic) {
1591		put_io_context(cfqd->active_cic->ioc);
1592		cfqd->active_cic = NULL;
1593	}
1594}
1595
1596static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1597{
1598	struct cfq_queue *cfqq = cfqd->active_queue;
1599
1600	if (cfqq)
1601		__cfq_slice_expired(cfqd, cfqq, timed_out);
1602}
1603
1604/*
1605 * Get next queue for service. Unless we have a queue preemption,
1606 * we'll simply select the first cfqq in the service tree.
1607 */
1608static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1609{
1610	struct cfq_rb_root *service_tree =
1611		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1612					cfqd->serving_type);
1613
1614	if (!cfqd->rq_queued)
1615		return NULL;
1616
1617	/* There is nothing to dispatch */
1618	if (!service_tree)
1619		return NULL;
1620	if (RB_EMPTY_ROOT(&service_tree->rb))
1621		return NULL;
1622	return cfq_rb_first(service_tree);
1623}
1624
1625static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1626{
1627	struct cfq_group *cfqg;
1628	struct cfq_queue *cfqq;
1629	int i, j;
1630	struct cfq_rb_root *st;
1631
1632	if (!cfqd->rq_queued)
1633		return NULL;
1634
1635	cfqg = cfq_get_next_cfqg(cfqd);
1636	if (!cfqg)
1637		return NULL;
1638
1639	for_each_cfqg_st(cfqg, i, j, st)
1640		if ((cfqq = cfq_rb_first(st)) != NULL)
1641			return cfqq;
1642	return NULL;
1643}
1644
1645/*
1646 * Get and set a new active queue for service.
1647 */
1648static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1649					      struct cfq_queue *cfqq)
1650{
1651	if (!cfqq)
1652		cfqq = cfq_get_next_queue(cfqd);
1653
1654	__cfq_set_active_queue(cfqd, cfqq);
1655	return cfqq;
1656}
1657
1658static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1659					  struct request *rq)
1660{
1661	if (blk_rq_pos(rq) >= cfqd->last_position)
1662		return blk_rq_pos(rq) - cfqd->last_position;
1663	else
1664		return cfqd->last_position - blk_rq_pos(rq);
1665}
1666
1667static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1668			       struct request *rq, bool for_preempt)
1669{
1670	return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
1671}
1672
1673static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1674				    struct cfq_queue *cur_cfqq)
1675{
1676	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1677	struct rb_node *parent, *node;
1678	struct cfq_queue *__cfqq;
1679	sector_t sector = cfqd->last_position;
1680
1681	if (RB_EMPTY_ROOT(root))
1682		return NULL;
1683
1684	/*
1685	 * First, if we find a request starting at the end of the last
1686	 * request, choose it.
1687	 */
1688	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1689	if (__cfqq)
1690		return __cfqq;
1691
1692	/*
1693	 * If the exact sector wasn't found, the parent of the NULL leaf
1694	 * will contain the closest sector.
1695	 */
1696	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1697	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1698		return __cfqq;
1699
1700	if (blk_rq_pos(__cfqq->next_rq) < sector)
1701		node = rb_next(&__cfqq->p_node);
1702	else
1703		node = rb_prev(&__cfqq->p_node);
1704	if (!node)
1705		return NULL;
1706
1707	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1708	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1709		return __cfqq;
1710
1711	return NULL;
1712}
1713
1714/*
1715 * cfqd - obvious
1716 * cur_cfqq - passed in so that we don't decide that the current queue is
1717 * 	      closely cooperating with itself.
1718 *
1719 * So, basically we're assuming that that cur_cfqq has dispatched at least
1720 * one request, and that cfqd->last_position reflects a position on the disk
1721 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1722 * assumption.
1723 */
1724static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1725					      struct cfq_queue *cur_cfqq)
1726{
1727	struct cfq_queue *cfqq;
1728
1729	if (!cfq_cfqq_sync(cur_cfqq))
1730		return NULL;
1731	if (CFQQ_SEEKY(cur_cfqq))
1732		return NULL;
1733
1734	/*
1735	 * Don't search priority tree if it's the only queue in the group.
1736	 */
1737	if (cur_cfqq->cfqg->nr_cfqq == 1)
1738		return NULL;
1739
1740	/*
1741	 * We should notice if some of the queues are cooperating, eg
1742	 * working closely on the same area of the disk. In that case,
1743	 * we can group them together and don't waste time idling.
1744	 */
1745	cfqq = cfqq_close(cfqd, cur_cfqq);
1746	if (!cfqq)
1747		return NULL;
1748
1749	/* If new queue belongs to different cfq_group, don't choose it */
1750	if (cur_cfqq->cfqg != cfqq->cfqg)
1751		return NULL;
1752
1753	/*
1754	 * It only makes sense to merge sync queues.
1755	 */
1756	if (!cfq_cfqq_sync(cfqq))
1757		return NULL;
1758	if (CFQQ_SEEKY(cfqq))
1759		return NULL;
1760
1761	/*
1762	 * Do not merge queues of different priority classes
1763	 */
1764	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1765		return NULL;
1766
1767	return cfqq;
1768}
1769
1770/*
1771 * Determine whether we should enforce idle window for this queue.
1772 */
1773
1774static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1775{
1776	enum wl_prio_t prio = cfqq_prio(cfqq);
1777	struct cfq_rb_root *service_tree = cfqq->service_tree;
1778
1779	BUG_ON(!service_tree);
1780	BUG_ON(!service_tree->count);
1781
1782	/* We never do for idle class queues. */
1783	if (prio == IDLE_WORKLOAD)
1784		return false;
1785
1786	/* We do for queues that were marked with idle window flag. */
1787	if (cfq_cfqq_idle_window(cfqq) &&
1788	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1789		return true;
1790
1791	/*
1792	 * Otherwise, we do only if they are the last ones
1793	 * in their service tree.
1794	 */
1795	return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1796}
1797
1798static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1799{
1800	struct cfq_queue *cfqq = cfqd->active_queue;
1801	struct cfq_io_context *cic;
1802	unsigned long sl;
1803
1804	/*
1805	 * SSD device without seek penalty, disable idling. But only do so
1806	 * for devices that support queuing, otherwise we still have a problem
1807	 * with sync vs async workloads.
1808	 */
1809	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1810		return;
1811
1812	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1813	WARN_ON(cfq_cfqq_slice_new(cfqq));
1814
1815	/*
1816	 * idle is disabled, either manually or by past process history
1817	 */
1818	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1819		return;
1820
1821	/*
1822	 * still active requests from this queue, don't idle
1823	 */
1824	if (cfqq->dispatched)
1825		return;
1826
1827	/*
1828	 * task has exited, don't wait
1829	 */
1830	cic = cfqd->active_cic;
1831	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1832		return;
1833
1834	/*
1835	 * If our average think time is larger than the remaining time
1836	 * slice, then don't idle. This avoids overrunning the allotted
1837	 * time slice.
1838	 */
1839	if (sample_valid(cic->ttime_samples) &&
1840	    (cfqq->slice_end - jiffies < cic->ttime_mean))
1841		return;
1842
1843	cfq_mark_cfqq_wait_request(cfqq);
1844
1845	sl = cfqd->cfq_slice_idle;
1846
1847	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1848	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1849}
1850
1851/*
1852 * Move request from internal lists to the request queue dispatch list.
1853 */
1854static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1855{
1856	struct cfq_data *cfqd = q->elevator->elevator_data;
1857	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1858
1859	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1860
1861	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1862	cfq_remove_request(rq);
1863	cfqq->dispatched++;
1864	elv_dispatch_sort(q, rq);
1865
1866	if (cfq_cfqq_sync(cfqq))
1867		cfqd->sync_flight++;
1868	cfqq->nr_sectors += blk_rq_sectors(rq);
1869}
1870
1871/*
1872 * return expired entry, or NULL to just start from scratch in rbtree
1873 */
1874static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1875{
1876	struct request *rq = NULL;
1877
1878	if (cfq_cfqq_fifo_expire(cfqq))
1879		return NULL;
1880
1881	cfq_mark_cfqq_fifo_expire(cfqq);
1882
1883	if (list_empty(&cfqq->fifo))
1884		return NULL;
1885
1886	rq = rq_entry_fifo(cfqq->fifo.next);
1887	if (time_before(jiffies, rq_fifo_time(rq)))
1888		rq = NULL;
1889
1890	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1891	return rq;
1892}
1893
1894static inline int
1895cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1896{
1897	const int base_rq = cfqd->cfq_slice_async_rq;
1898
1899	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1900
1901	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1902}
1903
1904/*
1905 * Must be called with the queue_lock held.
1906 */
1907static int cfqq_process_refs(struct cfq_queue *cfqq)
1908{
1909	int process_refs, io_refs;
1910
1911	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1912	process_refs = atomic_read(&cfqq->ref) - io_refs;
1913	BUG_ON(process_refs < 0);
1914	return process_refs;
1915}
1916
1917static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1918{
1919	int process_refs, new_process_refs;
1920	struct cfq_queue *__cfqq;
1921
1922	/* Avoid a circular list and skip interim queue merges */
1923	while ((__cfqq = new_cfqq->new_cfqq)) {
1924		if (__cfqq == cfqq)
1925			return;
1926		new_cfqq = __cfqq;
1927	}
1928
1929	process_refs = cfqq_process_refs(cfqq);
1930	/*
1931	 * If the process for the cfqq has gone away, there is no
1932	 * sense in merging the queues.
1933	 */
1934	if (process_refs == 0)
1935		return;
1936
1937	/*
1938	 * Merge in the direction of the lesser amount of work.
1939	 */
1940	new_process_refs = cfqq_process_refs(new_cfqq);
1941	if (new_process_refs >= process_refs) {
1942		cfqq->new_cfqq = new_cfqq;
1943		atomic_add(process_refs, &new_cfqq->ref);
1944	} else {
1945		new_cfqq->new_cfqq = cfqq;
1946		atomic_add(new_process_refs, &cfqq->ref);
1947	}
1948}
1949
1950static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1951				struct cfq_group *cfqg, enum wl_prio_t prio)
1952{
1953	struct cfq_queue *queue;
1954	int i;
1955	bool key_valid = false;
1956	unsigned long lowest_key = 0;
1957	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1958
1959	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1960		/* select the one with lowest rb_key */
1961		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1962		if (queue &&
1963		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
1964			lowest_key = queue->rb_key;
1965			cur_best = i;
1966			key_valid = true;
1967		}
1968	}
1969
1970	return cur_best;
1971}
1972
1973static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1974{
1975	unsigned slice;
1976	unsigned count;
1977	struct cfq_rb_root *st;
1978	unsigned group_slice;
1979
1980	if (!cfqg) {
1981		cfqd->serving_prio = IDLE_WORKLOAD;
1982		cfqd->workload_expires = jiffies + 1;
1983		return;
1984	}
1985
1986	/* Choose next priority. RT > BE > IDLE */
1987	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1988		cfqd->serving_prio = RT_WORKLOAD;
1989	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1990		cfqd->serving_prio = BE_WORKLOAD;
1991	else {
1992		cfqd->serving_prio = IDLE_WORKLOAD;
1993		cfqd->workload_expires = jiffies + 1;
1994		return;
1995	}
1996
1997	/*
1998	 * For RT and BE, we have to choose also the type
1999	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2000	 * expiration time
2001	 */
2002	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2003	count = st->count;
2004
2005	/*
2006	 * check workload expiration, and that we still have other queues ready
2007	 */
2008	if (count && !time_after(jiffies, cfqd->workload_expires))
2009		return;
2010
2011	/* otherwise select new workload type */
2012	cfqd->serving_type =
2013		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2014	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2015	count = st->count;
2016
2017	/*
2018	 * the workload slice is computed as a fraction of target latency
2019	 * proportional to the number of queues in that workload, over
2020	 * all the queues in the same priority class
2021	 */
2022	group_slice = cfq_group_slice(cfqd, cfqg);
2023
2024	slice = group_slice * count /
2025		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2026		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2027
2028	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2029		unsigned int tmp;
2030
2031		/*
2032		 * Async queues are currently system wide. Just taking
2033		 * proportion of queues with-in same group will lead to higher
2034		 * async ratio system wide as generally root group is going
2035		 * to have higher weight. A more accurate thing would be to
2036		 * calculate system wide asnc/sync ratio.
2037		 */
2038		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2039		tmp = tmp/cfqd->busy_queues;
2040		slice = min_t(unsigned, slice, tmp);
2041
2042		/* async workload slice is scaled down according to
2043		 * the sync/async slice ratio. */
2044		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2045	} else
2046		/* sync workload slice is at least 2 * cfq_slice_idle */
2047		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2048
2049	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2050	cfqd->workload_expires = jiffies + slice;
2051	cfqd->noidle_tree_requires_idle = false;
2052}
2053
2054static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2055{
2056	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2057	struct cfq_group *cfqg;
2058
2059	if (RB_EMPTY_ROOT(&st->rb))
2060		return NULL;
2061	cfqg = cfq_rb_first_group(st);
2062	st->active = &cfqg->rb_node;
2063	update_min_vdisktime(st);
2064	return cfqg;
2065}
2066
2067static void cfq_choose_cfqg(struct cfq_data *cfqd)
2068{
2069	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2070
2071	cfqd->serving_group = cfqg;
2072
2073	/* Restore the workload type data */
2074	if (cfqg->saved_workload_slice) {
2075		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2076		cfqd->serving_type = cfqg->saved_workload;
2077		cfqd->serving_prio = cfqg->saved_serving_prio;
2078	} else
2079		cfqd->workload_expires = jiffies - 1;
2080
2081	choose_service_tree(cfqd, cfqg);
2082}
2083
2084/*
2085 * Select a queue for service. If we have a current active queue,
2086 * check whether to continue servicing it, or retrieve and set a new one.
2087 */
2088static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2089{
2090	struct cfq_queue *cfqq, *new_cfqq = NULL;
2091
2092	cfqq = cfqd->active_queue;
2093	if (!cfqq)
2094		goto new_queue;
2095
2096	if (!cfqd->rq_queued)
2097		return NULL;
2098
2099	/*
2100	 * We were waiting for group to get backlogged. Expire the queue
2101	 */
2102	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2103		goto expire;
2104
2105	/*
2106	 * The active queue has run out of time, expire it and select new.
2107	 */
2108	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2109		/*
2110		 * If slice had not expired at the completion of last request
2111		 * we might not have turned on wait_busy flag. Don't expire
2112		 * the queue yet. Allow the group to get backlogged.
2113		 *
2114		 * The very fact that we have used the slice, that means we
2115		 * have been idling all along on this queue and it should be
2116		 * ok to wait for this request to complete.
2117		 */
2118		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2119		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2120			cfqq = NULL;
2121			goto keep_queue;
2122		} else
2123			goto expire;
2124	}
2125
2126	/*
2127	 * The active queue has requests and isn't expired, allow it to
2128	 * dispatch.
2129	 */
2130	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2131		goto keep_queue;
2132
2133	/*
2134	 * If another queue has a request waiting within our mean seek
2135	 * distance, let it run.  The expire code will check for close
2136	 * cooperators and put the close queue at the front of the service
2137	 * tree.  If possible, merge the expiring queue with the new cfqq.
2138	 */
2139	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2140	if (new_cfqq) {
2141		if (!cfqq->new_cfqq)
2142			cfq_setup_merge(cfqq, new_cfqq);
2143		goto expire;
2144	}
2145
2146	/*
2147	 * No requests pending. If the active queue still has requests in
2148	 * flight or is idling for a new request, allow either of these
2149	 * conditions to happen (or time out) before selecting a new queue.
2150	 */
2151	if (timer_pending(&cfqd->idle_slice_timer) ||
2152	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2153		cfqq = NULL;
2154		goto keep_queue;
2155	}
2156
2157expire:
2158	cfq_slice_expired(cfqd, 0);
2159new_queue:
2160	/*
2161	 * Current queue expired. Check if we have to switch to a new
2162	 * service tree
2163	 */
2164	if (!new_cfqq)
2165		cfq_choose_cfqg(cfqd);
2166
2167	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2168keep_queue:
2169	return cfqq;
2170}
2171
2172static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2173{
2174	int dispatched = 0;
2175
2176	while (cfqq->next_rq) {
2177		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2178		dispatched++;
2179	}
2180
2181	BUG_ON(!list_empty(&cfqq->fifo));
2182
2183	/* By default cfqq is not expired if it is empty. Do it explicitly */
2184	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2185	return dispatched;
2186}
2187
2188/*
2189 * Drain our current requests. Used for barriers and when switching
2190 * io schedulers on-the-fly.
2191 */
2192static int cfq_forced_dispatch(struct cfq_data *cfqd)
2193{
2194	struct cfq_queue *cfqq;
2195	int dispatched = 0;
2196
2197	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2198		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2199
2200	cfq_slice_expired(cfqd, 0);
2201	BUG_ON(cfqd->busy_queues);
2202
2203	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2204	return dispatched;
2205}
2206
2207static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2208{
2209	unsigned int max_dispatch;
2210
2211	/*
2212	 * Drain async requests before we start sync IO
2213	 */
2214	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2215		return false;
2216
2217	/*
2218	 * If this is an async queue and we have sync IO in flight, let it wait
2219	 */
2220	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2221		return false;
2222
2223	max_dispatch = cfqd->cfq_quantum;
2224	if (cfq_class_idle(cfqq))
2225		max_dispatch = 1;
2226
2227	/*
2228	 * Does this cfqq already have too much IO in flight?
2229	 */
2230	if (cfqq->dispatched >= max_dispatch) {
2231		/*
2232		 * idle queue must always only have a single IO in flight
2233		 */
2234		if (cfq_class_idle(cfqq))
2235			return false;
2236
2237		/*
2238		 * We have other queues, don't allow more IO from this one
2239		 */
2240		if (cfqd->busy_queues > 1)
2241			return false;
2242
2243		/*
2244		 * Sole queue user, no limit
2245		 */
2246		max_dispatch = -1;
2247	}
2248
2249	/*
2250	 * Async queues must wait a bit before being allowed dispatch.
2251	 * We also ramp up the dispatch depth gradually for async IO,
2252	 * based on the last sync IO we serviced
2253	 */
2254	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2255		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2256		unsigned int depth;
2257
2258		depth = last_sync / cfqd->cfq_slice[1];
2259		if (!depth && !cfqq->dispatched)
2260			depth = 1;
2261		if (depth < max_dispatch)
2262			max_dispatch = depth;
2263	}
2264
2265	/*
2266	 * If we're below the current max, allow a dispatch
2267	 */
2268	return cfqq->dispatched < max_dispatch;
2269}
2270
2271/*
2272 * Dispatch a request from cfqq, moving them to the request queue
2273 * dispatch list.
2274 */
2275static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2276{
2277	struct request *rq;
2278
2279	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2280
2281	if (!cfq_may_dispatch(cfqd, cfqq))
2282		return false;
2283
2284	/*
2285	 * follow expired path, else get first next available
2286	 */
2287	rq = cfq_check_fifo(cfqq);
2288	if (!rq)
2289		rq = cfqq->next_rq;
2290
2291	/*
2292	 * insert request into driver dispatch list
2293	 */
2294	cfq_dispatch_insert(cfqd->queue, rq);
2295
2296	if (!cfqd->active_cic) {
2297		struct cfq_io_context *cic = RQ_CIC(rq);
2298
2299		atomic_long_inc(&cic->ioc->refcount);
2300		cfqd->active_cic = cic;
2301	}
2302
2303	return true;
2304}
2305
2306/*
2307 * Find the cfqq that we need to service and move a request from that to the
2308 * dispatch list
2309 */
2310static int cfq_dispatch_requests(struct request_queue *q, int force)
2311{
2312	struct cfq_data *cfqd = q->elevator->elevator_data;
2313	struct cfq_queue *cfqq;
2314
2315	if (!cfqd->busy_queues)
2316		return 0;
2317
2318	if (unlikely(force))
2319		return cfq_forced_dispatch(cfqd);
2320
2321	cfqq = cfq_select_queue(cfqd);
2322	if (!cfqq)
2323		return 0;
2324
2325	/*
2326	 * Dispatch a request from this cfqq, if it is allowed
2327	 */
2328	if (!cfq_dispatch_request(cfqd, cfqq))
2329		return 0;
2330
2331	cfqq->slice_dispatch++;
2332	cfq_clear_cfqq_must_dispatch(cfqq);
2333
2334	/*
2335	 * expire an async queue immediately if it has used up its slice. idle
2336	 * queue always expire after 1 dispatch round.
2337	 */
2338	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2339	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2340	    cfq_class_idle(cfqq))) {
2341		cfqq->slice_end = jiffies + 1;
2342		cfq_slice_expired(cfqd, 0);
2343	}
2344
2345	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2346	return 1;
2347}
2348
2349/*
2350 * task holds one reference to the queue, dropped when task exits. each rq
2351 * in-flight on this queue also holds a reference, dropped when rq is freed.
2352 *
2353 * Each cfq queue took a reference on the parent group. Drop it now.
2354 * queue lock must be held here.
2355 */
2356static void cfq_put_queue(struct cfq_queue *cfqq)
2357{
2358	struct cfq_data *cfqd = cfqq->cfqd;
2359	struct cfq_group *cfqg, *orig_cfqg;
2360
2361	BUG_ON(atomic_read(&cfqq->ref) <= 0);
2362
2363	if (!atomic_dec_and_test(&cfqq->ref))
2364		return;
2365
2366	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2367	BUG_ON(rb_first(&cfqq->sort_list));
2368	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2369	cfqg = cfqq->cfqg;
2370	orig_cfqg = cfqq->orig_cfqg;
2371
2372	if (unlikely(cfqd->active_queue == cfqq)) {
2373		__cfq_slice_expired(cfqd, cfqq, 0);
2374		cfq_schedule_dispatch(cfqd);
2375	}
2376
2377	BUG_ON(cfq_cfqq_on_rr(cfqq));
2378	kmem_cache_free(cfq_pool, cfqq);
2379	cfq_put_cfqg(cfqg);
2380	if (orig_cfqg)
2381		cfq_put_cfqg(orig_cfqg);
2382}
2383
2384/*
2385 * Must always be called with the rcu_read_lock() held
2386 */
2387static void
2388__call_for_each_cic(struct io_context *ioc,
2389		    void (*func)(struct io_context *, struct cfq_io_context *))
2390{
2391	struct cfq_io_context *cic;
2392	struct hlist_node *n;
2393
2394	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2395		func(ioc, cic);
2396}
2397
2398/*
2399 * Call func for each cic attached to this ioc.
2400 */
2401static void
2402call_for_each_cic(struct io_context *ioc,
2403		  void (*func)(struct io_context *, struct cfq_io_context *))
2404{
2405	rcu_read_lock();
2406	__call_for_each_cic(ioc, func);
2407	rcu_read_unlock();
2408}
2409
2410static void cfq_cic_free_rcu(struct rcu_head *head)
2411{
2412	struct cfq_io_context *cic;
2413
2414	cic = container_of(head, struct cfq_io_context, rcu_head);
2415
2416	kmem_cache_free(cfq_ioc_pool, cic);
2417	elv_ioc_count_dec(cfq_ioc_count);
2418
2419	if (ioc_gone) {
2420		/*
2421		 * CFQ scheduler is exiting, grab exit lock and check
2422		 * the pending io context count. If it hits zero,
2423		 * complete ioc_gone and set it back to NULL
2424		 */
2425		spin_lock(&ioc_gone_lock);
2426		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2427			complete(ioc_gone);
2428			ioc_gone = NULL;
2429		}
2430		spin_unlock(&ioc_gone_lock);
2431	}
2432}
2433
2434static void cfq_cic_free(struct cfq_io_context *cic)
2435{
2436	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2437}
2438
2439static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2440{
2441	unsigned long flags;
2442
2443	BUG_ON(!cic->dead_key);
2444
2445	spin_lock_irqsave(&ioc->lock, flags);
2446	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2447	hlist_del_rcu(&cic->cic_list);
2448	spin_unlock_irqrestore(&ioc->lock, flags);
2449
2450	cfq_cic_free(cic);
2451}
2452
2453/*
2454 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2455 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2456 * and ->trim() which is called with the task lock held
2457 */
2458static void cfq_free_io_context(struct io_context *ioc)
2459{
2460	/*
2461	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2462	 * so no more cic's are allowed to be linked into this ioc.  So it
2463	 * should be ok to iterate over the known list, we will see all cic's
2464	 * since no new ones are added.
2465	 */
2466	__call_for_each_cic(ioc, cic_free_func);
2467}
2468
2469static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2470{
2471	struct cfq_queue *__cfqq, *next;
2472
2473	if (unlikely(cfqq == cfqd->active_queue)) {
2474		__cfq_slice_expired(cfqd, cfqq, 0);
2475		cfq_schedule_dispatch(cfqd);
2476	}
2477
2478	/*
2479	 * If this queue was scheduled to merge with another queue, be
2480	 * sure to drop the reference taken on that queue (and others in
2481	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2482	 */
2483	__cfqq = cfqq->new_cfqq;
2484	while (__cfqq) {
2485		if (__cfqq == cfqq) {
2486			WARN(1, "cfqq->new_cfqq loop detected\n");
2487			break;
2488		}
2489		next = __cfqq->new_cfqq;
2490		cfq_put_queue(__cfqq);
2491		__cfqq = next;
2492	}
2493
2494	cfq_put_queue(cfqq);
2495}
2496
2497static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2498					 struct cfq_io_context *cic)
2499{
2500	struct io_context *ioc = cic->ioc;
2501
2502	list_del_init(&cic->queue_list);
2503
2504	/*
2505	 * Make sure key == NULL is seen for dead queues
2506	 */
2507	smp_wmb();
2508	cic->dead_key = (unsigned long) cic->key;
2509	cic->key = NULL;
2510
2511	if (ioc->ioc_data == cic)
2512		rcu_assign_pointer(ioc->ioc_data, NULL);
2513
2514	if (cic->cfqq[BLK_RW_ASYNC]) {
2515		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2516		cic->cfqq[BLK_RW_ASYNC] = NULL;
2517	}
2518
2519	if (cic->cfqq[BLK_RW_SYNC]) {
2520		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2521		cic->cfqq[BLK_RW_SYNC] = NULL;
2522	}
2523}
2524
2525static void cfq_exit_single_io_context(struct io_context *ioc,
2526				       struct cfq_io_context *cic)
2527{
2528	struct cfq_data *cfqd = cic->key;
2529
2530	if (cfqd) {
2531		struct request_queue *q = cfqd->queue;
2532		unsigned long flags;
2533
2534		spin_lock_irqsave(q->queue_lock, flags);
2535
2536		/*
2537		 * Ensure we get a fresh copy of the ->key to prevent
2538		 * race between exiting task and queue
2539		 */
2540		smp_read_barrier_depends();
2541		if (cic->key)
2542			__cfq_exit_single_io_context(cfqd, cic);
2543
2544		spin_unlock_irqrestore(q->queue_lock, flags);
2545	}
2546}
2547
2548/*
2549 * The process that ioc belongs to has exited, we need to clean up
2550 * and put the internal structures we have that belongs to that process.
2551 */
2552static void cfq_exit_io_context(struct io_context *ioc)
2553{
2554	call_for_each_cic(ioc, cfq_exit_single_io_context);
2555}
2556
2557static struct cfq_io_context *
2558cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2559{
2560	struct cfq_io_context *cic;
2561
2562	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2563							cfqd->queue->node);
2564	if (cic) {
2565		cic->last_end_request = jiffies;
2566		INIT_LIST_HEAD(&cic->queue_list);
2567		INIT_HLIST_NODE(&cic->cic_list);
2568		cic->dtor = cfq_free_io_context;
2569		cic->exit = cfq_exit_io_context;
2570		elv_ioc_count_inc(cfq_ioc_count);
2571	}
2572
2573	return cic;
2574}
2575
2576static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2577{
2578	struct task_struct *tsk = current;
2579	int ioprio_class;
2580
2581	if (!cfq_cfqq_prio_changed(cfqq))
2582		return;
2583
2584	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2585	switch (ioprio_class) {
2586	default:
2587		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2588	case IOPRIO_CLASS_NONE:
2589		/*
2590		 * no prio set, inherit CPU scheduling settings
2591		 */
2592		cfqq->ioprio = task_nice_ioprio(tsk);
2593		cfqq->ioprio_class = task_nice_ioclass(tsk);
2594		break;
2595	case IOPRIO_CLASS_RT:
2596		cfqq->ioprio = task_ioprio(ioc);
2597		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2598		break;
2599	case IOPRIO_CLASS_BE:
2600		cfqq->ioprio = task_ioprio(ioc);
2601		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2602		break;
2603	case IOPRIO_CLASS_IDLE:
2604		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2605		cfqq->ioprio = 7;
2606		cfq_clear_cfqq_idle_window(cfqq);
2607		break;
2608	}
2609
2610	/*
2611	 * keep track of original prio settings in case we have to temporarily
2612	 * elevate the priority of this queue
2613	 */
2614	cfqq->org_ioprio = cfqq->ioprio;
2615	cfqq->org_ioprio_class = cfqq->ioprio_class;
2616	cfq_clear_cfqq_prio_changed(cfqq);
2617}
2618
2619static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2620{
2621	struct cfq_data *cfqd = cic->key;
2622	struct cfq_queue *cfqq;
2623	unsigned long flags;
2624
2625	if (unlikely(!cfqd))
2626		return;
2627
2628	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2629
2630	cfqq = cic->cfqq[BLK_RW_ASYNC];
2631	if (cfqq) {
2632		struct cfq_queue *new_cfqq;
2633		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2634						GFP_ATOMIC);
2635		if (new_cfqq) {
2636			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2637			cfq_put_queue(cfqq);
2638		}
2639	}
2640
2641	cfqq = cic->cfqq[BLK_RW_SYNC];
2642	if (cfqq)
2643		cfq_mark_cfqq_prio_changed(cfqq);
2644
2645	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2646}
2647
2648static void cfq_ioc_set_ioprio(struct io_context *ioc)
2649{
2650	call_for_each_cic(ioc, changed_ioprio);
2651	ioc->ioprio_changed = 0;
2652}
2653
2654static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2655			  pid_t pid, bool is_sync)
2656{
2657	RB_CLEAR_NODE(&cfqq->rb_node);
2658	RB_CLEAR_NODE(&cfqq->p_node);
2659	INIT_LIST_HEAD(&cfqq->fifo);
2660
2661	atomic_set(&cfqq->ref, 0);
2662	cfqq->cfqd = cfqd;
2663
2664	cfq_mark_cfqq_prio_changed(cfqq);
2665
2666	if (is_sync) {
2667		if (!cfq_class_idle(cfqq))
2668			cfq_mark_cfqq_idle_window(cfqq);
2669		cfq_mark_cfqq_sync(cfqq);
2670	}
2671	cfqq->pid = pid;
2672}
2673
2674#ifdef CONFIG_CFQ_GROUP_IOSCHED
2675static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2676{
2677	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2678	struct cfq_data *cfqd = cic->key;
2679	unsigned long flags;
2680	struct request_queue *q;
2681
2682	if (unlikely(!cfqd))
2683		return;
2684
2685	q = cfqd->queue;
2686
2687	spin_lock_irqsave(q->queue_lock, flags);
2688
2689	if (sync_cfqq) {
2690		/*
2691		 * Drop reference to sync queue. A new sync queue will be
2692		 * assigned in new group upon arrival of a fresh request.
2693		 */
2694		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2695		cic_set_cfqq(cic, NULL, 1);
2696		cfq_put_queue(sync_cfqq);
2697	}
2698
2699	spin_unlock_irqrestore(q->queue_lock, flags);
2700}
2701
2702static void cfq_ioc_set_cgroup(struct io_context *ioc)
2703{
2704	call_for_each_cic(ioc, changed_cgroup);
2705	ioc->cgroup_changed = 0;
2706}
2707#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2708
2709static struct cfq_queue *
2710cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2711		     struct io_context *ioc, gfp_t gfp_mask)
2712{
2713	struct cfq_queue *cfqq, *new_cfqq = NULL;
2714	struct cfq_io_context *cic;
2715	struct cfq_group *cfqg;
2716
2717retry:
2718	cfqg = cfq_get_cfqg(cfqd, 1);
2719	cic = cfq_cic_lookup(cfqd, ioc);
2720	/* cic always exists here */
2721	cfqq = cic_to_cfqq(cic, is_sync);
2722
2723	/*
2724	 * Always try a new alloc if we fell back to the OOM cfqq
2725	 * originally, since it should just be a temporary situation.
2726	 */
2727	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2728		cfqq = NULL;
2729		if (new_cfqq) {
2730			cfqq = new_cfqq;
2731			new_cfqq = NULL;
2732		} else if (gfp_mask & __GFP_WAIT) {
2733			spin_unlock_irq(cfqd->queue->queue_lock);
2734			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2735					gfp_mask | __GFP_ZERO,
2736					cfqd->queue->node);
2737			spin_lock_irq(cfqd->queue->queue_lock);
2738			if (new_cfqq)
2739				goto retry;
2740		} else {
2741			cfqq = kmem_cache_alloc_node(cfq_pool,
2742					gfp_mask | __GFP_ZERO,
2743					cfqd->queue->node);
2744		}
2745
2746		if (cfqq) {
2747			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2748			cfq_init_prio_data(cfqq, ioc);
2749			cfq_link_cfqq_cfqg(cfqq, cfqg);
2750			cfq_log_cfqq(cfqd, cfqq, "alloced");
2751		} else
2752			cfqq = &cfqd->oom_cfqq;
2753	}
2754
2755	if (new_cfqq)
2756		kmem_cache_free(cfq_pool, new_cfqq);
2757
2758	return cfqq;
2759}
2760
2761static struct cfq_queue **
2762cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2763{
2764	switch (ioprio_class) {
2765	case IOPRIO_CLASS_RT:
2766		return &cfqd->async_cfqq[0][ioprio];
2767	case IOPRIO_CLASS_BE:
2768		return &cfqd->async_cfqq[1][ioprio];
2769	case IOPRIO_CLASS_IDLE:
2770		return &cfqd->async_idle_cfqq;
2771	default:
2772		BUG();
2773	}
2774}
2775
2776static struct cfq_queue *
2777cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2778	      gfp_t gfp_mask)
2779{
2780	const int ioprio = task_ioprio(ioc);
2781	const int ioprio_class = task_ioprio_class(ioc);
2782	struct cfq_queue **async_cfqq = NULL;
2783	struct cfq_queue *cfqq = NULL;
2784
2785	if (!is_sync) {
2786		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2787		cfqq = *async_cfqq;
2788	}
2789
2790	if (!cfqq)
2791		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2792
2793	/*
2794	 * pin the queue now that it's allocated, scheduler exit will prune it
2795	 */
2796	if (!is_sync && !(*async_cfqq)) {
2797		atomic_inc(&cfqq->ref);
2798		*async_cfqq = cfqq;
2799	}
2800
2801	atomic_inc(&cfqq->ref);
2802	return cfqq;
2803}
2804
2805/*
2806 * We drop cfq io contexts lazily, so we may find a dead one.
2807 */
2808static void
2809cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2810		  struct cfq_io_context *cic)
2811{
2812	unsigned long flags;
2813
2814	WARN_ON(!list_empty(&cic->queue_list));
2815
2816	spin_lock_irqsave(&ioc->lock, flags);
2817
2818	BUG_ON(ioc->ioc_data == cic);
2819
2820	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2821	hlist_del_rcu(&cic->cic_list);
2822	spin_unlock_irqrestore(&ioc->lock, flags);
2823
2824	cfq_cic_free(cic);
2825}
2826
2827static struct cfq_io_context *
2828cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2829{
2830	struct cfq_io_context *cic;
2831	unsigned long flags;
2832	void *k;
2833
2834	if (unlikely(!ioc))
2835		return NULL;
2836
2837	rcu_read_lock();
2838
2839	/*
2840	 * we maintain a last-hit cache, to avoid browsing over the tree
2841	 */
2842	cic = rcu_dereference(ioc->ioc_data);
2843	if (cic && cic->key == cfqd) {
2844		rcu_read_unlock();
2845		return cic;
2846	}
2847
2848	do {
2849		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2850		rcu_read_unlock();
2851		if (!cic)
2852			break;
2853		/* ->key must be copied to avoid race with cfq_exit_queue() */
2854		k = cic->key;
2855		if (unlikely(!k)) {
2856			cfq_drop_dead_cic(cfqd, ioc, cic);
2857			rcu_read_lock();
2858			continue;
2859		}
2860
2861		spin_lock_irqsave(&ioc->lock, flags);
2862		rcu_assign_pointer(ioc->ioc_data, cic);
2863		spin_unlock_irqrestore(&ioc->lock, flags);
2864		break;
2865	} while (1);
2866
2867	return cic;
2868}
2869
2870/*
2871 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2872 * the process specific cfq io context when entered from the block layer.
2873 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2874 */
2875static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2876			struct cfq_io_context *cic, gfp_t gfp_mask)
2877{
2878	unsigned long flags;
2879	int ret;
2880
2881	ret = radix_tree_preload(gfp_mask);
2882	if (!ret) {
2883		cic->ioc = ioc;
2884		cic->key = cfqd;
2885
2886		spin_lock_irqsave(&ioc->lock, flags);
2887		ret = radix_tree_insert(&ioc->radix_root,
2888						(unsigned long) cfqd, cic);
2889		if (!ret)
2890			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2891		spin_unlock_irqrestore(&ioc->lock, flags);
2892
2893		radix_tree_preload_end();
2894
2895		if (!ret) {
2896			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2897			list_add(&cic->queue_list, &cfqd->cic_list);
2898			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2899		}
2900	}
2901
2902	if (ret)
2903		printk(KERN_ERR "cfq: cic link failed!\n");
2904
2905	return ret;
2906}
2907
2908/*
2909 * Setup general io context and cfq io context. There can be several cfq
2910 * io contexts per general io context, if this process is doing io to more
2911 * than one device managed by cfq.
2912 */
2913static struct cfq_io_context *
2914cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2915{
2916	struct io_context *ioc = NULL;
2917	struct cfq_io_context *cic;
2918
2919	might_sleep_if(gfp_mask & __GFP_WAIT);
2920
2921	ioc = get_io_context(gfp_mask, cfqd->queue->node);
2922	if (!ioc)
2923		return NULL;
2924
2925	cic = cfq_cic_lookup(cfqd, ioc);
2926	if (cic)
2927		goto out;
2928
2929	cic = cfq_alloc_io_context(cfqd, gfp_mask);
2930	if (cic == NULL)
2931		goto err;
2932
2933	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2934		goto err_free;
2935
2936out:
2937	smp_read_barrier_depends();
2938	if (unlikely(ioc->ioprio_changed))
2939		cfq_ioc_set_ioprio(ioc);
2940
2941#ifdef CONFIG_CFQ_GROUP_IOSCHED
2942	if (unlikely(ioc->cgroup_changed))
2943		cfq_ioc_set_cgroup(ioc);
2944#endif
2945	return cic;
2946err_free:
2947	cfq_cic_free(cic);
2948err:
2949	put_io_context(ioc);
2950	return NULL;
2951}
2952
2953static void
2954cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2955{
2956	unsigned long elapsed = jiffies - cic->last_end_request;
2957	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2958
2959	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2960	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2961	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2962}
2963
2964static void
2965cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2966		       struct request *rq)
2967{
2968	sector_t sdist = 0;
2969	sector_t n_sec = blk_rq_sectors(rq);
2970	if (cfqq->last_request_pos) {
2971		if (cfqq->last_request_pos < blk_rq_pos(rq))
2972			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2973		else
2974			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2975	}
2976
2977	cfqq->seek_history <<= 1;
2978	if (blk_queue_nonrot(cfqd->queue))
2979		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2980	else
2981		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2982}
2983
2984/*
2985 * Disable idle window if the process thinks too long or seeks so much that
2986 * it doesn't matter
2987 */
2988static void
2989cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2990		       struct cfq_io_context *cic)
2991{
2992	int old_idle, enable_idle;
2993
2994	/*
2995	 * Don't idle for async or idle io prio class
2996	 */
2997	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2998		return;
2999
3000	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3001
3002	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3003		cfq_mark_cfqq_deep(cfqq);
3004
3005	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3006	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3007		enable_idle = 0;
3008	else if (sample_valid(cic->ttime_samples)) {
3009		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3010			enable_idle = 0;
3011		else
3012			enable_idle = 1;
3013	}
3014
3015	if (old_idle != enable_idle) {
3016		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3017		if (enable_idle)
3018			cfq_mark_cfqq_idle_window(cfqq);
3019		else
3020			cfq_clear_cfqq_idle_window(cfqq);
3021	}
3022}
3023
3024/*
3025 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3026 * no or if we aren't sure, a 1 will cause a preempt.
3027 */
3028static bool
3029cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3030		   struct request *rq)
3031{
3032	struct cfq_queue *cfqq;
3033
3034	cfqq = cfqd->active_queue;
3035	if (!cfqq)
3036		return false;
3037
3038	if (cfq_class_idle(new_cfqq))
3039		return false;
3040
3041	if (cfq_class_idle(cfqq))
3042		return true;
3043
3044	/*
3045	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3046	 */
3047	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3048		return false;
3049
3050	/*
3051	 * if the new request is sync, but the currently running queue is
3052	 * not, let the sync request have priority.
3053	 */
3054	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3055		return true;
3056
3057	if (new_cfqq->cfqg != cfqq->cfqg)
3058		return false;
3059
3060	if (cfq_slice_used(cfqq))
3061		return true;
3062
3063	/* Allow preemption only if we are idling on sync-noidle tree */
3064	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3065	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3066	    new_cfqq->service_tree->count == 2 &&
3067	    RB_EMPTY_ROOT(&cfqq->sort_list))
3068		return true;
3069
3070	/*
3071	 * So both queues are sync. Let the new request get disk time if
3072	 * it's a metadata request and the current queue is doing regular IO.
3073	 */
3074	if (rq_is_meta(rq) && !cfqq->meta_pending)
3075		return true;
3076
3077	/*
3078	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3079	 */
3080	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3081		return true;
3082
3083	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3084		return false;
3085
3086	/*
3087	 * if this request is as-good as one we would expect from the
3088	 * current cfqq, let it preempt
3089	 */
3090	if (cfq_rq_close(cfqd, cfqq, rq, true))
3091		return true;
3092
3093	return false;
3094}
3095
3096/*
3097 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3098 * let it have half of its nominal slice.
3099 */
3100static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3101{
3102	cfq_log_cfqq(cfqd, cfqq, "preempt");
3103	cfq_slice_expired(cfqd, 1);
3104
3105	/*
3106	 * Put the new queue at the front of the of the current list,
3107	 * so we know that it will be selected next.
3108	 */
3109	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3110
3111	cfq_service_tree_add(cfqd, cfqq, 1);
3112
3113	cfqq->slice_end = 0;
3114	cfq_mark_cfqq_slice_new(cfqq);
3115}
3116
3117/*
3118 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3119 * something we should do about it
3120 */
3121static void
3122cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3123		struct request *rq)
3124{
3125	struct cfq_io_context *cic = RQ_CIC(rq);
3126
3127	cfqd->rq_queued++;
3128	if (rq_is_meta(rq))
3129		cfqq->meta_pending++;
3130
3131	cfq_update_io_thinktime(cfqd, cic);
3132	cfq_update_io_seektime(cfqd, cfqq, rq);
3133	cfq_update_idle_window(cfqd, cfqq, cic);
3134
3135	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3136
3137	if (cfqq == cfqd->active_queue) {
3138		/*
3139		 * Remember that we saw a request from this process, but
3140		 * don't start queuing just yet. Otherwise we risk seeing lots
3141		 * of tiny requests, because we disrupt the normal plugging
3142		 * and merging. If the request is already larger than a single
3143		 * page, let it rip immediately. For that case we assume that
3144		 * merging is already done. Ditto for a busy system that
3145		 * has other work pending, don't risk delaying until the
3146		 * idle timer unplug to continue working.
3147		 */
3148		if (cfq_cfqq_wait_request(cfqq)) {
3149			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3150			    cfqd->busy_queues > 1) {
3151				del_timer(&cfqd->idle_slice_timer);
3152				cfq_clear_cfqq_wait_request(cfqq);
3153				__blk_run_queue(cfqd->queue);
3154			} else
3155				cfq_mark_cfqq_must_dispatch(cfqq);
3156		}
3157	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3158		/*
3159		 * not the active queue - expire current slice if it is
3160		 * idle and has expired it's mean thinktime or this new queue
3161		 * has some old slice time left and is of higher priority or
3162		 * this new queue is RT and the current one is BE
3163		 */
3164		cfq_preempt_queue(cfqd, cfqq);
3165		__blk_run_queue(cfqd->queue);
3166	}
3167}
3168
3169static void cfq_insert_request(struct request_queue *q, struct request *rq)
3170{
3171	struct cfq_data *cfqd = q->elevator->elevator_data;
3172	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3173
3174	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3175	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3176
3177	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3178	list_add_tail(&rq->queuelist, &cfqq->fifo);
3179	cfq_add_rq_rb(rq);
3180
3181	cfq_rq_enqueued(cfqd, cfqq, rq);
3182}
3183
3184/*
3185 * Update hw_tag based on peak queue depth over 50 samples under
3186 * sufficient load.
3187 */
3188static void cfq_update_hw_tag(struct cfq_data *cfqd)
3189{
3190	struct cfq_queue *cfqq = cfqd->active_queue;
3191
3192	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3193		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3194
3195	if (cfqd->hw_tag == 1)
3196		return;
3197
3198	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3199	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3200		return;
3201
3202	/*
3203	 * If active queue hasn't enough requests and can idle, cfq might not
3204	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3205	 * case
3206	 */
3207	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3208	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3209	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3210		return;
3211
3212	if (cfqd->hw_tag_samples++ < 50)
3213		return;
3214
3215	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3216		cfqd->hw_tag = 1;
3217	else
3218		cfqd->hw_tag = 0;
3219}
3220
3221static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3222{
3223	struct cfq_io_context *cic = cfqd->active_cic;
3224
3225	/* If there are other queues in the group, don't wait */
3226	if (cfqq->cfqg->nr_cfqq > 1)
3227		return false;
3228
3229	if (cfq_slice_used(cfqq))
3230		return true;
3231
3232	/* if slice left is less than think time, wait busy */
3233	if (cic && sample_valid(cic->ttime_samples)
3234	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
3235		return true;
3236
3237	/*
3238	 * If think times is less than a jiffy than ttime_mean=0 and above
3239	 * will not be true. It might happen that slice has not expired yet
3240	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3241	 * case where think time is less than a jiffy, mark the queue wait
3242	 * busy if only 1 jiffy is left in the slice.
3243	 */
3244	if (cfqq->slice_end - jiffies == 1)
3245		return true;
3246
3247	return false;
3248}
3249
3250static void cfq_completed_request(struct request_queue *q, struct request *rq)
3251{
3252	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3253	struct cfq_data *cfqd = cfqq->cfqd;
3254	const int sync = rq_is_sync(rq);
3255	unsigned long now;
3256
3257	now = jiffies;
3258	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3259
3260	cfq_update_hw_tag(cfqd);
3261
3262	WARN_ON(!cfqd->rq_in_driver[sync]);
3263	WARN_ON(!cfqq->dispatched);
3264	cfqd->rq_in_driver[sync]--;
3265	cfqq->dispatched--;
3266
3267	if (cfq_cfqq_sync(cfqq))
3268		cfqd->sync_flight--;
3269
3270	if (sync) {
3271		RQ_CIC(rq)->last_end_request = now;
3272		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3273			cfqd->last_delayed_sync = now;
3274	}
3275
3276	/*
3277	 * If this is the active queue, check if it needs to be expired,
3278	 * or if we want to idle in case it has no pending requests.
3279	 */
3280	if (cfqd->active_queue == cfqq) {
3281		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3282
3283		if (cfq_cfqq_slice_new(cfqq)) {
3284			cfq_set_prio_slice(cfqd, cfqq);
3285			cfq_clear_cfqq_slice_new(cfqq);
3286		}
3287
3288		/*
3289		 * Should we wait for next request to come in before we expire
3290		 * the queue.
3291		 */
3292		if (cfq_should_wait_busy(cfqd, cfqq)) {
3293			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3294			cfq_mark_cfqq_wait_busy(cfqq);
3295		}
3296
3297		/*
3298		 * Idling is not enabled on:
3299		 * - expired queues
3300		 * - idle-priority queues
3301		 * - async queues
3302		 * - queues with still some requests queued
3303		 * - when there is a close cooperator
3304		 */
3305		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3306			cfq_slice_expired(cfqd, 1);
3307		else if (sync && cfqq_empty &&
3308			 !cfq_close_cooperator(cfqd, cfqq)) {
3309			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3310			/*
3311			 * Idling is enabled for SYNC_WORKLOAD.
3312			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3313			 * only if we processed at least one !rq_noidle request
3314			 */
3315			if (cfqd->serving_type == SYNC_WORKLOAD
3316			    || cfqd->noidle_tree_requires_idle
3317			    || cfqq->cfqg->nr_cfqq == 1)
3318				cfq_arm_slice_timer(cfqd);
3319		}
3320	}
3321
3322	if (!rq_in_driver(cfqd))
3323		cfq_schedule_dispatch(cfqd);
3324}
3325
3326/*
3327 * we temporarily boost lower priority queues if they are holding fs exclusive
3328 * resources. they are boosted to normal prio (CLASS_BE/4)
3329 */
3330static void cfq_prio_boost(struct cfq_queue *cfqq)
3331{
3332	if (has_fs_excl()) {
3333		/*
3334		 * boost idle prio on transactions that would lock out other
3335		 * users of the filesystem
3336		 */
3337		if (cfq_class_idle(cfqq))
3338			cfqq->ioprio_class = IOPRIO_CLASS_BE;
3339		if (cfqq->ioprio > IOPRIO_NORM)
3340			cfqq->ioprio = IOPRIO_NORM;
3341	} else {
3342		/*
3343		 * unboost the queue (if needed)
3344		 */
3345		cfqq->ioprio_class = cfqq->org_ioprio_class;
3346		cfqq->ioprio = cfqq->org_ioprio;
3347	}
3348}
3349
3350static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3351{
3352	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3353		cfq_mark_cfqq_must_alloc_slice(cfqq);
3354		return ELV_MQUEUE_MUST;
3355	}
3356
3357	return ELV_MQUEUE_MAY;
3358}
3359
3360static int cfq_may_queue(struct request_queue *q, int rw)
3361{
3362	struct cfq_data *cfqd = q->elevator->elevator_data;
3363	struct task_struct *tsk = current;
3364	struct cfq_io_context *cic;
3365	struct cfq_queue *cfqq;
3366
3367	/*
3368	 * don't force setup of a queue from here, as a call to may_queue
3369	 * does not necessarily imply that a request actually will be queued.
3370	 * so just lookup a possibly existing queue, or return 'may queue'
3371	 * if that fails
3372	 */
3373	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3374	if (!cic)
3375		return ELV_MQUEUE_MAY;
3376
3377	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3378	if (cfqq) {
3379		cfq_init_prio_data(cfqq, cic->ioc);
3380		cfq_prio_boost(cfqq);
3381
3382		return __cfq_may_queue(cfqq);
3383	}
3384
3385	return ELV_MQUEUE_MAY;
3386}
3387
3388/*
3389 * queue lock held here
3390 */
3391static void cfq_put_request(struct request *rq)
3392{
3393	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3394
3395	if (cfqq) {
3396		const int rw = rq_data_dir(rq);
3397
3398		BUG_ON(!cfqq->allocated[rw]);
3399		cfqq->allocated[rw]--;
3400
3401		put_io_context(RQ_CIC(rq)->ioc);
3402
3403		rq->elevator_private = NULL;
3404		rq->elevator_private2 = NULL;
3405
3406		cfq_put_queue(cfqq);
3407	}
3408}
3409
3410static struct cfq_queue *
3411cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3412		struct cfq_queue *cfqq)
3413{
3414	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3415	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3416	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3417	cfq_put_queue(cfqq);
3418	return cic_to_cfqq(cic, 1);
3419}
3420
3421/*
3422 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3423 * was the last process referring to said cfqq.
3424 */
3425static struct cfq_queue *
3426split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3427{
3428	if (cfqq_process_refs(cfqq) == 1) {
3429		cfqq->pid = current->pid;
3430		cfq_clear_cfqq_coop(cfqq);
3431		cfq_clear_cfqq_split_coop(cfqq);
3432		return cfqq;
3433	}
3434
3435	cic_set_cfqq(cic, NULL, 1);
3436	cfq_put_queue(cfqq);
3437	return NULL;
3438}
3439/*
3440 * Allocate cfq data structures associated with this request.
3441 */
3442static int
3443cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3444{
3445	struct cfq_data *cfqd = q->elevator->elevator_data;
3446	struct cfq_io_context *cic;
3447	const int rw = rq_data_dir(rq);
3448	const bool is_sync = rq_is_sync(rq);
3449	struct cfq_queue *cfqq;
3450	unsigned long flags;
3451
3452	might_sleep_if(gfp_mask & __GFP_WAIT);
3453
3454	cic = cfq_get_io_context(cfqd, gfp_mask);
3455
3456	spin_lock_irqsave(q->queue_lock, flags);
3457
3458	if (!cic)
3459		goto queue_fail;
3460
3461new_queue:
3462	cfqq = cic_to_cfqq(cic, is_sync);
3463	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3464		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3465		cic_set_cfqq(cic, cfqq, is_sync);
3466	} else {
3467		/*
3468		 * If the queue was seeky for too long, break it apart.
3469		 */
3470		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3471			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3472			cfqq = split_cfqq(cic, cfqq);
3473			if (!cfqq)
3474				goto new_queue;
3475		}
3476
3477		/*
3478		 * Check to see if this queue is scheduled to merge with
3479		 * another, closely cooperating queue.  The merging of
3480		 * queues happens here as it must be done in process context.
3481		 * The reference on new_cfqq was taken in merge_cfqqs.
3482		 */
3483		if (cfqq->new_cfqq)
3484			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3485	}
3486
3487	cfqq->allocated[rw]++;
3488	atomic_inc(&cfqq->ref);
3489
3490	spin_unlock_irqrestore(q->queue_lock, flags);
3491
3492	rq->elevator_private = cic;
3493	rq->elevator_private2 = cfqq;
3494	return 0;
3495
3496queue_fail:
3497	if (cic)
3498		put_io_context(cic->ioc);
3499
3500	cfq_schedule_dispatch(cfqd);
3501	spin_unlock_irqrestore(q->queue_lock, flags);
3502	cfq_log(cfqd, "set_request fail");
3503	return 1;
3504}
3505
3506static void cfq_kick_queue(struct work_struct *work)
3507{
3508	struct cfq_data *cfqd =
3509		container_of(work, struct cfq_data, unplug_work);
3510	struct request_queue *q = cfqd->queue;
3511
3512	spin_lock_irq(q->queue_lock);
3513	__blk_run_queue(cfqd->queue);
3514	spin_unlock_irq(q->queue_lock);
3515}
3516
3517/*
3518 * Timer running if the active_queue is currently idling inside its time slice
3519 */
3520static void cfq_idle_slice_timer(unsigned long data)
3521{
3522	struct cfq_data *cfqd = (struct cfq_data *) data;
3523	struct cfq_queue *cfqq;
3524	unsigned long flags;
3525	int timed_out = 1;
3526
3527	cfq_log(cfqd, "idle timer fired");
3528
3529	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3530
3531	cfqq = cfqd->active_queue;
3532	if (cfqq) {
3533		timed_out = 0;
3534
3535		/*
3536		 * We saw a request before the queue expired, let it through
3537		 */
3538		if (cfq_cfqq_must_dispatch(cfqq))
3539			goto out_kick;
3540
3541		/*
3542		 * expired
3543		 */
3544		if (cfq_slice_used(cfqq))
3545			goto expire;
3546
3547		/*
3548		 * only expire and reinvoke request handler, if there are
3549		 * other queues with pending requests
3550		 */
3551		if (!cfqd->busy_queues)
3552			goto out_cont;
3553
3554		/*
3555		 * not expired and it has a request pending, let it dispatch
3556		 */
3557		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3558			goto out_kick;
3559
3560		/*
3561		 * Queue depth flag is reset only when the idle didn't succeed
3562		 */
3563		cfq_clear_cfqq_deep(cfqq);
3564	}
3565expire:
3566	cfq_slice_expired(cfqd, timed_out);
3567out_kick:
3568	cfq_schedule_dispatch(cfqd);
3569out_cont:
3570	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3571}
3572
3573static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3574{
3575	del_timer_sync(&cfqd->idle_slice_timer);
3576	cancel_work_sync(&cfqd->unplug_work);
3577}
3578
3579static void cfq_put_async_queues(struct cfq_data *cfqd)
3580{
3581	int i;
3582
3583	for (i = 0; i < IOPRIO_BE_NR; i++) {
3584		if (cfqd->async_cfqq[0][i])
3585			cfq_put_queue(cfqd->async_cfqq[0][i]);
3586		if (cfqd->async_cfqq[1][i])
3587			cfq_put_queue(cfqd->async_cfqq[1][i]);
3588	}
3589
3590	if (cfqd->async_idle_cfqq)
3591		cfq_put_queue(cfqd->async_idle_cfqq);
3592}
3593
3594static void cfq_cfqd_free(struct rcu_head *head)
3595{
3596	kfree(container_of(head, struct cfq_data, rcu));
3597}
3598
3599static void cfq_exit_queue(struct elevator_queue *e)
3600{
3601	struct cfq_data *cfqd = e->elevator_data;
3602	struct request_queue *q = cfqd->queue;
3603
3604	cfq_shutdown_timer_wq(cfqd);
3605
3606	spin_lock_irq(q->queue_lock);
3607
3608	if (cfqd->active_queue)
3609		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3610
3611	while (!list_empty(&cfqd->cic_list)) {
3612		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3613							struct cfq_io_context,
3614							queue_list);
3615
3616		__cfq_exit_single_io_context(cfqd, cic);
3617	}
3618
3619	cfq_put_async_queues(cfqd);
3620	cfq_release_cfq_groups(cfqd);
3621	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3622
3623	spin_unlock_irq(q->queue_lock);
3624
3625	cfq_shutdown_timer_wq(cfqd);
3626
3627	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3628	call_rcu(&cfqd->rcu, cfq_cfqd_free);
3629}
3630
3631static void *cfq_init_queue(struct request_queue *q)
3632{
3633	struct cfq_data *cfqd;
3634	int i, j;
3635	struct cfq_group *cfqg;
3636	struct cfq_rb_root *st;
3637
3638	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3639	if (!cfqd)
3640		return NULL;
3641
3642	/* Init root service tree */
3643	cfqd->grp_service_tree = CFQ_RB_ROOT;
3644
3645	/* Init root group */
3646	cfqg = &cfqd->root_group;
3647	for_each_cfqg_st(cfqg, i, j, st)
3648		*st = CFQ_RB_ROOT;
3649	RB_CLEAR_NODE(&cfqg->rb_node);
3650
3651	/* Give preference to root group over other groups */
3652	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3653
3654#ifdef CONFIG_CFQ_GROUP_IOSCHED
3655	/*
3656	 * Take a reference to root group which we never drop. This is just
3657	 * to make sure that cfq_put_cfqg() does not try to kfree root group
3658	 */
3659	atomic_set(&cfqg->ref, 1);
3660	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3661					0);
3662#endif
3663	/*
3664	 * Not strictly needed (since RB_ROOT just clears the node and we
3665	 * zeroed cfqd on alloc), but better be safe in case someone decides
3666	 * to add magic to the rb code
3667	 */
3668	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3669		cfqd->prio_trees[i] = RB_ROOT;
3670
3671	/*
3672	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3673	 * Grab a permanent reference to it, so that the normal code flow
3674	 * will not attempt to free it.
3675	 */
3676	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3677	atomic_inc(&cfqd->oom_cfqq.ref);
3678	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3679
3680	INIT_LIST_HEAD(&cfqd->cic_list);
3681
3682	cfqd->queue = q;
3683
3684	init_timer(&cfqd->idle_slice_timer);
3685	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3686	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3687
3688	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3689
3690	cfqd->cfq_quantum = cfq_quantum;
3691	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3692	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3693	cfqd->cfq_back_max = cfq_back_max;
3694	cfqd->cfq_back_penalty = cfq_back_penalty;
3695	cfqd->cfq_slice[0] = cfq_slice_async;
3696	cfqd->cfq_slice[1] = cfq_slice_sync;
3697	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3698	cfqd->cfq_slice_idle = cfq_slice_idle;
3699	cfqd->cfq_latency = 1;
3700	cfqd->cfq_group_isolation = 0;
3701	cfqd->hw_tag = -1;
3702	/*
3703	 * we optimistically start assuming sync ops weren't delayed in last
3704	 * second, in order to have larger depth for async operations.
3705	 */
3706	cfqd->last_delayed_sync = jiffies - HZ;
3707	INIT_RCU_HEAD(&cfqd->rcu);
3708	return cfqd;
3709}
3710
3711static void cfq_slab_kill(void)
3712{
3713	/*
3714	 * Caller already ensured that pending RCU callbacks are completed,
3715	 * so we should have no busy allocations at this point.
3716	 */
3717	if (cfq_pool)
3718		kmem_cache_destroy(cfq_pool);
3719	if (cfq_ioc_pool)
3720		kmem_cache_destroy(cfq_ioc_pool);
3721}
3722
3723static int __init cfq_slab_setup(void)
3724{
3725	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3726	if (!cfq_pool)
3727		goto fail;
3728
3729	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3730	if (!cfq_ioc_pool)
3731		goto fail;
3732
3733	return 0;
3734fail:
3735	cfq_slab_kill();
3736	return -ENOMEM;
3737}
3738
3739/*
3740 * sysfs parts below -->
3741 */
3742static ssize_t
3743cfq_var_show(unsigned int var, char *page)
3744{
3745	return sprintf(page, "%d\n", var);
3746}
3747
3748static ssize_t
3749cfq_var_store(unsigned int *var, const char *page, size_t count)
3750{
3751	char *p = (char *) page;
3752
3753	*var = simple_strtoul(p, &p, 10);
3754	return count;
3755}
3756
3757#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3758static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3759{									\
3760	struct cfq_data *cfqd = e->elevator_data;			\
3761	unsigned int __data = __VAR;					\
3762	if (__CONV)							\
3763		__data = jiffies_to_msecs(__data);			\
3764	return cfq_var_show(__data, (page));				\
3765}
3766SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3767SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3768SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3769SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3770SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3771SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3772SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3773SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3774SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3775SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3776SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3777#undef SHOW_FUNCTION
3778
3779#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3780static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3781{									\
3782	struct cfq_data *cfqd = e->elevator_data;			\
3783	unsigned int __data;						\
3784	int ret = cfq_var_store(&__data, (page), count);		\
3785	if (__data < (MIN))						\
3786		__data = (MIN);						\
3787	else if (__data > (MAX))					\
3788		__data = (MAX);						\
3789	if (__CONV)							\
3790		*(__PTR) = msecs_to_jiffies(__data);			\
3791	else								\
3792		*(__PTR) = __data;					\
3793	return ret;							\
3794}
3795STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3796STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3797		UINT_MAX, 1);
3798STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3799		UINT_MAX, 1);
3800STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3801STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3802		UINT_MAX, 0);
3803STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3804STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3805STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3806STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3807		UINT_MAX, 0);
3808STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3809STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3810#undef STORE_FUNCTION
3811
3812#define CFQ_ATTR(name) \
3813	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3814
3815static struct elv_fs_entry cfq_attrs[] = {
3816	CFQ_ATTR(quantum),
3817	CFQ_ATTR(fifo_expire_sync),
3818	CFQ_ATTR(fifo_expire_async),
3819	CFQ_ATTR(back_seek_max),
3820	CFQ_ATTR(back_seek_penalty),
3821	CFQ_ATTR(slice_sync),
3822	CFQ_ATTR(slice_async),
3823	CFQ_ATTR(slice_async_rq),
3824	CFQ_ATTR(slice_idle),
3825	CFQ_ATTR(low_latency),
3826	CFQ_ATTR(group_isolation),
3827	__ATTR_NULL
3828};
3829
3830static struct elevator_type iosched_cfq = {
3831	.ops = {
3832		.elevator_merge_fn = 		cfq_merge,
3833		.elevator_merged_fn =		cfq_merged_request,
3834		.elevator_merge_req_fn =	cfq_merged_requests,
3835		.elevator_allow_merge_fn =	cfq_allow_merge,
3836		.elevator_dispatch_fn =		cfq_dispatch_requests,
3837		.elevator_add_req_fn =		cfq_insert_request,
3838		.elevator_activate_req_fn =	cfq_activate_request,
3839		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3840		.elevator_queue_empty_fn =	cfq_queue_empty,
3841		.elevator_completed_req_fn =	cfq_completed_request,
3842		.elevator_former_req_fn =	elv_rb_former_request,
3843		.elevator_latter_req_fn =	elv_rb_latter_request,
3844		.elevator_set_req_fn =		cfq_set_request,
3845		.elevator_put_req_fn =		cfq_put_request,
3846		.elevator_may_queue_fn =	cfq_may_queue,
3847		.elevator_init_fn =		cfq_init_queue,
3848		.elevator_exit_fn =		cfq_exit_queue,
3849		.trim =				cfq_free_io_context,
3850	},
3851	.elevator_attrs =	cfq_attrs,
3852	.elevator_name =	"cfq",
3853	.elevator_owner =	THIS_MODULE,
3854};
3855
3856#ifdef CONFIG_CFQ_GROUP_IOSCHED
3857static struct blkio_policy_type blkio_policy_cfq = {
3858	.ops = {
3859		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
3860		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
3861	},
3862};
3863#else
3864static struct blkio_policy_type blkio_policy_cfq;
3865#endif
3866
3867static int __init cfq_init(void)
3868{
3869	/*
3870	 * could be 0 on HZ < 1000 setups
3871	 */
3872	if (!cfq_slice_async)
3873		cfq_slice_async = 1;
3874	if (!cfq_slice_idle)
3875		cfq_slice_idle = 1;
3876
3877	if (cfq_slab_setup())
3878		return -ENOMEM;
3879
3880	elv_register(&iosched_cfq);
3881	blkio_policy_register(&blkio_policy_cfq);
3882
3883	return 0;
3884}
3885
3886static void __exit cfq_exit(void)
3887{
3888	DECLARE_COMPLETION_ONSTACK(all_gone);
3889	blkio_policy_unregister(&blkio_policy_cfq);
3890	elv_unregister(&iosched_cfq);
3891	ioc_gone = &all_gone;
3892	/* ioc_gone's update must be visible before reading ioc_count */
3893	smp_wmb();
3894
3895	/*
3896	 * this also protects us from entering cfq_slab_kill() with
3897	 * pending RCU callbacks
3898	 */
3899	if (elv_ioc_count_read(cfq_ioc_count))
3900		wait_for_completion(&all_gone);
3901	cfq_slab_kill();
3902}
3903
3904module_init(cfq_init);
3905module_exit(cfq_exit);
3906
3907MODULE_AUTHOR("Jens Axboe");
3908MODULE_LICENSE("GPL");
3909MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3910