cfq-iosched.c revision 4d5e80a76074786a49879ff482a83e72ad634606
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "blk-cgroup.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY		(HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT		(2)
47
48#define CFQ_SLICE_SCALE		(5)
49#define CFQ_HW_QUEUE_MIN	(5)
50#define CFQ_SERVICE_SHIFT       12
51
52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples)	((samples) > 80)
68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71	unsigned long last_end_request;
72
73	unsigned long ttime_total;
74	unsigned long ttime_samples;
75	unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	u64 min_vdisktime;
89	struct cfq_ttime ttime;
90};
91#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
92			.ttime = {.last_end_request = jiffies,},}
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98	/* reference count */
99	int ref;
100	/* various state flags, see below */
101	unsigned int flags;
102	/* parent cfq_data */
103	struct cfq_data *cfqd;
104	/* service_tree member */
105	struct rb_node rb_node;
106	/* service_tree key */
107	unsigned long rb_key;
108	/* prio tree member */
109	struct rb_node p_node;
110	/* prio tree root we belong to, if any */
111	struct rb_root *p_root;
112	/* sorted list of pending requests */
113	struct rb_root sort_list;
114	/* if fifo isn't expired, next request to serve */
115	struct request *next_rq;
116	/* requests queued in sort_list */
117	int queued[2];
118	/* currently allocated requests */
119	int allocated[2];
120	/* fifo list of requests in sort_list */
121	struct list_head fifo;
122
123	/* time when queue got scheduled in to dispatch first request. */
124	unsigned long dispatch_start;
125	unsigned int allocated_slice;
126	unsigned int slice_dispatch;
127	/* time when first request from queue completed and slice started. */
128	unsigned long slice_start;
129	unsigned long slice_end;
130	long slice_resid;
131
132	/* pending priority requests */
133	int prio_pending;
134	/* number of requests that are on the dispatch list or inside driver */
135	int dispatched;
136
137	/* io prio of this group */
138	unsigned short ioprio, org_ioprio;
139	unsigned short ioprio_class;
140
141	pid_t pid;
142
143	u32 seek_history;
144	sector_t last_request_pos;
145
146	struct cfq_rb_root *service_tree;
147	struct cfq_queue *new_cfqq;
148	struct cfq_group *cfqg;
149	/* Number of sectors dispatched from queue in single dispatch round */
150	unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_class_t {
158	BE_WORKLOAD = 0,
159	RT_WORKLOAD = 1,
160	IDLE_WORKLOAD = 2,
161	CFQ_PRIO_NR,
162};
163
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168	ASYNC_WORKLOAD = 0,
169	SYNC_NOIDLE_WORKLOAD = 1,
170	SYNC_WORKLOAD = 2
171};
172
173struct cfqg_stats {
174#ifdef CONFIG_CFQ_GROUP_IOSCHED
175	/* total bytes transferred */
176	struct blkg_rwstat		service_bytes;
177	/* total IOs serviced, post merge */
178	struct blkg_rwstat		serviced;
179	/* number of ios merged */
180	struct blkg_rwstat		merged;
181	/* total time spent on device in ns, may not be accurate w/ queueing */
182	struct blkg_rwstat		service_time;
183	/* total time spent waiting in scheduler queue in ns */
184	struct blkg_rwstat		wait_time;
185	/* number of IOs queued up */
186	struct blkg_rwstat		queued;
187	/* total sectors transferred */
188	struct blkg_stat		sectors;
189	/* total disk time and nr sectors dispatched by this group */
190	struct blkg_stat		time;
191#ifdef CONFIG_DEBUG_BLK_CGROUP
192	/* time not charged to this cgroup */
193	struct blkg_stat		unaccounted_time;
194	/* sum of number of ios queued across all samples */
195	struct blkg_stat		avg_queue_size_sum;
196	/* count of samples taken for average */
197	struct blkg_stat		avg_queue_size_samples;
198	/* how many times this group has been removed from service tree */
199	struct blkg_stat		dequeue;
200	/* total time spent waiting for it to be assigned a timeslice. */
201	struct blkg_stat		group_wait_time;
202	/* time spent idling for this blkcg_gq */
203	struct blkg_stat		idle_time;
204	/* total time with empty current active q with other requests queued */
205	struct blkg_stat		empty_time;
206	/* fields after this shouldn't be cleared on stat reset */
207	uint64_t			start_group_wait_time;
208	uint64_t			start_idle_time;
209	uint64_t			start_empty_time;
210	uint16_t			flags;
211#endif	/* CONFIG_DEBUG_BLK_CGROUP */
212#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
213};
214
215/* This is per cgroup per device grouping structure */
216struct cfq_group {
217	/* must be the first member */
218	struct blkg_policy_data pd;
219
220	/* group service_tree member */
221	struct rb_node rb_node;
222
223	/* group service_tree key */
224	u64 vdisktime;
225
226	/*
227	 * The number of active cfqgs and sum of their weights under this
228	 * cfqg.  This covers this cfqg's leaf_weight and all children's
229	 * weights, but does not cover weights of further descendants.
230	 *
231	 * If a cfqg is on the service tree, it's active.  An active cfqg
232	 * also activates its parent and contributes to the children_weight
233	 * of the parent.
234	 */
235	int nr_active;
236	unsigned int children_weight;
237
238	/*
239	 * vfraction is the fraction of vdisktime that the tasks in this
240	 * cfqg are entitled to.  This is determined by compounding the
241	 * ratios walking up from this cfqg to the root.
242	 *
243	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244	 * vfractions on a service tree is approximately 1.  The sum may
245	 * deviate a bit due to rounding errors and fluctuations caused by
246	 * cfqgs entering and leaving the service tree.
247	 */
248	unsigned int vfraction;
249
250	/*
251	 * There are two weights - (internal) weight is the weight of this
252	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of
253	 * this cfqg against the child cfqgs.  For the root cfqg, both
254	 * weights are kept in sync for backward compatibility.
255	 */
256	unsigned int weight;
257	unsigned int new_weight;
258	unsigned int dev_weight;
259
260	unsigned int leaf_weight;
261	unsigned int new_leaf_weight;
262	unsigned int dev_leaf_weight;
263
264	/* number of cfqq currently on this group */
265	int nr_cfqq;
266
267	/*
268	 * Per group busy queues average. Useful for workload slice calc. We
269	 * create the array for each prio class but at run time it is used
270	 * only for RT and BE class and slot for IDLE class remains unused.
271	 * This is primarily done to avoid confusion and a gcc warning.
272	 */
273	unsigned int busy_queues_avg[CFQ_PRIO_NR];
274	/*
275	 * rr lists of queues with requests. We maintain service trees for
276	 * RT and BE classes. These trees are subdivided in subclasses
277	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278	 * class there is no subclassification and all the cfq queues go on
279	 * a single tree service_tree_idle.
280	 * Counts are embedded in the cfq_rb_root
281	 */
282	struct cfq_rb_root service_trees[2][3];
283	struct cfq_rb_root service_tree_idle;
284
285	unsigned long saved_wl_slice;
286	enum wl_type_t saved_wl_type;
287	enum wl_class_t saved_wl_class;
288
289	/* number of requests that are on the dispatch list or inside driver */
290	int dispatched;
291	struct cfq_ttime ttime;
292	struct cfqg_stats stats;
293};
294
295struct cfq_io_cq {
296	struct io_cq		icq;		/* must be the first member */
297	struct cfq_queue	*cfqq[2];
298	struct cfq_ttime	ttime;
299	int			ioprio;		/* the current ioprio */
300#ifdef CONFIG_CFQ_GROUP_IOSCHED
301	uint64_t		blkcg_id;	/* the current blkcg ID */
302#endif
303};
304
305/*
306 * Per block device queue structure
307 */
308struct cfq_data {
309	struct request_queue *queue;
310	/* Root service tree for cfq_groups */
311	struct cfq_rb_root grp_service_tree;
312	struct cfq_group *root_group;
313
314	/*
315	 * The priority currently being served
316	 */
317	enum wl_class_t serving_wl_class;
318	enum wl_type_t serving_wl_type;
319	unsigned long workload_expires;
320	struct cfq_group *serving_group;
321
322	/*
323	 * Each priority tree is sorted by next_request position.  These
324	 * trees are used when determining if two or more queues are
325	 * interleaving requests (see cfq_close_cooperator).
326	 */
327	struct rb_root prio_trees[CFQ_PRIO_LISTS];
328
329	unsigned int busy_queues;
330	unsigned int busy_sync_queues;
331
332	int rq_in_driver;
333	int rq_in_flight[2];
334
335	/*
336	 * queue-depth detection
337	 */
338	int rq_queued;
339	int hw_tag;
340	/*
341	 * hw_tag can be
342	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
343	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
344	 *  0 => no NCQ
345	 */
346	int hw_tag_est_depth;
347	unsigned int hw_tag_samples;
348
349	/*
350	 * idle window management
351	 */
352	struct timer_list idle_slice_timer;
353	struct work_struct unplug_work;
354
355	struct cfq_queue *active_queue;
356	struct cfq_io_cq *active_cic;
357
358	/*
359	 * async queue for each priority case
360	 */
361	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
362	struct cfq_queue *async_idle_cfqq;
363
364	sector_t last_position;
365
366	/*
367	 * tunables, see top of file
368	 */
369	unsigned int cfq_quantum;
370	unsigned int cfq_fifo_expire[2];
371	unsigned int cfq_back_penalty;
372	unsigned int cfq_back_max;
373	unsigned int cfq_slice[2];
374	unsigned int cfq_slice_async_rq;
375	unsigned int cfq_slice_idle;
376	unsigned int cfq_group_idle;
377	unsigned int cfq_latency;
378	unsigned int cfq_target_latency;
379
380	/*
381	 * Fallback dummy cfqq for extreme OOM conditions
382	 */
383	struct cfq_queue oom_cfqq;
384
385	unsigned long last_delayed_sync;
386};
387
388static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
389
390static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
391					    enum wl_class_t class,
392					    enum wl_type_t type)
393{
394	if (!cfqg)
395		return NULL;
396
397	if (class == IDLE_WORKLOAD)
398		return &cfqg->service_tree_idle;
399
400	return &cfqg->service_trees[class][type];
401}
402
403enum cfqq_state_flags {
404	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
405	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
406	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
407	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
408	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
409	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
410	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
411	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
412	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
413	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
414	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
415	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
416	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
417};
418
419#define CFQ_CFQQ_FNS(name)						\
420static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
421{									\
422	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
423}									\
424static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
425{									\
426	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
427}									\
428static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
429{									\
430	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
431}
432
433CFQ_CFQQ_FNS(on_rr);
434CFQ_CFQQ_FNS(wait_request);
435CFQ_CFQQ_FNS(must_dispatch);
436CFQ_CFQQ_FNS(must_alloc_slice);
437CFQ_CFQQ_FNS(fifo_expire);
438CFQ_CFQQ_FNS(idle_window);
439CFQ_CFQQ_FNS(prio_changed);
440CFQ_CFQQ_FNS(slice_new);
441CFQ_CFQQ_FNS(sync);
442CFQ_CFQQ_FNS(coop);
443CFQ_CFQQ_FNS(split_coop);
444CFQ_CFQQ_FNS(deep);
445CFQ_CFQQ_FNS(wait_busy);
446#undef CFQ_CFQQ_FNS
447
448static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
449{
450	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
451}
452
453static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
454{
455	return pd_to_blkg(&cfqg->pd);
456}
457
458#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
459
460/* cfqg stats flags */
461enum cfqg_stats_flags {
462	CFQG_stats_waiting = 0,
463	CFQG_stats_idling,
464	CFQG_stats_empty,
465};
466
467#define CFQG_FLAG_FNS(name)						\
468static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
469{									\
470	stats->flags |= (1 << CFQG_stats_##name);			\
471}									\
472static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
473{									\
474	stats->flags &= ~(1 << CFQG_stats_##name);			\
475}									\
476static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
477{									\
478	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
479}									\
480
481CFQG_FLAG_FNS(waiting)
482CFQG_FLAG_FNS(idling)
483CFQG_FLAG_FNS(empty)
484#undef CFQG_FLAG_FNS
485
486/* This should be called with the queue_lock held. */
487static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
488{
489	unsigned long long now;
490
491	if (!cfqg_stats_waiting(stats))
492		return;
493
494	now = sched_clock();
495	if (time_after64(now, stats->start_group_wait_time))
496		blkg_stat_add(&stats->group_wait_time,
497			      now - stats->start_group_wait_time);
498	cfqg_stats_clear_waiting(stats);
499}
500
501/* This should be called with the queue_lock held. */
502static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
503						 struct cfq_group *curr_cfqg)
504{
505	struct cfqg_stats *stats = &cfqg->stats;
506
507	if (cfqg_stats_waiting(stats))
508		return;
509	if (cfqg == curr_cfqg)
510		return;
511	stats->start_group_wait_time = sched_clock();
512	cfqg_stats_mark_waiting(stats);
513}
514
515/* This should be called with the queue_lock held. */
516static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
517{
518	unsigned long long now;
519
520	if (!cfqg_stats_empty(stats))
521		return;
522
523	now = sched_clock();
524	if (time_after64(now, stats->start_empty_time))
525		blkg_stat_add(&stats->empty_time,
526			      now - stats->start_empty_time);
527	cfqg_stats_clear_empty(stats);
528}
529
530static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
531{
532	blkg_stat_add(&cfqg->stats.dequeue, 1);
533}
534
535static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
536{
537	struct cfqg_stats *stats = &cfqg->stats;
538
539	if (blkg_rwstat_total(&stats->queued))
540		return;
541
542	/*
543	 * group is already marked empty. This can happen if cfqq got new
544	 * request in parent group and moved to this group while being added
545	 * to service tree. Just ignore the event and move on.
546	 */
547	if (cfqg_stats_empty(stats))
548		return;
549
550	stats->start_empty_time = sched_clock();
551	cfqg_stats_mark_empty(stats);
552}
553
554static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
555{
556	struct cfqg_stats *stats = &cfqg->stats;
557
558	if (cfqg_stats_idling(stats)) {
559		unsigned long long now = sched_clock();
560
561		if (time_after64(now, stats->start_idle_time))
562			blkg_stat_add(&stats->idle_time,
563				      now - stats->start_idle_time);
564		cfqg_stats_clear_idling(stats);
565	}
566}
567
568static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
569{
570	struct cfqg_stats *stats = &cfqg->stats;
571
572	BUG_ON(cfqg_stats_idling(stats));
573
574	stats->start_idle_time = sched_clock();
575	cfqg_stats_mark_idling(stats);
576}
577
578static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
579{
580	struct cfqg_stats *stats = &cfqg->stats;
581
582	blkg_stat_add(&stats->avg_queue_size_sum,
583		      blkg_rwstat_total(&stats->queued));
584	blkg_stat_add(&stats->avg_queue_size_samples, 1);
585	cfqg_stats_update_group_wait_time(stats);
586}
587
588#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
589
590static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
591static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
592static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
593static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
594static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
595static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
596static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
597
598#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
599
600#ifdef CONFIG_CFQ_GROUP_IOSCHED
601
602static struct blkcg_policy blkcg_policy_cfq;
603
604static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
605{
606	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
607}
608
609static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
610{
611	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
612
613	return pblkg ? blkg_to_cfqg(pblkg) : NULL;
614}
615
616static inline void cfqg_get(struct cfq_group *cfqg)
617{
618	return blkg_get(cfqg_to_blkg(cfqg));
619}
620
621static inline void cfqg_put(struct cfq_group *cfqg)
622{
623	return blkg_put(cfqg_to_blkg(cfqg));
624}
625
626#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
627	char __pbuf[128];						\
628									\
629	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
630	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
631			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
632			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
633			  __pbuf, ##args);				\
634} while (0)
635
636#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
637	char __pbuf[128];						\
638									\
639	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
640	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
641} while (0)
642
643static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
644					    struct cfq_group *curr_cfqg, int rw)
645{
646	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
647	cfqg_stats_end_empty_time(&cfqg->stats);
648	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
649}
650
651static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
652			unsigned long time, unsigned long unaccounted_time)
653{
654	blkg_stat_add(&cfqg->stats.time, time);
655#ifdef CONFIG_DEBUG_BLK_CGROUP
656	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
657#endif
658}
659
660static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
661{
662	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
663}
664
665static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
666{
667	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
668}
669
670static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
671					      uint64_t bytes, int rw)
672{
673	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
674	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
675	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
676}
677
678static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
679			uint64_t start_time, uint64_t io_start_time, int rw)
680{
681	struct cfqg_stats *stats = &cfqg->stats;
682	unsigned long long now = sched_clock();
683
684	if (time_after64(now, io_start_time))
685		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
686	if (time_after64(io_start_time, start_time))
687		blkg_rwstat_add(&stats->wait_time, rw,
688				io_start_time - start_time);
689}
690
691static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
692{
693	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
694	struct cfqg_stats *stats = &cfqg->stats;
695
696	/* queued stats shouldn't be cleared */
697	blkg_rwstat_reset(&stats->service_bytes);
698	blkg_rwstat_reset(&stats->serviced);
699	blkg_rwstat_reset(&stats->merged);
700	blkg_rwstat_reset(&stats->service_time);
701	blkg_rwstat_reset(&stats->wait_time);
702	blkg_stat_reset(&stats->time);
703#ifdef CONFIG_DEBUG_BLK_CGROUP
704	blkg_stat_reset(&stats->unaccounted_time);
705	blkg_stat_reset(&stats->avg_queue_size_sum);
706	blkg_stat_reset(&stats->avg_queue_size_samples);
707	blkg_stat_reset(&stats->dequeue);
708	blkg_stat_reset(&stats->group_wait_time);
709	blkg_stat_reset(&stats->idle_time);
710	blkg_stat_reset(&stats->empty_time);
711#endif
712}
713
714#else	/* CONFIG_CFQ_GROUP_IOSCHED */
715
716static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
717static inline void cfqg_get(struct cfq_group *cfqg) { }
718static inline void cfqg_put(struct cfq_group *cfqg) { }
719
720#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
721	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\
722			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
723			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
724				##args)
725#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
726
727static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
728			struct cfq_group *curr_cfqg, int rw) { }
729static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
730			unsigned long time, unsigned long unaccounted_time) { }
731static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
732static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
733static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
734					      uint64_t bytes, int rw) { }
735static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
736			uint64_t start_time, uint64_t io_start_time, int rw) { }
737
738#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
739
740#define cfq_log(cfqd, fmt, args...)	\
741	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
742
743/* Traverses through cfq group service trees */
744#define for_each_cfqg_st(cfqg, i, j, st) \
745	for (i = 0; i <= IDLE_WORKLOAD; i++) \
746		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
747			: &cfqg->service_tree_idle; \
748			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
749			(i == IDLE_WORKLOAD && j == 0); \
750			j++, st = i < IDLE_WORKLOAD ? \
751			&cfqg->service_trees[i][j]: NULL) \
752
753static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
754	struct cfq_ttime *ttime, bool group_idle)
755{
756	unsigned long slice;
757	if (!sample_valid(ttime->ttime_samples))
758		return false;
759	if (group_idle)
760		slice = cfqd->cfq_group_idle;
761	else
762		slice = cfqd->cfq_slice_idle;
763	return ttime->ttime_mean > slice;
764}
765
766static inline bool iops_mode(struct cfq_data *cfqd)
767{
768	/*
769	 * If we are not idling on queues and it is a NCQ drive, parallel
770	 * execution of requests is on and measuring time is not possible
771	 * in most of the cases until and unless we drive shallower queue
772	 * depths and that becomes a performance bottleneck. In such cases
773	 * switch to start providing fairness in terms of number of IOs.
774	 */
775	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
776		return true;
777	else
778		return false;
779}
780
781static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
782{
783	if (cfq_class_idle(cfqq))
784		return IDLE_WORKLOAD;
785	if (cfq_class_rt(cfqq))
786		return RT_WORKLOAD;
787	return BE_WORKLOAD;
788}
789
790
791static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
792{
793	if (!cfq_cfqq_sync(cfqq))
794		return ASYNC_WORKLOAD;
795	if (!cfq_cfqq_idle_window(cfqq))
796		return SYNC_NOIDLE_WORKLOAD;
797	return SYNC_WORKLOAD;
798}
799
800static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
801					struct cfq_data *cfqd,
802					struct cfq_group *cfqg)
803{
804	if (wl_class == IDLE_WORKLOAD)
805		return cfqg->service_tree_idle.count;
806
807	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
808		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
809		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
810}
811
812static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
813					struct cfq_group *cfqg)
814{
815	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
816		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
817}
818
819static void cfq_dispatch_insert(struct request_queue *, struct request *);
820static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
821				       struct cfq_io_cq *cic, struct bio *bio,
822				       gfp_t gfp_mask);
823
824static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
825{
826	/* cic->icq is the first member, %NULL will convert to %NULL */
827	return container_of(icq, struct cfq_io_cq, icq);
828}
829
830static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
831					       struct io_context *ioc)
832{
833	if (ioc)
834		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
835	return NULL;
836}
837
838static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
839{
840	return cic->cfqq[is_sync];
841}
842
843static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
844				bool is_sync)
845{
846	cic->cfqq[is_sync] = cfqq;
847}
848
849static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
850{
851	return cic->icq.q->elevator->elevator_data;
852}
853
854/*
855 * We regard a request as SYNC, if it's either a read or has the SYNC bit
856 * set (in which case it could also be direct WRITE).
857 */
858static inline bool cfq_bio_sync(struct bio *bio)
859{
860	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
861}
862
863/*
864 * scheduler run of queue, if there are requests pending and no one in the
865 * driver that will restart queueing
866 */
867static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
868{
869	if (cfqd->busy_queues) {
870		cfq_log(cfqd, "schedule dispatch");
871		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
872	}
873}
874
875/*
876 * Scale schedule slice based on io priority. Use the sync time slice only
877 * if a queue is marked sync and has sync io queued. A sync queue with async
878 * io only, should not get full sync slice length.
879 */
880static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
881				 unsigned short prio)
882{
883	const int base_slice = cfqd->cfq_slice[sync];
884
885	WARN_ON(prio >= IOPRIO_BE_NR);
886
887	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
888}
889
890static inline int
891cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
892{
893	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
894}
895
896/**
897 * cfqg_scale_charge - scale disk time charge according to cfqg weight
898 * @charge: disk time being charged
899 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
900 *
901 * Scale @charge according to @vfraction, which is in range (0, 1].  The
902 * scaling is inversely proportional.
903 *
904 * scaled = charge / vfraction
905 *
906 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
907 */
908static inline u64 cfqg_scale_charge(unsigned long charge,
909				    unsigned int vfraction)
910{
911	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */
912
913	/* charge / vfraction */
914	c <<= CFQ_SERVICE_SHIFT;
915	do_div(c, vfraction);
916	return c;
917}
918
919static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
920{
921	s64 delta = (s64)(vdisktime - min_vdisktime);
922	if (delta > 0)
923		min_vdisktime = vdisktime;
924
925	return min_vdisktime;
926}
927
928static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
929{
930	s64 delta = (s64)(vdisktime - min_vdisktime);
931	if (delta < 0)
932		min_vdisktime = vdisktime;
933
934	return min_vdisktime;
935}
936
937static void update_min_vdisktime(struct cfq_rb_root *st)
938{
939	struct cfq_group *cfqg;
940
941	if (st->left) {
942		cfqg = rb_entry_cfqg(st->left);
943		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
944						  cfqg->vdisktime);
945	}
946}
947
948/*
949 * get averaged number of queues of RT/BE priority.
950 * average is updated, with a formula that gives more weight to higher numbers,
951 * to quickly follows sudden increases and decrease slowly
952 */
953
954static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
955					struct cfq_group *cfqg, bool rt)
956{
957	unsigned min_q, max_q;
958	unsigned mult  = cfq_hist_divisor - 1;
959	unsigned round = cfq_hist_divisor / 2;
960	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
961
962	min_q = min(cfqg->busy_queues_avg[rt], busy);
963	max_q = max(cfqg->busy_queues_avg[rt], busy);
964	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
965		cfq_hist_divisor;
966	return cfqg->busy_queues_avg[rt];
967}
968
969static inline unsigned
970cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
971{
972	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
973}
974
975static inline unsigned
976cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
977{
978	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
979	if (cfqd->cfq_latency) {
980		/*
981		 * interested queues (we consider only the ones with the same
982		 * priority class in the cfq group)
983		 */
984		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
985						cfq_class_rt(cfqq));
986		unsigned sync_slice = cfqd->cfq_slice[1];
987		unsigned expect_latency = sync_slice * iq;
988		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
989
990		if (expect_latency > group_slice) {
991			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
992			/* scale low_slice according to IO priority
993			 * and sync vs async */
994			unsigned low_slice =
995				min(slice, base_low_slice * slice / sync_slice);
996			/* the adapted slice value is scaled to fit all iqs
997			 * into the target latency */
998			slice = max(slice * group_slice / expect_latency,
999				    low_slice);
1000		}
1001	}
1002	return slice;
1003}
1004
1005static inline void
1006cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1007{
1008	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1009
1010	cfqq->slice_start = jiffies;
1011	cfqq->slice_end = jiffies + slice;
1012	cfqq->allocated_slice = slice;
1013	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1014}
1015
1016/*
1017 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1018 * isn't valid until the first request from the dispatch is activated
1019 * and the slice time set.
1020 */
1021static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1022{
1023	if (cfq_cfqq_slice_new(cfqq))
1024		return false;
1025	if (time_before(jiffies, cfqq->slice_end))
1026		return false;
1027
1028	return true;
1029}
1030
1031/*
1032 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1033 * We choose the request that is closest to the head right now. Distance
1034 * behind the head is penalized and only allowed to a certain extent.
1035 */
1036static struct request *
1037cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1038{
1039	sector_t s1, s2, d1 = 0, d2 = 0;
1040	unsigned long back_max;
1041#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
1042#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
1043	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1044
1045	if (rq1 == NULL || rq1 == rq2)
1046		return rq2;
1047	if (rq2 == NULL)
1048		return rq1;
1049
1050	if (rq_is_sync(rq1) != rq_is_sync(rq2))
1051		return rq_is_sync(rq1) ? rq1 : rq2;
1052
1053	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1054		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1055
1056	s1 = blk_rq_pos(rq1);
1057	s2 = blk_rq_pos(rq2);
1058
1059	/*
1060	 * by definition, 1KiB is 2 sectors
1061	 */
1062	back_max = cfqd->cfq_back_max * 2;
1063
1064	/*
1065	 * Strict one way elevator _except_ in the case where we allow
1066	 * short backward seeks which are biased as twice the cost of a
1067	 * similar forward seek.
1068	 */
1069	if (s1 >= last)
1070		d1 = s1 - last;
1071	else if (s1 + back_max >= last)
1072		d1 = (last - s1) * cfqd->cfq_back_penalty;
1073	else
1074		wrap |= CFQ_RQ1_WRAP;
1075
1076	if (s2 >= last)
1077		d2 = s2 - last;
1078	else if (s2 + back_max >= last)
1079		d2 = (last - s2) * cfqd->cfq_back_penalty;
1080	else
1081		wrap |= CFQ_RQ2_WRAP;
1082
1083	/* Found required data */
1084
1085	/*
1086	 * By doing switch() on the bit mask "wrap" we avoid having to
1087	 * check two variables for all permutations: --> faster!
1088	 */
1089	switch (wrap) {
1090	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1091		if (d1 < d2)
1092			return rq1;
1093		else if (d2 < d1)
1094			return rq2;
1095		else {
1096			if (s1 >= s2)
1097				return rq1;
1098			else
1099				return rq2;
1100		}
1101
1102	case CFQ_RQ2_WRAP:
1103		return rq1;
1104	case CFQ_RQ1_WRAP:
1105		return rq2;
1106	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1107	default:
1108		/*
1109		 * Since both rqs are wrapped,
1110		 * start with the one that's further behind head
1111		 * (--> only *one* back seek required),
1112		 * since back seek takes more time than forward.
1113		 */
1114		if (s1 <= s2)
1115			return rq1;
1116		else
1117			return rq2;
1118	}
1119}
1120
1121/*
1122 * The below is leftmost cache rbtree addon
1123 */
1124static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1125{
1126	/* Service tree is empty */
1127	if (!root->count)
1128		return NULL;
1129
1130	if (!root->left)
1131		root->left = rb_first(&root->rb);
1132
1133	if (root->left)
1134		return rb_entry(root->left, struct cfq_queue, rb_node);
1135
1136	return NULL;
1137}
1138
1139static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1140{
1141	if (!root->left)
1142		root->left = rb_first(&root->rb);
1143
1144	if (root->left)
1145		return rb_entry_cfqg(root->left);
1146
1147	return NULL;
1148}
1149
1150static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1151{
1152	rb_erase(n, root);
1153	RB_CLEAR_NODE(n);
1154}
1155
1156static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1157{
1158	if (root->left == n)
1159		root->left = NULL;
1160	rb_erase_init(n, &root->rb);
1161	--root->count;
1162}
1163
1164/*
1165 * would be nice to take fifo expire time into account as well
1166 */
1167static struct request *
1168cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1169		  struct request *last)
1170{
1171	struct rb_node *rbnext = rb_next(&last->rb_node);
1172	struct rb_node *rbprev = rb_prev(&last->rb_node);
1173	struct request *next = NULL, *prev = NULL;
1174
1175	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1176
1177	if (rbprev)
1178		prev = rb_entry_rq(rbprev);
1179
1180	if (rbnext)
1181		next = rb_entry_rq(rbnext);
1182	else {
1183		rbnext = rb_first(&cfqq->sort_list);
1184		if (rbnext && rbnext != &last->rb_node)
1185			next = rb_entry_rq(rbnext);
1186	}
1187
1188	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1189}
1190
1191static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1192				      struct cfq_queue *cfqq)
1193{
1194	/*
1195	 * just an approximation, should be ok.
1196	 */
1197	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1198		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1199}
1200
1201static inline s64
1202cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1203{
1204	return cfqg->vdisktime - st->min_vdisktime;
1205}
1206
1207static void
1208__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1209{
1210	struct rb_node **node = &st->rb.rb_node;
1211	struct rb_node *parent = NULL;
1212	struct cfq_group *__cfqg;
1213	s64 key = cfqg_key(st, cfqg);
1214	int left = 1;
1215
1216	while (*node != NULL) {
1217		parent = *node;
1218		__cfqg = rb_entry_cfqg(parent);
1219
1220		if (key < cfqg_key(st, __cfqg))
1221			node = &parent->rb_left;
1222		else {
1223			node = &parent->rb_right;
1224			left = 0;
1225		}
1226	}
1227
1228	if (left)
1229		st->left = &cfqg->rb_node;
1230
1231	rb_link_node(&cfqg->rb_node, parent, node);
1232	rb_insert_color(&cfqg->rb_node, &st->rb);
1233}
1234
1235static void
1236cfq_update_group_weight(struct cfq_group *cfqg)
1237{
1238	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1239
1240	if (cfqg->new_weight) {
1241		cfqg->weight = cfqg->new_weight;
1242		cfqg->new_weight = 0;
1243	}
1244
1245	if (cfqg->new_leaf_weight) {
1246		cfqg->leaf_weight = cfqg->new_leaf_weight;
1247		cfqg->new_leaf_weight = 0;
1248	}
1249}
1250
1251static void
1252cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1253{
1254	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */
1255	struct cfq_group *pos = cfqg;
1256	struct cfq_group *parent;
1257	bool propagate;
1258
1259	/* add to the service tree */
1260	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1261
1262	cfq_update_group_weight(cfqg);
1263	__cfq_group_service_tree_add(st, cfqg);
1264
1265	/*
1266	 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1267	 * entitled to.  vfraction is calculated by walking the tree
1268	 * towards the root calculating the fraction it has at each level.
1269	 * The compounded ratio is how much vfraction @cfqg owns.
1270	 *
1271	 * Start with the proportion tasks in this cfqg has against active
1272	 * children cfqgs - its leaf_weight against children_weight.
1273	 */
1274	propagate = !pos->nr_active++;
1275	pos->children_weight += pos->leaf_weight;
1276	vfr = vfr * pos->leaf_weight / pos->children_weight;
1277
1278	/*
1279	 * Compound ->weight walking up the tree.  Both activation and
1280	 * vfraction calculation are done in the same loop.  Propagation
1281	 * stops once an already activated node is met.  vfraction
1282	 * calculation should always continue to the root.
1283	 */
1284	while ((parent = cfqg_parent(pos))) {
1285		if (propagate) {
1286			propagate = !parent->nr_active++;
1287			parent->children_weight += pos->weight;
1288		}
1289		vfr = vfr * pos->weight / parent->children_weight;
1290		pos = parent;
1291	}
1292
1293	cfqg->vfraction = max_t(unsigned, vfr, 1);
1294}
1295
1296static void
1297cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1298{
1299	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1300	struct cfq_group *__cfqg;
1301	struct rb_node *n;
1302
1303	cfqg->nr_cfqq++;
1304	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1305		return;
1306
1307	/*
1308	 * Currently put the group at the end. Later implement something
1309	 * so that groups get lesser vtime based on their weights, so that
1310	 * if group does not loose all if it was not continuously backlogged.
1311	 */
1312	n = rb_last(&st->rb);
1313	if (n) {
1314		__cfqg = rb_entry_cfqg(n);
1315		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1316	} else
1317		cfqg->vdisktime = st->min_vdisktime;
1318	cfq_group_service_tree_add(st, cfqg);
1319}
1320
1321static void
1322cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1323{
1324	struct cfq_group *pos = cfqg;
1325	bool propagate;
1326
1327	/*
1328	 * Undo activation from cfq_group_service_tree_add().  Deactivate
1329	 * @cfqg and propagate deactivation upwards.
1330	 */
1331	propagate = !--pos->nr_active;
1332	pos->children_weight -= pos->leaf_weight;
1333
1334	while (propagate) {
1335		struct cfq_group *parent = cfqg_parent(pos);
1336
1337		/* @pos has 0 nr_active at this point */
1338		WARN_ON_ONCE(pos->children_weight);
1339		pos->vfraction = 0;
1340
1341		if (!parent)
1342			break;
1343
1344		propagate = !--parent->nr_active;
1345		parent->children_weight -= pos->weight;
1346		pos = parent;
1347	}
1348
1349	/* remove from the service tree */
1350	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1351		cfq_rb_erase(&cfqg->rb_node, st);
1352}
1353
1354static void
1355cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1356{
1357	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1358
1359	BUG_ON(cfqg->nr_cfqq < 1);
1360	cfqg->nr_cfqq--;
1361
1362	/* If there are other cfq queues under this group, don't delete it */
1363	if (cfqg->nr_cfqq)
1364		return;
1365
1366	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1367	cfq_group_service_tree_del(st, cfqg);
1368	cfqg->saved_wl_slice = 0;
1369	cfqg_stats_update_dequeue(cfqg);
1370}
1371
1372static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1373						unsigned int *unaccounted_time)
1374{
1375	unsigned int slice_used;
1376
1377	/*
1378	 * Queue got expired before even a single request completed or
1379	 * got expired immediately after first request completion.
1380	 */
1381	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1382		/*
1383		 * Also charge the seek time incurred to the group, otherwise
1384		 * if there are mutiple queues in the group, each can dispatch
1385		 * a single request on seeky media and cause lots of seek time
1386		 * and group will never know it.
1387		 */
1388		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1389					1);
1390	} else {
1391		slice_used = jiffies - cfqq->slice_start;
1392		if (slice_used > cfqq->allocated_slice) {
1393			*unaccounted_time = slice_used - cfqq->allocated_slice;
1394			slice_used = cfqq->allocated_slice;
1395		}
1396		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1397			*unaccounted_time += cfqq->slice_start -
1398					cfqq->dispatch_start;
1399	}
1400
1401	return slice_used;
1402}
1403
1404static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1405				struct cfq_queue *cfqq)
1406{
1407	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1408	unsigned int used_sl, charge, unaccounted_sl = 0;
1409	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1410			- cfqg->service_tree_idle.count;
1411	unsigned int vfr;
1412
1413	BUG_ON(nr_sync < 0);
1414	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1415
1416	if (iops_mode(cfqd))
1417		charge = cfqq->slice_dispatch;
1418	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1419		charge = cfqq->allocated_slice;
1420
1421	/*
1422	 * Can't update vdisktime while on service tree and cfqg->vfraction
1423	 * is valid only while on it.  Cache vfr, leave the service tree,
1424	 * update vdisktime and go back on.  The re-addition to the tree
1425	 * will also update the weights as necessary.
1426	 */
1427	vfr = cfqg->vfraction;
1428	cfq_group_service_tree_del(st, cfqg);
1429	cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1430	cfq_group_service_tree_add(st, cfqg);
1431
1432	/* This group is being expired. Save the context */
1433	if (time_after(cfqd->workload_expires, jiffies)) {
1434		cfqg->saved_wl_slice = cfqd->workload_expires
1435						- jiffies;
1436		cfqg->saved_wl_type = cfqd->serving_wl_type;
1437		cfqg->saved_wl_class = cfqd->serving_wl_class;
1438	} else
1439		cfqg->saved_wl_slice = 0;
1440
1441	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1442					st->min_vdisktime);
1443	cfq_log_cfqq(cfqq->cfqd, cfqq,
1444		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1445		     used_sl, cfqq->slice_dispatch, charge,
1446		     iops_mode(cfqd), cfqq->nr_sectors);
1447	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1448	cfqg_stats_set_start_empty_time(cfqg);
1449}
1450
1451/**
1452 * cfq_init_cfqg_base - initialize base part of a cfq_group
1453 * @cfqg: cfq_group to initialize
1454 *
1455 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1456 * is enabled or not.
1457 */
1458static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1459{
1460	struct cfq_rb_root *st;
1461	int i, j;
1462
1463	for_each_cfqg_st(cfqg, i, j, st)
1464		*st = CFQ_RB_ROOT;
1465	RB_CLEAR_NODE(&cfqg->rb_node);
1466
1467	cfqg->ttime.last_end_request = jiffies;
1468}
1469
1470#ifdef CONFIG_CFQ_GROUP_IOSCHED
1471static void cfq_pd_init(struct blkcg_gq *blkg)
1472{
1473	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1474
1475	cfq_init_cfqg_base(cfqg);
1476	cfqg->weight = blkg->blkcg->cfq_weight;
1477	cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1478}
1479
1480/*
1481 * Search for the cfq group current task belongs to. request_queue lock must
1482 * be held.
1483 */
1484static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1485						struct blkcg *blkcg)
1486{
1487	struct request_queue *q = cfqd->queue;
1488	struct cfq_group *cfqg = NULL;
1489
1490	/* avoid lookup for the common case where there's no blkcg */
1491	if (blkcg == &blkcg_root) {
1492		cfqg = cfqd->root_group;
1493	} else {
1494		struct blkcg_gq *blkg;
1495
1496		blkg = blkg_lookup_create(blkcg, q);
1497		if (!IS_ERR(blkg))
1498			cfqg = blkg_to_cfqg(blkg);
1499	}
1500
1501	return cfqg;
1502}
1503
1504static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1505{
1506	/* Currently, all async queues are mapped to root group */
1507	if (!cfq_cfqq_sync(cfqq))
1508		cfqg = cfqq->cfqd->root_group;
1509
1510	cfqq->cfqg = cfqg;
1511	/* cfqq reference on cfqg */
1512	cfqg_get(cfqg);
1513}
1514
1515static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1516				     struct blkg_policy_data *pd, int off)
1517{
1518	struct cfq_group *cfqg = pd_to_cfqg(pd);
1519
1520	if (!cfqg->dev_weight)
1521		return 0;
1522	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1523}
1524
1525static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1526				    struct seq_file *sf)
1527{
1528	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1529			  cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1530			  false);
1531	return 0;
1532}
1533
1534static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1535					  struct blkg_policy_data *pd, int off)
1536{
1537	struct cfq_group *cfqg = pd_to_cfqg(pd);
1538
1539	if (!cfqg->dev_leaf_weight)
1540		return 0;
1541	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1542}
1543
1544static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1545					 struct cftype *cft,
1546					 struct seq_file *sf)
1547{
1548	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1549			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1550			  false);
1551	return 0;
1552}
1553
1554static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1555			    struct seq_file *sf)
1556{
1557	seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1558	return 0;
1559}
1560
1561static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1562				 struct seq_file *sf)
1563{
1564	seq_printf(sf, "%u\n",
1565		   cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1566	return 0;
1567}
1568
1569static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1570				    const char *buf, bool is_leaf_weight)
1571{
1572	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1573	struct blkg_conf_ctx ctx;
1574	struct cfq_group *cfqg;
1575	int ret;
1576
1577	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1578	if (ret)
1579		return ret;
1580
1581	ret = -EINVAL;
1582	cfqg = blkg_to_cfqg(ctx.blkg);
1583	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1584		if (!is_leaf_weight) {
1585			cfqg->dev_weight = ctx.v;
1586			cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1587		} else {
1588			cfqg->dev_leaf_weight = ctx.v;
1589			cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1590		}
1591		ret = 0;
1592	}
1593
1594	blkg_conf_finish(&ctx);
1595	return ret;
1596}
1597
1598static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1599				  const char *buf)
1600{
1601	return __cfqg_set_weight_device(cgrp, cft, buf, false);
1602}
1603
1604static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1605				       const char *buf)
1606{
1607	return __cfqg_set_weight_device(cgrp, cft, buf, true);
1608}
1609
1610static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1611			    bool is_leaf_weight)
1612{
1613	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1614	struct blkcg_gq *blkg;
1615	struct hlist_node *n;
1616
1617	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1618		return -EINVAL;
1619
1620	spin_lock_irq(&blkcg->lock);
1621
1622	if (!is_leaf_weight)
1623		blkcg->cfq_weight = val;
1624	else
1625		blkcg->cfq_leaf_weight = val;
1626
1627	hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1628		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1629
1630		if (!cfqg)
1631			continue;
1632
1633		if (!is_leaf_weight) {
1634			if (!cfqg->dev_weight)
1635				cfqg->new_weight = blkcg->cfq_weight;
1636		} else {
1637			if (!cfqg->dev_leaf_weight)
1638				cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1639		}
1640	}
1641
1642	spin_unlock_irq(&blkcg->lock);
1643	return 0;
1644}
1645
1646static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1647{
1648	return __cfq_set_weight(cgrp, cft, val, false);
1649}
1650
1651static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1652{
1653	return __cfq_set_weight(cgrp, cft, val, true);
1654}
1655
1656static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1657			   struct seq_file *sf)
1658{
1659	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1660
1661	blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1662			  cft->private, false);
1663	return 0;
1664}
1665
1666static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1667			     struct seq_file *sf)
1668{
1669	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1670
1671	blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1672			  cft->private, true);
1673	return 0;
1674}
1675
1676#ifdef CONFIG_DEBUG_BLK_CGROUP
1677static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1678				      struct blkg_policy_data *pd, int off)
1679{
1680	struct cfq_group *cfqg = pd_to_cfqg(pd);
1681	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1682	u64 v = 0;
1683
1684	if (samples) {
1685		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1686		do_div(v, samples);
1687	}
1688	__blkg_prfill_u64(sf, pd, v);
1689	return 0;
1690}
1691
1692/* print avg_queue_size */
1693static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1694				     struct seq_file *sf)
1695{
1696	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1697
1698	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1699			  &blkcg_policy_cfq, 0, false);
1700	return 0;
1701}
1702#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1703
1704static struct cftype cfq_blkcg_files[] = {
1705	/* on root, weight is mapped to leaf_weight */
1706	{
1707		.name = "weight_device",
1708		.flags = CFTYPE_ONLY_ON_ROOT,
1709		.read_seq_string = cfqg_print_leaf_weight_device,
1710		.write_string = cfqg_set_leaf_weight_device,
1711		.max_write_len = 256,
1712	},
1713	{
1714		.name = "weight",
1715		.flags = CFTYPE_ONLY_ON_ROOT,
1716		.read_seq_string = cfq_print_leaf_weight,
1717		.write_u64 = cfq_set_leaf_weight,
1718	},
1719
1720	/* no such mapping necessary for !roots */
1721	{
1722		.name = "weight_device",
1723		.flags = CFTYPE_NOT_ON_ROOT,
1724		.read_seq_string = cfqg_print_weight_device,
1725		.write_string = cfqg_set_weight_device,
1726		.max_write_len = 256,
1727	},
1728	{
1729		.name = "weight",
1730		.flags = CFTYPE_NOT_ON_ROOT,
1731		.read_seq_string = cfq_print_weight,
1732		.write_u64 = cfq_set_weight,
1733	},
1734
1735	{
1736		.name = "leaf_weight_device",
1737		.read_seq_string = cfqg_print_leaf_weight_device,
1738		.write_string = cfqg_set_leaf_weight_device,
1739		.max_write_len = 256,
1740	},
1741	{
1742		.name = "leaf_weight",
1743		.read_seq_string = cfq_print_leaf_weight,
1744		.write_u64 = cfq_set_leaf_weight,
1745	},
1746
1747	{
1748		.name = "time",
1749		.private = offsetof(struct cfq_group, stats.time),
1750		.read_seq_string = cfqg_print_stat,
1751	},
1752	{
1753		.name = "sectors",
1754		.private = offsetof(struct cfq_group, stats.sectors),
1755		.read_seq_string = cfqg_print_stat,
1756	},
1757	{
1758		.name = "io_service_bytes",
1759		.private = offsetof(struct cfq_group, stats.service_bytes),
1760		.read_seq_string = cfqg_print_rwstat,
1761	},
1762	{
1763		.name = "io_serviced",
1764		.private = offsetof(struct cfq_group, stats.serviced),
1765		.read_seq_string = cfqg_print_rwstat,
1766	},
1767	{
1768		.name = "io_service_time",
1769		.private = offsetof(struct cfq_group, stats.service_time),
1770		.read_seq_string = cfqg_print_rwstat,
1771	},
1772	{
1773		.name = "io_wait_time",
1774		.private = offsetof(struct cfq_group, stats.wait_time),
1775		.read_seq_string = cfqg_print_rwstat,
1776	},
1777	{
1778		.name = "io_merged",
1779		.private = offsetof(struct cfq_group, stats.merged),
1780		.read_seq_string = cfqg_print_rwstat,
1781	},
1782	{
1783		.name = "io_queued",
1784		.private = offsetof(struct cfq_group, stats.queued),
1785		.read_seq_string = cfqg_print_rwstat,
1786	},
1787#ifdef CONFIG_DEBUG_BLK_CGROUP
1788	{
1789		.name = "avg_queue_size",
1790		.read_seq_string = cfqg_print_avg_queue_size,
1791	},
1792	{
1793		.name = "group_wait_time",
1794		.private = offsetof(struct cfq_group, stats.group_wait_time),
1795		.read_seq_string = cfqg_print_stat,
1796	},
1797	{
1798		.name = "idle_time",
1799		.private = offsetof(struct cfq_group, stats.idle_time),
1800		.read_seq_string = cfqg_print_stat,
1801	},
1802	{
1803		.name = "empty_time",
1804		.private = offsetof(struct cfq_group, stats.empty_time),
1805		.read_seq_string = cfqg_print_stat,
1806	},
1807	{
1808		.name = "dequeue",
1809		.private = offsetof(struct cfq_group, stats.dequeue),
1810		.read_seq_string = cfqg_print_stat,
1811	},
1812	{
1813		.name = "unaccounted_time",
1814		.private = offsetof(struct cfq_group, stats.unaccounted_time),
1815		.read_seq_string = cfqg_print_stat,
1816	},
1817#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1818	{ }	/* terminate */
1819};
1820#else /* GROUP_IOSCHED */
1821static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1822						struct blkcg *blkcg)
1823{
1824	return cfqd->root_group;
1825}
1826
1827static inline void
1828cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1829	cfqq->cfqg = cfqg;
1830}
1831
1832#endif /* GROUP_IOSCHED */
1833
1834/*
1835 * The cfqd->service_trees holds all pending cfq_queue's that have
1836 * requests waiting to be processed. It is sorted in the order that
1837 * we will service the queues.
1838 */
1839static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1840				 bool add_front)
1841{
1842	struct rb_node **p, *parent;
1843	struct cfq_queue *__cfqq;
1844	unsigned long rb_key;
1845	struct cfq_rb_root *st;
1846	int left;
1847	int new_cfqq = 1;
1848
1849	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
1850	if (cfq_class_idle(cfqq)) {
1851		rb_key = CFQ_IDLE_DELAY;
1852		parent = rb_last(&st->rb);
1853		if (parent && parent != &cfqq->rb_node) {
1854			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1855			rb_key += __cfqq->rb_key;
1856		} else
1857			rb_key += jiffies;
1858	} else if (!add_front) {
1859		/*
1860		 * Get our rb key offset. Subtract any residual slice
1861		 * value carried from last service. A negative resid
1862		 * count indicates slice overrun, and this should position
1863		 * the next service time further away in the tree.
1864		 */
1865		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1866		rb_key -= cfqq->slice_resid;
1867		cfqq->slice_resid = 0;
1868	} else {
1869		rb_key = -HZ;
1870		__cfqq = cfq_rb_first(st);
1871		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1872	}
1873
1874	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1875		new_cfqq = 0;
1876		/*
1877		 * same position, nothing more to do
1878		 */
1879		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
1880			return;
1881
1882		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1883		cfqq->service_tree = NULL;
1884	}
1885
1886	left = 1;
1887	parent = NULL;
1888	cfqq->service_tree = st;
1889	p = &st->rb.rb_node;
1890	while (*p) {
1891		parent = *p;
1892		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1893
1894		/*
1895		 * sort by key, that represents service time.
1896		 */
1897		if (time_before(rb_key, __cfqq->rb_key))
1898			p = &parent->rb_left;
1899		else {
1900			p = &parent->rb_right;
1901			left = 0;
1902		}
1903	}
1904
1905	if (left)
1906		st->left = &cfqq->rb_node;
1907
1908	cfqq->rb_key = rb_key;
1909	rb_link_node(&cfqq->rb_node, parent, p);
1910	rb_insert_color(&cfqq->rb_node, &st->rb);
1911	st->count++;
1912	if (add_front || !new_cfqq)
1913		return;
1914	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1915}
1916
1917static struct cfq_queue *
1918cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1919		     sector_t sector, struct rb_node **ret_parent,
1920		     struct rb_node ***rb_link)
1921{
1922	struct rb_node **p, *parent;
1923	struct cfq_queue *cfqq = NULL;
1924
1925	parent = NULL;
1926	p = &root->rb_node;
1927	while (*p) {
1928		struct rb_node **n;
1929
1930		parent = *p;
1931		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1932
1933		/*
1934		 * Sort strictly based on sector.  Smallest to the left,
1935		 * largest to the right.
1936		 */
1937		if (sector > blk_rq_pos(cfqq->next_rq))
1938			n = &(*p)->rb_right;
1939		else if (sector < blk_rq_pos(cfqq->next_rq))
1940			n = &(*p)->rb_left;
1941		else
1942			break;
1943		p = n;
1944		cfqq = NULL;
1945	}
1946
1947	*ret_parent = parent;
1948	if (rb_link)
1949		*rb_link = p;
1950	return cfqq;
1951}
1952
1953static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1954{
1955	struct rb_node **p, *parent;
1956	struct cfq_queue *__cfqq;
1957
1958	if (cfqq->p_root) {
1959		rb_erase(&cfqq->p_node, cfqq->p_root);
1960		cfqq->p_root = NULL;
1961	}
1962
1963	if (cfq_class_idle(cfqq))
1964		return;
1965	if (!cfqq->next_rq)
1966		return;
1967
1968	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1969	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1970				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1971	if (!__cfqq) {
1972		rb_link_node(&cfqq->p_node, parent, p);
1973		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1974	} else
1975		cfqq->p_root = NULL;
1976}
1977
1978/*
1979 * Update cfqq's position in the service tree.
1980 */
1981static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1982{
1983	/*
1984	 * Resorting requires the cfqq to be on the RR list already.
1985	 */
1986	if (cfq_cfqq_on_rr(cfqq)) {
1987		cfq_service_tree_add(cfqd, cfqq, 0);
1988		cfq_prio_tree_add(cfqd, cfqq);
1989	}
1990}
1991
1992/*
1993 * add to busy list of queues for service, trying to be fair in ordering
1994 * the pending list according to last request service
1995 */
1996static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1997{
1998	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1999	BUG_ON(cfq_cfqq_on_rr(cfqq));
2000	cfq_mark_cfqq_on_rr(cfqq);
2001	cfqd->busy_queues++;
2002	if (cfq_cfqq_sync(cfqq))
2003		cfqd->busy_sync_queues++;
2004
2005	cfq_resort_rr_list(cfqd, cfqq);
2006}
2007
2008/*
2009 * Called when the cfqq no longer has requests pending, remove it from
2010 * the service tree.
2011 */
2012static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2013{
2014	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2015	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2016	cfq_clear_cfqq_on_rr(cfqq);
2017
2018	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2019		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2020		cfqq->service_tree = NULL;
2021	}
2022	if (cfqq->p_root) {
2023		rb_erase(&cfqq->p_node, cfqq->p_root);
2024		cfqq->p_root = NULL;
2025	}
2026
2027	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2028	BUG_ON(!cfqd->busy_queues);
2029	cfqd->busy_queues--;
2030	if (cfq_cfqq_sync(cfqq))
2031		cfqd->busy_sync_queues--;
2032}
2033
2034/*
2035 * rb tree support functions
2036 */
2037static void cfq_del_rq_rb(struct request *rq)
2038{
2039	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2040	const int sync = rq_is_sync(rq);
2041
2042	BUG_ON(!cfqq->queued[sync]);
2043	cfqq->queued[sync]--;
2044
2045	elv_rb_del(&cfqq->sort_list, rq);
2046
2047	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2048		/*
2049		 * Queue will be deleted from service tree when we actually
2050		 * expire it later. Right now just remove it from prio tree
2051		 * as it is empty.
2052		 */
2053		if (cfqq->p_root) {
2054			rb_erase(&cfqq->p_node, cfqq->p_root);
2055			cfqq->p_root = NULL;
2056		}
2057	}
2058}
2059
2060static void cfq_add_rq_rb(struct request *rq)
2061{
2062	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2063	struct cfq_data *cfqd = cfqq->cfqd;
2064	struct request *prev;
2065
2066	cfqq->queued[rq_is_sync(rq)]++;
2067
2068	elv_rb_add(&cfqq->sort_list, rq);
2069
2070	if (!cfq_cfqq_on_rr(cfqq))
2071		cfq_add_cfqq_rr(cfqd, cfqq);
2072
2073	/*
2074	 * check if this request is a better next-serve candidate
2075	 */
2076	prev = cfqq->next_rq;
2077	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2078
2079	/*
2080	 * adjust priority tree position, if ->next_rq changes
2081	 */
2082	if (prev != cfqq->next_rq)
2083		cfq_prio_tree_add(cfqd, cfqq);
2084
2085	BUG_ON(!cfqq->next_rq);
2086}
2087
2088static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2089{
2090	elv_rb_del(&cfqq->sort_list, rq);
2091	cfqq->queued[rq_is_sync(rq)]--;
2092	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2093	cfq_add_rq_rb(rq);
2094	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2095				 rq->cmd_flags);
2096}
2097
2098static struct request *
2099cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2100{
2101	struct task_struct *tsk = current;
2102	struct cfq_io_cq *cic;
2103	struct cfq_queue *cfqq;
2104
2105	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2106	if (!cic)
2107		return NULL;
2108
2109	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2110	if (cfqq) {
2111		sector_t sector = bio->bi_sector + bio_sectors(bio);
2112
2113		return elv_rb_find(&cfqq->sort_list, sector);
2114	}
2115
2116	return NULL;
2117}
2118
2119static void cfq_activate_request(struct request_queue *q, struct request *rq)
2120{
2121	struct cfq_data *cfqd = q->elevator->elevator_data;
2122
2123	cfqd->rq_in_driver++;
2124	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2125						cfqd->rq_in_driver);
2126
2127	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2128}
2129
2130static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2131{
2132	struct cfq_data *cfqd = q->elevator->elevator_data;
2133
2134	WARN_ON(!cfqd->rq_in_driver);
2135	cfqd->rq_in_driver--;
2136	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2137						cfqd->rq_in_driver);
2138}
2139
2140static void cfq_remove_request(struct request *rq)
2141{
2142	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2143
2144	if (cfqq->next_rq == rq)
2145		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2146
2147	list_del_init(&rq->queuelist);
2148	cfq_del_rq_rb(rq);
2149
2150	cfqq->cfqd->rq_queued--;
2151	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2152	if (rq->cmd_flags & REQ_PRIO) {
2153		WARN_ON(!cfqq->prio_pending);
2154		cfqq->prio_pending--;
2155	}
2156}
2157
2158static int cfq_merge(struct request_queue *q, struct request **req,
2159		     struct bio *bio)
2160{
2161	struct cfq_data *cfqd = q->elevator->elevator_data;
2162	struct request *__rq;
2163
2164	__rq = cfq_find_rq_fmerge(cfqd, bio);
2165	if (__rq && elv_rq_merge_ok(__rq, bio)) {
2166		*req = __rq;
2167		return ELEVATOR_FRONT_MERGE;
2168	}
2169
2170	return ELEVATOR_NO_MERGE;
2171}
2172
2173static void cfq_merged_request(struct request_queue *q, struct request *req,
2174			       int type)
2175{
2176	if (type == ELEVATOR_FRONT_MERGE) {
2177		struct cfq_queue *cfqq = RQ_CFQQ(req);
2178
2179		cfq_reposition_rq_rb(cfqq, req);
2180	}
2181}
2182
2183static void cfq_bio_merged(struct request_queue *q, struct request *req,
2184				struct bio *bio)
2185{
2186	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2187}
2188
2189static void
2190cfq_merged_requests(struct request_queue *q, struct request *rq,
2191		    struct request *next)
2192{
2193	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2194	struct cfq_data *cfqd = q->elevator->elevator_data;
2195
2196	/*
2197	 * reposition in fifo if next is older than rq
2198	 */
2199	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2200	    time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2201	    cfqq == RQ_CFQQ(next)) {
2202		list_move(&rq->queuelist, &next->queuelist);
2203		rq_set_fifo_time(rq, rq_fifo_time(next));
2204	}
2205
2206	if (cfqq->next_rq == next)
2207		cfqq->next_rq = rq;
2208	cfq_remove_request(next);
2209	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2210
2211	cfqq = RQ_CFQQ(next);
2212	/*
2213	 * all requests of this queue are merged to other queues, delete it
2214	 * from the service tree. If it's the active_queue,
2215	 * cfq_dispatch_requests() will choose to expire it or do idle
2216	 */
2217	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2218	    cfqq != cfqd->active_queue)
2219		cfq_del_cfqq_rr(cfqd, cfqq);
2220}
2221
2222static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2223			   struct bio *bio)
2224{
2225	struct cfq_data *cfqd = q->elevator->elevator_data;
2226	struct cfq_io_cq *cic;
2227	struct cfq_queue *cfqq;
2228
2229	/*
2230	 * Disallow merge of a sync bio into an async request.
2231	 */
2232	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2233		return false;
2234
2235	/*
2236	 * Lookup the cfqq that this bio will be queued with and allow
2237	 * merge only if rq is queued there.
2238	 */
2239	cic = cfq_cic_lookup(cfqd, current->io_context);
2240	if (!cic)
2241		return false;
2242
2243	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2244	return cfqq == RQ_CFQQ(rq);
2245}
2246
2247static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2248{
2249	del_timer(&cfqd->idle_slice_timer);
2250	cfqg_stats_update_idle_time(cfqq->cfqg);
2251}
2252
2253static void __cfq_set_active_queue(struct cfq_data *cfqd,
2254				   struct cfq_queue *cfqq)
2255{
2256	if (cfqq) {
2257		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2258				cfqd->serving_wl_class, cfqd->serving_wl_type);
2259		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2260		cfqq->slice_start = 0;
2261		cfqq->dispatch_start = jiffies;
2262		cfqq->allocated_slice = 0;
2263		cfqq->slice_end = 0;
2264		cfqq->slice_dispatch = 0;
2265		cfqq->nr_sectors = 0;
2266
2267		cfq_clear_cfqq_wait_request(cfqq);
2268		cfq_clear_cfqq_must_dispatch(cfqq);
2269		cfq_clear_cfqq_must_alloc_slice(cfqq);
2270		cfq_clear_cfqq_fifo_expire(cfqq);
2271		cfq_mark_cfqq_slice_new(cfqq);
2272
2273		cfq_del_timer(cfqd, cfqq);
2274	}
2275
2276	cfqd->active_queue = cfqq;
2277}
2278
2279/*
2280 * current cfqq expired its slice (or was too idle), select new one
2281 */
2282static void
2283__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2284		    bool timed_out)
2285{
2286	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2287
2288	if (cfq_cfqq_wait_request(cfqq))
2289		cfq_del_timer(cfqd, cfqq);
2290
2291	cfq_clear_cfqq_wait_request(cfqq);
2292	cfq_clear_cfqq_wait_busy(cfqq);
2293
2294	/*
2295	 * If this cfqq is shared between multiple processes, check to
2296	 * make sure that those processes are still issuing I/Os within
2297	 * the mean seek distance.  If not, it may be time to break the
2298	 * queues apart again.
2299	 */
2300	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2301		cfq_mark_cfqq_split_coop(cfqq);
2302
2303	/*
2304	 * store what was left of this slice, if the queue idled/timed out
2305	 */
2306	if (timed_out) {
2307		if (cfq_cfqq_slice_new(cfqq))
2308			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2309		else
2310			cfqq->slice_resid = cfqq->slice_end - jiffies;
2311		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2312	}
2313
2314	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2315
2316	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2317		cfq_del_cfqq_rr(cfqd, cfqq);
2318
2319	cfq_resort_rr_list(cfqd, cfqq);
2320
2321	if (cfqq == cfqd->active_queue)
2322		cfqd->active_queue = NULL;
2323
2324	if (cfqd->active_cic) {
2325		put_io_context(cfqd->active_cic->icq.ioc);
2326		cfqd->active_cic = NULL;
2327	}
2328}
2329
2330static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2331{
2332	struct cfq_queue *cfqq = cfqd->active_queue;
2333
2334	if (cfqq)
2335		__cfq_slice_expired(cfqd, cfqq, timed_out);
2336}
2337
2338/*
2339 * Get next queue for service. Unless we have a queue preemption,
2340 * we'll simply select the first cfqq in the service tree.
2341 */
2342static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2343{
2344	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2345			cfqd->serving_wl_class, cfqd->serving_wl_type);
2346
2347	if (!cfqd->rq_queued)
2348		return NULL;
2349
2350	/* There is nothing to dispatch */
2351	if (!st)
2352		return NULL;
2353	if (RB_EMPTY_ROOT(&st->rb))
2354		return NULL;
2355	return cfq_rb_first(st);
2356}
2357
2358static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2359{
2360	struct cfq_group *cfqg;
2361	struct cfq_queue *cfqq;
2362	int i, j;
2363	struct cfq_rb_root *st;
2364
2365	if (!cfqd->rq_queued)
2366		return NULL;
2367
2368	cfqg = cfq_get_next_cfqg(cfqd);
2369	if (!cfqg)
2370		return NULL;
2371
2372	for_each_cfqg_st(cfqg, i, j, st)
2373		if ((cfqq = cfq_rb_first(st)) != NULL)
2374			return cfqq;
2375	return NULL;
2376}
2377
2378/*
2379 * Get and set a new active queue for service.
2380 */
2381static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2382					      struct cfq_queue *cfqq)
2383{
2384	if (!cfqq)
2385		cfqq = cfq_get_next_queue(cfqd);
2386
2387	__cfq_set_active_queue(cfqd, cfqq);
2388	return cfqq;
2389}
2390
2391static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2392					  struct request *rq)
2393{
2394	if (blk_rq_pos(rq) >= cfqd->last_position)
2395		return blk_rq_pos(rq) - cfqd->last_position;
2396	else
2397		return cfqd->last_position - blk_rq_pos(rq);
2398}
2399
2400static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2401			       struct request *rq)
2402{
2403	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2404}
2405
2406static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2407				    struct cfq_queue *cur_cfqq)
2408{
2409	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2410	struct rb_node *parent, *node;
2411	struct cfq_queue *__cfqq;
2412	sector_t sector = cfqd->last_position;
2413
2414	if (RB_EMPTY_ROOT(root))
2415		return NULL;
2416
2417	/*
2418	 * First, if we find a request starting at the end of the last
2419	 * request, choose it.
2420	 */
2421	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2422	if (__cfqq)
2423		return __cfqq;
2424
2425	/*
2426	 * If the exact sector wasn't found, the parent of the NULL leaf
2427	 * will contain the closest sector.
2428	 */
2429	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2430	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2431		return __cfqq;
2432
2433	if (blk_rq_pos(__cfqq->next_rq) < sector)
2434		node = rb_next(&__cfqq->p_node);
2435	else
2436		node = rb_prev(&__cfqq->p_node);
2437	if (!node)
2438		return NULL;
2439
2440	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2441	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2442		return __cfqq;
2443
2444	return NULL;
2445}
2446
2447/*
2448 * cfqd - obvious
2449 * cur_cfqq - passed in so that we don't decide that the current queue is
2450 * 	      closely cooperating with itself.
2451 *
2452 * So, basically we're assuming that that cur_cfqq has dispatched at least
2453 * one request, and that cfqd->last_position reflects a position on the disk
2454 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2455 * assumption.
2456 */
2457static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2458					      struct cfq_queue *cur_cfqq)
2459{
2460	struct cfq_queue *cfqq;
2461
2462	if (cfq_class_idle(cur_cfqq))
2463		return NULL;
2464	if (!cfq_cfqq_sync(cur_cfqq))
2465		return NULL;
2466	if (CFQQ_SEEKY(cur_cfqq))
2467		return NULL;
2468
2469	/*
2470	 * Don't search priority tree if it's the only queue in the group.
2471	 */
2472	if (cur_cfqq->cfqg->nr_cfqq == 1)
2473		return NULL;
2474
2475	/*
2476	 * We should notice if some of the queues are cooperating, eg
2477	 * working closely on the same area of the disk. In that case,
2478	 * we can group them together and don't waste time idling.
2479	 */
2480	cfqq = cfqq_close(cfqd, cur_cfqq);
2481	if (!cfqq)
2482		return NULL;
2483
2484	/* If new queue belongs to different cfq_group, don't choose it */
2485	if (cur_cfqq->cfqg != cfqq->cfqg)
2486		return NULL;
2487
2488	/*
2489	 * It only makes sense to merge sync queues.
2490	 */
2491	if (!cfq_cfqq_sync(cfqq))
2492		return NULL;
2493	if (CFQQ_SEEKY(cfqq))
2494		return NULL;
2495
2496	/*
2497	 * Do not merge queues of different priority classes
2498	 */
2499	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2500		return NULL;
2501
2502	return cfqq;
2503}
2504
2505/*
2506 * Determine whether we should enforce idle window for this queue.
2507 */
2508
2509static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2510{
2511	enum wl_class_t wl_class = cfqq_class(cfqq);
2512	struct cfq_rb_root *st = cfqq->service_tree;
2513
2514	BUG_ON(!st);
2515	BUG_ON(!st->count);
2516
2517	if (!cfqd->cfq_slice_idle)
2518		return false;
2519
2520	/* We never do for idle class queues. */
2521	if (wl_class == IDLE_WORKLOAD)
2522		return false;
2523
2524	/* We do for queues that were marked with idle window flag. */
2525	if (cfq_cfqq_idle_window(cfqq) &&
2526	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2527		return true;
2528
2529	/*
2530	 * Otherwise, we do only if they are the last ones
2531	 * in their service tree.
2532	 */
2533	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2534	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2535		return true;
2536	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2537	return false;
2538}
2539
2540static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2541{
2542	struct cfq_queue *cfqq = cfqd->active_queue;
2543	struct cfq_io_cq *cic;
2544	unsigned long sl, group_idle = 0;
2545
2546	/*
2547	 * SSD device without seek penalty, disable idling. But only do so
2548	 * for devices that support queuing, otherwise we still have a problem
2549	 * with sync vs async workloads.
2550	 */
2551	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2552		return;
2553
2554	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2555	WARN_ON(cfq_cfqq_slice_new(cfqq));
2556
2557	/*
2558	 * idle is disabled, either manually or by past process history
2559	 */
2560	if (!cfq_should_idle(cfqd, cfqq)) {
2561		/* no queue idling. Check for group idling */
2562		if (cfqd->cfq_group_idle)
2563			group_idle = cfqd->cfq_group_idle;
2564		else
2565			return;
2566	}
2567
2568	/*
2569	 * still active requests from this queue, don't idle
2570	 */
2571	if (cfqq->dispatched)
2572		return;
2573
2574	/*
2575	 * task has exited, don't wait
2576	 */
2577	cic = cfqd->active_cic;
2578	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2579		return;
2580
2581	/*
2582	 * If our average think time is larger than the remaining time
2583	 * slice, then don't idle. This avoids overrunning the allotted
2584	 * time slice.
2585	 */
2586	if (sample_valid(cic->ttime.ttime_samples) &&
2587	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2588		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2589			     cic->ttime.ttime_mean);
2590		return;
2591	}
2592
2593	/* There are other queues in the group, don't do group idle */
2594	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2595		return;
2596
2597	cfq_mark_cfqq_wait_request(cfqq);
2598
2599	if (group_idle)
2600		sl = cfqd->cfq_group_idle;
2601	else
2602		sl = cfqd->cfq_slice_idle;
2603
2604	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2605	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2606	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2607			group_idle ? 1 : 0);
2608}
2609
2610/*
2611 * Move request from internal lists to the request queue dispatch list.
2612 */
2613static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2614{
2615	struct cfq_data *cfqd = q->elevator->elevator_data;
2616	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2617
2618	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2619
2620	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2621	cfq_remove_request(rq);
2622	cfqq->dispatched++;
2623	(RQ_CFQG(rq))->dispatched++;
2624	elv_dispatch_sort(q, rq);
2625
2626	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2627	cfqq->nr_sectors += blk_rq_sectors(rq);
2628	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2629}
2630
2631/*
2632 * return expired entry, or NULL to just start from scratch in rbtree
2633 */
2634static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2635{
2636	struct request *rq = NULL;
2637
2638	if (cfq_cfqq_fifo_expire(cfqq))
2639		return NULL;
2640
2641	cfq_mark_cfqq_fifo_expire(cfqq);
2642
2643	if (list_empty(&cfqq->fifo))
2644		return NULL;
2645
2646	rq = rq_entry_fifo(cfqq->fifo.next);
2647	if (time_before(jiffies, rq_fifo_time(rq)))
2648		rq = NULL;
2649
2650	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2651	return rq;
2652}
2653
2654static inline int
2655cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2656{
2657	const int base_rq = cfqd->cfq_slice_async_rq;
2658
2659	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2660
2661	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2662}
2663
2664/*
2665 * Must be called with the queue_lock held.
2666 */
2667static int cfqq_process_refs(struct cfq_queue *cfqq)
2668{
2669	int process_refs, io_refs;
2670
2671	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2672	process_refs = cfqq->ref - io_refs;
2673	BUG_ON(process_refs < 0);
2674	return process_refs;
2675}
2676
2677static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2678{
2679	int process_refs, new_process_refs;
2680	struct cfq_queue *__cfqq;
2681
2682	/*
2683	 * If there are no process references on the new_cfqq, then it is
2684	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2685	 * chain may have dropped their last reference (not just their
2686	 * last process reference).
2687	 */
2688	if (!cfqq_process_refs(new_cfqq))
2689		return;
2690
2691	/* Avoid a circular list and skip interim queue merges */
2692	while ((__cfqq = new_cfqq->new_cfqq)) {
2693		if (__cfqq == cfqq)
2694			return;
2695		new_cfqq = __cfqq;
2696	}
2697
2698	process_refs = cfqq_process_refs(cfqq);
2699	new_process_refs = cfqq_process_refs(new_cfqq);
2700	/*
2701	 * If the process for the cfqq has gone away, there is no
2702	 * sense in merging the queues.
2703	 */
2704	if (process_refs == 0 || new_process_refs == 0)
2705		return;
2706
2707	/*
2708	 * Merge in the direction of the lesser amount of work.
2709	 */
2710	if (new_process_refs >= process_refs) {
2711		cfqq->new_cfqq = new_cfqq;
2712		new_cfqq->ref += process_refs;
2713	} else {
2714		new_cfqq->new_cfqq = cfqq;
2715		cfqq->ref += new_process_refs;
2716	}
2717}
2718
2719static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2720			struct cfq_group *cfqg, enum wl_class_t wl_class)
2721{
2722	struct cfq_queue *queue;
2723	int i;
2724	bool key_valid = false;
2725	unsigned long lowest_key = 0;
2726	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2727
2728	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2729		/* select the one with lowest rb_key */
2730		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2731		if (queue &&
2732		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2733			lowest_key = queue->rb_key;
2734			cur_best = i;
2735			key_valid = true;
2736		}
2737	}
2738
2739	return cur_best;
2740}
2741
2742static void
2743choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2744{
2745	unsigned slice;
2746	unsigned count;
2747	struct cfq_rb_root *st;
2748	unsigned group_slice;
2749	enum wl_class_t original_class = cfqd->serving_wl_class;
2750
2751	/* Choose next priority. RT > BE > IDLE */
2752	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2753		cfqd->serving_wl_class = RT_WORKLOAD;
2754	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2755		cfqd->serving_wl_class = BE_WORKLOAD;
2756	else {
2757		cfqd->serving_wl_class = IDLE_WORKLOAD;
2758		cfqd->workload_expires = jiffies + 1;
2759		return;
2760	}
2761
2762	if (original_class != cfqd->serving_wl_class)
2763		goto new_workload;
2764
2765	/*
2766	 * For RT and BE, we have to choose also the type
2767	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2768	 * expiration time
2769	 */
2770	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2771	count = st->count;
2772
2773	/*
2774	 * check workload expiration, and that we still have other queues ready
2775	 */
2776	if (count && !time_after(jiffies, cfqd->workload_expires))
2777		return;
2778
2779new_workload:
2780	/* otherwise select new workload type */
2781	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2782					cfqd->serving_wl_class);
2783	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2784	count = st->count;
2785
2786	/*
2787	 * the workload slice is computed as a fraction of target latency
2788	 * proportional to the number of queues in that workload, over
2789	 * all the queues in the same priority class
2790	 */
2791	group_slice = cfq_group_slice(cfqd, cfqg);
2792
2793	slice = group_slice * count /
2794		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2795		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2796					cfqg));
2797
2798	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2799		unsigned int tmp;
2800
2801		/*
2802		 * Async queues are currently system wide. Just taking
2803		 * proportion of queues with-in same group will lead to higher
2804		 * async ratio system wide as generally root group is going
2805		 * to have higher weight. A more accurate thing would be to
2806		 * calculate system wide asnc/sync ratio.
2807		 */
2808		tmp = cfqd->cfq_target_latency *
2809			cfqg_busy_async_queues(cfqd, cfqg);
2810		tmp = tmp/cfqd->busy_queues;
2811		slice = min_t(unsigned, slice, tmp);
2812
2813		/* async workload slice is scaled down according to
2814		 * the sync/async slice ratio. */
2815		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2816	} else
2817		/* sync workload slice is at least 2 * cfq_slice_idle */
2818		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2819
2820	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2821	cfq_log(cfqd, "workload slice:%d", slice);
2822	cfqd->workload_expires = jiffies + slice;
2823}
2824
2825static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2826{
2827	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2828	struct cfq_group *cfqg;
2829
2830	if (RB_EMPTY_ROOT(&st->rb))
2831		return NULL;
2832	cfqg = cfq_rb_first_group(st);
2833	update_min_vdisktime(st);
2834	return cfqg;
2835}
2836
2837static void cfq_choose_cfqg(struct cfq_data *cfqd)
2838{
2839	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2840
2841	cfqd->serving_group = cfqg;
2842
2843	/* Restore the workload type data */
2844	if (cfqg->saved_wl_slice) {
2845		cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
2846		cfqd->serving_wl_type = cfqg->saved_wl_type;
2847		cfqd->serving_wl_class = cfqg->saved_wl_class;
2848	} else
2849		cfqd->workload_expires = jiffies - 1;
2850
2851	choose_wl_class_and_type(cfqd, cfqg);
2852}
2853
2854/*
2855 * Select a queue for service. If we have a current active queue,
2856 * check whether to continue servicing it, or retrieve and set a new one.
2857 */
2858static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2859{
2860	struct cfq_queue *cfqq, *new_cfqq = NULL;
2861
2862	cfqq = cfqd->active_queue;
2863	if (!cfqq)
2864		goto new_queue;
2865
2866	if (!cfqd->rq_queued)
2867		return NULL;
2868
2869	/*
2870	 * We were waiting for group to get backlogged. Expire the queue
2871	 */
2872	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2873		goto expire;
2874
2875	/*
2876	 * The active queue has run out of time, expire it and select new.
2877	 */
2878	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2879		/*
2880		 * If slice had not expired at the completion of last request
2881		 * we might not have turned on wait_busy flag. Don't expire
2882		 * the queue yet. Allow the group to get backlogged.
2883		 *
2884		 * The very fact that we have used the slice, that means we
2885		 * have been idling all along on this queue and it should be
2886		 * ok to wait for this request to complete.
2887		 */
2888		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2889		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2890			cfqq = NULL;
2891			goto keep_queue;
2892		} else
2893			goto check_group_idle;
2894	}
2895
2896	/*
2897	 * The active queue has requests and isn't expired, allow it to
2898	 * dispatch.
2899	 */
2900	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2901		goto keep_queue;
2902
2903	/*
2904	 * If another queue has a request waiting within our mean seek
2905	 * distance, let it run.  The expire code will check for close
2906	 * cooperators and put the close queue at the front of the service
2907	 * tree.  If possible, merge the expiring queue with the new cfqq.
2908	 */
2909	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2910	if (new_cfqq) {
2911		if (!cfqq->new_cfqq)
2912			cfq_setup_merge(cfqq, new_cfqq);
2913		goto expire;
2914	}
2915
2916	/*
2917	 * No requests pending. If the active queue still has requests in
2918	 * flight or is idling for a new request, allow either of these
2919	 * conditions to happen (or time out) before selecting a new queue.
2920	 */
2921	if (timer_pending(&cfqd->idle_slice_timer)) {
2922		cfqq = NULL;
2923		goto keep_queue;
2924	}
2925
2926	/*
2927	 * This is a deep seek queue, but the device is much faster than
2928	 * the queue can deliver, don't idle
2929	 **/
2930	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2931	    (cfq_cfqq_slice_new(cfqq) ||
2932	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2933		cfq_clear_cfqq_deep(cfqq);
2934		cfq_clear_cfqq_idle_window(cfqq);
2935	}
2936
2937	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2938		cfqq = NULL;
2939		goto keep_queue;
2940	}
2941
2942	/*
2943	 * If group idle is enabled and there are requests dispatched from
2944	 * this group, wait for requests to complete.
2945	 */
2946check_group_idle:
2947	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2948	    cfqq->cfqg->dispatched &&
2949	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2950		cfqq = NULL;
2951		goto keep_queue;
2952	}
2953
2954expire:
2955	cfq_slice_expired(cfqd, 0);
2956new_queue:
2957	/*
2958	 * Current queue expired. Check if we have to switch to a new
2959	 * service tree
2960	 */
2961	if (!new_cfqq)
2962		cfq_choose_cfqg(cfqd);
2963
2964	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2965keep_queue:
2966	return cfqq;
2967}
2968
2969static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2970{
2971	int dispatched = 0;
2972
2973	while (cfqq->next_rq) {
2974		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2975		dispatched++;
2976	}
2977
2978	BUG_ON(!list_empty(&cfqq->fifo));
2979
2980	/* By default cfqq is not expired if it is empty. Do it explicitly */
2981	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2982	return dispatched;
2983}
2984
2985/*
2986 * Drain our current requests. Used for barriers and when switching
2987 * io schedulers on-the-fly.
2988 */
2989static int cfq_forced_dispatch(struct cfq_data *cfqd)
2990{
2991	struct cfq_queue *cfqq;
2992	int dispatched = 0;
2993
2994	/* Expire the timeslice of the current active queue first */
2995	cfq_slice_expired(cfqd, 0);
2996	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2997		__cfq_set_active_queue(cfqd, cfqq);
2998		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2999	}
3000
3001	BUG_ON(cfqd->busy_queues);
3002
3003	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3004	return dispatched;
3005}
3006
3007static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3008	struct cfq_queue *cfqq)
3009{
3010	/* the queue hasn't finished any request, can't estimate */
3011	if (cfq_cfqq_slice_new(cfqq))
3012		return true;
3013	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3014		cfqq->slice_end))
3015		return true;
3016
3017	return false;
3018}
3019
3020static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3021{
3022	unsigned int max_dispatch;
3023
3024	/*
3025	 * Drain async requests before we start sync IO
3026	 */
3027	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3028		return false;
3029
3030	/*
3031	 * If this is an async queue and we have sync IO in flight, let it wait
3032	 */
3033	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3034		return false;
3035
3036	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3037	if (cfq_class_idle(cfqq))
3038		max_dispatch = 1;
3039
3040	/*
3041	 * Does this cfqq already have too much IO in flight?
3042	 */
3043	if (cfqq->dispatched >= max_dispatch) {
3044		bool promote_sync = false;
3045		/*
3046		 * idle queue must always only have a single IO in flight
3047		 */
3048		if (cfq_class_idle(cfqq))
3049			return false;
3050
3051		/*
3052		 * If there is only one sync queue
3053		 * we can ignore async queue here and give the sync
3054		 * queue no dispatch limit. The reason is a sync queue can
3055		 * preempt async queue, limiting the sync queue doesn't make
3056		 * sense. This is useful for aiostress test.
3057		 */
3058		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3059			promote_sync = true;
3060
3061		/*
3062		 * We have other queues, don't allow more IO from this one
3063		 */
3064		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3065				!promote_sync)
3066			return false;
3067
3068		/*
3069		 * Sole queue user, no limit
3070		 */
3071		if (cfqd->busy_queues == 1 || promote_sync)
3072			max_dispatch = -1;
3073		else
3074			/*
3075			 * Normally we start throttling cfqq when cfq_quantum/2
3076			 * requests have been dispatched. But we can drive
3077			 * deeper queue depths at the beginning of slice
3078			 * subjected to upper limit of cfq_quantum.
3079			 * */
3080			max_dispatch = cfqd->cfq_quantum;
3081	}
3082
3083	/*
3084	 * Async queues must wait a bit before being allowed dispatch.
3085	 * We also ramp up the dispatch depth gradually for async IO,
3086	 * based on the last sync IO we serviced
3087	 */
3088	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3089		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3090		unsigned int depth;
3091
3092		depth = last_sync / cfqd->cfq_slice[1];
3093		if (!depth && !cfqq->dispatched)
3094			depth = 1;
3095		if (depth < max_dispatch)
3096			max_dispatch = depth;
3097	}
3098
3099	/*
3100	 * If we're below the current max, allow a dispatch
3101	 */
3102	return cfqq->dispatched < max_dispatch;
3103}
3104
3105/*
3106 * Dispatch a request from cfqq, moving them to the request queue
3107 * dispatch list.
3108 */
3109static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3110{
3111	struct request *rq;
3112
3113	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3114
3115	if (!cfq_may_dispatch(cfqd, cfqq))
3116		return false;
3117
3118	/*
3119	 * follow expired path, else get first next available
3120	 */
3121	rq = cfq_check_fifo(cfqq);
3122	if (!rq)
3123		rq = cfqq->next_rq;
3124
3125	/*
3126	 * insert request into driver dispatch list
3127	 */
3128	cfq_dispatch_insert(cfqd->queue, rq);
3129
3130	if (!cfqd->active_cic) {
3131		struct cfq_io_cq *cic = RQ_CIC(rq);
3132
3133		atomic_long_inc(&cic->icq.ioc->refcount);
3134		cfqd->active_cic = cic;
3135	}
3136
3137	return true;
3138}
3139
3140/*
3141 * Find the cfqq that we need to service and move a request from that to the
3142 * dispatch list
3143 */
3144static int cfq_dispatch_requests(struct request_queue *q, int force)
3145{
3146	struct cfq_data *cfqd = q->elevator->elevator_data;
3147	struct cfq_queue *cfqq;
3148
3149	if (!cfqd->busy_queues)
3150		return 0;
3151
3152	if (unlikely(force))
3153		return cfq_forced_dispatch(cfqd);
3154
3155	cfqq = cfq_select_queue(cfqd);
3156	if (!cfqq)
3157		return 0;
3158
3159	/*
3160	 * Dispatch a request from this cfqq, if it is allowed
3161	 */
3162	if (!cfq_dispatch_request(cfqd, cfqq))
3163		return 0;
3164
3165	cfqq->slice_dispatch++;
3166	cfq_clear_cfqq_must_dispatch(cfqq);
3167
3168	/*
3169	 * expire an async queue immediately if it has used up its slice. idle
3170	 * queue always expire after 1 dispatch round.
3171	 */
3172	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3173	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3174	    cfq_class_idle(cfqq))) {
3175		cfqq->slice_end = jiffies + 1;
3176		cfq_slice_expired(cfqd, 0);
3177	}
3178
3179	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3180	return 1;
3181}
3182
3183/*
3184 * task holds one reference to the queue, dropped when task exits. each rq
3185 * in-flight on this queue also holds a reference, dropped when rq is freed.
3186 *
3187 * Each cfq queue took a reference on the parent group. Drop it now.
3188 * queue lock must be held here.
3189 */
3190static void cfq_put_queue(struct cfq_queue *cfqq)
3191{
3192	struct cfq_data *cfqd = cfqq->cfqd;
3193	struct cfq_group *cfqg;
3194
3195	BUG_ON(cfqq->ref <= 0);
3196
3197	cfqq->ref--;
3198	if (cfqq->ref)
3199		return;
3200
3201	cfq_log_cfqq(cfqd, cfqq, "put_queue");
3202	BUG_ON(rb_first(&cfqq->sort_list));
3203	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3204	cfqg = cfqq->cfqg;
3205
3206	if (unlikely(cfqd->active_queue == cfqq)) {
3207		__cfq_slice_expired(cfqd, cfqq, 0);
3208		cfq_schedule_dispatch(cfqd);
3209	}
3210
3211	BUG_ON(cfq_cfqq_on_rr(cfqq));
3212	kmem_cache_free(cfq_pool, cfqq);
3213	cfqg_put(cfqg);
3214}
3215
3216static void cfq_put_cooperator(struct cfq_queue *cfqq)
3217{
3218	struct cfq_queue *__cfqq, *next;
3219
3220	/*
3221	 * If this queue was scheduled to merge with another queue, be
3222	 * sure to drop the reference taken on that queue (and others in
3223	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3224	 */
3225	__cfqq = cfqq->new_cfqq;
3226	while (__cfqq) {
3227		if (__cfqq == cfqq) {
3228			WARN(1, "cfqq->new_cfqq loop detected\n");
3229			break;
3230		}
3231		next = __cfqq->new_cfqq;
3232		cfq_put_queue(__cfqq);
3233		__cfqq = next;
3234	}
3235}
3236
3237static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3238{
3239	if (unlikely(cfqq == cfqd->active_queue)) {
3240		__cfq_slice_expired(cfqd, cfqq, 0);
3241		cfq_schedule_dispatch(cfqd);
3242	}
3243
3244	cfq_put_cooperator(cfqq);
3245
3246	cfq_put_queue(cfqq);
3247}
3248
3249static void cfq_init_icq(struct io_cq *icq)
3250{
3251	struct cfq_io_cq *cic = icq_to_cic(icq);
3252
3253	cic->ttime.last_end_request = jiffies;
3254}
3255
3256static void cfq_exit_icq(struct io_cq *icq)
3257{
3258	struct cfq_io_cq *cic = icq_to_cic(icq);
3259	struct cfq_data *cfqd = cic_to_cfqd(cic);
3260
3261	if (cic->cfqq[BLK_RW_ASYNC]) {
3262		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3263		cic->cfqq[BLK_RW_ASYNC] = NULL;
3264	}
3265
3266	if (cic->cfqq[BLK_RW_SYNC]) {
3267		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3268		cic->cfqq[BLK_RW_SYNC] = NULL;
3269	}
3270}
3271
3272static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3273{
3274	struct task_struct *tsk = current;
3275	int ioprio_class;
3276
3277	if (!cfq_cfqq_prio_changed(cfqq))
3278		return;
3279
3280	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3281	switch (ioprio_class) {
3282	default:
3283		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3284	case IOPRIO_CLASS_NONE:
3285		/*
3286		 * no prio set, inherit CPU scheduling settings
3287		 */
3288		cfqq->ioprio = task_nice_ioprio(tsk);
3289		cfqq->ioprio_class = task_nice_ioclass(tsk);
3290		break;
3291	case IOPRIO_CLASS_RT:
3292		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3293		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3294		break;
3295	case IOPRIO_CLASS_BE:
3296		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3297		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3298		break;
3299	case IOPRIO_CLASS_IDLE:
3300		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3301		cfqq->ioprio = 7;
3302		cfq_clear_cfqq_idle_window(cfqq);
3303		break;
3304	}
3305
3306	/*
3307	 * keep track of original prio settings in case we have to temporarily
3308	 * elevate the priority of this queue
3309	 */
3310	cfqq->org_ioprio = cfqq->ioprio;
3311	cfq_clear_cfqq_prio_changed(cfqq);
3312}
3313
3314static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3315{
3316	int ioprio = cic->icq.ioc->ioprio;
3317	struct cfq_data *cfqd = cic_to_cfqd(cic);
3318	struct cfq_queue *cfqq;
3319
3320	/*
3321	 * Check whether ioprio has changed.  The condition may trigger
3322	 * spuriously on a newly created cic but there's no harm.
3323	 */
3324	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3325		return;
3326
3327	cfqq = cic->cfqq[BLK_RW_ASYNC];
3328	if (cfqq) {
3329		struct cfq_queue *new_cfqq;
3330		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3331					 GFP_ATOMIC);
3332		if (new_cfqq) {
3333			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3334			cfq_put_queue(cfqq);
3335		}
3336	}
3337
3338	cfqq = cic->cfqq[BLK_RW_SYNC];
3339	if (cfqq)
3340		cfq_mark_cfqq_prio_changed(cfqq);
3341
3342	cic->ioprio = ioprio;
3343}
3344
3345static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3346			  pid_t pid, bool is_sync)
3347{
3348	RB_CLEAR_NODE(&cfqq->rb_node);
3349	RB_CLEAR_NODE(&cfqq->p_node);
3350	INIT_LIST_HEAD(&cfqq->fifo);
3351
3352	cfqq->ref = 0;
3353	cfqq->cfqd = cfqd;
3354
3355	cfq_mark_cfqq_prio_changed(cfqq);
3356
3357	if (is_sync) {
3358		if (!cfq_class_idle(cfqq))
3359			cfq_mark_cfqq_idle_window(cfqq);
3360		cfq_mark_cfqq_sync(cfqq);
3361	}
3362	cfqq->pid = pid;
3363}
3364
3365#ifdef CONFIG_CFQ_GROUP_IOSCHED
3366static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3367{
3368	struct cfq_data *cfqd = cic_to_cfqd(cic);
3369	struct cfq_queue *sync_cfqq;
3370	uint64_t id;
3371
3372	rcu_read_lock();
3373	id = bio_blkcg(bio)->id;
3374	rcu_read_unlock();
3375
3376	/*
3377	 * Check whether blkcg has changed.  The condition may trigger
3378	 * spuriously on a newly created cic but there's no harm.
3379	 */
3380	if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3381		return;
3382
3383	sync_cfqq = cic_to_cfqq(cic, 1);
3384	if (sync_cfqq) {
3385		/*
3386		 * Drop reference to sync queue. A new sync queue will be
3387		 * assigned in new group upon arrival of a fresh request.
3388		 */
3389		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3390		cic_set_cfqq(cic, NULL, 1);
3391		cfq_put_queue(sync_cfqq);
3392	}
3393
3394	cic->blkcg_id = id;
3395}
3396#else
3397static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3398#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3399
3400static struct cfq_queue *
3401cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3402		     struct bio *bio, gfp_t gfp_mask)
3403{
3404	struct blkcg *blkcg;
3405	struct cfq_queue *cfqq, *new_cfqq = NULL;
3406	struct cfq_group *cfqg;
3407
3408retry:
3409	rcu_read_lock();
3410
3411	blkcg = bio_blkcg(bio);
3412	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3413	cfqq = cic_to_cfqq(cic, is_sync);
3414
3415	/*
3416	 * Always try a new alloc if we fell back to the OOM cfqq
3417	 * originally, since it should just be a temporary situation.
3418	 */
3419	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3420		cfqq = NULL;
3421		if (new_cfqq) {
3422			cfqq = new_cfqq;
3423			new_cfqq = NULL;
3424		} else if (gfp_mask & __GFP_WAIT) {
3425			rcu_read_unlock();
3426			spin_unlock_irq(cfqd->queue->queue_lock);
3427			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3428					gfp_mask | __GFP_ZERO,
3429					cfqd->queue->node);
3430			spin_lock_irq(cfqd->queue->queue_lock);
3431			if (new_cfqq)
3432				goto retry;
3433		} else {
3434			cfqq = kmem_cache_alloc_node(cfq_pool,
3435					gfp_mask | __GFP_ZERO,
3436					cfqd->queue->node);
3437		}
3438
3439		if (cfqq) {
3440			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3441			cfq_init_prio_data(cfqq, cic);
3442			cfq_link_cfqq_cfqg(cfqq, cfqg);
3443			cfq_log_cfqq(cfqd, cfqq, "alloced");
3444		} else
3445			cfqq = &cfqd->oom_cfqq;
3446	}
3447
3448	if (new_cfqq)
3449		kmem_cache_free(cfq_pool, new_cfqq);
3450
3451	rcu_read_unlock();
3452	return cfqq;
3453}
3454
3455static struct cfq_queue **
3456cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3457{
3458	switch (ioprio_class) {
3459	case IOPRIO_CLASS_RT:
3460		return &cfqd->async_cfqq[0][ioprio];
3461	case IOPRIO_CLASS_NONE:
3462		ioprio = IOPRIO_NORM;
3463		/* fall through */
3464	case IOPRIO_CLASS_BE:
3465		return &cfqd->async_cfqq[1][ioprio];
3466	case IOPRIO_CLASS_IDLE:
3467		return &cfqd->async_idle_cfqq;
3468	default:
3469		BUG();
3470	}
3471}
3472
3473static struct cfq_queue *
3474cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3475	      struct bio *bio, gfp_t gfp_mask)
3476{
3477	const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3478	const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3479	struct cfq_queue **async_cfqq = NULL;
3480	struct cfq_queue *cfqq = NULL;
3481
3482	if (!is_sync) {
3483		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3484		cfqq = *async_cfqq;
3485	}
3486
3487	if (!cfqq)
3488		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3489
3490	/*
3491	 * pin the queue now that it's allocated, scheduler exit will prune it
3492	 */
3493	if (!is_sync && !(*async_cfqq)) {
3494		cfqq->ref++;
3495		*async_cfqq = cfqq;
3496	}
3497
3498	cfqq->ref++;
3499	return cfqq;
3500}
3501
3502static void
3503__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3504{
3505	unsigned long elapsed = jiffies - ttime->last_end_request;
3506	elapsed = min(elapsed, 2UL * slice_idle);
3507
3508	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3509	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3510	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3511}
3512
3513static void
3514cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3515			struct cfq_io_cq *cic)
3516{
3517	if (cfq_cfqq_sync(cfqq)) {
3518		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3519		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3520			cfqd->cfq_slice_idle);
3521	}
3522#ifdef CONFIG_CFQ_GROUP_IOSCHED
3523	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3524#endif
3525}
3526
3527static void
3528cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3529		       struct request *rq)
3530{
3531	sector_t sdist = 0;
3532	sector_t n_sec = blk_rq_sectors(rq);
3533	if (cfqq->last_request_pos) {
3534		if (cfqq->last_request_pos < blk_rq_pos(rq))
3535			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3536		else
3537			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3538	}
3539
3540	cfqq->seek_history <<= 1;
3541	if (blk_queue_nonrot(cfqd->queue))
3542		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3543	else
3544		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3545}
3546
3547/*
3548 * Disable idle window if the process thinks too long or seeks so much that
3549 * it doesn't matter
3550 */
3551static void
3552cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3553		       struct cfq_io_cq *cic)
3554{
3555	int old_idle, enable_idle;
3556
3557	/*
3558	 * Don't idle for async or idle io prio class
3559	 */
3560	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3561		return;
3562
3563	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3564
3565	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3566		cfq_mark_cfqq_deep(cfqq);
3567
3568	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3569		enable_idle = 0;
3570	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3571		 !cfqd->cfq_slice_idle ||
3572		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3573		enable_idle = 0;
3574	else if (sample_valid(cic->ttime.ttime_samples)) {
3575		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3576			enable_idle = 0;
3577		else
3578			enable_idle = 1;
3579	}
3580
3581	if (old_idle != enable_idle) {
3582		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3583		if (enable_idle)
3584			cfq_mark_cfqq_idle_window(cfqq);
3585		else
3586			cfq_clear_cfqq_idle_window(cfqq);
3587	}
3588}
3589
3590/*
3591 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3592 * no or if we aren't sure, a 1 will cause a preempt.
3593 */
3594static bool
3595cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3596		   struct request *rq)
3597{
3598	struct cfq_queue *cfqq;
3599
3600	cfqq = cfqd->active_queue;
3601	if (!cfqq)
3602		return false;
3603
3604	if (cfq_class_idle(new_cfqq))
3605		return false;
3606
3607	if (cfq_class_idle(cfqq))
3608		return true;
3609
3610	/*
3611	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3612	 */
3613	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3614		return false;
3615
3616	/*
3617	 * if the new request is sync, but the currently running queue is
3618	 * not, let the sync request have priority.
3619	 */
3620	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3621		return true;
3622
3623	if (new_cfqq->cfqg != cfqq->cfqg)
3624		return false;
3625
3626	if (cfq_slice_used(cfqq))
3627		return true;
3628
3629	/* Allow preemption only if we are idling on sync-noidle tree */
3630	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3631	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3632	    new_cfqq->service_tree->count == 2 &&
3633	    RB_EMPTY_ROOT(&cfqq->sort_list))
3634		return true;
3635
3636	/*
3637	 * So both queues are sync. Let the new request get disk time if
3638	 * it's a metadata request and the current queue is doing regular IO.
3639	 */
3640	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3641		return true;
3642
3643	/*
3644	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3645	 */
3646	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3647		return true;
3648
3649	/* An idle queue should not be idle now for some reason */
3650	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3651		return true;
3652
3653	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3654		return false;
3655
3656	/*
3657	 * if this request is as-good as one we would expect from the
3658	 * current cfqq, let it preempt
3659	 */
3660	if (cfq_rq_close(cfqd, cfqq, rq))
3661		return true;
3662
3663	return false;
3664}
3665
3666/*
3667 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3668 * let it have half of its nominal slice.
3669 */
3670static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3671{
3672	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3673
3674	cfq_log_cfqq(cfqd, cfqq, "preempt");
3675	cfq_slice_expired(cfqd, 1);
3676
3677	/*
3678	 * workload type is changed, don't save slice, otherwise preempt
3679	 * doesn't happen
3680	 */
3681	if (old_type != cfqq_type(cfqq))
3682		cfqq->cfqg->saved_wl_slice = 0;
3683
3684	/*
3685	 * Put the new queue at the front of the of the current list,
3686	 * so we know that it will be selected next.
3687	 */
3688	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3689
3690	cfq_service_tree_add(cfqd, cfqq, 1);
3691
3692	cfqq->slice_end = 0;
3693	cfq_mark_cfqq_slice_new(cfqq);
3694}
3695
3696/*
3697 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3698 * something we should do about it
3699 */
3700static void
3701cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3702		struct request *rq)
3703{
3704	struct cfq_io_cq *cic = RQ_CIC(rq);
3705
3706	cfqd->rq_queued++;
3707	if (rq->cmd_flags & REQ_PRIO)
3708		cfqq->prio_pending++;
3709
3710	cfq_update_io_thinktime(cfqd, cfqq, cic);
3711	cfq_update_io_seektime(cfqd, cfqq, rq);
3712	cfq_update_idle_window(cfqd, cfqq, cic);
3713
3714	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3715
3716	if (cfqq == cfqd->active_queue) {
3717		/*
3718		 * Remember that we saw a request from this process, but
3719		 * don't start queuing just yet. Otherwise we risk seeing lots
3720		 * of tiny requests, because we disrupt the normal plugging
3721		 * and merging. If the request is already larger than a single
3722		 * page, let it rip immediately. For that case we assume that
3723		 * merging is already done. Ditto for a busy system that
3724		 * has other work pending, don't risk delaying until the
3725		 * idle timer unplug to continue working.
3726		 */
3727		if (cfq_cfqq_wait_request(cfqq)) {
3728			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3729			    cfqd->busy_queues > 1) {
3730				cfq_del_timer(cfqd, cfqq);
3731				cfq_clear_cfqq_wait_request(cfqq);
3732				__blk_run_queue(cfqd->queue);
3733			} else {
3734				cfqg_stats_update_idle_time(cfqq->cfqg);
3735				cfq_mark_cfqq_must_dispatch(cfqq);
3736			}
3737		}
3738	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3739		/*
3740		 * not the active queue - expire current slice if it is
3741		 * idle and has expired it's mean thinktime or this new queue
3742		 * has some old slice time left and is of higher priority or
3743		 * this new queue is RT and the current one is BE
3744		 */
3745		cfq_preempt_queue(cfqd, cfqq);
3746		__blk_run_queue(cfqd->queue);
3747	}
3748}
3749
3750static void cfq_insert_request(struct request_queue *q, struct request *rq)
3751{
3752	struct cfq_data *cfqd = q->elevator->elevator_data;
3753	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3754
3755	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3756	cfq_init_prio_data(cfqq, RQ_CIC(rq));
3757
3758	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3759	list_add_tail(&rq->queuelist, &cfqq->fifo);
3760	cfq_add_rq_rb(rq);
3761	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3762				 rq->cmd_flags);
3763	cfq_rq_enqueued(cfqd, cfqq, rq);
3764}
3765
3766/*
3767 * Update hw_tag based on peak queue depth over 50 samples under
3768 * sufficient load.
3769 */
3770static void cfq_update_hw_tag(struct cfq_data *cfqd)
3771{
3772	struct cfq_queue *cfqq = cfqd->active_queue;
3773
3774	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3775		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3776
3777	if (cfqd->hw_tag == 1)
3778		return;
3779
3780	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3781	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3782		return;
3783
3784	/*
3785	 * If active queue hasn't enough requests and can idle, cfq might not
3786	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3787	 * case
3788	 */
3789	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3790	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3791	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3792		return;
3793
3794	if (cfqd->hw_tag_samples++ < 50)
3795		return;
3796
3797	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3798		cfqd->hw_tag = 1;
3799	else
3800		cfqd->hw_tag = 0;
3801}
3802
3803static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3804{
3805	struct cfq_io_cq *cic = cfqd->active_cic;
3806
3807	/* If the queue already has requests, don't wait */
3808	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3809		return false;
3810
3811	/* If there are other queues in the group, don't wait */
3812	if (cfqq->cfqg->nr_cfqq > 1)
3813		return false;
3814
3815	/* the only queue in the group, but think time is big */
3816	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3817		return false;
3818
3819	if (cfq_slice_used(cfqq))
3820		return true;
3821
3822	/* if slice left is less than think time, wait busy */
3823	if (cic && sample_valid(cic->ttime.ttime_samples)
3824	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3825		return true;
3826
3827	/*
3828	 * If think times is less than a jiffy than ttime_mean=0 and above
3829	 * will not be true. It might happen that slice has not expired yet
3830	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3831	 * case where think time is less than a jiffy, mark the queue wait
3832	 * busy if only 1 jiffy is left in the slice.
3833	 */
3834	if (cfqq->slice_end - jiffies == 1)
3835		return true;
3836
3837	return false;
3838}
3839
3840static void cfq_completed_request(struct request_queue *q, struct request *rq)
3841{
3842	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3843	struct cfq_data *cfqd = cfqq->cfqd;
3844	const int sync = rq_is_sync(rq);
3845	unsigned long now;
3846
3847	now = jiffies;
3848	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3849		     !!(rq->cmd_flags & REQ_NOIDLE));
3850
3851	cfq_update_hw_tag(cfqd);
3852
3853	WARN_ON(!cfqd->rq_in_driver);
3854	WARN_ON(!cfqq->dispatched);
3855	cfqd->rq_in_driver--;
3856	cfqq->dispatched--;
3857	(RQ_CFQG(rq))->dispatched--;
3858	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3859				     rq_io_start_time_ns(rq), rq->cmd_flags);
3860
3861	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3862
3863	if (sync) {
3864		struct cfq_rb_root *st;
3865
3866		RQ_CIC(rq)->ttime.last_end_request = now;
3867
3868		if (cfq_cfqq_on_rr(cfqq))
3869			st = cfqq->service_tree;
3870		else
3871			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
3872					cfqq_type(cfqq));
3873
3874		st->ttime.last_end_request = now;
3875		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3876			cfqd->last_delayed_sync = now;
3877	}
3878
3879#ifdef CONFIG_CFQ_GROUP_IOSCHED
3880	cfqq->cfqg->ttime.last_end_request = now;
3881#endif
3882
3883	/*
3884	 * If this is the active queue, check if it needs to be expired,
3885	 * or if we want to idle in case it has no pending requests.
3886	 */
3887	if (cfqd->active_queue == cfqq) {
3888		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3889
3890		if (cfq_cfqq_slice_new(cfqq)) {
3891			cfq_set_prio_slice(cfqd, cfqq);
3892			cfq_clear_cfqq_slice_new(cfqq);
3893		}
3894
3895		/*
3896		 * Should we wait for next request to come in before we expire
3897		 * the queue.
3898		 */
3899		if (cfq_should_wait_busy(cfqd, cfqq)) {
3900			unsigned long extend_sl = cfqd->cfq_slice_idle;
3901			if (!cfqd->cfq_slice_idle)
3902				extend_sl = cfqd->cfq_group_idle;
3903			cfqq->slice_end = jiffies + extend_sl;
3904			cfq_mark_cfqq_wait_busy(cfqq);
3905			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3906		}
3907
3908		/*
3909		 * Idling is not enabled on:
3910		 * - expired queues
3911		 * - idle-priority queues
3912		 * - async queues
3913		 * - queues with still some requests queued
3914		 * - when there is a close cooperator
3915		 */
3916		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3917			cfq_slice_expired(cfqd, 1);
3918		else if (sync && cfqq_empty &&
3919			 !cfq_close_cooperator(cfqd, cfqq)) {
3920			cfq_arm_slice_timer(cfqd);
3921		}
3922	}
3923
3924	if (!cfqd->rq_in_driver)
3925		cfq_schedule_dispatch(cfqd);
3926}
3927
3928static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3929{
3930	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3931		cfq_mark_cfqq_must_alloc_slice(cfqq);
3932		return ELV_MQUEUE_MUST;
3933	}
3934
3935	return ELV_MQUEUE_MAY;
3936}
3937
3938static int cfq_may_queue(struct request_queue *q, int rw)
3939{
3940	struct cfq_data *cfqd = q->elevator->elevator_data;
3941	struct task_struct *tsk = current;
3942	struct cfq_io_cq *cic;
3943	struct cfq_queue *cfqq;
3944
3945	/*
3946	 * don't force setup of a queue from here, as a call to may_queue
3947	 * does not necessarily imply that a request actually will be queued.
3948	 * so just lookup a possibly existing queue, or return 'may queue'
3949	 * if that fails
3950	 */
3951	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3952	if (!cic)
3953		return ELV_MQUEUE_MAY;
3954
3955	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3956	if (cfqq) {
3957		cfq_init_prio_data(cfqq, cic);
3958
3959		return __cfq_may_queue(cfqq);
3960	}
3961
3962	return ELV_MQUEUE_MAY;
3963}
3964
3965/*
3966 * queue lock held here
3967 */
3968static void cfq_put_request(struct request *rq)
3969{
3970	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3971
3972	if (cfqq) {
3973		const int rw = rq_data_dir(rq);
3974
3975		BUG_ON(!cfqq->allocated[rw]);
3976		cfqq->allocated[rw]--;
3977
3978		/* Put down rq reference on cfqg */
3979		cfqg_put(RQ_CFQG(rq));
3980		rq->elv.priv[0] = NULL;
3981		rq->elv.priv[1] = NULL;
3982
3983		cfq_put_queue(cfqq);
3984	}
3985}
3986
3987static struct cfq_queue *
3988cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3989		struct cfq_queue *cfqq)
3990{
3991	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3992	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3993	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3994	cfq_put_queue(cfqq);
3995	return cic_to_cfqq(cic, 1);
3996}
3997
3998/*
3999 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4000 * was the last process referring to said cfqq.
4001 */
4002static struct cfq_queue *
4003split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4004{
4005	if (cfqq_process_refs(cfqq) == 1) {
4006		cfqq->pid = current->pid;
4007		cfq_clear_cfqq_coop(cfqq);
4008		cfq_clear_cfqq_split_coop(cfqq);
4009		return cfqq;
4010	}
4011
4012	cic_set_cfqq(cic, NULL, 1);
4013
4014	cfq_put_cooperator(cfqq);
4015
4016	cfq_put_queue(cfqq);
4017	return NULL;
4018}
4019/*
4020 * Allocate cfq data structures associated with this request.
4021 */
4022static int
4023cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4024		gfp_t gfp_mask)
4025{
4026	struct cfq_data *cfqd = q->elevator->elevator_data;
4027	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4028	const int rw = rq_data_dir(rq);
4029	const bool is_sync = rq_is_sync(rq);
4030	struct cfq_queue *cfqq;
4031
4032	might_sleep_if(gfp_mask & __GFP_WAIT);
4033
4034	spin_lock_irq(q->queue_lock);
4035
4036	check_ioprio_changed(cic, bio);
4037	check_blkcg_changed(cic, bio);
4038new_queue:
4039	cfqq = cic_to_cfqq(cic, is_sync);
4040	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4041		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4042		cic_set_cfqq(cic, cfqq, is_sync);
4043	} else {
4044		/*
4045		 * If the queue was seeky for too long, break it apart.
4046		 */
4047		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4048			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4049			cfqq = split_cfqq(cic, cfqq);
4050			if (!cfqq)
4051				goto new_queue;
4052		}
4053
4054		/*
4055		 * Check to see if this queue is scheduled to merge with
4056		 * another, closely cooperating queue.  The merging of
4057		 * queues happens here as it must be done in process context.
4058		 * The reference on new_cfqq was taken in merge_cfqqs.
4059		 */
4060		if (cfqq->new_cfqq)
4061			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4062	}
4063
4064	cfqq->allocated[rw]++;
4065
4066	cfqq->ref++;
4067	cfqg_get(cfqq->cfqg);
4068	rq->elv.priv[0] = cfqq;
4069	rq->elv.priv[1] = cfqq->cfqg;
4070	spin_unlock_irq(q->queue_lock);
4071	return 0;
4072}
4073
4074static void cfq_kick_queue(struct work_struct *work)
4075{
4076	struct cfq_data *cfqd =
4077		container_of(work, struct cfq_data, unplug_work);
4078	struct request_queue *q = cfqd->queue;
4079
4080	spin_lock_irq(q->queue_lock);
4081	__blk_run_queue(cfqd->queue);
4082	spin_unlock_irq(q->queue_lock);
4083}
4084
4085/*
4086 * Timer running if the active_queue is currently idling inside its time slice
4087 */
4088static void cfq_idle_slice_timer(unsigned long data)
4089{
4090	struct cfq_data *cfqd = (struct cfq_data *) data;
4091	struct cfq_queue *cfqq;
4092	unsigned long flags;
4093	int timed_out = 1;
4094
4095	cfq_log(cfqd, "idle timer fired");
4096
4097	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4098
4099	cfqq = cfqd->active_queue;
4100	if (cfqq) {
4101		timed_out = 0;
4102
4103		/*
4104		 * We saw a request before the queue expired, let it through
4105		 */
4106		if (cfq_cfqq_must_dispatch(cfqq))
4107			goto out_kick;
4108
4109		/*
4110		 * expired
4111		 */
4112		if (cfq_slice_used(cfqq))
4113			goto expire;
4114
4115		/*
4116		 * only expire and reinvoke request handler, if there are
4117		 * other queues with pending requests
4118		 */
4119		if (!cfqd->busy_queues)
4120			goto out_cont;
4121
4122		/*
4123		 * not expired and it has a request pending, let it dispatch
4124		 */
4125		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4126			goto out_kick;
4127
4128		/*
4129		 * Queue depth flag is reset only when the idle didn't succeed
4130		 */
4131		cfq_clear_cfqq_deep(cfqq);
4132	}
4133expire:
4134	cfq_slice_expired(cfqd, timed_out);
4135out_kick:
4136	cfq_schedule_dispatch(cfqd);
4137out_cont:
4138	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4139}
4140
4141static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4142{
4143	del_timer_sync(&cfqd->idle_slice_timer);
4144	cancel_work_sync(&cfqd->unplug_work);
4145}
4146
4147static void cfq_put_async_queues(struct cfq_data *cfqd)
4148{
4149	int i;
4150
4151	for (i = 0; i < IOPRIO_BE_NR; i++) {
4152		if (cfqd->async_cfqq[0][i])
4153			cfq_put_queue(cfqd->async_cfqq[0][i]);
4154		if (cfqd->async_cfqq[1][i])
4155			cfq_put_queue(cfqd->async_cfqq[1][i]);
4156	}
4157
4158	if (cfqd->async_idle_cfqq)
4159		cfq_put_queue(cfqd->async_idle_cfqq);
4160}
4161
4162static void cfq_exit_queue(struct elevator_queue *e)
4163{
4164	struct cfq_data *cfqd = e->elevator_data;
4165	struct request_queue *q = cfqd->queue;
4166
4167	cfq_shutdown_timer_wq(cfqd);
4168
4169	spin_lock_irq(q->queue_lock);
4170
4171	if (cfqd->active_queue)
4172		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4173
4174	cfq_put_async_queues(cfqd);
4175
4176	spin_unlock_irq(q->queue_lock);
4177
4178	cfq_shutdown_timer_wq(cfqd);
4179
4180#ifdef CONFIG_CFQ_GROUP_IOSCHED
4181	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4182#else
4183	kfree(cfqd->root_group);
4184#endif
4185	kfree(cfqd);
4186}
4187
4188static int cfq_init_queue(struct request_queue *q)
4189{
4190	struct cfq_data *cfqd;
4191	struct blkcg_gq *blkg __maybe_unused;
4192	int i, ret;
4193
4194	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4195	if (!cfqd)
4196		return -ENOMEM;
4197
4198	cfqd->queue = q;
4199	q->elevator->elevator_data = cfqd;
4200
4201	/* Init root service tree */
4202	cfqd->grp_service_tree = CFQ_RB_ROOT;
4203
4204	/* Init root group and prefer root group over other groups by default */
4205#ifdef CONFIG_CFQ_GROUP_IOSCHED
4206	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4207	if (ret)
4208		goto out_free;
4209
4210	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4211#else
4212	ret = -ENOMEM;
4213	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4214					GFP_KERNEL, cfqd->queue->node);
4215	if (!cfqd->root_group)
4216		goto out_free;
4217
4218	cfq_init_cfqg_base(cfqd->root_group);
4219#endif
4220	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4221	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4222
4223	/*
4224	 * Not strictly needed (since RB_ROOT just clears the node and we
4225	 * zeroed cfqd on alloc), but better be safe in case someone decides
4226	 * to add magic to the rb code
4227	 */
4228	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4229		cfqd->prio_trees[i] = RB_ROOT;
4230
4231	/*
4232	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4233	 * Grab a permanent reference to it, so that the normal code flow
4234	 * will not attempt to free it.  oom_cfqq is linked to root_group
4235	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4236	 * the reference from linking right away.
4237	 */
4238	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4239	cfqd->oom_cfqq.ref++;
4240
4241	spin_lock_irq(q->queue_lock);
4242	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4243	cfqg_put(cfqd->root_group);
4244	spin_unlock_irq(q->queue_lock);
4245
4246	init_timer(&cfqd->idle_slice_timer);
4247	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4248	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4249
4250	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4251
4252	cfqd->cfq_quantum = cfq_quantum;
4253	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4254	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4255	cfqd->cfq_back_max = cfq_back_max;
4256	cfqd->cfq_back_penalty = cfq_back_penalty;
4257	cfqd->cfq_slice[0] = cfq_slice_async;
4258	cfqd->cfq_slice[1] = cfq_slice_sync;
4259	cfqd->cfq_target_latency = cfq_target_latency;
4260	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4261	cfqd->cfq_slice_idle = cfq_slice_idle;
4262	cfqd->cfq_group_idle = cfq_group_idle;
4263	cfqd->cfq_latency = 1;
4264	cfqd->hw_tag = -1;
4265	/*
4266	 * we optimistically start assuming sync ops weren't delayed in last
4267	 * second, in order to have larger depth for async operations.
4268	 */
4269	cfqd->last_delayed_sync = jiffies - HZ;
4270	return 0;
4271
4272out_free:
4273	kfree(cfqd);
4274	return ret;
4275}
4276
4277/*
4278 * sysfs parts below -->
4279 */
4280static ssize_t
4281cfq_var_show(unsigned int var, char *page)
4282{
4283	return sprintf(page, "%d\n", var);
4284}
4285
4286static ssize_t
4287cfq_var_store(unsigned int *var, const char *page, size_t count)
4288{
4289	char *p = (char *) page;
4290
4291	*var = simple_strtoul(p, &p, 10);
4292	return count;
4293}
4294
4295#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4296static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4297{									\
4298	struct cfq_data *cfqd = e->elevator_data;			\
4299	unsigned int __data = __VAR;					\
4300	if (__CONV)							\
4301		__data = jiffies_to_msecs(__data);			\
4302	return cfq_var_show(__data, (page));				\
4303}
4304SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4305SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4306SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4307SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4308SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4309SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4310SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4311SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4312SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4313SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4314SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4315SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4316#undef SHOW_FUNCTION
4317
4318#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4319static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4320{									\
4321	struct cfq_data *cfqd = e->elevator_data;			\
4322	unsigned int __data;						\
4323	int ret = cfq_var_store(&__data, (page), count);		\
4324	if (__data < (MIN))						\
4325		__data = (MIN);						\
4326	else if (__data > (MAX))					\
4327		__data = (MAX);						\
4328	if (__CONV)							\
4329		*(__PTR) = msecs_to_jiffies(__data);			\
4330	else								\
4331		*(__PTR) = __data;					\
4332	return ret;							\
4333}
4334STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4335STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4336		UINT_MAX, 1);
4337STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4338		UINT_MAX, 1);
4339STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4340STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4341		UINT_MAX, 0);
4342STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4343STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4344STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4345STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4346STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4347		UINT_MAX, 0);
4348STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4349STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4350#undef STORE_FUNCTION
4351
4352#define CFQ_ATTR(name) \
4353	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4354
4355static struct elv_fs_entry cfq_attrs[] = {
4356	CFQ_ATTR(quantum),
4357	CFQ_ATTR(fifo_expire_sync),
4358	CFQ_ATTR(fifo_expire_async),
4359	CFQ_ATTR(back_seek_max),
4360	CFQ_ATTR(back_seek_penalty),
4361	CFQ_ATTR(slice_sync),
4362	CFQ_ATTR(slice_async),
4363	CFQ_ATTR(slice_async_rq),
4364	CFQ_ATTR(slice_idle),
4365	CFQ_ATTR(group_idle),
4366	CFQ_ATTR(low_latency),
4367	CFQ_ATTR(target_latency),
4368	__ATTR_NULL
4369};
4370
4371static struct elevator_type iosched_cfq = {
4372	.ops = {
4373		.elevator_merge_fn = 		cfq_merge,
4374		.elevator_merged_fn =		cfq_merged_request,
4375		.elevator_merge_req_fn =	cfq_merged_requests,
4376		.elevator_allow_merge_fn =	cfq_allow_merge,
4377		.elevator_bio_merged_fn =	cfq_bio_merged,
4378		.elevator_dispatch_fn =		cfq_dispatch_requests,
4379		.elevator_add_req_fn =		cfq_insert_request,
4380		.elevator_activate_req_fn =	cfq_activate_request,
4381		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4382		.elevator_completed_req_fn =	cfq_completed_request,
4383		.elevator_former_req_fn =	elv_rb_former_request,
4384		.elevator_latter_req_fn =	elv_rb_latter_request,
4385		.elevator_init_icq_fn =		cfq_init_icq,
4386		.elevator_exit_icq_fn =		cfq_exit_icq,
4387		.elevator_set_req_fn =		cfq_set_request,
4388		.elevator_put_req_fn =		cfq_put_request,
4389		.elevator_may_queue_fn =	cfq_may_queue,
4390		.elevator_init_fn =		cfq_init_queue,
4391		.elevator_exit_fn =		cfq_exit_queue,
4392	},
4393	.icq_size	=	sizeof(struct cfq_io_cq),
4394	.icq_align	=	__alignof__(struct cfq_io_cq),
4395	.elevator_attrs =	cfq_attrs,
4396	.elevator_name	=	"cfq",
4397	.elevator_owner =	THIS_MODULE,
4398};
4399
4400#ifdef CONFIG_CFQ_GROUP_IOSCHED
4401static struct blkcg_policy blkcg_policy_cfq = {
4402	.pd_size		= sizeof(struct cfq_group),
4403	.cftypes		= cfq_blkcg_files,
4404
4405	.pd_init_fn		= cfq_pd_init,
4406	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4407};
4408#endif
4409
4410static int __init cfq_init(void)
4411{
4412	int ret;
4413
4414	/*
4415	 * could be 0 on HZ < 1000 setups
4416	 */
4417	if (!cfq_slice_async)
4418		cfq_slice_async = 1;
4419	if (!cfq_slice_idle)
4420		cfq_slice_idle = 1;
4421
4422#ifdef CONFIG_CFQ_GROUP_IOSCHED
4423	if (!cfq_group_idle)
4424		cfq_group_idle = 1;
4425
4426	ret = blkcg_policy_register(&blkcg_policy_cfq);
4427	if (ret)
4428		return ret;
4429#else
4430	cfq_group_idle = 0;
4431#endif
4432
4433	ret = -ENOMEM;
4434	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4435	if (!cfq_pool)
4436		goto err_pol_unreg;
4437
4438	ret = elv_register(&iosched_cfq);
4439	if (ret)
4440		goto err_free_pool;
4441
4442	return 0;
4443
4444err_free_pool:
4445	kmem_cache_destroy(cfq_pool);
4446err_pol_unreg:
4447#ifdef CONFIG_CFQ_GROUP_IOSCHED
4448	blkcg_policy_unregister(&blkcg_policy_cfq);
4449#endif
4450	return ret;
4451}
4452
4453static void __exit cfq_exit(void)
4454{
4455#ifdef CONFIG_CFQ_GROUP_IOSCHED
4456	blkcg_policy_unregister(&blkcg_policy_cfq);
4457#endif
4458	elv_unregister(&iosched_cfq);
4459	kmem_cache_destroy(cfq_pool);
4460}
4461
4462module_init(cfq_init);
4463module_exit(cfq_exit);
4464
4465MODULE_AUTHOR("Jens Axboe");
4466MODULE_LICENSE("GPL");
4467MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4468