cfq-iosched.c revision 5624a4e445e2ec27582984b068d7bf7f127cee10
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "cfq.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 8;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static int cfq_group_idle = HZ / 125;
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
36
37/*
38 * offset from end of service tree
39 */
40#define CFQ_IDLE_DELAY		(HZ / 5)
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT		(2)
46
47#define CFQ_SLICE_SCALE		(5)
48#define CFQ_HW_QUEUE_MIN	(5)
49#define CFQ_SERVICE_SHIFT       12
50
51#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
52#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
53#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
54#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
55
56#define RQ_CIC(rq)		\
57	((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elevator_private[2])
60
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
63
64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65static struct completion *ioc_gone;
66static DEFINE_SPINLOCK(ioc_gone_lock);
67
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
71#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
72#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75#define sample_valid(samples)	((samples) > 80)
76#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	unsigned total_weight;
89	u64 min_vdisktime;
90};
91#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92			.count = 0, .min_vdisktime = 0, }
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98	/* reference count */
99	int ref;
100	/* various state flags, see below */
101	unsigned int flags;
102	/* parent cfq_data */
103	struct cfq_data *cfqd;
104	/* service_tree member */
105	struct rb_node rb_node;
106	/* service_tree key */
107	unsigned long rb_key;
108	/* prio tree member */
109	struct rb_node p_node;
110	/* prio tree root we belong to, if any */
111	struct rb_root *p_root;
112	/* sorted list of pending requests */
113	struct rb_root sort_list;
114	/* if fifo isn't expired, next request to serve */
115	struct request *next_rq;
116	/* requests queued in sort_list */
117	int queued[2];
118	/* currently allocated requests */
119	int allocated[2];
120	/* fifo list of requests in sort_list */
121	struct list_head fifo;
122
123	/* time when queue got scheduled in to dispatch first request. */
124	unsigned long dispatch_start;
125	unsigned int allocated_slice;
126	unsigned int slice_dispatch;
127	/* time when first request from queue completed and slice started. */
128	unsigned long slice_start;
129	unsigned long slice_end;
130	long slice_resid;
131
132	/* pending metadata requests */
133	int meta_pending;
134	/* number of requests that are on the dispatch list or inside driver */
135	int dispatched;
136
137	/* io prio of this group */
138	unsigned short ioprio, org_ioprio;
139	unsigned short ioprio_class, org_ioprio_class;
140
141	pid_t pid;
142
143	u32 seek_history;
144	sector_t last_request_pos;
145
146	struct cfq_rb_root *service_tree;
147	struct cfq_queue *new_cfqq;
148	struct cfq_group *cfqg;
149	/* Number of sectors dispatched from queue in single dispatch round */
150	unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
158	BE_WORKLOAD = 0,
159	RT_WORKLOAD = 1,
160	IDLE_WORKLOAD = 2,
161	CFQ_PRIO_NR,
162};
163
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168	ASYNC_WORKLOAD = 0,
169	SYNC_NOIDLE_WORKLOAD = 1,
170	SYNC_WORKLOAD = 2
171};
172
173/* This is per cgroup per device grouping structure */
174struct cfq_group {
175	/* group service_tree member */
176	struct rb_node rb_node;
177
178	/* group service_tree key */
179	u64 vdisktime;
180	unsigned int weight;
181	unsigned int new_weight;
182	bool needs_update;
183
184	/* number of cfqq currently on this group */
185	int nr_cfqq;
186
187	/*
188	 * Per group busy queus average. Useful for workload slice calc. We
189	 * create the array for each prio class but at run time it is used
190	 * only for RT and BE class and slot for IDLE class remains unused.
191	 * This is primarily done to avoid confusion and a gcc warning.
192	 */
193	unsigned int busy_queues_avg[CFQ_PRIO_NR];
194	/*
195	 * rr lists of queues with requests. We maintain service trees for
196	 * RT and BE classes. These trees are subdivided in subclasses
197	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198	 * class there is no subclassification and all the cfq queues go on
199	 * a single tree service_tree_idle.
200	 * Counts are embedded in the cfq_rb_root
201	 */
202	struct cfq_rb_root service_trees[2][3];
203	struct cfq_rb_root service_tree_idle;
204
205	unsigned long saved_workload_slice;
206	enum wl_type_t saved_workload;
207	enum wl_prio_t saved_serving_prio;
208	struct blkio_group blkg;
209#ifdef CONFIG_CFQ_GROUP_IOSCHED
210	struct hlist_node cfqd_node;
211	int ref;
212#endif
213	/* number of requests that are on the dispatch list or inside driver */
214	int dispatched;
215};
216
217/*
218 * Per block device queue structure
219 */
220struct cfq_data {
221	struct request_queue *queue;
222	/* Root service tree for cfq_groups */
223	struct cfq_rb_root grp_service_tree;
224	struct cfq_group root_group;
225
226	/*
227	 * The priority currently being served
228	 */
229	enum wl_prio_t serving_prio;
230	enum wl_type_t serving_type;
231	unsigned long workload_expires;
232	struct cfq_group *serving_group;
233
234	/*
235	 * Each priority tree is sorted by next_request position.  These
236	 * trees are used when determining if two or more queues are
237	 * interleaving requests (see cfq_close_cooperator).
238	 */
239	struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241	unsigned int busy_queues;
242	unsigned int busy_sync_queues;
243
244	int rq_in_driver;
245	int rq_in_flight[2];
246
247	/*
248	 * queue-depth detection
249	 */
250	int rq_queued;
251	int hw_tag;
252	/*
253	 * hw_tag can be
254	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256	 *  0 => no NCQ
257	 */
258	int hw_tag_est_depth;
259	unsigned int hw_tag_samples;
260
261	/*
262	 * idle window management
263	 */
264	struct timer_list idle_slice_timer;
265	struct work_struct unplug_work;
266
267	struct cfq_queue *active_queue;
268	struct cfq_io_context *active_cic;
269
270	/*
271	 * async queue for each priority case
272	 */
273	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274	struct cfq_queue *async_idle_cfqq;
275
276	sector_t last_position;
277
278	/*
279	 * tunables, see top of file
280	 */
281	unsigned int cfq_quantum;
282	unsigned int cfq_fifo_expire[2];
283	unsigned int cfq_back_penalty;
284	unsigned int cfq_back_max;
285	unsigned int cfq_slice[2];
286	unsigned int cfq_slice_async_rq;
287	unsigned int cfq_slice_idle;
288	unsigned int cfq_group_idle;
289	unsigned int cfq_latency;
290
291	unsigned int cic_index;
292	struct list_head cic_list;
293
294	/*
295	 * Fallback dummy cfqq for extreme OOM conditions
296	 */
297	struct cfq_queue oom_cfqq;
298
299	unsigned long last_delayed_sync;
300
301	/* List of cfq groups being managed on this device*/
302	struct hlist_head cfqg_list;
303
304	/* Number of groups which are on blkcg->blkg_list */
305	unsigned int nr_blkcg_linked_grps;
306};
307
308static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
309
310static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
311					    enum wl_prio_t prio,
312					    enum wl_type_t type)
313{
314	if (!cfqg)
315		return NULL;
316
317	if (prio == IDLE_WORKLOAD)
318		return &cfqg->service_tree_idle;
319
320	return &cfqg->service_trees[prio][type];
321}
322
323enum cfqq_state_flags {
324	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
325	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
326	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
327	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
328	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
329	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
330	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
331	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
332	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
333	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
334	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
335	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
336	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
337};
338
339#define CFQ_CFQQ_FNS(name)						\
340static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
341{									\
342	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
343}									\
344static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
345{									\
346	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
347}									\
348static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
349{									\
350	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
351}
352
353CFQ_CFQQ_FNS(on_rr);
354CFQ_CFQQ_FNS(wait_request);
355CFQ_CFQQ_FNS(must_dispatch);
356CFQ_CFQQ_FNS(must_alloc_slice);
357CFQ_CFQQ_FNS(fifo_expire);
358CFQ_CFQQ_FNS(idle_window);
359CFQ_CFQQ_FNS(prio_changed);
360CFQ_CFQQ_FNS(slice_new);
361CFQ_CFQQ_FNS(sync);
362CFQ_CFQQ_FNS(coop);
363CFQ_CFQQ_FNS(split_coop);
364CFQ_CFQQ_FNS(deep);
365CFQ_CFQQ_FNS(wait_busy);
366#undef CFQ_CFQQ_FNS
367
368#ifdef CONFIG_CFQ_GROUP_IOSCHED
369#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
370	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372			blkg_path(&(cfqq)->cfqg->blkg), ##args);
373
374#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
375	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
376				blkg_path(&(cfqg)->blkg), ##args);      \
377
378#else
379#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
380	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
382#endif
383#define cfq_log(cfqd, fmt, args...)	\
384	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
385
386/* Traverses through cfq group service trees */
387#define for_each_cfqg_st(cfqg, i, j, st) \
388	for (i = 0; i <= IDLE_WORKLOAD; i++) \
389		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390			: &cfqg->service_tree_idle; \
391			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392			(i == IDLE_WORKLOAD && j == 0); \
393			j++, st = i < IDLE_WORKLOAD ? \
394			&cfqg->service_trees[i][j]: NULL) \
395
396
397static inline bool iops_mode(struct cfq_data *cfqd)
398{
399	/*
400	 * If we are not idling on queues and it is a NCQ drive, parallel
401	 * execution of requests is on and measuring time is not possible
402	 * in most of the cases until and unless we drive shallower queue
403	 * depths and that becomes a performance bottleneck. In such cases
404	 * switch to start providing fairness in terms of number of IOs.
405	 */
406	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
407		return true;
408	else
409		return false;
410}
411
412static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
413{
414	if (cfq_class_idle(cfqq))
415		return IDLE_WORKLOAD;
416	if (cfq_class_rt(cfqq))
417		return RT_WORKLOAD;
418	return BE_WORKLOAD;
419}
420
421
422static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
423{
424	if (!cfq_cfqq_sync(cfqq))
425		return ASYNC_WORKLOAD;
426	if (!cfq_cfqq_idle_window(cfqq))
427		return SYNC_NOIDLE_WORKLOAD;
428	return SYNC_WORKLOAD;
429}
430
431static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
432					struct cfq_data *cfqd,
433					struct cfq_group *cfqg)
434{
435	if (wl == IDLE_WORKLOAD)
436		return cfqg->service_tree_idle.count;
437
438	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
439		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
440		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
441}
442
443static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
444					struct cfq_group *cfqg)
445{
446	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
447		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
448}
449
450static void cfq_dispatch_insert(struct request_queue *, struct request *);
451static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
452				       struct io_context *, gfp_t);
453static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
454						struct io_context *);
455
456static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
457					    bool is_sync)
458{
459	return cic->cfqq[is_sync];
460}
461
462static inline void cic_set_cfqq(struct cfq_io_context *cic,
463				struct cfq_queue *cfqq, bool is_sync)
464{
465	cic->cfqq[is_sync] = cfqq;
466}
467
468#define CIC_DEAD_KEY	1ul
469#define CIC_DEAD_INDEX_SHIFT	1
470
471static inline void *cfqd_dead_key(struct cfq_data *cfqd)
472{
473	return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
474}
475
476static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
477{
478	struct cfq_data *cfqd = cic->key;
479
480	if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
481		return NULL;
482
483	return cfqd;
484}
485
486/*
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
489 */
490static inline bool cfq_bio_sync(struct bio *bio)
491{
492	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
493}
494
495/*
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
498 */
499static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
500{
501	if (cfqd->busy_queues) {
502		cfq_log(cfqd, "schedule dispatch");
503		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
504	}
505}
506
507/*
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
511 */
512static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
513				 unsigned short prio)
514{
515	const int base_slice = cfqd->cfq_slice[sync];
516
517	WARN_ON(prio >= IOPRIO_BE_NR);
518
519	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
520}
521
522static inline int
523cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
524{
525	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
526}
527
528static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
529{
530	u64 d = delta << CFQ_SERVICE_SHIFT;
531
532	d = d * BLKIO_WEIGHT_DEFAULT;
533	do_div(d, cfqg->weight);
534	return d;
535}
536
537static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
538{
539	s64 delta = (s64)(vdisktime - min_vdisktime);
540	if (delta > 0)
541		min_vdisktime = vdisktime;
542
543	return min_vdisktime;
544}
545
546static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
547{
548	s64 delta = (s64)(vdisktime - min_vdisktime);
549	if (delta < 0)
550		min_vdisktime = vdisktime;
551
552	return min_vdisktime;
553}
554
555static void update_min_vdisktime(struct cfq_rb_root *st)
556{
557	struct cfq_group *cfqg;
558
559	if (st->left) {
560		cfqg = rb_entry_cfqg(st->left);
561		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
562						  cfqg->vdisktime);
563	}
564}
565
566/*
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
570 */
571
572static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
573					struct cfq_group *cfqg, bool rt)
574{
575	unsigned min_q, max_q;
576	unsigned mult  = cfq_hist_divisor - 1;
577	unsigned round = cfq_hist_divisor / 2;
578	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
579
580	min_q = min(cfqg->busy_queues_avg[rt], busy);
581	max_q = max(cfqg->busy_queues_avg[rt], busy);
582	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
583		cfq_hist_divisor;
584	return cfqg->busy_queues_avg[rt];
585}
586
587static inline unsigned
588cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
589{
590	struct cfq_rb_root *st = &cfqd->grp_service_tree;
591
592	return cfq_target_latency * cfqg->weight / st->total_weight;
593}
594
595static inline unsigned
596cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597{
598	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
599	if (cfqd->cfq_latency) {
600		/*
601		 * interested queues (we consider only the ones with the same
602		 * priority class in the cfq group)
603		 */
604		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
605						cfq_class_rt(cfqq));
606		unsigned sync_slice = cfqd->cfq_slice[1];
607		unsigned expect_latency = sync_slice * iq;
608		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
609
610		if (expect_latency > group_slice) {
611			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
612			/* scale low_slice according to IO priority
613			 * and sync vs async */
614			unsigned low_slice =
615				min(slice, base_low_slice * slice / sync_slice);
616			/* the adapted slice value is scaled to fit all iqs
617			 * into the target latency */
618			slice = max(slice * group_slice / expect_latency,
619				    low_slice);
620		}
621	}
622	return slice;
623}
624
625static inline void
626cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627{
628	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
629
630	cfqq->slice_start = jiffies;
631	cfqq->slice_end = jiffies + slice;
632	cfqq->allocated_slice = slice;
633	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
634}
635
636/*
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
640 */
641static inline bool cfq_slice_used(struct cfq_queue *cfqq)
642{
643	if (cfq_cfqq_slice_new(cfqq))
644		return false;
645	if (time_before(jiffies, cfqq->slice_end))
646		return false;
647
648	return true;
649}
650
651/*
652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653 * We choose the request that is closest to the head right now. Distance
654 * behind the head is penalized and only allowed to a certain extent.
655 */
656static struct request *
657cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
658{
659	sector_t s1, s2, d1 = 0, d2 = 0;
660	unsigned long back_max;
661#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
662#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
663	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
664
665	if (rq1 == NULL || rq1 == rq2)
666		return rq2;
667	if (rq2 == NULL)
668		return rq1;
669
670	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
671		return rq1;
672	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
673		return rq2;
674	if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
675		return rq1;
676	else if ((rq2->cmd_flags & REQ_META) &&
677		 !(rq1->cmd_flags & REQ_META))
678		return rq2;
679
680	s1 = blk_rq_pos(rq1);
681	s2 = blk_rq_pos(rq2);
682
683	/*
684	 * by definition, 1KiB is 2 sectors
685	 */
686	back_max = cfqd->cfq_back_max * 2;
687
688	/*
689	 * Strict one way elevator _except_ in the case where we allow
690	 * short backward seeks which are biased as twice the cost of a
691	 * similar forward seek.
692	 */
693	if (s1 >= last)
694		d1 = s1 - last;
695	else if (s1 + back_max >= last)
696		d1 = (last - s1) * cfqd->cfq_back_penalty;
697	else
698		wrap |= CFQ_RQ1_WRAP;
699
700	if (s2 >= last)
701		d2 = s2 - last;
702	else if (s2 + back_max >= last)
703		d2 = (last - s2) * cfqd->cfq_back_penalty;
704	else
705		wrap |= CFQ_RQ2_WRAP;
706
707	/* Found required data */
708
709	/*
710	 * By doing switch() on the bit mask "wrap" we avoid having to
711	 * check two variables for all permutations: --> faster!
712	 */
713	switch (wrap) {
714	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
715		if (d1 < d2)
716			return rq1;
717		else if (d2 < d1)
718			return rq2;
719		else {
720			if (s1 >= s2)
721				return rq1;
722			else
723				return rq2;
724		}
725
726	case CFQ_RQ2_WRAP:
727		return rq1;
728	case CFQ_RQ1_WRAP:
729		return rq2;
730	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
731	default:
732		/*
733		 * Since both rqs are wrapped,
734		 * start with the one that's further behind head
735		 * (--> only *one* back seek required),
736		 * since back seek takes more time than forward.
737		 */
738		if (s1 <= s2)
739			return rq1;
740		else
741			return rq2;
742	}
743}
744
745/*
746 * The below is leftmost cache rbtree addon
747 */
748static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
749{
750	/* Service tree is empty */
751	if (!root->count)
752		return NULL;
753
754	if (!root->left)
755		root->left = rb_first(&root->rb);
756
757	if (root->left)
758		return rb_entry(root->left, struct cfq_queue, rb_node);
759
760	return NULL;
761}
762
763static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
764{
765	if (!root->left)
766		root->left = rb_first(&root->rb);
767
768	if (root->left)
769		return rb_entry_cfqg(root->left);
770
771	return NULL;
772}
773
774static void rb_erase_init(struct rb_node *n, struct rb_root *root)
775{
776	rb_erase(n, root);
777	RB_CLEAR_NODE(n);
778}
779
780static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
781{
782	if (root->left == n)
783		root->left = NULL;
784	rb_erase_init(n, &root->rb);
785	--root->count;
786}
787
788/*
789 * would be nice to take fifo expire time into account as well
790 */
791static struct request *
792cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
793		  struct request *last)
794{
795	struct rb_node *rbnext = rb_next(&last->rb_node);
796	struct rb_node *rbprev = rb_prev(&last->rb_node);
797	struct request *next = NULL, *prev = NULL;
798
799	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
800
801	if (rbprev)
802		prev = rb_entry_rq(rbprev);
803
804	if (rbnext)
805		next = rb_entry_rq(rbnext);
806	else {
807		rbnext = rb_first(&cfqq->sort_list);
808		if (rbnext && rbnext != &last->rb_node)
809			next = rb_entry_rq(rbnext);
810	}
811
812	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
813}
814
815static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
816				      struct cfq_queue *cfqq)
817{
818	/*
819	 * just an approximation, should be ok.
820	 */
821	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
822		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
823}
824
825static inline s64
826cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
827{
828	return cfqg->vdisktime - st->min_vdisktime;
829}
830
831static void
832__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
833{
834	struct rb_node **node = &st->rb.rb_node;
835	struct rb_node *parent = NULL;
836	struct cfq_group *__cfqg;
837	s64 key = cfqg_key(st, cfqg);
838	int left = 1;
839
840	while (*node != NULL) {
841		parent = *node;
842		__cfqg = rb_entry_cfqg(parent);
843
844		if (key < cfqg_key(st, __cfqg))
845			node = &parent->rb_left;
846		else {
847			node = &parent->rb_right;
848			left = 0;
849		}
850	}
851
852	if (left)
853		st->left = &cfqg->rb_node;
854
855	rb_link_node(&cfqg->rb_node, parent, node);
856	rb_insert_color(&cfqg->rb_node, &st->rb);
857}
858
859static void
860cfq_update_group_weight(struct cfq_group *cfqg)
861{
862	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
863	if (cfqg->needs_update) {
864		cfqg->weight = cfqg->new_weight;
865		cfqg->needs_update = false;
866	}
867}
868
869static void
870cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
871{
872	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
873
874	cfq_update_group_weight(cfqg);
875	__cfq_group_service_tree_add(st, cfqg);
876	st->total_weight += cfqg->weight;
877}
878
879static void
880cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
881{
882	struct cfq_rb_root *st = &cfqd->grp_service_tree;
883	struct cfq_group *__cfqg;
884	struct rb_node *n;
885
886	cfqg->nr_cfqq++;
887	if (!RB_EMPTY_NODE(&cfqg->rb_node))
888		return;
889
890	/*
891	 * Currently put the group at the end. Later implement something
892	 * so that groups get lesser vtime based on their weights, so that
893	 * if group does not loose all if it was not continuously backlogged.
894	 */
895	n = rb_last(&st->rb);
896	if (n) {
897		__cfqg = rb_entry_cfqg(n);
898		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
899	} else
900		cfqg->vdisktime = st->min_vdisktime;
901	cfq_group_service_tree_add(st, cfqg);
902}
903
904static void
905cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
906{
907	st->total_weight -= cfqg->weight;
908	if (!RB_EMPTY_NODE(&cfqg->rb_node))
909		cfq_rb_erase(&cfqg->rb_node, st);
910}
911
912static void
913cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
914{
915	struct cfq_rb_root *st = &cfqd->grp_service_tree;
916
917	BUG_ON(cfqg->nr_cfqq < 1);
918	cfqg->nr_cfqq--;
919
920	/* If there are other cfq queues under this group, don't delete it */
921	if (cfqg->nr_cfqq)
922		return;
923
924	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
925	cfq_group_service_tree_del(st, cfqg);
926	cfqg->saved_workload_slice = 0;
927	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
928}
929
930static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
931						unsigned int *unaccounted_time)
932{
933	unsigned int slice_used;
934
935	/*
936	 * Queue got expired before even a single request completed or
937	 * got expired immediately after first request completion.
938	 */
939	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
940		/*
941		 * Also charge the seek time incurred to the group, otherwise
942		 * if there are mutiple queues in the group, each can dispatch
943		 * a single request on seeky media and cause lots of seek time
944		 * and group will never know it.
945		 */
946		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
947					1);
948	} else {
949		slice_used = jiffies - cfqq->slice_start;
950		if (slice_used > cfqq->allocated_slice) {
951			*unaccounted_time = slice_used - cfqq->allocated_slice;
952			slice_used = cfqq->allocated_slice;
953		}
954		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
955			*unaccounted_time += cfqq->slice_start -
956					cfqq->dispatch_start;
957	}
958
959	return slice_used;
960}
961
962static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
963				struct cfq_queue *cfqq)
964{
965	struct cfq_rb_root *st = &cfqd->grp_service_tree;
966	unsigned int used_sl, charge, unaccounted_sl = 0;
967	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
968			- cfqg->service_tree_idle.count;
969
970	BUG_ON(nr_sync < 0);
971	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
972
973	if (iops_mode(cfqd))
974		charge = cfqq->slice_dispatch;
975	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
976		charge = cfqq->allocated_slice;
977
978	/* Can't update vdisktime while group is on service tree */
979	cfq_group_service_tree_del(st, cfqg);
980	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
981	/* If a new weight was requested, update now, off tree */
982	cfq_group_service_tree_add(st, cfqg);
983
984	/* This group is being expired. Save the context */
985	if (time_after(cfqd->workload_expires, jiffies)) {
986		cfqg->saved_workload_slice = cfqd->workload_expires
987						- jiffies;
988		cfqg->saved_workload = cfqd->serving_type;
989		cfqg->saved_serving_prio = cfqd->serving_prio;
990	} else
991		cfqg->saved_workload_slice = 0;
992
993	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
994					st->min_vdisktime);
995	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u disp=%u charge=%u iops=%u"
996			" sect=%u", used_sl, cfqq->slice_dispatch, charge,
997			iops_mode(cfqd), cfqq->nr_sectors);
998	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
999					  unaccounted_sl);
1000	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1001}
1002
1003#ifdef CONFIG_CFQ_GROUP_IOSCHED
1004static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1005{
1006	if (blkg)
1007		return container_of(blkg, struct cfq_group, blkg);
1008	return NULL;
1009}
1010
1011void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1012					unsigned int weight)
1013{
1014	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1015	cfqg->new_weight = weight;
1016	cfqg->needs_update = true;
1017}
1018
1019static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1020			struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1021{
1022	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1023	unsigned int major, minor;
1024
1025	/*
1026	 * Add group onto cgroup list. It might happen that bdi->dev is
1027	 * not initialized yet. Initialize this new group without major
1028	 * and minor info and this info will be filled in once a new thread
1029	 * comes for IO.
1030	 */
1031	if (bdi->dev) {
1032		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1033		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1034					(void *)cfqd, MKDEV(major, minor));
1035	} else
1036		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1037					(void *)cfqd, 0);
1038
1039	cfqd->nr_blkcg_linked_grps++;
1040	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1041
1042	/* Add group on cfqd list */
1043	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1044}
1045
1046/*
1047 * Should be called from sleepable context. No request queue lock as per
1048 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1049 * from sleepable context.
1050 */
1051static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1052{
1053	struct cfq_group *cfqg = NULL;
1054	int i, j, ret;
1055	struct cfq_rb_root *st;
1056
1057	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1058	if (!cfqg)
1059		return NULL;
1060
1061	for_each_cfqg_st(cfqg, i, j, st)
1062		*st = CFQ_RB_ROOT;
1063	RB_CLEAR_NODE(&cfqg->rb_node);
1064
1065	/*
1066	 * Take the initial reference that will be released on destroy
1067	 * This can be thought of a joint reference by cgroup and
1068	 * elevator which will be dropped by either elevator exit
1069	 * or cgroup deletion path depending on who is exiting first.
1070	 */
1071	cfqg->ref = 1;
1072
1073	ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1074	if (ret) {
1075		kfree(cfqg);
1076		return NULL;
1077	}
1078
1079	return cfqg;
1080}
1081
1082static struct cfq_group *
1083cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1084{
1085	struct cfq_group *cfqg = NULL;
1086	void *key = cfqd;
1087	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1088	unsigned int major, minor;
1089
1090	/*
1091	 * This is the common case when there are no blkio cgroups.
1092	 * Avoid lookup in this case
1093	 */
1094	if (blkcg == &blkio_root_cgroup)
1095		cfqg = &cfqd->root_group;
1096	else
1097		cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1098
1099	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1100		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1101		cfqg->blkg.dev = MKDEV(major, minor);
1102	}
1103
1104	return cfqg;
1105}
1106
1107/*
1108 * Search for the cfq group current task belongs to. request_queue lock must
1109 * be held.
1110 */
1111static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1112{
1113	struct blkio_cgroup *blkcg;
1114	struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1115	struct request_queue *q = cfqd->queue;
1116
1117	rcu_read_lock();
1118	blkcg = task_blkio_cgroup(current);
1119	cfqg = cfq_find_cfqg(cfqd, blkcg);
1120	if (cfqg) {
1121		rcu_read_unlock();
1122		return cfqg;
1123	}
1124
1125	/*
1126	 * Need to allocate a group. Allocation of group also needs allocation
1127	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1128	 * we need to drop rcu lock and queue_lock before we call alloc.
1129	 *
1130	 * Not taking any queue reference here and assuming that queue is
1131	 * around by the time we return. CFQ queue allocation code does
1132	 * the same. It might be racy though.
1133	 */
1134
1135	rcu_read_unlock();
1136	spin_unlock_irq(q->queue_lock);
1137
1138	cfqg = cfq_alloc_cfqg(cfqd);
1139
1140	spin_lock_irq(q->queue_lock);
1141
1142	rcu_read_lock();
1143	blkcg = task_blkio_cgroup(current);
1144
1145	/*
1146	 * If some other thread already allocated the group while we were
1147	 * not holding queue lock, free up the group
1148	 */
1149	__cfqg = cfq_find_cfqg(cfqd, blkcg);
1150
1151	if (__cfqg) {
1152		kfree(cfqg);
1153		rcu_read_unlock();
1154		return __cfqg;
1155	}
1156
1157	if (!cfqg)
1158		cfqg = &cfqd->root_group;
1159
1160	cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1161	rcu_read_unlock();
1162	return cfqg;
1163}
1164
1165static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1166{
1167	cfqg->ref++;
1168	return cfqg;
1169}
1170
1171static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1172{
1173	/* Currently, all async queues are mapped to root group */
1174	if (!cfq_cfqq_sync(cfqq))
1175		cfqg = &cfqq->cfqd->root_group;
1176
1177	cfqq->cfqg = cfqg;
1178	/* cfqq reference on cfqg */
1179	cfqq->cfqg->ref++;
1180}
1181
1182static void cfq_put_cfqg(struct cfq_group *cfqg)
1183{
1184	struct cfq_rb_root *st;
1185	int i, j;
1186
1187	BUG_ON(cfqg->ref <= 0);
1188	cfqg->ref--;
1189	if (cfqg->ref)
1190		return;
1191	for_each_cfqg_st(cfqg, i, j, st)
1192		BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1193	free_percpu(cfqg->blkg.stats_cpu);
1194	kfree(cfqg);
1195}
1196
1197static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1198{
1199	/* Something wrong if we are trying to remove same group twice */
1200	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1201
1202	hlist_del_init(&cfqg->cfqd_node);
1203
1204	/*
1205	 * Put the reference taken at the time of creation so that when all
1206	 * queues are gone, group can be destroyed.
1207	 */
1208	cfq_put_cfqg(cfqg);
1209}
1210
1211static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1212{
1213	struct hlist_node *pos, *n;
1214	struct cfq_group *cfqg;
1215
1216	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1217		/*
1218		 * If cgroup removal path got to blk_group first and removed
1219		 * it from cgroup list, then it will take care of destroying
1220		 * cfqg also.
1221		 */
1222		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1223			cfq_destroy_cfqg(cfqd, cfqg);
1224	}
1225}
1226
1227/*
1228 * Blk cgroup controller notification saying that blkio_group object is being
1229 * delinked as associated cgroup object is going away. That also means that
1230 * no new IO will come in this group. So get rid of this group as soon as
1231 * any pending IO in the group is finished.
1232 *
1233 * This function is called under rcu_read_lock(). key is the rcu protected
1234 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1235 * read lock.
1236 *
1237 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1238 * it should not be NULL as even if elevator was exiting, cgroup deltion
1239 * path got to it first.
1240 */
1241void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1242{
1243	unsigned long  flags;
1244	struct cfq_data *cfqd = key;
1245
1246	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1247	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1248	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1249}
1250
1251#else /* GROUP_IOSCHED */
1252static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1253{
1254	return &cfqd->root_group;
1255}
1256
1257static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1258{
1259	return cfqg;
1260}
1261
1262static inline void
1263cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1264	cfqq->cfqg = cfqg;
1265}
1266
1267static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1268static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1269
1270#endif /* GROUP_IOSCHED */
1271
1272/*
1273 * The cfqd->service_trees holds all pending cfq_queue's that have
1274 * requests waiting to be processed. It is sorted in the order that
1275 * we will service the queues.
1276 */
1277static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1278				 bool add_front)
1279{
1280	struct rb_node **p, *parent;
1281	struct cfq_queue *__cfqq;
1282	unsigned long rb_key;
1283	struct cfq_rb_root *service_tree;
1284	int left;
1285	int new_cfqq = 1;
1286	int group_changed = 0;
1287
1288	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1289						cfqq_type(cfqq));
1290	if (cfq_class_idle(cfqq)) {
1291		rb_key = CFQ_IDLE_DELAY;
1292		parent = rb_last(&service_tree->rb);
1293		if (parent && parent != &cfqq->rb_node) {
1294			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1295			rb_key += __cfqq->rb_key;
1296		} else
1297			rb_key += jiffies;
1298	} else if (!add_front) {
1299		/*
1300		 * Get our rb key offset. Subtract any residual slice
1301		 * value carried from last service. A negative resid
1302		 * count indicates slice overrun, and this should position
1303		 * the next service time further away in the tree.
1304		 */
1305		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1306		rb_key -= cfqq->slice_resid;
1307		cfqq->slice_resid = 0;
1308	} else {
1309		rb_key = -HZ;
1310		__cfqq = cfq_rb_first(service_tree);
1311		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1312	}
1313
1314	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1315		new_cfqq = 0;
1316		/*
1317		 * same position, nothing more to do
1318		 */
1319		if (rb_key == cfqq->rb_key &&
1320		    cfqq->service_tree == service_tree)
1321			return;
1322
1323		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1324		cfqq->service_tree = NULL;
1325	}
1326
1327	left = 1;
1328	parent = NULL;
1329	cfqq->service_tree = service_tree;
1330	p = &service_tree->rb.rb_node;
1331	while (*p) {
1332		struct rb_node **n;
1333
1334		parent = *p;
1335		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1336
1337		/*
1338		 * sort by key, that represents service time.
1339		 */
1340		if (time_before(rb_key, __cfqq->rb_key))
1341			n = &(*p)->rb_left;
1342		else {
1343			n = &(*p)->rb_right;
1344			left = 0;
1345		}
1346
1347		p = n;
1348	}
1349
1350	if (left)
1351		service_tree->left = &cfqq->rb_node;
1352
1353	cfqq->rb_key = rb_key;
1354	rb_link_node(&cfqq->rb_node, parent, p);
1355	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1356	service_tree->count++;
1357	if ((add_front || !new_cfqq) && !group_changed)
1358		return;
1359	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1360}
1361
1362static struct cfq_queue *
1363cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1364		     sector_t sector, struct rb_node **ret_parent,
1365		     struct rb_node ***rb_link)
1366{
1367	struct rb_node **p, *parent;
1368	struct cfq_queue *cfqq = NULL;
1369
1370	parent = NULL;
1371	p = &root->rb_node;
1372	while (*p) {
1373		struct rb_node **n;
1374
1375		parent = *p;
1376		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1377
1378		/*
1379		 * Sort strictly based on sector.  Smallest to the left,
1380		 * largest to the right.
1381		 */
1382		if (sector > blk_rq_pos(cfqq->next_rq))
1383			n = &(*p)->rb_right;
1384		else if (sector < blk_rq_pos(cfqq->next_rq))
1385			n = &(*p)->rb_left;
1386		else
1387			break;
1388		p = n;
1389		cfqq = NULL;
1390	}
1391
1392	*ret_parent = parent;
1393	if (rb_link)
1394		*rb_link = p;
1395	return cfqq;
1396}
1397
1398static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1399{
1400	struct rb_node **p, *parent;
1401	struct cfq_queue *__cfqq;
1402
1403	if (cfqq->p_root) {
1404		rb_erase(&cfqq->p_node, cfqq->p_root);
1405		cfqq->p_root = NULL;
1406	}
1407
1408	if (cfq_class_idle(cfqq))
1409		return;
1410	if (!cfqq->next_rq)
1411		return;
1412
1413	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1414	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1415				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1416	if (!__cfqq) {
1417		rb_link_node(&cfqq->p_node, parent, p);
1418		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1419	} else
1420		cfqq->p_root = NULL;
1421}
1422
1423/*
1424 * Update cfqq's position in the service tree.
1425 */
1426static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1427{
1428	/*
1429	 * Resorting requires the cfqq to be on the RR list already.
1430	 */
1431	if (cfq_cfqq_on_rr(cfqq)) {
1432		cfq_service_tree_add(cfqd, cfqq, 0);
1433		cfq_prio_tree_add(cfqd, cfqq);
1434	}
1435}
1436
1437/*
1438 * add to busy list of queues for service, trying to be fair in ordering
1439 * the pending list according to last request service
1440 */
1441static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1442{
1443	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1444	BUG_ON(cfq_cfqq_on_rr(cfqq));
1445	cfq_mark_cfqq_on_rr(cfqq);
1446	cfqd->busy_queues++;
1447	if (cfq_cfqq_sync(cfqq))
1448		cfqd->busy_sync_queues++;
1449
1450	cfq_resort_rr_list(cfqd, cfqq);
1451}
1452
1453/*
1454 * Called when the cfqq no longer has requests pending, remove it from
1455 * the service tree.
1456 */
1457static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1458{
1459	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1460	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1461	cfq_clear_cfqq_on_rr(cfqq);
1462
1463	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1464		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1465		cfqq->service_tree = NULL;
1466	}
1467	if (cfqq->p_root) {
1468		rb_erase(&cfqq->p_node, cfqq->p_root);
1469		cfqq->p_root = NULL;
1470	}
1471
1472	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1473	BUG_ON(!cfqd->busy_queues);
1474	cfqd->busy_queues--;
1475	if (cfq_cfqq_sync(cfqq))
1476		cfqd->busy_sync_queues--;
1477}
1478
1479/*
1480 * rb tree support functions
1481 */
1482static void cfq_del_rq_rb(struct request *rq)
1483{
1484	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1485	const int sync = rq_is_sync(rq);
1486
1487	BUG_ON(!cfqq->queued[sync]);
1488	cfqq->queued[sync]--;
1489
1490	elv_rb_del(&cfqq->sort_list, rq);
1491
1492	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1493		/*
1494		 * Queue will be deleted from service tree when we actually
1495		 * expire it later. Right now just remove it from prio tree
1496		 * as it is empty.
1497		 */
1498		if (cfqq->p_root) {
1499			rb_erase(&cfqq->p_node, cfqq->p_root);
1500			cfqq->p_root = NULL;
1501		}
1502	}
1503}
1504
1505static void cfq_add_rq_rb(struct request *rq)
1506{
1507	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1508	struct cfq_data *cfqd = cfqq->cfqd;
1509	struct request *__alias, *prev;
1510
1511	cfqq->queued[rq_is_sync(rq)]++;
1512
1513	/*
1514	 * looks a little odd, but the first insert might return an alias.
1515	 * if that happens, put the alias on the dispatch list
1516	 */
1517	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1518		cfq_dispatch_insert(cfqd->queue, __alias);
1519
1520	if (!cfq_cfqq_on_rr(cfqq))
1521		cfq_add_cfqq_rr(cfqd, cfqq);
1522
1523	/*
1524	 * check if this request is a better next-serve candidate
1525	 */
1526	prev = cfqq->next_rq;
1527	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1528
1529	/*
1530	 * adjust priority tree position, if ->next_rq changes
1531	 */
1532	if (prev != cfqq->next_rq)
1533		cfq_prio_tree_add(cfqd, cfqq);
1534
1535	BUG_ON(!cfqq->next_rq);
1536}
1537
1538static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1539{
1540	elv_rb_del(&cfqq->sort_list, rq);
1541	cfqq->queued[rq_is_sync(rq)]--;
1542	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1543					rq_data_dir(rq), rq_is_sync(rq));
1544	cfq_add_rq_rb(rq);
1545	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1546			&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1547			rq_is_sync(rq));
1548}
1549
1550static struct request *
1551cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1552{
1553	struct task_struct *tsk = current;
1554	struct cfq_io_context *cic;
1555	struct cfq_queue *cfqq;
1556
1557	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1558	if (!cic)
1559		return NULL;
1560
1561	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1562	if (cfqq) {
1563		sector_t sector = bio->bi_sector + bio_sectors(bio);
1564
1565		return elv_rb_find(&cfqq->sort_list, sector);
1566	}
1567
1568	return NULL;
1569}
1570
1571static void cfq_activate_request(struct request_queue *q, struct request *rq)
1572{
1573	struct cfq_data *cfqd = q->elevator->elevator_data;
1574
1575	cfqd->rq_in_driver++;
1576	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1577						cfqd->rq_in_driver);
1578
1579	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1580}
1581
1582static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1583{
1584	struct cfq_data *cfqd = q->elevator->elevator_data;
1585
1586	WARN_ON(!cfqd->rq_in_driver);
1587	cfqd->rq_in_driver--;
1588	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1589						cfqd->rq_in_driver);
1590}
1591
1592static void cfq_remove_request(struct request *rq)
1593{
1594	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1595
1596	if (cfqq->next_rq == rq)
1597		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1598
1599	list_del_init(&rq->queuelist);
1600	cfq_del_rq_rb(rq);
1601
1602	cfqq->cfqd->rq_queued--;
1603	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1604					rq_data_dir(rq), rq_is_sync(rq));
1605	if (rq->cmd_flags & REQ_META) {
1606		WARN_ON(!cfqq->meta_pending);
1607		cfqq->meta_pending--;
1608	}
1609}
1610
1611static int cfq_merge(struct request_queue *q, struct request **req,
1612		     struct bio *bio)
1613{
1614	struct cfq_data *cfqd = q->elevator->elevator_data;
1615	struct request *__rq;
1616
1617	__rq = cfq_find_rq_fmerge(cfqd, bio);
1618	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1619		*req = __rq;
1620		return ELEVATOR_FRONT_MERGE;
1621	}
1622
1623	return ELEVATOR_NO_MERGE;
1624}
1625
1626static void cfq_merged_request(struct request_queue *q, struct request *req,
1627			       int type)
1628{
1629	if (type == ELEVATOR_FRONT_MERGE) {
1630		struct cfq_queue *cfqq = RQ_CFQQ(req);
1631
1632		cfq_reposition_rq_rb(cfqq, req);
1633	}
1634}
1635
1636static void cfq_bio_merged(struct request_queue *q, struct request *req,
1637				struct bio *bio)
1638{
1639	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1640					bio_data_dir(bio), cfq_bio_sync(bio));
1641}
1642
1643static void
1644cfq_merged_requests(struct request_queue *q, struct request *rq,
1645		    struct request *next)
1646{
1647	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1648	/*
1649	 * reposition in fifo if next is older than rq
1650	 */
1651	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1652	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1653		list_move(&rq->queuelist, &next->queuelist);
1654		rq_set_fifo_time(rq, rq_fifo_time(next));
1655	}
1656
1657	if (cfqq->next_rq == next)
1658		cfqq->next_rq = rq;
1659	cfq_remove_request(next);
1660	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1661					rq_data_dir(next), rq_is_sync(next));
1662}
1663
1664static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1665			   struct bio *bio)
1666{
1667	struct cfq_data *cfqd = q->elevator->elevator_data;
1668	struct cfq_io_context *cic;
1669	struct cfq_queue *cfqq;
1670
1671	/*
1672	 * Disallow merge of a sync bio into an async request.
1673	 */
1674	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1675		return false;
1676
1677	/*
1678	 * Lookup the cfqq that this bio will be queued with. Allow
1679	 * merge only if rq is queued there.
1680	 */
1681	cic = cfq_cic_lookup(cfqd, current->io_context);
1682	if (!cic)
1683		return false;
1684
1685	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1686	return cfqq == RQ_CFQQ(rq);
1687}
1688
1689static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1690{
1691	del_timer(&cfqd->idle_slice_timer);
1692	cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1693}
1694
1695static void __cfq_set_active_queue(struct cfq_data *cfqd,
1696				   struct cfq_queue *cfqq)
1697{
1698	if (cfqq) {
1699		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1700				cfqd->serving_prio, cfqd->serving_type);
1701		cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1702		cfqq->slice_start = 0;
1703		cfqq->dispatch_start = jiffies;
1704		cfqq->allocated_slice = 0;
1705		cfqq->slice_end = 0;
1706		cfqq->slice_dispatch = 0;
1707		cfqq->nr_sectors = 0;
1708
1709		cfq_clear_cfqq_wait_request(cfqq);
1710		cfq_clear_cfqq_must_dispatch(cfqq);
1711		cfq_clear_cfqq_must_alloc_slice(cfqq);
1712		cfq_clear_cfqq_fifo_expire(cfqq);
1713		cfq_mark_cfqq_slice_new(cfqq);
1714
1715		cfq_del_timer(cfqd, cfqq);
1716	}
1717
1718	cfqd->active_queue = cfqq;
1719}
1720
1721/*
1722 * current cfqq expired its slice (or was too idle), select new one
1723 */
1724static void
1725__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1726		    bool timed_out)
1727{
1728	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1729
1730	if (cfq_cfqq_wait_request(cfqq))
1731		cfq_del_timer(cfqd, cfqq);
1732
1733	cfq_clear_cfqq_wait_request(cfqq);
1734	cfq_clear_cfqq_wait_busy(cfqq);
1735
1736	/*
1737	 * If this cfqq is shared between multiple processes, check to
1738	 * make sure that those processes are still issuing I/Os within
1739	 * the mean seek distance.  If not, it may be time to break the
1740	 * queues apart again.
1741	 */
1742	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1743		cfq_mark_cfqq_split_coop(cfqq);
1744
1745	/*
1746	 * store what was left of this slice, if the queue idled/timed out
1747	 */
1748	if (timed_out) {
1749		if (cfq_cfqq_slice_new(cfqq))
1750			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1751		else
1752			cfqq->slice_resid = cfqq->slice_end - jiffies;
1753		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1754	}
1755
1756	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1757
1758	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1759		cfq_del_cfqq_rr(cfqd, cfqq);
1760
1761	cfq_resort_rr_list(cfqd, cfqq);
1762
1763	if (cfqq == cfqd->active_queue)
1764		cfqd->active_queue = NULL;
1765
1766	if (cfqd->active_cic) {
1767		put_io_context(cfqd->active_cic->ioc);
1768		cfqd->active_cic = NULL;
1769	}
1770}
1771
1772static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1773{
1774	struct cfq_queue *cfqq = cfqd->active_queue;
1775
1776	if (cfqq)
1777		__cfq_slice_expired(cfqd, cfqq, timed_out);
1778}
1779
1780/*
1781 * Get next queue for service. Unless we have a queue preemption,
1782 * we'll simply select the first cfqq in the service tree.
1783 */
1784static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1785{
1786	struct cfq_rb_root *service_tree =
1787		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1788					cfqd->serving_type);
1789
1790	if (!cfqd->rq_queued)
1791		return NULL;
1792
1793	/* There is nothing to dispatch */
1794	if (!service_tree)
1795		return NULL;
1796	if (RB_EMPTY_ROOT(&service_tree->rb))
1797		return NULL;
1798	return cfq_rb_first(service_tree);
1799}
1800
1801static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1802{
1803	struct cfq_group *cfqg;
1804	struct cfq_queue *cfqq;
1805	int i, j;
1806	struct cfq_rb_root *st;
1807
1808	if (!cfqd->rq_queued)
1809		return NULL;
1810
1811	cfqg = cfq_get_next_cfqg(cfqd);
1812	if (!cfqg)
1813		return NULL;
1814
1815	for_each_cfqg_st(cfqg, i, j, st)
1816		if ((cfqq = cfq_rb_first(st)) != NULL)
1817			return cfqq;
1818	return NULL;
1819}
1820
1821/*
1822 * Get and set a new active queue for service.
1823 */
1824static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1825					      struct cfq_queue *cfqq)
1826{
1827	if (!cfqq)
1828		cfqq = cfq_get_next_queue(cfqd);
1829
1830	__cfq_set_active_queue(cfqd, cfqq);
1831	return cfqq;
1832}
1833
1834static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1835					  struct request *rq)
1836{
1837	if (blk_rq_pos(rq) >= cfqd->last_position)
1838		return blk_rq_pos(rq) - cfqd->last_position;
1839	else
1840		return cfqd->last_position - blk_rq_pos(rq);
1841}
1842
1843static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1844			       struct request *rq)
1845{
1846	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1847}
1848
1849static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1850				    struct cfq_queue *cur_cfqq)
1851{
1852	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1853	struct rb_node *parent, *node;
1854	struct cfq_queue *__cfqq;
1855	sector_t sector = cfqd->last_position;
1856
1857	if (RB_EMPTY_ROOT(root))
1858		return NULL;
1859
1860	/*
1861	 * First, if we find a request starting at the end of the last
1862	 * request, choose it.
1863	 */
1864	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1865	if (__cfqq)
1866		return __cfqq;
1867
1868	/*
1869	 * If the exact sector wasn't found, the parent of the NULL leaf
1870	 * will contain the closest sector.
1871	 */
1872	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1873	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1874		return __cfqq;
1875
1876	if (blk_rq_pos(__cfqq->next_rq) < sector)
1877		node = rb_next(&__cfqq->p_node);
1878	else
1879		node = rb_prev(&__cfqq->p_node);
1880	if (!node)
1881		return NULL;
1882
1883	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1884	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1885		return __cfqq;
1886
1887	return NULL;
1888}
1889
1890/*
1891 * cfqd - obvious
1892 * cur_cfqq - passed in so that we don't decide that the current queue is
1893 * 	      closely cooperating with itself.
1894 *
1895 * So, basically we're assuming that that cur_cfqq has dispatched at least
1896 * one request, and that cfqd->last_position reflects a position on the disk
1897 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1898 * assumption.
1899 */
1900static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1901					      struct cfq_queue *cur_cfqq)
1902{
1903	struct cfq_queue *cfqq;
1904
1905	if (cfq_class_idle(cur_cfqq))
1906		return NULL;
1907	if (!cfq_cfqq_sync(cur_cfqq))
1908		return NULL;
1909	if (CFQQ_SEEKY(cur_cfqq))
1910		return NULL;
1911
1912	/*
1913	 * Don't search priority tree if it's the only queue in the group.
1914	 */
1915	if (cur_cfqq->cfqg->nr_cfqq == 1)
1916		return NULL;
1917
1918	/*
1919	 * We should notice if some of the queues are cooperating, eg
1920	 * working closely on the same area of the disk. In that case,
1921	 * we can group them together and don't waste time idling.
1922	 */
1923	cfqq = cfqq_close(cfqd, cur_cfqq);
1924	if (!cfqq)
1925		return NULL;
1926
1927	/* If new queue belongs to different cfq_group, don't choose it */
1928	if (cur_cfqq->cfqg != cfqq->cfqg)
1929		return NULL;
1930
1931	/*
1932	 * It only makes sense to merge sync queues.
1933	 */
1934	if (!cfq_cfqq_sync(cfqq))
1935		return NULL;
1936	if (CFQQ_SEEKY(cfqq))
1937		return NULL;
1938
1939	/*
1940	 * Do not merge queues of different priority classes
1941	 */
1942	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1943		return NULL;
1944
1945	return cfqq;
1946}
1947
1948/*
1949 * Determine whether we should enforce idle window for this queue.
1950 */
1951
1952static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1953{
1954	enum wl_prio_t prio = cfqq_prio(cfqq);
1955	struct cfq_rb_root *service_tree = cfqq->service_tree;
1956
1957	BUG_ON(!service_tree);
1958	BUG_ON(!service_tree->count);
1959
1960	if (!cfqd->cfq_slice_idle)
1961		return false;
1962
1963	/* We never do for idle class queues. */
1964	if (prio == IDLE_WORKLOAD)
1965		return false;
1966
1967	/* We do for queues that were marked with idle window flag. */
1968	if (cfq_cfqq_idle_window(cfqq) &&
1969	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1970		return true;
1971
1972	/*
1973	 * Otherwise, we do only if they are the last ones
1974	 * in their service tree.
1975	 */
1976	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1977		return true;
1978	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1979			service_tree->count);
1980	return false;
1981}
1982
1983static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1984{
1985	struct cfq_queue *cfqq = cfqd->active_queue;
1986	struct cfq_io_context *cic;
1987	unsigned long sl, group_idle = 0;
1988
1989	/*
1990	 * SSD device without seek penalty, disable idling. But only do so
1991	 * for devices that support queuing, otherwise we still have a problem
1992	 * with sync vs async workloads.
1993	 */
1994	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1995		return;
1996
1997	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1998	WARN_ON(cfq_cfqq_slice_new(cfqq));
1999
2000	/*
2001	 * idle is disabled, either manually or by past process history
2002	 */
2003	if (!cfq_should_idle(cfqd, cfqq)) {
2004		/* no queue idling. Check for group idling */
2005		if (cfqd->cfq_group_idle)
2006			group_idle = cfqd->cfq_group_idle;
2007		else
2008			return;
2009	}
2010
2011	/*
2012	 * still active requests from this queue, don't idle
2013	 */
2014	if (cfqq->dispatched)
2015		return;
2016
2017	/*
2018	 * task has exited, don't wait
2019	 */
2020	cic = cfqd->active_cic;
2021	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2022		return;
2023
2024	/*
2025	 * If our average think time is larger than the remaining time
2026	 * slice, then don't idle. This avoids overrunning the allotted
2027	 * time slice.
2028	 */
2029	if (sample_valid(cic->ttime_samples) &&
2030	    (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2031		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
2032				cic->ttime_mean);
2033		return;
2034	}
2035
2036	/* There are other queues in the group, don't do group idle */
2037	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2038		return;
2039
2040	cfq_mark_cfqq_wait_request(cfqq);
2041
2042	if (group_idle)
2043		sl = cfqd->cfq_group_idle;
2044	else
2045		sl = cfqd->cfq_slice_idle;
2046
2047	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2048	cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2049	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2050			group_idle ? 1 : 0);
2051}
2052
2053/*
2054 * Move request from internal lists to the request queue dispatch list.
2055 */
2056static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2057{
2058	struct cfq_data *cfqd = q->elevator->elevator_data;
2059	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2060
2061	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2062
2063	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2064	cfq_remove_request(rq);
2065	cfqq->dispatched++;
2066	(RQ_CFQG(rq))->dispatched++;
2067	elv_dispatch_sort(q, rq);
2068
2069	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2070	cfqq->nr_sectors += blk_rq_sectors(rq);
2071	cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2072					rq_data_dir(rq), rq_is_sync(rq));
2073}
2074
2075/*
2076 * return expired entry, or NULL to just start from scratch in rbtree
2077 */
2078static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2079{
2080	struct request *rq = NULL;
2081
2082	if (cfq_cfqq_fifo_expire(cfqq))
2083		return NULL;
2084
2085	cfq_mark_cfqq_fifo_expire(cfqq);
2086
2087	if (list_empty(&cfqq->fifo))
2088		return NULL;
2089
2090	rq = rq_entry_fifo(cfqq->fifo.next);
2091	if (time_before(jiffies, rq_fifo_time(rq)))
2092		rq = NULL;
2093
2094	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2095	return rq;
2096}
2097
2098static inline int
2099cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2100{
2101	const int base_rq = cfqd->cfq_slice_async_rq;
2102
2103	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2104
2105	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
2106}
2107
2108/*
2109 * Must be called with the queue_lock held.
2110 */
2111static int cfqq_process_refs(struct cfq_queue *cfqq)
2112{
2113	int process_refs, io_refs;
2114
2115	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2116	process_refs = cfqq->ref - io_refs;
2117	BUG_ON(process_refs < 0);
2118	return process_refs;
2119}
2120
2121static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2122{
2123	int process_refs, new_process_refs;
2124	struct cfq_queue *__cfqq;
2125
2126	/*
2127	 * If there are no process references on the new_cfqq, then it is
2128	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2129	 * chain may have dropped their last reference (not just their
2130	 * last process reference).
2131	 */
2132	if (!cfqq_process_refs(new_cfqq))
2133		return;
2134
2135	/* Avoid a circular list and skip interim queue merges */
2136	while ((__cfqq = new_cfqq->new_cfqq)) {
2137		if (__cfqq == cfqq)
2138			return;
2139		new_cfqq = __cfqq;
2140	}
2141
2142	process_refs = cfqq_process_refs(cfqq);
2143	new_process_refs = cfqq_process_refs(new_cfqq);
2144	/*
2145	 * If the process for the cfqq has gone away, there is no
2146	 * sense in merging the queues.
2147	 */
2148	if (process_refs == 0 || new_process_refs == 0)
2149		return;
2150
2151	/*
2152	 * Merge in the direction of the lesser amount of work.
2153	 */
2154	if (new_process_refs >= process_refs) {
2155		cfqq->new_cfqq = new_cfqq;
2156		new_cfqq->ref += process_refs;
2157	} else {
2158		new_cfqq->new_cfqq = cfqq;
2159		cfqq->ref += new_process_refs;
2160	}
2161}
2162
2163static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2164				struct cfq_group *cfqg, enum wl_prio_t prio)
2165{
2166	struct cfq_queue *queue;
2167	int i;
2168	bool key_valid = false;
2169	unsigned long lowest_key = 0;
2170	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2171
2172	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2173		/* select the one with lowest rb_key */
2174		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2175		if (queue &&
2176		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2177			lowest_key = queue->rb_key;
2178			cur_best = i;
2179			key_valid = true;
2180		}
2181	}
2182
2183	return cur_best;
2184}
2185
2186static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2187{
2188	unsigned slice;
2189	unsigned count;
2190	struct cfq_rb_root *st;
2191	unsigned group_slice;
2192	enum wl_prio_t original_prio = cfqd->serving_prio;
2193
2194	/* Choose next priority. RT > BE > IDLE */
2195	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2196		cfqd->serving_prio = RT_WORKLOAD;
2197	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2198		cfqd->serving_prio = BE_WORKLOAD;
2199	else {
2200		cfqd->serving_prio = IDLE_WORKLOAD;
2201		cfqd->workload_expires = jiffies + 1;
2202		return;
2203	}
2204
2205	if (original_prio != cfqd->serving_prio)
2206		goto new_workload;
2207
2208	/*
2209	 * For RT and BE, we have to choose also the type
2210	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2211	 * expiration time
2212	 */
2213	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2214	count = st->count;
2215
2216	/*
2217	 * check workload expiration, and that we still have other queues ready
2218	 */
2219	if (count && !time_after(jiffies, cfqd->workload_expires))
2220		return;
2221
2222new_workload:
2223	/* otherwise select new workload type */
2224	cfqd->serving_type =
2225		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2226	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2227	count = st->count;
2228
2229	/*
2230	 * the workload slice is computed as a fraction of target latency
2231	 * proportional to the number of queues in that workload, over
2232	 * all the queues in the same priority class
2233	 */
2234	group_slice = cfq_group_slice(cfqd, cfqg);
2235
2236	slice = group_slice * count /
2237		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2238		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2239
2240	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2241		unsigned int tmp;
2242
2243		/*
2244		 * Async queues are currently system wide. Just taking
2245		 * proportion of queues with-in same group will lead to higher
2246		 * async ratio system wide as generally root group is going
2247		 * to have higher weight. A more accurate thing would be to
2248		 * calculate system wide asnc/sync ratio.
2249		 */
2250		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2251		tmp = tmp/cfqd->busy_queues;
2252		slice = min_t(unsigned, slice, tmp);
2253
2254		/* async workload slice is scaled down according to
2255		 * the sync/async slice ratio. */
2256		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2257	} else
2258		/* sync workload slice is at least 2 * cfq_slice_idle */
2259		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2260
2261	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2262	cfq_log(cfqd, "workload slice:%d", slice);
2263	cfqd->workload_expires = jiffies + slice;
2264}
2265
2266static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2267{
2268	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2269	struct cfq_group *cfqg;
2270
2271	if (RB_EMPTY_ROOT(&st->rb))
2272		return NULL;
2273	cfqg = cfq_rb_first_group(st);
2274	update_min_vdisktime(st);
2275	return cfqg;
2276}
2277
2278static void cfq_choose_cfqg(struct cfq_data *cfqd)
2279{
2280	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2281
2282	cfqd->serving_group = cfqg;
2283
2284	/* Restore the workload type data */
2285	if (cfqg->saved_workload_slice) {
2286		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2287		cfqd->serving_type = cfqg->saved_workload;
2288		cfqd->serving_prio = cfqg->saved_serving_prio;
2289	} else
2290		cfqd->workload_expires = jiffies - 1;
2291
2292	choose_service_tree(cfqd, cfqg);
2293}
2294
2295/*
2296 * Select a queue for service. If we have a current active queue,
2297 * check whether to continue servicing it, or retrieve and set a new one.
2298 */
2299static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2300{
2301	struct cfq_queue *cfqq, *new_cfqq = NULL;
2302
2303	cfqq = cfqd->active_queue;
2304	if (!cfqq)
2305		goto new_queue;
2306
2307	if (!cfqd->rq_queued)
2308		return NULL;
2309
2310	/*
2311	 * We were waiting for group to get backlogged. Expire the queue
2312	 */
2313	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2314		goto expire;
2315
2316	/*
2317	 * The active queue has run out of time, expire it and select new.
2318	 */
2319	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2320		/*
2321		 * If slice had not expired at the completion of last request
2322		 * we might not have turned on wait_busy flag. Don't expire
2323		 * the queue yet. Allow the group to get backlogged.
2324		 *
2325		 * The very fact that we have used the slice, that means we
2326		 * have been idling all along on this queue and it should be
2327		 * ok to wait for this request to complete.
2328		 */
2329		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2330		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2331			cfqq = NULL;
2332			goto keep_queue;
2333		} else
2334			goto check_group_idle;
2335	}
2336
2337	/*
2338	 * The active queue has requests and isn't expired, allow it to
2339	 * dispatch.
2340	 */
2341	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2342		goto keep_queue;
2343
2344	/*
2345	 * If another queue has a request waiting within our mean seek
2346	 * distance, let it run.  The expire code will check for close
2347	 * cooperators and put the close queue at the front of the service
2348	 * tree.  If possible, merge the expiring queue with the new cfqq.
2349	 */
2350	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2351	if (new_cfqq) {
2352		if (!cfqq->new_cfqq)
2353			cfq_setup_merge(cfqq, new_cfqq);
2354		goto expire;
2355	}
2356
2357	/*
2358	 * No requests pending. If the active queue still has requests in
2359	 * flight or is idling for a new request, allow either of these
2360	 * conditions to happen (or time out) before selecting a new queue.
2361	 */
2362	if (timer_pending(&cfqd->idle_slice_timer)) {
2363		cfqq = NULL;
2364		goto keep_queue;
2365	}
2366
2367	/*
2368	 * This is a deep seek queue, but the device is much faster than
2369	 * the queue can deliver, don't idle
2370	 **/
2371	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2372	    (cfq_cfqq_slice_new(cfqq) ||
2373	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2374		cfq_clear_cfqq_deep(cfqq);
2375		cfq_clear_cfqq_idle_window(cfqq);
2376	}
2377
2378	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2379		cfqq = NULL;
2380		goto keep_queue;
2381	}
2382
2383	/*
2384	 * If group idle is enabled and there are requests dispatched from
2385	 * this group, wait for requests to complete.
2386	 */
2387check_group_idle:
2388	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2389	    && cfqq->cfqg->dispatched) {
2390		cfqq = NULL;
2391		goto keep_queue;
2392	}
2393
2394expire:
2395	cfq_slice_expired(cfqd, 0);
2396new_queue:
2397	/*
2398	 * Current queue expired. Check if we have to switch to a new
2399	 * service tree
2400	 */
2401	if (!new_cfqq)
2402		cfq_choose_cfqg(cfqd);
2403
2404	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2405keep_queue:
2406	return cfqq;
2407}
2408
2409static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2410{
2411	int dispatched = 0;
2412
2413	while (cfqq->next_rq) {
2414		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2415		dispatched++;
2416	}
2417
2418	BUG_ON(!list_empty(&cfqq->fifo));
2419
2420	/* By default cfqq is not expired if it is empty. Do it explicitly */
2421	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2422	return dispatched;
2423}
2424
2425/*
2426 * Drain our current requests. Used for barriers and when switching
2427 * io schedulers on-the-fly.
2428 */
2429static int cfq_forced_dispatch(struct cfq_data *cfqd)
2430{
2431	struct cfq_queue *cfqq;
2432	int dispatched = 0;
2433
2434	/* Expire the timeslice of the current active queue first */
2435	cfq_slice_expired(cfqd, 0);
2436	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2437		__cfq_set_active_queue(cfqd, cfqq);
2438		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2439	}
2440
2441	BUG_ON(cfqd->busy_queues);
2442
2443	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2444	return dispatched;
2445}
2446
2447static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2448	struct cfq_queue *cfqq)
2449{
2450	/* the queue hasn't finished any request, can't estimate */
2451	if (cfq_cfqq_slice_new(cfqq))
2452		return true;
2453	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2454		cfqq->slice_end))
2455		return true;
2456
2457	return false;
2458}
2459
2460static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2461{
2462	unsigned int max_dispatch;
2463
2464	/*
2465	 * Drain async requests before we start sync IO
2466	 */
2467	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2468		return false;
2469
2470	/*
2471	 * If this is an async queue and we have sync IO in flight, let it wait
2472	 */
2473	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2474		return false;
2475
2476	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2477	if (cfq_class_idle(cfqq))
2478		max_dispatch = 1;
2479
2480	/*
2481	 * Does this cfqq already have too much IO in flight?
2482	 */
2483	if (cfqq->dispatched >= max_dispatch) {
2484		bool promote_sync = false;
2485		/*
2486		 * idle queue must always only have a single IO in flight
2487		 */
2488		if (cfq_class_idle(cfqq))
2489			return false;
2490
2491		/*
2492		 * If there is only one sync queue
2493		 * we can ignore async queue here and give the sync
2494		 * queue no dispatch limit. The reason is a sync queue can
2495		 * preempt async queue, limiting the sync queue doesn't make
2496		 * sense. This is useful for aiostress test.
2497		 */
2498		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2499			promote_sync = true;
2500
2501		/*
2502		 * We have other queues, don't allow more IO from this one
2503		 */
2504		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2505				!promote_sync)
2506			return false;
2507
2508		/*
2509		 * Sole queue user, no limit
2510		 */
2511		if (cfqd->busy_queues == 1 || promote_sync)
2512			max_dispatch = -1;
2513		else
2514			/*
2515			 * Normally we start throttling cfqq when cfq_quantum/2
2516			 * requests have been dispatched. But we can drive
2517			 * deeper queue depths at the beginning of slice
2518			 * subjected to upper limit of cfq_quantum.
2519			 * */
2520			max_dispatch = cfqd->cfq_quantum;
2521	}
2522
2523	/*
2524	 * Async queues must wait a bit before being allowed dispatch.
2525	 * We also ramp up the dispatch depth gradually for async IO,
2526	 * based on the last sync IO we serviced
2527	 */
2528	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2529		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2530		unsigned int depth;
2531
2532		depth = last_sync / cfqd->cfq_slice[1];
2533		if (!depth && !cfqq->dispatched)
2534			depth = 1;
2535		if (depth < max_dispatch)
2536			max_dispatch = depth;
2537	}
2538
2539	/*
2540	 * If we're below the current max, allow a dispatch
2541	 */
2542	return cfqq->dispatched < max_dispatch;
2543}
2544
2545/*
2546 * Dispatch a request from cfqq, moving them to the request queue
2547 * dispatch list.
2548 */
2549static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2550{
2551	struct request *rq;
2552
2553	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2554
2555	if (!cfq_may_dispatch(cfqd, cfqq))
2556		return false;
2557
2558	/*
2559	 * follow expired path, else get first next available
2560	 */
2561	rq = cfq_check_fifo(cfqq);
2562	if (!rq)
2563		rq = cfqq->next_rq;
2564
2565	/*
2566	 * insert request into driver dispatch list
2567	 */
2568	cfq_dispatch_insert(cfqd->queue, rq);
2569
2570	if (!cfqd->active_cic) {
2571		struct cfq_io_context *cic = RQ_CIC(rq);
2572
2573		atomic_long_inc(&cic->ioc->refcount);
2574		cfqd->active_cic = cic;
2575	}
2576
2577	return true;
2578}
2579
2580/*
2581 * Find the cfqq that we need to service and move a request from that to the
2582 * dispatch list
2583 */
2584static int cfq_dispatch_requests(struct request_queue *q, int force)
2585{
2586	struct cfq_data *cfqd = q->elevator->elevator_data;
2587	struct cfq_queue *cfqq;
2588
2589	if (!cfqd->busy_queues)
2590		return 0;
2591
2592	if (unlikely(force))
2593		return cfq_forced_dispatch(cfqd);
2594
2595	cfqq = cfq_select_queue(cfqd);
2596	if (!cfqq)
2597		return 0;
2598
2599	/*
2600	 * Dispatch a request from this cfqq, if it is allowed
2601	 */
2602	if (!cfq_dispatch_request(cfqd, cfqq))
2603		return 0;
2604
2605	cfqq->slice_dispatch++;
2606	cfq_clear_cfqq_must_dispatch(cfqq);
2607
2608	/*
2609	 * expire an async queue immediately if it has used up its slice. idle
2610	 * queue always expire after 1 dispatch round.
2611	 */
2612	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2613	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2614	    cfq_class_idle(cfqq))) {
2615		cfqq->slice_end = jiffies + 1;
2616		cfq_slice_expired(cfqd, 0);
2617	}
2618
2619	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2620	return 1;
2621}
2622
2623/*
2624 * task holds one reference to the queue, dropped when task exits. each rq
2625 * in-flight on this queue also holds a reference, dropped when rq is freed.
2626 *
2627 * Each cfq queue took a reference on the parent group. Drop it now.
2628 * queue lock must be held here.
2629 */
2630static void cfq_put_queue(struct cfq_queue *cfqq)
2631{
2632	struct cfq_data *cfqd = cfqq->cfqd;
2633	struct cfq_group *cfqg;
2634
2635	BUG_ON(cfqq->ref <= 0);
2636
2637	cfqq->ref--;
2638	if (cfqq->ref)
2639		return;
2640
2641	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2642	BUG_ON(rb_first(&cfqq->sort_list));
2643	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2644	cfqg = cfqq->cfqg;
2645
2646	if (unlikely(cfqd->active_queue == cfqq)) {
2647		__cfq_slice_expired(cfqd, cfqq, 0);
2648		cfq_schedule_dispatch(cfqd);
2649	}
2650
2651	BUG_ON(cfq_cfqq_on_rr(cfqq));
2652	kmem_cache_free(cfq_pool, cfqq);
2653	cfq_put_cfqg(cfqg);
2654}
2655
2656/*
2657 * Call func for each cic attached to this ioc.
2658 */
2659static void
2660call_for_each_cic(struct io_context *ioc,
2661		  void (*func)(struct io_context *, struct cfq_io_context *))
2662{
2663	struct cfq_io_context *cic;
2664	struct hlist_node *n;
2665
2666	rcu_read_lock();
2667
2668	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2669		func(ioc, cic);
2670
2671	rcu_read_unlock();
2672}
2673
2674static void cfq_cic_free_rcu(struct rcu_head *head)
2675{
2676	struct cfq_io_context *cic;
2677
2678	cic = container_of(head, struct cfq_io_context, rcu_head);
2679
2680	kmem_cache_free(cfq_ioc_pool, cic);
2681	elv_ioc_count_dec(cfq_ioc_count);
2682
2683	if (ioc_gone) {
2684		/*
2685		 * CFQ scheduler is exiting, grab exit lock and check
2686		 * the pending io context count. If it hits zero,
2687		 * complete ioc_gone and set it back to NULL
2688		 */
2689		spin_lock(&ioc_gone_lock);
2690		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2691			complete(ioc_gone);
2692			ioc_gone = NULL;
2693		}
2694		spin_unlock(&ioc_gone_lock);
2695	}
2696}
2697
2698static void cfq_cic_free(struct cfq_io_context *cic)
2699{
2700	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2701}
2702
2703static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2704{
2705	unsigned long flags;
2706	unsigned long dead_key = (unsigned long) cic->key;
2707
2708	BUG_ON(!(dead_key & CIC_DEAD_KEY));
2709
2710	spin_lock_irqsave(&ioc->lock, flags);
2711	radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2712	hlist_del_rcu(&cic->cic_list);
2713	spin_unlock_irqrestore(&ioc->lock, flags);
2714
2715	cfq_cic_free(cic);
2716}
2717
2718/*
2719 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2720 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2721 * and ->trim() which is called with the task lock held
2722 */
2723static void cfq_free_io_context(struct io_context *ioc)
2724{
2725	/*
2726	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2727	 * so no more cic's are allowed to be linked into this ioc.  So it
2728	 * should be ok to iterate over the known list, we will see all cic's
2729	 * since no new ones are added.
2730	 */
2731	call_for_each_cic(ioc, cic_free_func);
2732}
2733
2734static void cfq_put_cooperator(struct cfq_queue *cfqq)
2735{
2736	struct cfq_queue *__cfqq, *next;
2737
2738	/*
2739	 * If this queue was scheduled to merge with another queue, be
2740	 * sure to drop the reference taken on that queue (and others in
2741	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2742	 */
2743	__cfqq = cfqq->new_cfqq;
2744	while (__cfqq) {
2745		if (__cfqq == cfqq) {
2746			WARN(1, "cfqq->new_cfqq loop detected\n");
2747			break;
2748		}
2749		next = __cfqq->new_cfqq;
2750		cfq_put_queue(__cfqq);
2751		__cfqq = next;
2752	}
2753}
2754
2755static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2756{
2757	if (unlikely(cfqq == cfqd->active_queue)) {
2758		__cfq_slice_expired(cfqd, cfqq, 0);
2759		cfq_schedule_dispatch(cfqd);
2760	}
2761
2762	cfq_put_cooperator(cfqq);
2763
2764	cfq_put_queue(cfqq);
2765}
2766
2767static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2768					 struct cfq_io_context *cic)
2769{
2770	struct io_context *ioc = cic->ioc;
2771
2772	list_del_init(&cic->queue_list);
2773
2774	/*
2775	 * Make sure dead mark is seen for dead queues
2776	 */
2777	smp_wmb();
2778	cic->key = cfqd_dead_key(cfqd);
2779
2780	if (ioc->ioc_data == cic)
2781		rcu_assign_pointer(ioc->ioc_data, NULL);
2782
2783	if (cic->cfqq[BLK_RW_ASYNC]) {
2784		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2785		cic->cfqq[BLK_RW_ASYNC] = NULL;
2786	}
2787
2788	if (cic->cfqq[BLK_RW_SYNC]) {
2789		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2790		cic->cfqq[BLK_RW_SYNC] = NULL;
2791	}
2792}
2793
2794static void cfq_exit_single_io_context(struct io_context *ioc,
2795				       struct cfq_io_context *cic)
2796{
2797	struct cfq_data *cfqd = cic_to_cfqd(cic);
2798
2799	if (cfqd) {
2800		struct request_queue *q = cfqd->queue;
2801		unsigned long flags;
2802
2803		spin_lock_irqsave(q->queue_lock, flags);
2804
2805		/*
2806		 * Ensure we get a fresh copy of the ->key to prevent
2807		 * race between exiting task and queue
2808		 */
2809		smp_read_barrier_depends();
2810		if (cic->key == cfqd)
2811			__cfq_exit_single_io_context(cfqd, cic);
2812
2813		spin_unlock_irqrestore(q->queue_lock, flags);
2814	}
2815}
2816
2817/*
2818 * The process that ioc belongs to has exited, we need to clean up
2819 * and put the internal structures we have that belongs to that process.
2820 */
2821static void cfq_exit_io_context(struct io_context *ioc)
2822{
2823	call_for_each_cic(ioc, cfq_exit_single_io_context);
2824}
2825
2826static struct cfq_io_context *
2827cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2828{
2829	struct cfq_io_context *cic;
2830
2831	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2832							cfqd->queue->node);
2833	if (cic) {
2834		cic->last_end_request = jiffies;
2835		INIT_LIST_HEAD(&cic->queue_list);
2836		INIT_HLIST_NODE(&cic->cic_list);
2837		cic->dtor = cfq_free_io_context;
2838		cic->exit = cfq_exit_io_context;
2839		elv_ioc_count_inc(cfq_ioc_count);
2840	}
2841
2842	return cic;
2843}
2844
2845static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2846{
2847	struct task_struct *tsk = current;
2848	int ioprio_class;
2849
2850	if (!cfq_cfqq_prio_changed(cfqq))
2851		return;
2852
2853	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2854	switch (ioprio_class) {
2855	default:
2856		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2857	case IOPRIO_CLASS_NONE:
2858		/*
2859		 * no prio set, inherit CPU scheduling settings
2860		 */
2861		cfqq->ioprio = task_nice_ioprio(tsk);
2862		cfqq->ioprio_class = task_nice_ioclass(tsk);
2863		break;
2864	case IOPRIO_CLASS_RT:
2865		cfqq->ioprio = task_ioprio(ioc);
2866		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2867		break;
2868	case IOPRIO_CLASS_BE:
2869		cfqq->ioprio = task_ioprio(ioc);
2870		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2871		break;
2872	case IOPRIO_CLASS_IDLE:
2873		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2874		cfqq->ioprio = 7;
2875		cfq_clear_cfqq_idle_window(cfqq);
2876		break;
2877	}
2878
2879	/*
2880	 * keep track of original prio settings in case we have to temporarily
2881	 * elevate the priority of this queue
2882	 */
2883	cfqq->org_ioprio = cfqq->ioprio;
2884	cfqq->org_ioprio_class = cfqq->ioprio_class;
2885	cfq_clear_cfqq_prio_changed(cfqq);
2886}
2887
2888static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2889{
2890	struct cfq_data *cfqd = cic_to_cfqd(cic);
2891	struct cfq_queue *cfqq;
2892	unsigned long flags;
2893
2894	if (unlikely(!cfqd))
2895		return;
2896
2897	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2898
2899	cfqq = cic->cfqq[BLK_RW_ASYNC];
2900	if (cfqq) {
2901		struct cfq_queue *new_cfqq;
2902		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2903						GFP_ATOMIC);
2904		if (new_cfqq) {
2905			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2906			cfq_put_queue(cfqq);
2907		}
2908	}
2909
2910	cfqq = cic->cfqq[BLK_RW_SYNC];
2911	if (cfqq)
2912		cfq_mark_cfqq_prio_changed(cfqq);
2913
2914	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2915}
2916
2917static void cfq_ioc_set_ioprio(struct io_context *ioc)
2918{
2919	call_for_each_cic(ioc, changed_ioprio);
2920	ioc->ioprio_changed = 0;
2921}
2922
2923static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2924			  pid_t pid, bool is_sync)
2925{
2926	RB_CLEAR_NODE(&cfqq->rb_node);
2927	RB_CLEAR_NODE(&cfqq->p_node);
2928	INIT_LIST_HEAD(&cfqq->fifo);
2929
2930	cfqq->ref = 0;
2931	cfqq->cfqd = cfqd;
2932
2933	cfq_mark_cfqq_prio_changed(cfqq);
2934
2935	if (is_sync) {
2936		if (!cfq_class_idle(cfqq))
2937			cfq_mark_cfqq_idle_window(cfqq);
2938		cfq_mark_cfqq_sync(cfqq);
2939	}
2940	cfqq->pid = pid;
2941}
2942
2943#ifdef CONFIG_CFQ_GROUP_IOSCHED
2944static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2945{
2946	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2947	struct cfq_data *cfqd = cic_to_cfqd(cic);
2948	unsigned long flags;
2949	struct request_queue *q;
2950
2951	if (unlikely(!cfqd))
2952		return;
2953
2954	q = cfqd->queue;
2955
2956	spin_lock_irqsave(q->queue_lock, flags);
2957
2958	if (sync_cfqq) {
2959		/*
2960		 * Drop reference to sync queue. A new sync queue will be
2961		 * assigned in new group upon arrival of a fresh request.
2962		 */
2963		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2964		cic_set_cfqq(cic, NULL, 1);
2965		cfq_put_queue(sync_cfqq);
2966	}
2967
2968	spin_unlock_irqrestore(q->queue_lock, flags);
2969}
2970
2971static void cfq_ioc_set_cgroup(struct io_context *ioc)
2972{
2973	call_for_each_cic(ioc, changed_cgroup);
2974	ioc->cgroup_changed = 0;
2975}
2976#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2977
2978static struct cfq_queue *
2979cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2980		     struct io_context *ioc, gfp_t gfp_mask)
2981{
2982	struct cfq_queue *cfqq, *new_cfqq = NULL;
2983	struct cfq_io_context *cic;
2984	struct cfq_group *cfqg;
2985
2986retry:
2987	cfqg = cfq_get_cfqg(cfqd);
2988	cic = cfq_cic_lookup(cfqd, ioc);
2989	/* cic always exists here */
2990	cfqq = cic_to_cfqq(cic, is_sync);
2991
2992	/*
2993	 * Always try a new alloc if we fell back to the OOM cfqq
2994	 * originally, since it should just be a temporary situation.
2995	 */
2996	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2997		cfqq = NULL;
2998		if (new_cfqq) {
2999			cfqq = new_cfqq;
3000			new_cfqq = NULL;
3001		} else if (gfp_mask & __GFP_WAIT) {
3002			spin_unlock_irq(cfqd->queue->queue_lock);
3003			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3004					gfp_mask | __GFP_ZERO,
3005					cfqd->queue->node);
3006			spin_lock_irq(cfqd->queue->queue_lock);
3007			if (new_cfqq)
3008				goto retry;
3009		} else {
3010			cfqq = kmem_cache_alloc_node(cfq_pool,
3011					gfp_mask | __GFP_ZERO,
3012					cfqd->queue->node);
3013		}
3014
3015		if (cfqq) {
3016			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3017			cfq_init_prio_data(cfqq, ioc);
3018			cfq_link_cfqq_cfqg(cfqq, cfqg);
3019			cfq_log_cfqq(cfqd, cfqq, "alloced");
3020		} else
3021			cfqq = &cfqd->oom_cfqq;
3022	}
3023
3024	if (new_cfqq)
3025		kmem_cache_free(cfq_pool, new_cfqq);
3026
3027	return cfqq;
3028}
3029
3030static struct cfq_queue **
3031cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3032{
3033	switch (ioprio_class) {
3034	case IOPRIO_CLASS_RT:
3035		return &cfqd->async_cfqq[0][ioprio];
3036	case IOPRIO_CLASS_BE:
3037		return &cfqd->async_cfqq[1][ioprio];
3038	case IOPRIO_CLASS_IDLE:
3039		return &cfqd->async_idle_cfqq;
3040	default:
3041		BUG();
3042	}
3043}
3044
3045static struct cfq_queue *
3046cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3047	      gfp_t gfp_mask)
3048{
3049	const int ioprio = task_ioprio(ioc);
3050	const int ioprio_class = task_ioprio_class(ioc);
3051	struct cfq_queue **async_cfqq = NULL;
3052	struct cfq_queue *cfqq = NULL;
3053
3054	if (!is_sync) {
3055		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3056		cfqq = *async_cfqq;
3057	}
3058
3059	if (!cfqq)
3060		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3061
3062	/*
3063	 * pin the queue now that it's allocated, scheduler exit will prune it
3064	 */
3065	if (!is_sync && !(*async_cfqq)) {
3066		cfqq->ref++;
3067		*async_cfqq = cfqq;
3068	}
3069
3070	cfqq->ref++;
3071	return cfqq;
3072}
3073
3074/*
3075 * We drop cfq io contexts lazily, so we may find a dead one.
3076 */
3077static void
3078cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3079		  struct cfq_io_context *cic)
3080{
3081	unsigned long flags;
3082
3083	WARN_ON(!list_empty(&cic->queue_list));
3084	BUG_ON(cic->key != cfqd_dead_key(cfqd));
3085
3086	spin_lock_irqsave(&ioc->lock, flags);
3087
3088	BUG_ON(ioc->ioc_data == cic);
3089
3090	radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3091	hlist_del_rcu(&cic->cic_list);
3092	spin_unlock_irqrestore(&ioc->lock, flags);
3093
3094	cfq_cic_free(cic);
3095}
3096
3097static struct cfq_io_context *
3098cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3099{
3100	struct cfq_io_context *cic;
3101	unsigned long flags;
3102
3103	if (unlikely(!ioc))
3104		return NULL;
3105
3106	rcu_read_lock();
3107
3108	/*
3109	 * we maintain a last-hit cache, to avoid browsing over the tree
3110	 */
3111	cic = rcu_dereference(ioc->ioc_data);
3112	if (cic && cic->key == cfqd) {
3113		rcu_read_unlock();
3114		return cic;
3115	}
3116
3117	do {
3118		cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3119		rcu_read_unlock();
3120		if (!cic)
3121			break;
3122		if (unlikely(cic->key != cfqd)) {
3123			cfq_drop_dead_cic(cfqd, ioc, cic);
3124			rcu_read_lock();
3125			continue;
3126		}
3127
3128		spin_lock_irqsave(&ioc->lock, flags);
3129		rcu_assign_pointer(ioc->ioc_data, cic);
3130		spin_unlock_irqrestore(&ioc->lock, flags);
3131		break;
3132	} while (1);
3133
3134	return cic;
3135}
3136
3137/*
3138 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3139 * the process specific cfq io context when entered from the block layer.
3140 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3141 */
3142static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3143			struct cfq_io_context *cic, gfp_t gfp_mask)
3144{
3145	unsigned long flags;
3146	int ret;
3147
3148	ret = radix_tree_preload(gfp_mask);
3149	if (!ret) {
3150		cic->ioc = ioc;
3151		cic->key = cfqd;
3152
3153		spin_lock_irqsave(&ioc->lock, flags);
3154		ret = radix_tree_insert(&ioc->radix_root,
3155						cfqd->cic_index, cic);
3156		if (!ret)
3157			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3158		spin_unlock_irqrestore(&ioc->lock, flags);
3159
3160		radix_tree_preload_end();
3161
3162		if (!ret) {
3163			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3164			list_add(&cic->queue_list, &cfqd->cic_list);
3165			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3166		}
3167	}
3168
3169	if (ret)
3170		printk(KERN_ERR "cfq: cic link failed!\n");
3171
3172	return ret;
3173}
3174
3175/*
3176 * Setup general io context and cfq io context. There can be several cfq
3177 * io contexts per general io context, if this process is doing io to more
3178 * than one device managed by cfq.
3179 */
3180static struct cfq_io_context *
3181cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3182{
3183	struct io_context *ioc = NULL;
3184	struct cfq_io_context *cic;
3185
3186	might_sleep_if(gfp_mask & __GFP_WAIT);
3187
3188	ioc = get_io_context(gfp_mask, cfqd->queue->node);
3189	if (!ioc)
3190		return NULL;
3191
3192	cic = cfq_cic_lookup(cfqd, ioc);
3193	if (cic)
3194		goto out;
3195
3196	cic = cfq_alloc_io_context(cfqd, gfp_mask);
3197	if (cic == NULL)
3198		goto err;
3199
3200	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3201		goto err_free;
3202
3203out:
3204	smp_read_barrier_depends();
3205	if (unlikely(ioc->ioprio_changed))
3206		cfq_ioc_set_ioprio(ioc);
3207
3208#ifdef CONFIG_CFQ_GROUP_IOSCHED
3209	if (unlikely(ioc->cgroup_changed))
3210		cfq_ioc_set_cgroup(ioc);
3211#endif
3212	return cic;
3213err_free:
3214	cfq_cic_free(cic);
3215err:
3216	put_io_context(ioc);
3217	return NULL;
3218}
3219
3220static void
3221cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3222{
3223	unsigned long elapsed = jiffies - cic->last_end_request;
3224	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3225
3226	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3227	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3228	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3229}
3230
3231static void
3232cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3233		       struct request *rq)
3234{
3235	sector_t sdist = 0;
3236	sector_t n_sec = blk_rq_sectors(rq);
3237	if (cfqq->last_request_pos) {
3238		if (cfqq->last_request_pos < blk_rq_pos(rq))
3239			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3240		else
3241			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3242	}
3243
3244	cfqq->seek_history <<= 1;
3245	if (blk_queue_nonrot(cfqd->queue))
3246		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3247	else
3248		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3249}
3250
3251/*
3252 * Disable idle window if the process thinks too long or seeks so much that
3253 * it doesn't matter
3254 */
3255static void
3256cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3257		       struct cfq_io_context *cic)
3258{
3259	int old_idle, enable_idle;
3260
3261	/*
3262	 * Don't idle for async or idle io prio class
3263	 */
3264	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3265		return;
3266
3267	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3268
3269	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3270		cfq_mark_cfqq_deep(cfqq);
3271
3272	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3273		enable_idle = 0;
3274	else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3275	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3276		enable_idle = 0;
3277	else if (sample_valid(cic->ttime_samples)) {
3278		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3279			enable_idle = 0;
3280		else
3281			enable_idle = 1;
3282	}
3283
3284	if (old_idle != enable_idle) {
3285		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3286		if (enable_idle)
3287			cfq_mark_cfqq_idle_window(cfqq);
3288		else
3289			cfq_clear_cfqq_idle_window(cfqq);
3290	}
3291}
3292
3293/*
3294 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3295 * no or if we aren't sure, a 1 will cause a preempt.
3296 */
3297static bool
3298cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3299		   struct request *rq)
3300{
3301	struct cfq_queue *cfqq;
3302
3303	cfqq = cfqd->active_queue;
3304	if (!cfqq)
3305		return false;
3306
3307	if (cfq_class_idle(new_cfqq))
3308		return false;
3309
3310	if (cfq_class_idle(cfqq))
3311		return true;
3312
3313	/*
3314	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3315	 */
3316	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3317		return false;
3318
3319	/*
3320	 * if the new request is sync, but the currently running queue is
3321	 * not, let the sync request have priority.
3322	 */
3323	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3324		return true;
3325
3326	if (new_cfqq->cfqg != cfqq->cfqg)
3327		return false;
3328
3329	if (cfq_slice_used(cfqq))
3330		return true;
3331
3332	/* Allow preemption only if we are idling on sync-noidle tree */
3333	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3334	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3335	    new_cfqq->service_tree->count == 2 &&
3336	    RB_EMPTY_ROOT(&cfqq->sort_list))
3337		return true;
3338
3339	/*
3340	 * So both queues are sync. Let the new request get disk time if
3341	 * it's a metadata request and the current queue is doing regular IO.
3342	 */
3343	if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
3344		return true;
3345
3346	/*
3347	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3348	 */
3349	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3350		return true;
3351
3352	/* An idle queue should not be idle now for some reason */
3353	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3354		return true;
3355
3356	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3357		return false;
3358
3359	/*
3360	 * if this request is as-good as one we would expect from the
3361	 * current cfqq, let it preempt
3362	 */
3363	if (cfq_rq_close(cfqd, cfqq, rq))
3364		return true;
3365
3366	return false;
3367}
3368
3369/*
3370 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3371 * let it have half of its nominal slice.
3372 */
3373static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3374{
3375	struct cfq_queue *old_cfqq = cfqd->active_queue;
3376
3377	cfq_log_cfqq(cfqd, cfqq, "preempt");
3378	cfq_slice_expired(cfqd, 1);
3379
3380	/*
3381	 * workload type is changed, don't save slice, otherwise preempt
3382	 * doesn't happen
3383	 */
3384	if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3385		cfqq->cfqg->saved_workload_slice = 0;
3386
3387	/*
3388	 * Put the new queue at the front of the of the current list,
3389	 * so we know that it will be selected next.
3390	 */
3391	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3392
3393	cfq_service_tree_add(cfqd, cfqq, 1);
3394
3395	cfqq->slice_end = 0;
3396	cfq_mark_cfqq_slice_new(cfqq);
3397}
3398
3399/*
3400 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3401 * something we should do about it
3402 */
3403static void
3404cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3405		struct request *rq)
3406{
3407	struct cfq_io_context *cic = RQ_CIC(rq);
3408
3409	cfqd->rq_queued++;
3410	if (rq->cmd_flags & REQ_META)
3411		cfqq->meta_pending++;
3412
3413	cfq_update_io_thinktime(cfqd, cic);
3414	cfq_update_io_seektime(cfqd, cfqq, rq);
3415	cfq_update_idle_window(cfqd, cfqq, cic);
3416
3417	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3418
3419	if (cfqq == cfqd->active_queue) {
3420		/*
3421		 * Remember that we saw a request from this process, but
3422		 * don't start queuing just yet. Otherwise we risk seeing lots
3423		 * of tiny requests, because we disrupt the normal plugging
3424		 * and merging. If the request is already larger than a single
3425		 * page, let it rip immediately. For that case we assume that
3426		 * merging is already done. Ditto for a busy system that
3427		 * has other work pending, don't risk delaying until the
3428		 * idle timer unplug to continue working.
3429		 */
3430		if (cfq_cfqq_wait_request(cfqq)) {
3431			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3432			    cfqd->busy_queues > 1) {
3433				cfq_del_timer(cfqd, cfqq);
3434				cfq_clear_cfqq_wait_request(cfqq);
3435				__blk_run_queue(cfqd->queue);
3436			} else {
3437				cfq_blkiocg_update_idle_time_stats(
3438						&cfqq->cfqg->blkg);
3439				cfq_mark_cfqq_must_dispatch(cfqq);
3440			}
3441		}
3442	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3443		/*
3444		 * not the active queue - expire current slice if it is
3445		 * idle and has expired it's mean thinktime or this new queue
3446		 * has some old slice time left and is of higher priority or
3447		 * this new queue is RT and the current one is BE
3448		 */
3449		cfq_preempt_queue(cfqd, cfqq);
3450		__blk_run_queue(cfqd->queue);
3451	}
3452}
3453
3454static void cfq_insert_request(struct request_queue *q, struct request *rq)
3455{
3456	struct cfq_data *cfqd = q->elevator->elevator_data;
3457	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3458
3459	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3460	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3461
3462	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3463	list_add_tail(&rq->queuelist, &cfqq->fifo);
3464	cfq_add_rq_rb(rq);
3465	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3466			&cfqd->serving_group->blkg, rq_data_dir(rq),
3467			rq_is_sync(rq));
3468	cfq_rq_enqueued(cfqd, cfqq, rq);
3469}
3470
3471/*
3472 * Update hw_tag based on peak queue depth over 50 samples under
3473 * sufficient load.
3474 */
3475static void cfq_update_hw_tag(struct cfq_data *cfqd)
3476{
3477	struct cfq_queue *cfqq = cfqd->active_queue;
3478
3479	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3480		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3481
3482	if (cfqd->hw_tag == 1)
3483		return;
3484
3485	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3486	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3487		return;
3488
3489	/*
3490	 * If active queue hasn't enough requests and can idle, cfq might not
3491	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3492	 * case
3493	 */
3494	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3495	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3496	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3497		return;
3498
3499	if (cfqd->hw_tag_samples++ < 50)
3500		return;
3501
3502	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3503		cfqd->hw_tag = 1;
3504	else
3505		cfqd->hw_tag = 0;
3506}
3507
3508static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3509{
3510	struct cfq_io_context *cic = cfqd->active_cic;
3511
3512	/* If the queue already has requests, don't wait */
3513	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3514		return false;
3515
3516	/* If there are other queues in the group, don't wait */
3517	if (cfqq->cfqg->nr_cfqq > 1)
3518		return false;
3519
3520	if (cfq_slice_used(cfqq))
3521		return true;
3522
3523	/* if slice left is less than think time, wait busy */
3524	if (cic && sample_valid(cic->ttime_samples)
3525	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
3526		return true;
3527
3528	/*
3529	 * If think times is less than a jiffy than ttime_mean=0 and above
3530	 * will not be true. It might happen that slice has not expired yet
3531	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3532	 * case where think time is less than a jiffy, mark the queue wait
3533	 * busy if only 1 jiffy is left in the slice.
3534	 */
3535	if (cfqq->slice_end - jiffies == 1)
3536		return true;
3537
3538	return false;
3539}
3540
3541static void cfq_completed_request(struct request_queue *q, struct request *rq)
3542{
3543	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3544	struct cfq_data *cfqd = cfqq->cfqd;
3545	const int sync = rq_is_sync(rq);
3546	unsigned long now;
3547
3548	now = jiffies;
3549	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3550		     !!(rq->cmd_flags & REQ_NOIDLE));
3551
3552	cfq_update_hw_tag(cfqd);
3553
3554	WARN_ON(!cfqd->rq_in_driver);
3555	WARN_ON(!cfqq->dispatched);
3556	cfqd->rq_in_driver--;
3557	cfqq->dispatched--;
3558	(RQ_CFQG(rq))->dispatched--;
3559	cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3560			rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3561			rq_data_dir(rq), rq_is_sync(rq));
3562
3563	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3564
3565	if (sync) {
3566		RQ_CIC(rq)->last_end_request = now;
3567		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3568			cfqd->last_delayed_sync = now;
3569	}
3570
3571	/*
3572	 * If this is the active queue, check if it needs to be expired,
3573	 * or if we want to idle in case it has no pending requests.
3574	 */
3575	if (cfqd->active_queue == cfqq) {
3576		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3577
3578		if (cfq_cfqq_slice_new(cfqq)) {
3579			cfq_set_prio_slice(cfqd, cfqq);
3580			cfq_clear_cfqq_slice_new(cfqq);
3581		}
3582
3583		/*
3584		 * Should we wait for next request to come in before we expire
3585		 * the queue.
3586		 */
3587		if (cfq_should_wait_busy(cfqd, cfqq)) {
3588			unsigned long extend_sl = cfqd->cfq_slice_idle;
3589			if (!cfqd->cfq_slice_idle)
3590				extend_sl = cfqd->cfq_group_idle;
3591			cfqq->slice_end = jiffies + extend_sl;
3592			cfq_mark_cfqq_wait_busy(cfqq);
3593			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3594		}
3595
3596		/*
3597		 * Idling is not enabled on:
3598		 * - expired queues
3599		 * - idle-priority queues
3600		 * - async queues
3601		 * - queues with still some requests queued
3602		 * - when there is a close cooperator
3603		 */
3604		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3605			cfq_slice_expired(cfqd, 1);
3606		else if (sync && cfqq_empty &&
3607			 !cfq_close_cooperator(cfqd, cfqq)) {
3608			cfq_arm_slice_timer(cfqd);
3609		}
3610	}
3611
3612	if (!cfqd->rq_in_driver)
3613		cfq_schedule_dispatch(cfqd);
3614}
3615
3616/*
3617 * we temporarily boost lower priority queues if they are holding fs exclusive
3618 * resources. they are boosted to normal prio (CLASS_BE/4)
3619 */
3620static void cfq_prio_boost(struct cfq_queue *cfqq)
3621{
3622	if (has_fs_excl()) {
3623		/*
3624		 * boost idle prio on transactions that would lock out other
3625		 * users of the filesystem
3626		 */
3627		if (cfq_class_idle(cfqq))
3628			cfqq->ioprio_class = IOPRIO_CLASS_BE;
3629		if (cfqq->ioprio > IOPRIO_NORM)
3630			cfqq->ioprio = IOPRIO_NORM;
3631	} else {
3632		/*
3633		 * unboost the queue (if needed)
3634		 */
3635		cfqq->ioprio_class = cfqq->org_ioprio_class;
3636		cfqq->ioprio = cfqq->org_ioprio;
3637	}
3638}
3639
3640static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3641{
3642	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3643		cfq_mark_cfqq_must_alloc_slice(cfqq);
3644		return ELV_MQUEUE_MUST;
3645	}
3646
3647	return ELV_MQUEUE_MAY;
3648}
3649
3650static int cfq_may_queue(struct request_queue *q, int rw)
3651{
3652	struct cfq_data *cfqd = q->elevator->elevator_data;
3653	struct task_struct *tsk = current;
3654	struct cfq_io_context *cic;
3655	struct cfq_queue *cfqq;
3656
3657	/*
3658	 * don't force setup of a queue from here, as a call to may_queue
3659	 * does not necessarily imply that a request actually will be queued.
3660	 * so just lookup a possibly existing queue, or return 'may queue'
3661	 * if that fails
3662	 */
3663	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3664	if (!cic)
3665		return ELV_MQUEUE_MAY;
3666
3667	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3668	if (cfqq) {
3669		cfq_init_prio_data(cfqq, cic->ioc);
3670		cfq_prio_boost(cfqq);
3671
3672		return __cfq_may_queue(cfqq);
3673	}
3674
3675	return ELV_MQUEUE_MAY;
3676}
3677
3678/*
3679 * queue lock held here
3680 */
3681static void cfq_put_request(struct request *rq)
3682{
3683	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3684
3685	if (cfqq) {
3686		const int rw = rq_data_dir(rq);
3687
3688		BUG_ON(!cfqq->allocated[rw]);
3689		cfqq->allocated[rw]--;
3690
3691		put_io_context(RQ_CIC(rq)->ioc);
3692
3693		rq->elevator_private[0] = NULL;
3694		rq->elevator_private[1] = NULL;
3695
3696		/* Put down rq reference on cfqg */
3697		cfq_put_cfqg(RQ_CFQG(rq));
3698		rq->elevator_private[2] = NULL;
3699
3700		cfq_put_queue(cfqq);
3701	}
3702}
3703
3704static struct cfq_queue *
3705cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3706		struct cfq_queue *cfqq)
3707{
3708	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3709	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3710	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3711	cfq_put_queue(cfqq);
3712	return cic_to_cfqq(cic, 1);
3713}
3714
3715/*
3716 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3717 * was the last process referring to said cfqq.
3718 */
3719static struct cfq_queue *
3720split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3721{
3722	if (cfqq_process_refs(cfqq) == 1) {
3723		cfqq->pid = current->pid;
3724		cfq_clear_cfqq_coop(cfqq);
3725		cfq_clear_cfqq_split_coop(cfqq);
3726		return cfqq;
3727	}
3728
3729	cic_set_cfqq(cic, NULL, 1);
3730
3731	cfq_put_cooperator(cfqq);
3732
3733	cfq_put_queue(cfqq);
3734	return NULL;
3735}
3736/*
3737 * Allocate cfq data structures associated with this request.
3738 */
3739static int
3740cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3741{
3742	struct cfq_data *cfqd = q->elevator->elevator_data;
3743	struct cfq_io_context *cic;
3744	const int rw = rq_data_dir(rq);
3745	const bool is_sync = rq_is_sync(rq);
3746	struct cfq_queue *cfqq;
3747	unsigned long flags;
3748
3749	might_sleep_if(gfp_mask & __GFP_WAIT);
3750
3751	cic = cfq_get_io_context(cfqd, gfp_mask);
3752
3753	spin_lock_irqsave(q->queue_lock, flags);
3754
3755	if (!cic)
3756		goto queue_fail;
3757
3758new_queue:
3759	cfqq = cic_to_cfqq(cic, is_sync);
3760	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3761		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3762		cic_set_cfqq(cic, cfqq, is_sync);
3763	} else {
3764		/*
3765		 * If the queue was seeky for too long, break it apart.
3766		 */
3767		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3768			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3769			cfqq = split_cfqq(cic, cfqq);
3770			if (!cfqq)
3771				goto new_queue;
3772		}
3773
3774		/*
3775		 * Check to see if this queue is scheduled to merge with
3776		 * another, closely cooperating queue.  The merging of
3777		 * queues happens here as it must be done in process context.
3778		 * The reference on new_cfqq was taken in merge_cfqqs.
3779		 */
3780		if (cfqq->new_cfqq)
3781			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3782	}
3783
3784	cfqq->allocated[rw]++;
3785
3786	cfqq->ref++;
3787	rq->elevator_private[0] = cic;
3788	rq->elevator_private[1] = cfqq;
3789	rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3790	spin_unlock_irqrestore(q->queue_lock, flags);
3791	return 0;
3792
3793queue_fail:
3794	if (cic)
3795		put_io_context(cic->ioc);
3796
3797	cfq_schedule_dispatch(cfqd);
3798	spin_unlock_irqrestore(q->queue_lock, flags);
3799	cfq_log(cfqd, "set_request fail");
3800	return 1;
3801}
3802
3803static void cfq_kick_queue(struct work_struct *work)
3804{
3805	struct cfq_data *cfqd =
3806		container_of(work, struct cfq_data, unplug_work);
3807	struct request_queue *q = cfqd->queue;
3808
3809	spin_lock_irq(q->queue_lock);
3810	__blk_run_queue(cfqd->queue);
3811	spin_unlock_irq(q->queue_lock);
3812}
3813
3814/*
3815 * Timer running if the active_queue is currently idling inside its time slice
3816 */
3817static void cfq_idle_slice_timer(unsigned long data)
3818{
3819	struct cfq_data *cfqd = (struct cfq_data *) data;
3820	struct cfq_queue *cfqq;
3821	unsigned long flags;
3822	int timed_out = 1;
3823
3824	cfq_log(cfqd, "idle timer fired");
3825
3826	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3827
3828	cfqq = cfqd->active_queue;
3829	if (cfqq) {
3830		timed_out = 0;
3831
3832		/*
3833		 * We saw a request before the queue expired, let it through
3834		 */
3835		if (cfq_cfqq_must_dispatch(cfqq))
3836			goto out_kick;
3837
3838		/*
3839		 * expired
3840		 */
3841		if (cfq_slice_used(cfqq))
3842			goto expire;
3843
3844		/*
3845		 * only expire and reinvoke request handler, if there are
3846		 * other queues with pending requests
3847		 */
3848		if (!cfqd->busy_queues)
3849			goto out_cont;
3850
3851		/*
3852		 * not expired and it has a request pending, let it dispatch
3853		 */
3854		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3855			goto out_kick;
3856
3857		/*
3858		 * Queue depth flag is reset only when the idle didn't succeed
3859		 */
3860		cfq_clear_cfqq_deep(cfqq);
3861	}
3862expire:
3863	cfq_slice_expired(cfqd, timed_out);
3864out_kick:
3865	cfq_schedule_dispatch(cfqd);
3866out_cont:
3867	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3868}
3869
3870static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3871{
3872	del_timer_sync(&cfqd->idle_slice_timer);
3873	cancel_work_sync(&cfqd->unplug_work);
3874}
3875
3876static void cfq_put_async_queues(struct cfq_data *cfqd)
3877{
3878	int i;
3879
3880	for (i = 0; i < IOPRIO_BE_NR; i++) {
3881		if (cfqd->async_cfqq[0][i])
3882			cfq_put_queue(cfqd->async_cfqq[0][i]);
3883		if (cfqd->async_cfqq[1][i])
3884			cfq_put_queue(cfqd->async_cfqq[1][i]);
3885	}
3886
3887	if (cfqd->async_idle_cfqq)
3888		cfq_put_queue(cfqd->async_idle_cfqq);
3889}
3890
3891static void cfq_exit_queue(struct elevator_queue *e)
3892{
3893	struct cfq_data *cfqd = e->elevator_data;
3894	struct request_queue *q = cfqd->queue;
3895	bool wait = false;
3896
3897	cfq_shutdown_timer_wq(cfqd);
3898
3899	spin_lock_irq(q->queue_lock);
3900
3901	if (cfqd->active_queue)
3902		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3903
3904	while (!list_empty(&cfqd->cic_list)) {
3905		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3906							struct cfq_io_context,
3907							queue_list);
3908
3909		__cfq_exit_single_io_context(cfqd, cic);
3910	}
3911
3912	cfq_put_async_queues(cfqd);
3913	cfq_release_cfq_groups(cfqd);
3914
3915	/*
3916	 * If there are groups which we could not unlink from blkcg list,
3917	 * wait for a rcu period for them to be freed.
3918	 */
3919	if (cfqd->nr_blkcg_linked_grps)
3920		wait = true;
3921
3922	spin_unlock_irq(q->queue_lock);
3923
3924	cfq_shutdown_timer_wq(cfqd);
3925
3926	spin_lock(&cic_index_lock);
3927	ida_remove(&cic_index_ida, cfqd->cic_index);
3928	spin_unlock(&cic_index_lock);
3929
3930	/*
3931	 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3932	 * Do this wait only if there are other unlinked groups out
3933	 * there. This can happen if cgroup deletion path claimed the
3934	 * responsibility of cleaning up a group before queue cleanup code
3935	 * get to the group.
3936	 *
3937	 * Do not call synchronize_rcu() unconditionally as there are drivers
3938	 * which create/delete request queue hundreds of times during scan/boot
3939	 * and synchronize_rcu() can take significant time and slow down boot.
3940	 */
3941	if (wait)
3942		synchronize_rcu();
3943	kfree(cfqd);
3944}
3945
3946static int cfq_alloc_cic_index(void)
3947{
3948	int index, error;
3949
3950	do {
3951		if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3952			return -ENOMEM;
3953
3954		spin_lock(&cic_index_lock);
3955		error = ida_get_new(&cic_index_ida, &index);
3956		spin_unlock(&cic_index_lock);
3957		if (error && error != -EAGAIN)
3958			return error;
3959	} while (error);
3960
3961	return index;
3962}
3963
3964static void *cfq_init_queue(struct request_queue *q)
3965{
3966	struct cfq_data *cfqd;
3967	int i, j;
3968	struct cfq_group *cfqg;
3969	struct cfq_rb_root *st;
3970
3971	i = cfq_alloc_cic_index();
3972	if (i < 0)
3973		return NULL;
3974
3975	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3976	if (!cfqd)
3977		return NULL;
3978
3979	/*
3980	 * Don't need take queue_lock in the routine, since we are
3981	 * initializing the ioscheduler, and nobody is using cfqd
3982	 */
3983	cfqd->cic_index = i;
3984
3985	/* Init root service tree */
3986	cfqd->grp_service_tree = CFQ_RB_ROOT;
3987
3988	/* Init root group */
3989	cfqg = &cfqd->root_group;
3990	for_each_cfqg_st(cfqg, i, j, st)
3991		*st = CFQ_RB_ROOT;
3992	RB_CLEAR_NODE(&cfqg->rb_node);
3993
3994	/* Give preference to root group over other groups */
3995	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3996
3997#ifdef CONFIG_CFQ_GROUP_IOSCHED
3998	/*
3999	 * Set root group reference to 2. One reference will be dropped when
4000	 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4001	 * Other reference will remain there as we don't want to delete this
4002	 * group as it is statically allocated and gets destroyed when
4003	 * throtl_data goes away.
4004	 */
4005	cfqg->ref = 2;
4006
4007	if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4008		kfree(cfqg);
4009		kfree(cfqd);
4010		return NULL;
4011	}
4012
4013	rcu_read_lock();
4014
4015	cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4016					(void *)cfqd, 0);
4017	rcu_read_unlock();
4018	cfqd->nr_blkcg_linked_grps++;
4019
4020	/* Add group on cfqd->cfqg_list */
4021	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4022#endif
4023	/*
4024	 * Not strictly needed (since RB_ROOT just clears the node and we
4025	 * zeroed cfqd on alloc), but better be safe in case someone decides
4026	 * to add magic to the rb code
4027	 */
4028	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4029		cfqd->prio_trees[i] = RB_ROOT;
4030
4031	/*
4032	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4033	 * Grab a permanent reference to it, so that the normal code flow
4034	 * will not attempt to free it.
4035	 */
4036	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4037	cfqd->oom_cfqq.ref++;
4038	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4039
4040	INIT_LIST_HEAD(&cfqd->cic_list);
4041
4042	cfqd->queue = q;
4043
4044	init_timer(&cfqd->idle_slice_timer);
4045	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4046	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4047
4048	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4049
4050	cfqd->cfq_quantum = cfq_quantum;
4051	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4052	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4053	cfqd->cfq_back_max = cfq_back_max;
4054	cfqd->cfq_back_penalty = cfq_back_penalty;
4055	cfqd->cfq_slice[0] = cfq_slice_async;
4056	cfqd->cfq_slice[1] = cfq_slice_sync;
4057	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4058	cfqd->cfq_slice_idle = cfq_slice_idle;
4059	cfqd->cfq_group_idle = cfq_group_idle;
4060	cfqd->cfq_latency = 1;
4061	cfqd->hw_tag = -1;
4062	/*
4063	 * we optimistically start assuming sync ops weren't delayed in last
4064	 * second, in order to have larger depth for async operations.
4065	 */
4066	cfqd->last_delayed_sync = jiffies - HZ;
4067	return cfqd;
4068}
4069
4070static void cfq_slab_kill(void)
4071{
4072	/*
4073	 * Caller already ensured that pending RCU callbacks are completed,
4074	 * so we should have no busy allocations at this point.
4075	 */
4076	if (cfq_pool)
4077		kmem_cache_destroy(cfq_pool);
4078	if (cfq_ioc_pool)
4079		kmem_cache_destroy(cfq_ioc_pool);
4080}
4081
4082static int __init cfq_slab_setup(void)
4083{
4084	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4085	if (!cfq_pool)
4086		goto fail;
4087
4088	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4089	if (!cfq_ioc_pool)
4090		goto fail;
4091
4092	return 0;
4093fail:
4094	cfq_slab_kill();
4095	return -ENOMEM;
4096}
4097
4098/*
4099 * sysfs parts below -->
4100 */
4101static ssize_t
4102cfq_var_show(unsigned int var, char *page)
4103{
4104	return sprintf(page, "%d\n", var);
4105}
4106
4107static ssize_t
4108cfq_var_store(unsigned int *var, const char *page, size_t count)
4109{
4110	char *p = (char *) page;
4111
4112	*var = simple_strtoul(p, &p, 10);
4113	return count;
4114}
4115
4116#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4117static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4118{									\
4119	struct cfq_data *cfqd = e->elevator_data;			\
4120	unsigned int __data = __VAR;					\
4121	if (__CONV)							\
4122		__data = jiffies_to_msecs(__data);			\
4123	return cfq_var_show(__data, (page));				\
4124}
4125SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4126SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4127SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4128SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4129SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4130SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4131SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4132SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4133SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4134SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4135SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4136#undef SHOW_FUNCTION
4137
4138#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4139static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4140{									\
4141	struct cfq_data *cfqd = e->elevator_data;			\
4142	unsigned int __data;						\
4143	int ret = cfq_var_store(&__data, (page), count);		\
4144	if (__data < (MIN))						\
4145		__data = (MIN);						\
4146	else if (__data > (MAX))					\
4147		__data = (MAX);						\
4148	if (__CONV)							\
4149		*(__PTR) = msecs_to_jiffies(__data);			\
4150	else								\
4151		*(__PTR) = __data;					\
4152	return ret;							\
4153}
4154STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4155STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4156		UINT_MAX, 1);
4157STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4158		UINT_MAX, 1);
4159STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4160STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4161		UINT_MAX, 0);
4162STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4163STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4164STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4165STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4166STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4167		UINT_MAX, 0);
4168STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4169#undef STORE_FUNCTION
4170
4171#define CFQ_ATTR(name) \
4172	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4173
4174static struct elv_fs_entry cfq_attrs[] = {
4175	CFQ_ATTR(quantum),
4176	CFQ_ATTR(fifo_expire_sync),
4177	CFQ_ATTR(fifo_expire_async),
4178	CFQ_ATTR(back_seek_max),
4179	CFQ_ATTR(back_seek_penalty),
4180	CFQ_ATTR(slice_sync),
4181	CFQ_ATTR(slice_async),
4182	CFQ_ATTR(slice_async_rq),
4183	CFQ_ATTR(slice_idle),
4184	CFQ_ATTR(group_idle),
4185	CFQ_ATTR(low_latency),
4186	__ATTR_NULL
4187};
4188
4189static struct elevator_type iosched_cfq = {
4190	.ops = {
4191		.elevator_merge_fn = 		cfq_merge,
4192		.elevator_merged_fn =		cfq_merged_request,
4193		.elevator_merge_req_fn =	cfq_merged_requests,
4194		.elevator_allow_merge_fn =	cfq_allow_merge,
4195		.elevator_bio_merged_fn =	cfq_bio_merged,
4196		.elevator_dispatch_fn =		cfq_dispatch_requests,
4197		.elevator_add_req_fn =		cfq_insert_request,
4198		.elevator_activate_req_fn =	cfq_activate_request,
4199		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4200		.elevator_completed_req_fn =	cfq_completed_request,
4201		.elevator_former_req_fn =	elv_rb_former_request,
4202		.elevator_latter_req_fn =	elv_rb_latter_request,
4203		.elevator_set_req_fn =		cfq_set_request,
4204		.elevator_put_req_fn =		cfq_put_request,
4205		.elevator_may_queue_fn =	cfq_may_queue,
4206		.elevator_init_fn =		cfq_init_queue,
4207		.elevator_exit_fn =		cfq_exit_queue,
4208		.trim =				cfq_free_io_context,
4209	},
4210	.elevator_attrs =	cfq_attrs,
4211	.elevator_name =	"cfq",
4212	.elevator_owner =	THIS_MODULE,
4213};
4214
4215#ifdef CONFIG_CFQ_GROUP_IOSCHED
4216static struct blkio_policy_type blkio_policy_cfq = {
4217	.ops = {
4218		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
4219		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
4220	},
4221	.plid = BLKIO_POLICY_PROP,
4222};
4223#else
4224static struct blkio_policy_type blkio_policy_cfq;
4225#endif
4226
4227static int __init cfq_init(void)
4228{
4229	/*
4230	 * could be 0 on HZ < 1000 setups
4231	 */
4232	if (!cfq_slice_async)
4233		cfq_slice_async = 1;
4234	if (!cfq_slice_idle)
4235		cfq_slice_idle = 1;
4236
4237#ifdef CONFIG_CFQ_GROUP_IOSCHED
4238	if (!cfq_group_idle)
4239		cfq_group_idle = 1;
4240#else
4241		cfq_group_idle = 0;
4242#endif
4243	if (cfq_slab_setup())
4244		return -ENOMEM;
4245
4246	elv_register(&iosched_cfq);
4247	blkio_policy_register(&blkio_policy_cfq);
4248
4249	return 0;
4250}
4251
4252static void __exit cfq_exit(void)
4253{
4254	DECLARE_COMPLETION_ONSTACK(all_gone);
4255	blkio_policy_unregister(&blkio_policy_cfq);
4256	elv_unregister(&iosched_cfq);
4257	ioc_gone = &all_gone;
4258	/* ioc_gone's update must be visible before reading ioc_count */
4259	smp_wmb();
4260
4261	/*
4262	 * this also protects us from entering cfq_slab_kill() with
4263	 * pending RCU callbacks
4264	 */
4265	if (elv_ioc_count_read(cfq_ioc_count))
4266		wait_for_completion(&all_gone);
4267	ida_destroy(&cic_index_ida);
4268	cfq_slab_kill();
4269}
4270
4271module_init(cfq_init);
4272module_exit(cfq_exit);
4273
4274MODULE_AUTHOR("Jens Axboe");
4275MODULE_LICENSE("GPL");
4276MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4277