cfq-iosched.c revision 5eb46851de3904cd1be9192fdacb8d34deadc1fc
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "cfq.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 8;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static int cfq_group_idle = HZ / 125;
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
36
37/*
38 * offset from end of service tree
39 */
40#define CFQ_IDLE_DELAY		(HZ / 5)
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT		(2)
46
47#define CFQ_SLICE_SCALE		(5)
48#define CFQ_HW_QUEUE_MIN	(5)
49#define CFQ_SERVICE_SHIFT       12
50
51#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
52#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
53#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
54#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
55
56#define RQ_CIC(rq)		\
57	((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elevator_private[2])
60
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
63
64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65static struct completion *ioc_gone;
66static DEFINE_SPINLOCK(ioc_gone_lock);
67
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
71#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
72#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75#define sample_valid(samples)	((samples) > 80)
76#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	unsigned total_weight;
89	u64 min_vdisktime;
90	struct cfq_ttime ttime;
91};
92#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
93			.ttime = {.last_end_request = jiffies,},}
94
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99	/* reference count */
100	int ref;
101	/* various state flags, see below */
102	unsigned int flags;
103	/* parent cfq_data */
104	struct cfq_data *cfqd;
105	/* service_tree member */
106	struct rb_node rb_node;
107	/* service_tree key */
108	unsigned long rb_key;
109	/* prio tree member */
110	struct rb_node p_node;
111	/* prio tree root we belong to, if any */
112	struct rb_root *p_root;
113	/* sorted list of pending requests */
114	struct rb_root sort_list;
115	/* if fifo isn't expired, next request to serve */
116	struct request *next_rq;
117	/* requests queued in sort_list */
118	int queued[2];
119	/* currently allocated requests */
120	int allocated[2];
121	/* fifo list of requests in sort_list */
122	struct list_head fifo;
123
124	/* time when queue got scheduled in to dispatch first request. */
125	unsigned long dispatch_start;
126	unsigned int allocated_slice;
127	unsigned int slice_dispatch;
128	/* time when first request from queue completed and slice started. */
129	unsigned long slice_start;
130	unsigned long slice_end;
131	long slice_resid;
132
133	/* pending priority requests */
134	int prio_pending;
135	/* number of requests that are on the dispatch list or inside driver */
136	int dispatched;
137
138	/* io prio of this group */
139	unsigned short ioprio, org_ioprio;
140	unsigned short ioprio_class;
141
142	pid_t pid;
143
144	u32 seek_history;
145	sector_t last_request_pos;
146
147	struct cfq_rb_root *service_tree;
148	struct cfq_queue *new_cfqq;
149	struct cfq_group *cfqg;
150	/* Number of sectors dispatched from queue in single dispatch round */
151	unsigned long nr_sectors;
152};
153
154/*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
159	BE_WORKLOAD = 0,
160	RT_WORKLOAD = 1,
161	IDLE_WORKLOAD = 2,
162	CFQ_PRIO_NR,
163};
164
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169	ASYNC_WORKLOAD = 0,
170	SYNC_NOIDLE_WORKLOAD = 1,
171	SYNC_WORKLOAD = 2
172};
173
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
176	/* group service_tree member */
177	struct rb_node rb_node;
178
179	/* group service_tree key */
180	u64 vdisktime;
181	unsigned int weight;
182	unsigned int new_weight;
183	bool needs_update;
184
185	/* number of cfqq currently on this group */
186	int nr_cfqq;
187
188	/*
189	 * Per group busy queues average. Useful for workload slice calc. We
190	 * create the array for each prio class but at run time it is used
191	 * only for RT and BE class and slot for IDLE class remains unused.
192	 * This is primarily done to avoid confusion and a gcc warning.
193	 */
194	unsigned int busy_queues_avg[CFQ_PRIO_NR];
195	/*
196	 * rr lists of queues with requests. We maintain service trees for
197	 * RT and BE classes. These trees are subdivided in subclasses
198	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199	 * class there is no subclassification and all the cfq queues go on
200	 * a single tree service_tree_idle.
201	 * Counts are embedded in the cfq_rb_root
202	 */
203	struct cfq_rb_root service_trees[2][3];
204	struct cfq_rb_root service_tree_idle;
205
206	unsigned long saved_workload_slice;
207	enum wl_type_t saved_workload;
208	enum wl_prio_t saved_serving_prio;
209	struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211	struct hlist_node cfqd_node;
212	int ref;
213#endif
214	/* number of requests that are on the dispatch list or inside driver */
215	int dispatched;
216	struct cfq_ttime ttime;
217};
218
219/*
220 * Per block device queue structure
221 */
222struct cfq_data {
223	struct request_queue *queue;
224	/* Root service tree for cfq_groups */
225	struct cfq_rb_root grp_service_tree;
226	struct cfq_group root_group;
227
228	/*
229	 * The priority currently being served
230	 */
231	enum wl_prio_t serving_prio;
232	enum wl_type_t serving_type;
233	unsigned long workload_expires;
234	struct cfq_group *serving_group;
235
236	/*
237	 * Each priority tree is sorted by next_request position.  These
238	 * trees are used when determining if two or more queues are
239	 * interleaving requests (see cfq_close_cooperator).
240	 */
241	struct rb_root prio_trees[CFQ_PRIO_LISTS];
242
243	unsigned int busy_queues;
244	unsigned int busy_sync_queues;
245
246	int rq_in_driver;
247	int rq_in_flight[2];
248
249	/*
250	 * queue-depth detection
251	 */
252	int rq_queued;
253	int hw_tag;
254	/*
255	 * hw_tag can be
256	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
257	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258	 *  0 => no NCQ
259	 */
260	int hw_tag_est_depth;
261	unsigned int hw_tag_samples;
262
263	/*
264	 * idle window management
265	 */
266	struct timer_list idle_slice_timer;
267	struct work_struct unplug_work;
268
269	struct cfq_queue *active_queue;
270	struct cfq_io_context *active_cic;
271
272	/*
273	 * async queue for each priority case
274	 */
275	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
276	struct cfq_queue *async_idle_cfqq;
277
278	sector_t last_position;
279
280	/*
281	 * tunables, see top of file
282	 */
283	unsigned int cfq_quantum;
284	unsigned int cfq_fifo_expire[2];
285	unsigned int cfq_back_penalty;
286	unsigned int cfq_back_max;
287	unsigned int cfq_slice[2];
288	unsigned int cfq_slice_async_rq;
289	unsigned int cfq_slice_idle;
290	unsigned int cfq_group_idle;
291	unsigned int cfq_latency;
292
293	unsigned int cic_index;
294	struct list_head cic_list;
295
296	/*
297	 * Fallback dummy cfqq for extreme OOM conditions
298	 */
299	struct cfq_queue oom_cfqq;
300
301	unsigned long last_delayed_sync;
302
303	/* List of cfq groups being managed on this device*/
304	struct hlist_head cfqg_list;
305
306	/* Number of groups which are on blkcg->blkg_list */
307	unsigned int nr_blkcg_linked_grps;
308};
309
310static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
311
312static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
313					    enum wl_prio_t prio,
314					    enum wl_type_t type)
315{
316	if (!cfqg)
317		return NULL;
318
319	if (prio == IDLE_WORKLOAD)
320		return &cfqg->service_tree_idle;
321
322	return &cfqg->service_trees[prio][type];
323}
324
325enum cfqq_state_flags {
326	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
327	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
328	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
329	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
330	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
331	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
332	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
333	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
334	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
335	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
336	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
337	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
338	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
339};
340
341#define CFQ_CFQQ_FNS(name)						\
342static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
343{									\
344	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
345}									\
346static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
347{									\
348	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
349}									\
350static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
351{									\
352	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
353}
354
355CFQ_CFQQ_FNS(on_rr);
356CFQ_CFQQ_FNS(wait_request);
357CFQ_CFQQ_FNS(must_dispatch);
358CFQ_CFQQ_FNS(must_alloc_slice);
359CFQ_CFQQ_FNS(fifo_expire);
360CFQ_CFQQ_FNS(idle_window);
361CFQ_CFQQ_FNS(prio_changed);
362CFQ_CFQQ_FNS(slice_new);
363CFQ_CFQQ_FNS(sync);
364CFQ_CFQQ_FNS(coop);
365CFQ_CFQQ_FNS(split_coop);
366CFQ_CFQQ_FNS(deep);
367CFQ_CFQQ_FNS(wait_busy);
368#undef CFQ_CFQQ_FNS
369
370#ifdef CONFIG_CFQ_GROUP_IOSCHED
371#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
372	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
373			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
374			blkg_path(&(cfqq)->cfqg->blkg), ##args)
375
376#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
377	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
378				blkg_path(&(cfqg)->blkg), ##args)       \
379
380#else
381#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
382	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
383#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
384#endif
385#define cfq_log(cfqd, fmt, args...)	\
386	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
387
388/* Traverses through cfq group service trees */
389#define for_each_cfqg_st(cfqg, i, j, st) \
390	for (i = 0; i <= IDLE_WORKLOAD; i++) \
391		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
392			: &cfqg->service_tree_idle; \
393			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
394			(i == IDLE_WORKLOAD && j == 0); \
395			j++, st = i < IDLE_WORKLOAD ? \
396			&cfqg->service_trees[i][j]: NULL) \
397
398static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
399	struct cfq_ttime *ttime, bool group_idle)
400{
401	unsigned long slice;
402	if (!sample_valid(ttime->ttime_samples))
403		return false;
404	if (group_idle)
405		slice = cfqd->cfq_group_idle;
406	else
407		slice = cfqd->cfq_slice_idle;
408	return ttime->ttime_mean > slice;
409}
410
411static inline bool iops_mode(struct cfq_data *cfqd)
412{
413	/*
414	 * If we are not idling on queues and it is a NCQ drive, parallel
415	 * execution of requests is on and measuring time is not possible
416	 * in most of the cases until and unless we drive shallower queue
417	 * depths and that becomes a performance bottleneck. In such cases
418	 * switch to start providing fairness in terms of number of IOs.
419	 */
420	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
421		return true;
422	else
423		return false;
424}
425
426static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
427{
428	if (cfq_class_idle(cfqq))
429		return IDLE_WORKLOAD;
430	if (cfq_class_rt(cfqq))
431		return RT_WORKLOAD;
432	return BE_WORKLOAD;
433}
434
435
436static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
437{
438	if (!cfq_cfqq_sync(cfqq))
439		return ASYNC_WORKLOAD;
440	if (!cfq_cfqq_idle_window(cfqq))
441		return SYNC_NOIDLE_WORKLOAD;
442	return SYNC_WORKLOAD;
443}
444
445static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
446					struct cfq_data *cfqd,
447					struct cfq_group *cfqg)
448{
449	if (wl == IDLE_WORKLOAD)
450		return cfqg->service_tree_idle.count;
451
452	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
453		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
454		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
455}
456
457static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
458					struct cfq_group *cfqg)
459{
460	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
461		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
462}
463
464static void cfq_dispatch_insert(struct request_queue *, struct request *);
465static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
466				       struct io_context *, gfp_t);
467static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
468						struct io_context *);
469
470static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
471					    bool is_sync)
472{
473	return cic->cfqq[is_sync];
474}
475
476static inline void cic_set_cfqq(struct cfq_io_context *cic,
477				struct cfq_queue *cfqq, bool is_sync)
478{
479	cic->cfqq[is_sync] = cfqq;
480}
481
482#define CIC_DEAD_KEY	1ul
483#define CIC_DEAD_INDEX_SHIFT	1
484
485static inline void *cfqd_dead_key(struct cfq_data *cfqd)
486{
487	return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
488}
489
490static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
491{
492	struct cfq_data *cfqd = cic->key;
493
494	if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
495		return NULL;
496
497	return cfqd;
498}
499
500/*
501 * We regard a request as SYNC, if it's either a read or has the SYNC bit
502 * set (in which case it could also be direct WRITE).
503 */
504static inline bool cfq_bio_sync(struct bio *bio)
505{
506	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
507}
508
509/*
510 * scheduler run of queue, if there are requests pending and no one in the
511 * driver that will restart queueing
512 */
513static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
514{
515	if (cfqd->busy_queues) {
516		cfq_log(cfqd, "schedule dispatch");
517		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
518	}
519}
520
521/*
522 * Scale schedule slice based on io priority. Use the sync time slice only
523 * if a queue is marked sync and has sync io queued. A sync queue with async
524 * io only, should not get full sync slice length.
525 */
526static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
527				 unsigned short prio)
528{
529	const int base_slice = cfqd->cfq_slice[sync];
530
531	WARN_ON(prio >= IOPRIO_BE_NR);
532
533	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
534}
535
536static inline int
537cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
538{
539	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
540}
541
542static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
543{
544	u64 d = delta << CFQ_SERVICE_SHIFT;
545
546	d = d * BLKIO_WEIGHT_DEFAULT;
547	do_div(d, cfqg->weight);
548	return d;
549}
550
551static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
552{
553	s64 delta = (s64)(vdisktime - min_vdisktime);
554	if (delta > 0)
555		min_vdisktime = vdisktime;
556
557	return min_vdisktime;
558}
559
560static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
561{
562	s64 delta = (s64)(vdisktime - min_vdisktime);
563	if (delta < 0)
564		min_vdisktime = vdisktime;
565
566	return min_vdisktime;
567}
568
569static void update_min_vdisktime(struct cfq_rb_root *st)
570{
571	struct cfq_group *cfqg;
572
573	if (st->left) {
574		cfqg = rb_entry_cfqg(st->left);
575		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
576						  cfqg->vdisktime);
577	}
578}
579
580/*
581 * get averaged number of queues of RT/BE priority.
582 * average is updated, with a formula that gives more weight to higher numbers,
583 * to quickly follows sudden increases and decrease slowly
584 */
585
586static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
587					struct cfq_group *cfqg, bool rt)
588{
589	unsigned min_q, max_q;
590	unsigned mult  = cfq_hist_divisor - 1;
591	unsigned round = cfq_hist_divisor / 2;
592	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
593
594	min_q = min(cfqg->busy_queues_avg[rt], busy);
595	max_q = max(cfqg->busy_queues_avg[rt], busy);
596	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
597		cfq_hist_divisor;
598	return cfqg->busy_queues_avg[rt];
599}
600
601static inline unsigned
602cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
603{
604	struct cfq_rb_root *st = &cfqd->grp_service_tree;
605
606	return cfq_target_latency * cfqg->weight / st->total_weight;
607}
608
609static inline unsigned
610cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
611{
612	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
613	if (cfqd->cfq_latency) {
614		/*
615		 * interested queues (we consider only the ones with the same
616		 * priority class in the cfq group)
617		 */
618		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
619						cfq_class_rt(cfqq));
620		unsigned sync_slice = cfqd->cfq_slice[1];
621		unsigned expect_latency = sync_slice * iq;
622		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
623
624		if (expect_latency > group_slice) {
625			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
626			/* scale low_slice according to IO priority
627			 * and sync vs async */
628			unsigned low_slice =
629				min(slice, base_low_slice * slice / sync_slice);
630			/* the adapted slice value is scaled to fit all iqs
631			 * into the target latency */
632			slice = max(slice * group_slice / expect_latency,
633				    low_slice);
634		}
635	}
636	return slice;
637}
638
639static inline void
640cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
641{
642	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
643
644	cfqq->slice_start = jiffies;
645	cfqq->slice_end = jiffies + slice;
646	cfqq->allocated_slice = slice;
647	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
648}
649
650/*
651 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
652 * isn't valid until the first request from the dispatch is activated
653 * and the slice time set.
654 */
655static inline bool cfq_slice_used(struct cfq_queue *cfqq)
656{
657	if (cfq_cfqq_slice_new(cfqq))
658		return false;
659	if (time_before(jiffies, cfqq->slice_end))
660		return false;
661
662	return true;
663}
664
665/*
666 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
667 * We choose the request that is closest to the head right now. Distance
668 * behind the head is penalized and only allowed to a certain extent.
669 */
670static struct request *
671cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
672{
673	sector_t s1, s2, d1 = 0, d2 = 0;
674	unsigned long back_max;
675#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
676#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
677	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
678
679	if (rq1 == NULL || rq1 == rq2)
680		return rq2;
681	if (rq2 == NULL)
682		return rq1;
683
684	if (rq_is_sync(rq1) != rq_is_sync(rq2))
685		return rq_is_sync(rq1) ? rq1 : rq2;
686
687	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
688		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
689
690	s1 = blk_rq_pos(rq1);
691	s2 = blk_rq_pos(rq2);
692
693	/*
694	 * by definition, 1KiB is 2 sectors
695	 */
696	back_max = cfqd->cfq_back_max * 2;
697
698	/*
699	 * Strict one way elevator _except_ in the case where we allow
700	 * short backward seeks which are biased as twice the cost of a
701	 * similar forward seek.
702	 */
703	if (s1 >= last)
704		d1 = s1 - last;
705	else if (s1 + back_max >= last)
706		d1 = (last - s1) * cfqd->cfq_back_penalty;
707	else
708		wrap |= CFQ_RQ1_WRAP;
709
710	if (s2 >= last)
711		d2 = s2 - last;
712	else if (s2 + back_max >= last)
713		d2 = (last - s2) * cfqd->cfq_back_penalty;
714	else
715		wrap |= CFQ_RQ2_WRAP;
716
717	/* Found required data */
718
719	/*
720	 * By doing switch() on the bit mask "wrap" we avoid having to
721	 * check two variables for all permutations: --> faster!
722	 */
723	switch (wrap) {
724	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
725		if (d1 < d2)
726			return rq1;
727		else if (d2 < d1)
728			return rq2;
729		else {
730			if (s1 >= s2)
731				return rq1;
732			else
733				return rq2;
734		}
735
736	case CFQ_RQ2_WRAP:
737		return rq1;
738	case CFQ_RQ1_WRAP:
739		return rq2;
740	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
741	default:
742		/*
743		 * Since both rqs are wrapped,
744		 * start with the one that's further behind head
745		 * (--> only *one* back seek required),
746		 * since back seek takes more time than forward.
747		 */
748		if (s1 <= s2)
749			return rq1;
750		else
751			return rq2;
752	}
753}
754
755/*
756 * The below is leftmost cache rbtree addon
757 */
758static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
759{
760	/* Service tree is empty */
761	if (!root->count)
762		return NULL;
763
764	if (!root->left)
765		root->left = rb_first(&root->rb);
766
767	if (root->left)
768		return rb_entry(root->left, struct cfq_queue, rb_node);
769
770	return NULL;
771}
772
773static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
774{
775	if (!root->left)
776		root->left = rb_first(&root->rb);
777
778	if (root->left)
779		return rb_entry_cfqg(root->left);
780
781	return NULL;
782}
783
784static void rb_erase_init(struct rb_node *n, struct rb_root *root)
785{
786	rb_erase(n, root);
787	RB_CLEAR_NODE(n);
788}
789
790static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
791{
792	if (root->left == n)
793		root->left = NULL;
794	rb_erase_init(n, &root->rb);
795	--root->count;
796}
797
798/*
799 * would be nice to take fifo expire time into account as well
800 */
801static struct request *
802cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
803		  struct request *last)
804{
805	struct rb_node *rbnext = rb_next(&last->rb_node);
806	struct rb_node *rbprev = rb_prev(&last->rb_node);
807	struct request *next = NULL, *prev = NULL;
808
809	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
810
811	if (rbprev)
812		prev = rb_entry_rq(rbprev);
813
814	if (rbnext)
815		next = rb_entry_rq(rbnext);
816	else {
817		rbnext = rb_first(&cfqq->sort_list);
818		if (rbnext && rbnext != &last->rb_node)
819			next = rb_entry_rq(rbnext);
820	}
821
822	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
823}
824
825static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
826				      struct cfq_queue *cfqq)
827{
828	/*
829	 * just an approximation, should be ok.
830	 */
831	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
832		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
833}
834
835static inline s64
836cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
837{
838	return cfqg->vdisktime - st->min_vdisktime;
839}
840
841static void
842__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
843{
844	struct rb_node **node = &st->rb.rb_node;
845	struct rb_node *parent = NULL;
846	struct cfq_group *__cfqg;
847	s64 key = cfqg_key(st, cfqg);
848	int left = 1;
849
850	while (*node != NULL) {
851		parent = *node;
852		__cfqg = rb_entry_cfqg(parent);
853
854		if (key < cfqg_key(st, __cfqg))
855			node = &parent->rb_left;
856		else {
857			node = &parent->rb_right;
858			left = 0;
859		}
860	}
861
862	if (left)
863		st->left = &cfqg->rb_node;
864
865	rb_link_node(&cfqg->rb_node, parent, node);
866	rb_insert_color(&cfqg->rb_node, &st->rb);
867}
868
869static void
870cfq_update_group_weight(struct cfq_group *cfqg)
871{
872	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
873	if (cfqg->needs_update) {
874		cfqg->weight = cfqg->new_weight;
875		cfqg->needs_update = false;
876	}
877}
878
879static void
880cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
881{
882	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
883
884	cfq_update_group_weight(cfqg);
885	__cfq_group_service_tree_add(st, cfqg);
886	st->total_weight += cfqg->weight;
887}
888
889static void
890cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
891{
892	struct cfq_rb_root *st = &cfqd->grp_service_tree;
893	struct cfq_group *__cfqg;
894	struct rb_node *n;
895
896	cfqg->nr_cfqq++;
897	if (!RB_EMPTY_NODE(&cfqg->rb_node))
898		return;
899
900	/*
901	 * Currently put the group at the end. Later implement something
902	 * so that groups get lesser vtime based on their weights, so that
903	 * if group does not loose all if it was not continuously backlogged.
904	 */
905	n = rb_last(&st->rb);
906	if (n) {
907		__cfqg = rb_entry_cfqg(n);
908		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
909	} else
910		cfqg->vdisktime = st->min_vdisktime;
911	cfq_group_service_tree_add(st, cfqg);
912}
913
914static void
915cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
916{
917	st->total_weight -= cfqg->weight;
918	if (!RB_EMPTY_NODE(&cfqg->rb_node))
919		cfq_rb_erase(&cfqg->rb_node, st);
920}
921
922static void
923cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
924{
925	struct cfq_rb_root *st = &cfqd->grp_service_tree;
926
927	BUG_ON(cfqg->nr_cfqq < 1);
928	cfqg->nr_cfqq--;
929
930	/* If there are other cfq queues under this group, don't delete it */
931	if (cfqg->nr_cfqq)
932		return;
933
934	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
935	cfq_group_service_tree_del(st, cfqg);
936	cfqg->saved_workload_slice = 0;
937	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
938}
939
940static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
941						unsigned int *unaccounted_time)
942{
943	unsigned int slice_used;
944
945	/*
946	 * Queue got expired before even a single request completed or
947	 * got expired immediately after first request completion.
948	 */
949	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
950		/*
951		 * Also charge the seek time incurred to the group, otherwise
952		 * if there are mutiple queues in the group, each can dispatch
953		 * a single request on seeky media and cause lots of seek time
954		 * and group will never know it.
955		 */
956		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
957					1);
958	} else {
959		slice_used = jiffies - cfqq->slice_start;
960		if (slice_used > cfqq->allocated_slice) {
961			*unaccounted_time = slice_used - cfqq->allocated_slice;
962			slice_used = cfqq->allocated_slice;
963		}
964		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
965			*unaccounted_time += cfqq->slice_start -
966					cfqq->dispatch_start;
967	}
968
969	return slice_used;
970}
971
972static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
973				struct cfq_queue *cfqq)
974{
975	struct cfq_rb_root *st = &cfqd->grp_service_tree;
976	unsigned int used_sl, charge, unaccounted_sl = 0;
977	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
978			- cfqg->service_tree_idle.count;
979
980	BUG_ON(nr_sync < 0);
981	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
982
983	if (iops_mode(cfqd))
984		charge = cfqq->slice_dispatch;
985	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
986		charge = cfqq->allocated_slice;
987
988	/* Can't update vdisktime while group is on service tree */
989	cfq_group_service_tree_del(st, cfqg);
990	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
991	/* If a new weight was requested, update now, off tree */
992	cfq_group_service_tree_add(st, cfqg);
993
994	/* This group is being expired. Save the context */
995	if (time_after(cfqd->workload_expires, jiffies)) {
996		cfqg->saved_workload_slice = cfqd->workload_expires
997						- jiffies;
998		cfqg->saved_workload = cfqd->serving_type;
999		cfqg->saved_serving_prio = cfqd->serving_prio;
1000	} else
1001		cfqg->saved_workload_slice = 0;
1002
1003	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1004					st->min_vdisktime);
1005	cfq_log_cfqq(cfqq->cfqd, cfqq,
1006		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1007		     used_sl, cfqq->slice_dispatch, charge,
1008		     iops_mode(cfqd), cfqq->nr_sectors);
1009	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1010					  unaccounted_sl);
1011	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1012}
1013
1014#ifdef CONFIG_CFQ_GROUP_IOSCHED
1015static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1016{
1017	if (blkg)
1018		return container_of(blkg, struct cfq_group, blkg);
1019	return NULL;
1020}
1021
1022static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1023					  unsigned int weight)
1024{
1025	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1026	cfqg->new_weight = weight;
1027	cfqg->needs_update = true;
1028}
1029
1030static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1031			struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1032{
1033	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1034	unsigned int major, minor;
1035
1036	/*
1037	 * Add group onto cgroup list. It might happen that bdi->dev is
1038	 * not initialized yet. Initialize this new group without major
1039	 * and minor info and this info will be filled in once a new thread
1040	 * comes for IO.
1041	 */
1042	if (bdi->dev) {
1043		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1044		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1045					(void *)cfqd, MKDEV(major, minor));
1046	} else
1047		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1048					(void *)cfqd, 0);
1049
1050	cfqd->nr_blkcg_linked_grps++;
1051	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1052
1053	/* Add group on cfqd list */
1054	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1055}
1056
1057/*
1058 * Should be called from sleepable context. No request queue lock as per
1059 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1060 * from sleepable context.
1061 */
1062static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1063{
1064	struct cfq_group *cfqg = NULL;
1065	int i, j, ret;
1066	struct cfq_rb_root *st;
1067
1068	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1069	if (!cfqg)
1070		return NULL;
1071
1072	for_each_cfqg_st(cfqg, i, j, st)
1073		*st = CFQ_RB_ROOT;
1074	RB_CLEAR_NODE(&cfqg->rb_node);
1075
1076	cfqg->ttime.last_end_request = jiffies;
1077
1078	/*
1079	 * Take the initial reference that will be released on destroy
1080	 * This can be thought of a joint reference by cgroup and
1081	 * elevator which will be dropped by either elevator exit
1082	 * or cgroup deletion path depending on who is exiting first.
1083	 */
1084	cfqg->ref = 1;
1085
1086	ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1087	if (ret) {
1088		kfree(cfqg);
1089		return NULL;
1090	}
1091
1092	return cfqg;
1093}
1094
1095static struct cfq_group *
1096cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1097{
1098	struct cfq_group *cfqg = NULL;
1099	void *key = cfqd;
1100	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1101	unsigned int major, minor;
1102
1103	/*
1104	 * This is the common case when there are no blkio cgroups.
1105	 * Avoid lookup in this case
1106	 */
1107	if (blkcg == &blkio_root_cgroup)
1108		cfqg = &cfqd->root_group;
1109	else
1110		cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1111
1112	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1113		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1114		cfqg->blkg.dev = MKDEV(major, minor);
1115	}
1116
1117	return cfqg;
1118}
1119
1120/*
1121 * Search for the cfq group current task belongs to. request_queue lock must
1122 * be held.
1123 */
1124static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1125{
1126	struct blkio_cgroup *blkcg;
1127	struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1128	struct request_queue *q = cfqd->queue;
1129
1130	rcu_read_lock();
1131	blkcg = task_blkio_cgroup(current);
1132	cfqg = cfq_find_cfqg(cfqd, blkcg);
1133	if (cfqg) {
1134		rcu_read_unlock();
1135		return cfqg;
1136	}
1137
1138	/*
1139	 * Need to allocate a group. Allocation of group also needs allocation
1140	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1141	 * we need to drop rcu lock and queue_lock before we call alloc.
1142	 *
1143	 * Not taking any queue reference here and assuming that queue is
1144	 * around by the time we return. CFQ queue allocation code does
1145	 * the same. It might be racy though.
1146	 */
1147
1148	rcu_read_unlock();
1149	spin_unlock_irq(q->queue_lock);
1150
1151	cfqg = cfq_alloc_cfqg(cfqd);
1152
1153	spin_lock_irq(q->queue_lock);
1154
1155	rcu_read_lock();
1156	blkcg = task_blkio_cgroup(current);
1157
1158	/*
1159	 * If some other thread already allocated the group while we were
1160	 * not holding queue lock, free up the group
1161	 */
1162	__cfqg = cfq_find_cfqg(cfqd, blkcg);
1163
1164	if (__cfqg) {
1165		kfree(cfqg);
1166		rcu_read_unlock();
1167		return __cfqg;
1168	}
1169
1170	if (!cfqg)
1171		cfqg = &cfqd->root_group;
1172
1173	cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1174	rcu_read_unlock();
1175	return cfqg;
1176}
1177
1178static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1179{
1180	cfqg->ref++;
1181	return cfqg;
1182}
1183
1184static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1185{
1186	/* Currently, all async queues are mapped to root group */
1187	if (!cfq_cfqq_sync(cfqq))
1188		cfqg = &cfqq->cfqd->root_group;
1189
1190	cfqq->cfqg = cfqg;
1191	/* cfqq reference on cfqg */
1192	cfqq->cfqg->ref++;
1193}
1194
1195static void cfq_put_cfqg(struct cfq_group *cfqg)
1196{
1197	struct cfq_rb_root *st;
1198	int i, j;
1199
1200	BUG_ON(cfqg->ref <= 0);
1201	cfqg->ref--;
1202	if (cfqg->ref)
1203		return;
1204	for_each_cfqg_st(cfqg, i, j, st)
1205		BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1206	free_percpu(cfqg->blkg.stats_cpu);
1207	kfree(cfqg);
1208}
1209
1210static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1211{
1212	/* Something wrong if we are trying to remove same group twice */
1213	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1214
1215	hlist_del_init(&cfqg->cfqd_node);
1216
1217	BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1218	cfqd->nr_blkcg_linked_grps--;
1219
1220	/*
1221	 * Put the reference taken at the time of creation so that when all
1222	 * queues are gone, group can be destroyed.
1223	 */
1224	cfq_put_cfqg(cfqg);
1225}
1226
1227static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1228{
1229	struct hlist_node *pos, *n;
1230	struct cfq_group *cfqg;
1231
1232	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1233		/*
1234		 * If cgroup removal path got to blk_group first and removed
1235		 * it from cgroup list, then it will take care of destroying
1236		 * cfqg also.
1237		 */
1238		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1239			cfq_destroy_cfqg(cfqd, cfqg);
1240	}
1241}
1242
1243/*
1244 * Blk cgroup controller notification saying that blkio_group object is being
1245 * delinked as associated cgroup object is going away. That also means that
1246 * no new IO will come in this group. So get rid of this group as soon as
1247 * any pending IO in the group is finished.
1248 *
1249 * This function is called under rcu_read_lock(). key is the rcu protected
1250 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1251 * read lock.
1252 *
1253 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1254 * it should not be NULL as even if elevator was exiting, cgroup deltion
1255 * path got to it first.
1256 */
1257static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1258{
1259	unsigned long  flags;
1260	struct cfq_data *cfqd = key;
1261
1262	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1263	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1264	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1265}
1266
1267#else /* GROUP_IOSCHED */
1268static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1269{
1270	return &cfqd->root_group;
1271}
1272
1273static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1274{
1275	return cfqg;
1276}
1277
1278static inline void
1279cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1280	cfqq->cfqg = cfqg;
1281}
1282
1283static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1284static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1285
1286#endif /* GROUP_IOSCHED */
1287
1288/*
1289 * The cfqd->service_trees holds all pending cfq_queue's that have
1290 * requests waiting to be processed. It is sorted in the order that
1291 * we will service the queues.
1292 */
1293static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1294				 bool add_front)
1295{
1296	struct rb_node **p, *parent;
1297	struct cfq_queue *__cfqq;
1298	unsigned long rb_key;
1299	struct cfq_rb_root *service_tree;
1300	int left;
1301	int new_cfqq = 1;
1302
1303	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1304						cfqq_type(cfqq));
1305	if (cfq_class_idle(cfqq)) {
1306		rb_key = CFQ_IDLE_DELAY;
1307		parent = rb_last(&service_tree->rb);
1308		if (parent && parent != &cfqq->rb_node) {
1309			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1310			rb_key += __cfqq->rb_key;
1311		} else
1312			rb_key += jiffies;
1313	} else if (!add_front) {
1314		/*
1315		 * Get our rb key offset. Subtract any residual slice
1316		 * value carried from last service. A negative resid
1317		 * count indicates slice overrun, and this should position
1318		 * the next service time further away in the tree.
1319		 */
1320		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1321		rb_key -= cfqq->slice_resid;
1322		cfqq->slice_resid = 0;
1323	} else {
1324		rb_key = -HZ;
1325		__cfqq = cfq_rb_first(service_tree);
1326		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1327	}
1328
1329	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1330		new_cfqq = 0;
1331		/*
1332		 * same position, nothing more to do
1333		 */
1334		if (rb_key == cfqq->rb_key &&
1335		    cfqq->service_tree == service_tree)
1336			return;
1337
1338		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1339		cfqq->service_tree = NULL;
1340	}
1341
1342	left = 1;
1343	parent = NULL;
1344	cfqq->service_tree = service_tree;
1345	p = &service_tree->rb.rb_node;
1346	while (*p) {
1347		struct rb_node **n;
1348
1349		parent = *p;
1350		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1351
1352		/*
1353		 * sort by key, that represents service time.
1354		 */
1355		if (time_before(rb_key, __cfqq->rb_key))
1356			n = &(*p)->rb_left;
1357		else {
1358			n = &(*p)->rb_right;
1359			left = 0;
1360		}
1361
1362		p = n;
1363	}
1364
1365	if (left)
1366		service_tree->left = &cfqq->rb_node;
1367
1368	cfqq->rb_key = rb_key;
1369	rb_link_node(&cfqq->rb_node, parent, p);
1370	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1371	service_tree->count++;
1372	if (add_front || !new_cfqq)
1373		return;
1374	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1375}
1376
1377static struct cfq_queue *
1378cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1379		     sector_t sector, struct rb_node **ret_parent,
1380		     struct rb_node ***rb_link)
1381{
1382	struct rb_node **p, *parent;
1383	struct cfq_queue *cfqq = NULL;
1384
1385	parent = NULL;
1386	p = &root->rb_node;
1387	while (*p) {
1388		struct rb_node **n;
1389
1390		parent = *p;
1391		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1392
1393		/*
1394		 * Sort strictly based on sector.  Smallest to the left,
1395		 * largest to the right.
1396		 */
1397		if (sector > blk_rq_pos(cfqq->next_rq))
1398			n = &(*p)->rb_right;
1399		else if (sector < blk_rq_pos(cfqq->next_rq))
1400			n = &(*p)->rb_left;
1401		else
1402			break;
1403		p = n;
1404		cfqq = NULL;
1405	}
1406
1407	*ret_parent = parent;
1408	if (rb_link)
1409		*rb_link = p;
1410	return cfqq;
1411}
1412
1413static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1414{
1415	struct rb_node **p, *parent;
1416	struct cfq_queue *__cfqq;
1417
1418	if (cfqq->p_root) {
1419		rb_erase(&cfqq->p_node, cfqq->p_root);
1420		cfqq->p_root = NULL;
1421	}
1422
1423	if (cfq_class_idle(cfqq))
1424		return;
1425	if (!cfqq->next_rq)
1426		return;
1427
1428	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1429	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1430				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1431	if (!__cfqq) {
1432		rb_link_node(&cfqq->p_node, parent, p);
1433		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1434	} else
1435		cfqq->p_root = NULL;
1436}
1437
1438/*
1439 * Update cfqq's position in the service tree.
1440 */
1441static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1442{
1443	/*
1444	 * Resorting requires the cfqq to be on the RR list already.
1445	 */
1446	if (cfq_cfqq_on_rr(cfqq)) {
1447		cfq_service_tree_add(cfqd, cfqq, 0);
1448		cfq_prio_tree_add(cfqd, cfqq);
1449	}
1450}
1451
1452/*
1453 * add to busy list of queues for service, trying to be fair in ordering
1454 * the pending list according to last request service
1455 */
1456static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1457{
1458	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1459	BUG_ON(cfq_cfqq_on_rr(cfqq));
1460	cfq_mark_cfqq_on_rr(cfqq);
1461	cfqd->busy_queues++;
1462	if (cfq_cfqq_sync(cfqq))
1463		cfqd->busy_sync_queues++;
1464
1465	cfq_resort_rr_list(cfqd, cfqq);
1466}
1467
1468/*
1469 * Called when the cfqq no longer has requests pending, remove it from
1470 * the service tree.
1471 */
1472static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1473{
1474	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1475	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1476	cfq_clear_cfqq_on_rr(cfqq);
1477
1478	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1479		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1480		cfqq->service_tree = NULL;
1481	}
1482	if (cfqq->p_root) {
1483		rb_erase(&cfqq->p_node, cfqq->p_root);
1484		cfqq->p_root = NULL;
1485	}
1486
1487	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1488	BUG_ON(!cfqd->busy_queues);
1489	cfqd->busy_queues--;
1490	if (cfq_cfqq_sync(cfqq))
1491		cfqd->busy_sync_queues--;
1492}
1493
1494/*
1495 * rb tree support functions
1496 */
1497static void cfq_del_rq_rb(struct request *rq)
1498{
1499	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1500	const int sync = rq_is_sync(rq);
1501
1502	BUG_ON(!cfqq->queued[sync]);
1503	cfqq->queued[sync]--;
1504
1505	elv_rb_del(&cfqq->sort_list, rq);
1506
1507	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1508		/*
1509		 * Queue will be deleted from service tree when we actually
1510		 * expire it later. Right now just remove it from prio tree
1511		 * as it is empty.
1512		 */
1513		if (cfqq->p_root) {
1514			rb_erase(&cfqq->p_node, cfqq->p_root);
1515			cfqq->p_root = NULL;
1516		}
1517	}
1518}
1519
1520static void cfq_add_rq_rb(struct request *rq)
1521{
1522	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1523	struct cfq_data *cfqd = cfqq->cfqd;
1524	struct request *prev;
1525
1526	cfqq->queued[rq_is_sync(rq)]++;
1527
1528	elv_rb_add(&cfqq->sort_list, rq);
1529
1530	if (!cfq_cfqq_on_rr(cfqq))
1531		cfq_add_cfqq_rr(cfqd, cfqq);
1532
1533	/*
1534	 * check if this request is a better next-serve candidate
1535	 */
1536	prev = cfqq->next_rq;
1537	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1538
1539	/*
1540	 * adjust priority tree position, if ->next_rq changes
1541	 */
1542	if (prev != cfqq->next_rq)
1543		cfq_prio_tree_add(cfqd, cfqq);
1544
1545	BUG_ON(!cfqq->next_rq);
1546}
1547
1548static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1549{
1550	elv_rb_del(&cfqq->sort_list, rq);
1551	cfqq->queued[rq_is_sync(rq)]--;
1552	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1553					rq_data_dir(rq), rq_is_sync(rq));
1554	cfq_add_rq_rb(rq);
1555	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1556			&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1557			rq_is_sync(rq));
1558}
1559
1560static struct request *
1561cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1562{
1563	struct task_struct *tsk = current;
1564	struct cfq_io_context *cic;
1565	struct cfq_queue *cfqq;
1566
1567	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1568	if (!cic)
1569		return NULL;
1570
1571	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1572	if (cfqq) {
1573		sector_t sector = bio->bi_sector + bio_sectors(bio);
1574
1575		return elv_rb_find(&cfqq->sort_list, sector);
1576	}
1577
1578	return NULL;
1579}
1580
1581static void cfq_activate_request(struct request_queue *q, struct request *rq)
1582{
1583	struct cfq_data *cfqd = q->elevator->elevator_data;
1584
1585	cfqd->rq_in_driver++;
1586	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1587						cfqd->rq_in_driver);
1588
1589	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1590}
1591
1592static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1593{
1594	struct cfq_data *cfqd = q->elevator->elevator_data;
1595
1596	WARN_ON(!cfqd->rq_in_driver);
1597	cfqd->rq_in_driver--;
1598	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1599						cfqd->rq_in_driver);
1600}
1601
1602static void cfq_remove_request(struct request *rq)
1603{
1604	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1605
1606	if (cfqq->next_rq == rq)
1607		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1608
1609	list_del_init(&rq->queuelist);
1610	cfq_del_rq_rb(rq);
1611
1612	cfqq->cfqd->rq_queued--;
1613	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1614					rq_data_dir(rq), rq_is_sync(rq));
1615	if (rq->cmd_flags & REQ_PRIO) {
1616		WARN_ON(!cfqq->prio_pending);
1617		cfqq->prio_pending--;
1618	}
1619}
1620
1621static int cfq_merge(struct request_queue *q, struct request **req,
1622		     struct bio *bio)
1623{
1624	struct cfq_data *cfqd = q->elevator->elevator_data;
1625	struct request *__rq;
1626
1627	__rq = cfq_find_rq_fmerge(cfqd, bio);
1628	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1629		*req = __rq;
1630		return ELEVATOR_FRONT_MERGE;
1631	}
1632
1633	return ELEVATOR_NO_MERGE;
1634}
1635
1636static void cfq_merged_request(struct request_queue *q, struct request *req,
1637			       int type)
1638{
1639	if (type == ELEVATOR_FRONT_MERGE) {
1640		struct cfq_queue *cfqq = RQ_CFQQ(req);
1641
1642		cfq_reposition_rq_rb(cfqq, req);
1643	}
1644}
1645
1646static void cfq_bio_merged(struct request_queue *q, struct request *req,
1647				struct bio *bio)
1648{
1649	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1650					bio_data_dir(bio), cfq_bio_sync(bio));
1651}
1652
1653static void
1654cfq_merged_requests(struct request_queue *q, struct request *rq,
1655		    struct request *next)
1656{
1657	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1658	/*
1659	 * reposition in fifo if next is older than rq
1660	 */
1661	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1662	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1663		list_move(&rq->queuelist, &next->queuelist);
1664		rq_set_fifo_time(rq, rq_fifo_time(next));
1665	}
1666
1667	if (cfqq->next_rq == next)
1668		cfqq->next_rq = rq;
1669	cfq_remove_request(next);
1670	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1671					rq_data_dir(next), rq_is_sync(next));
1672}
1673
1674static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1675			   struct bio *bio)
1676{
1677	struct cfq_data *cfqd = q->elevator->elevator_data;
1678	struct cfq_io_context *cic;
1679	struct cfq_queue *cfqq;
1680
1681	/*
1682	 * Disallow merge of a sync bio into an async request.
1683	 */
1684	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1685		return false;
1686
1687	/*
1688	 * Lookup the cfqq that this bio will be queued with. Allow
1689	 * merge only if rq is queued there.
1690	 */
1691	cic = cfq_cic_lookup(cfqd, current->io_context);
1692	if (!cic)
1693		return false;
1694
1695	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1696	return cfqq == RQ_CFQQ(rq);
1697}
1698
1699static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1700{
1701	del_timer(&cfqd->idle_slice_timer);
1702	cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1703}
1704
1705static void __cfq_set_active_queue(struct cfq_data *cfqd,
1706				   struct cfq_queue *cfqq)
1707{
1708	if (cfqq) {
1709		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1710				cfqd->serving_prio, cfqd->serving_type);
1711		cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1712		cfqq->slice_start = 0;
1713		cfqq->dispatch_start = jiffies;
1714		cfqq->allocated_slice = 0;
1715		cfqq->slice_end = 0;
1716		cfqq->slice_dispatch = 0;
1717		cfqq->nr_sectors = 0;
1718
1719		cfq_clear_cfqq_wait_request(cfqq);
1720		cfq_clear_cfqq_must_dispatch(cfqq);
1721		cfq_clear_cfqq_must_alloc_slice(cfqq);
1722		cfq_clear_cfqq_fifo_expire(cfqq);
1723		cfq_mark_cfqq_slice_new(cfqq);
1724
1725		cfq_del_timer(cfqd, cfqq);
1726	}
1727
1728	cfqd->active_queue = cfqq;
1729}
1730
1731/*
1732 * current cfqq expired its slice (or was too idle), select new one
1733 */
1734static void
1735__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1736		    bool timed_out)
1737{
1738	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1739
1740	if (cfq_cfqq_wait_request(cfqq))
1741		cfq_del_timer(cfqd, cfqq);
1742
1743	cfq_clear_cfqq_wait_request(cfqq);
1744	cfq_clear_cfqq_wait_busy(cfqq);
1745
1746	/*
1747	 * If this cfqq is shared between multiple processes, check to
1748	 * make sure that those processes are still issuing I/Os within
1749	 * the mean seek distance.  If not, it may be time to break the
1750	 * queues apart again.
1751	 */
1752	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1753		cfq_mark_cfqq_split_coop(cfqq);
1754
1755	/*
1756	 * store what was left of this slice, if the queue idled/timed out
1757	 */
1758	if (timed_out) {
1759		if (cfq_cfqq_slice_new(cfqq))
1760			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1761		else
1762			cfqq->slice_resid = cfqq->slice_end - jiffies;
1763		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1764	}
1765
1766	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1767
1768	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1769		cfq_del_cfqq_rr(cfqd, cfqq);
1770
1771	cfq_resort_rr_list(cfqd, cfqq);
1772
1773	if (cfqq == cfqd->active_queue)
1774		cfqd->active_queue = NULL;
1775
1776	if (cfqd->active_cic) {
1777		put_io_context(cfqd->active_cic->ioc);
1778		cfqd->active_cic = NULL;
1779	}
1780}
1781
1782static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1783{
1784	struct cfq_queue *cfqq = cfqd->active_queue;
1785
1786	if (cfqq)
1787		__cfq_slice_expired(cfqd, cfqq, timed_out);
1788}
1789
1790/*
1791 * Get next queue for service. Unless we have a queue preemption,
1792 * we'll simply select the first cfqq in the service tree.
1793 */
1794static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1795{
1796	struct cfq_rb_root *service_tree =
1797		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1798					cfqd->serving_type);
1799
1800	if (!cfqd->rq_queued)
1801		return NULL;
1802
1803	/* There is nothing to dispatch */
1804	if (!service_tree)
1805		return NULL;
1806	if (RB_EMPTY_ROOT(&service_tree->rb))
1807		return NULL;
1808	return cfq_rb_first(service_tree);
1809}
1810
1811static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1812{
1813	struct cfq_group *cfqg;
1814	struct cfq_queue *cfqq;
1815	int i, j;
1816	struct cfq_rb_root *st;
1817
1818	if (!cfqd->rq_queued)
1819		return NULL;
1820
1821	cfqg = cfq_get_next_cfqg(cfqd);
1822	if (!cfqg)
1823		return NULL;
1824
1825	for_each_cfqg_st(cfqg, i, j, st)
1826		if ((cfqq = cfq_rb_first(st)) != NULL)
1827			return cfqq;
1828	return NULL;
1829}
1830
1831/*
1832 * Get and set a new active queue for service.
1833 */
1834static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1835					      struct cfq_queue *cfqq)
1836{
1837	if (!cfqq)
1838		cfqq = cfq_get_next_queue(cfqd);
1839
1840	__cfq_set_active_queue(cfqd, cfqq);
1841	return cfqq;
1842}
1843
1844static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1845					  struct request *rq)
1846{
1847	if (blk_rq_pos(rq) >= cfqd->last_position)
1848		return blk_rq_pos(rq) - cfqd->last_position;
1849	else
1850		return cfqd->last_position - blk_rq_pos(rq);
1851}
1852
1853static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1854			       struct request *rq)
1855{
1856	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1857}
1858
1859static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1860				    struct cfq_queue *cur_cfqq)
1861{
1862	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1863	struct rb_node *parent, *node;
1864	struct cfq_queue *__cfqq;
1865	sector_t sector = cfqd->last_position;
1866
1867	if (RB_EMPTY_ROOT(root))
1868		return NULL;
1869
1870	/*
1871	 * First, if we find a request starting at the end of the last
1872	 * request, choose it.
1873	 */
1874	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1875	if (__cfqq)
1876		return __cfqq;
1877
1878	/*
1879	 * If the exact sector wasn't found, the parent of the NULL leaf
1880	 * will contain the closest sector.
1881	 */
1882	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1883	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1884		return __cfqq;
1885
1886	if (blk_rq_pos(__cfqq->next_rq) < sector)
1887		node = rb_next(&__cfqq->p_node);
1888	else
1889		node = rb_prev(&__cfqq->p_node);
1890	if (!node)
1891		return NULL;
1892
1893	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1894	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1895		return __cfqq;
1896
1897	return NULL;
1898}
1899
1900/*
1901 * cfqd - obvious
1902 * cur_cfqq - passed in so that we don't decide that the current queue is
1903 * 	      closely cooperating with itself.
1904 *
1905 * So, basically we're assuming that that cur_cfqq has dispatched at least
1906 * one request, and that cfqd->last_position reflects a position on the disk
1907 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1908 * assumption.
1909 */
1910static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1911					      struct cfq_queue *cur_cfqq)
1912{
1913	struct cfq_queue *cfqq;
1914
1915	if (cfq_class_idle(cur_cfqq))
1916		return NULL;
1917	if (!cfq_cfqq_sync(cur_cfqq))
1918		return NULL;
1919	if (CFQQ_SEEKY(cur_cfqq))
1920		return NULL;
1921
1922	/*
1923	 * Don't search priority tree if it's the only queue in the group.
1924	 */
1925	if (cur_cfqq->cfqg->nr_cfqq == 1)
1926		return NULL;
1927
1928	/*
1929	 * We should notice if some of the queues are cooperating, eg
1930	 * working closely on the same area of the disk. In that case,
1931	 * we can group them together and don't waste time idling.
1932	 */
1933	cfqq = cfqq_close(cfqd, cur_cfqq);
1934	if (!cfqq)
1935		return NULL;
1936
1937	/* If new queue belongs to different cfq_group, don't choose it */
1938	if (cur_cfqq->cfqg != cfqq->cfqg)
1939		return NULL;
1940
1941	/*
1942	 * It only makes sense to merge sync queues.
1943	 */
1944	if (!cfq_cfqq_sync(cfqq))
1945		return NULL;
1946	if (CFQQ_SEEKY(cfqq))
1947		return NULL;
1948
1949	/*
1950	 * Do not merge queues of different priority classes
1951	 */
1952	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1953		return NULL;
1954
1955	return cfqq;
1956}
1957
1958/*
1959 * Determine whether we should enforce idle window for this queue.
1960 */
1961
1962static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1963{
1964	enum wl_prio_t prio = cfqq_prio(cfqq);
1965	struct cfq_rb_root *service_tree = cfqq->service_tree;
1966
1967	BUG_ON(!service_tree);
1968	BUG_ON(!service_tree->count);
1969
1970	if (!cfqd->cfq_slice_idle)
1971		return false;
1972
1973	/* We never do for idle class queues. */
1974	if (prio == IDLE_WORKLOAD)
1975		return false;
1976
1977	/* We do for queues that were marked with idle window flag. */
1978	if (cfq_cfqq_idle_window(cfqq) &&
1979	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1980		return true;
1981
1982	/*
1983	 * Otherwise, we do only if they are the last ones
1984	 * in their service tree.
1985	 */
1986	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1987	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1988		return true;
1989	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1990			service_tree->count);
1991	return false;
1992}
1993
1994static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1995{
1996	struct cfq_queue *cfqq = cfqd->active_queue;
1997	struct cfq_io_context *cic;
1998	unsigned long sl, group_idle = 0;
1999
2000	/*
2001	 * SSD device without seek penalty, disable idling. But only do so
2002	 * for devices that support queuing, otherwise we still have a problem
2003	 * with sync vs async workloads.
2004	 */
2005	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2006		return;
2007
2008	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2009	WARN_ON(cfq_cfqq_slice_new(cfqq));
2010
2011	/*
2012	 * idle is disabled, either manually or by past process history
2013	 */
2014	if (!cfq_should_idle(cfqd, cfqq)) {
2015		/* no queue idling. Check for group idling */
2016		if (cfqd->cfq_group_idle)
2017			group_idle = cfqd->cfq_group_idle;
2018		else
2019			return;
2020	}
2021
2022	/*
2023	 * still active requests from this queue, don't idle
2024	 */
2025	if (cfqq->dispatched)
2026		return;
2027
2028	/*
2029	 * task has exited, don't wait
2030	 */
2031	cic = cfqd->active_cic;
2032	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2033		return;
2034
2035	/*
2036	 * If our average think time is larger than the remaining time
2037	 * slice, then don't idle. This avoids overrunning the allotted
2038	 * time slice.
2039	 */
2040	if (sample_valid(cic->ttime.ttime_samples) &&
2041	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2042		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2043			     cic->ttime.ttime_mean);
2044		return;
2045	}
2046
2047	/* There are other queues in the group, don't do group idle */
2048	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2049		return;
2050
2051	cfq_mark_cfqq_wait_request(cfqq);
2052
2053	if (group_idle)
2054		sl = cfqd->cfq_group_idle;
2055	else
2056		sl = cfqd->cfq_slice_idle;
2057
2058	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2059	cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2060	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2061			group_idle ? 1 : 0);
2062}
2063
2064/*
2065 * Move request from internal lists to the request queue dispatch list.
2066 */
2067static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2068{
2069	struct cfq_data *cfqd = q->elevator->elevator_data;
2070	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2071
2072	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2073
2074	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2075	cfq_remove_request(rq);
2076	cfqq->dispatched++;
2077	(RQ_CFQG(rq))->dispatched++;
2078	elv_dispatch_sort(q, rq);
2079
2080	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2081	cfqq->nr_sectors += blk_rq_sectors(rq);
2082	cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2083					rq_data_dir(rq), rq_is_sync(rq));
2084}
2085
2086/*
2087 * return expired entry, or NULL to just start from scratch in rbtree
2088 */
2089static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2090{
2091	struct request *rq = NULL;
2092
2093	if (cfq_cfqq_fifo_expire(cfqq))
2094		return NULL;
2095
2096	cfq_mark_cfqq_fifo_expire(cfqq);
2097
2098	if (list_empty(&cfqq->fifo))
2099		return NULL;
2100
2101	rq = rq_entry_fifo(cfqq->fifo.next);
2102	if (time_before(jiffies, rq_fifo_time(rq)))
2103		rq = NULL;
2104
2105	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2106	return rq;
2107}
2108
2109static inline int
2110cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2111{
2112	const int base_rq = cfqd->cfq_slice_async_rq;
2113
2114	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2115
2116	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2117}
2118
2119/*
2120 * Must be called with the queue_lock held.
2121 */
2122static int cfqq_process_refs(struct cfq_queue *cfqq)
2123{
2124	int process_refs, io_refs;
2125
2126	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2127	process_refs = cfqq->ref - io_refs;
2128	BUG_ON(process_refs < 0);
2129	return process_refs;
2130}
2131
2132static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2133{
2134	int process_refs, new_process_refs;
2135	struct cfq_queue *__cfqq;
2136
2137	/*
2138	 * If there are no process references on the new_cfqq, then it is
2139	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2140	 * chain may have dropped their last reference (not just their
2141	 * last process reference).
2142	 */
2143	if (!cfqq_process_refs(new_cfqq))
2144		return;
2145
2146	/* Avoid a circular list and skip interim queue merges */
2147	while ((__cfqq = new_cfqq->new_cfqq)) {
2148		if (__cfqq == cfqq)
2149			return;
2150		new_cfqq = __cfqq;
2151	}
2152
2153	process_refs = cfqq_process_refs(cfqq);
2154	new_process_refs = cfqq_process_refs(new_cfqq);
2155	/*
2156	 * If the process for the cfqq has gone away, there is no
2157	 * sense in merging the queues.
2158	 */
2159	if (process_refs == 0 || new_process_refs == 0)
2160		return;
2161
2162	/*
2163	 * Merge in the direction of the lesser amount of work.
2164	 */
2165	if (new_process_refs >= process_refs) {
2166		cfqq->new_cfqq = new_cfqq;
2167		new_cfqq->ref += process_refs;
2168	} else {
2169		new_cfqq->new_cfqq = cfqq;
2170		cfqq->ref += new_process_refs;
2171	}
2172}
2173
2174static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2175				struct cfq_group *cfqg, enum wl_prio_t prio)
2176{
2177	struct cfq_queue *queue;
2178	int i;
2179	bool key_valid = false;
2180	unsigned long lowest_key = 0;
2181	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2182
2183	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2184		/* select the one with lowest rb_key */
2185		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2186		if (queue &&
2187		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2188			lowest_key = queue->rb_key;
2189			cur_best = i;
2190			key_valid = true;
2191		}
2192	}
2193
2194	return cur_best;
2195}
2196
2197static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2198{
2199	unsigned slice;
2200	unsigned count;
2201	struct cfq_rb_root *st;
2202	unsigned group_slice;
2203	enum wl_prio_t original_prio = cfqd->serving_prio;
2204
2205	/* Choose next priority. RT > BE > IDLE */
2206	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2207		cfqd->serving_prio = RT_WORKLOAD;
2208	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2209		cfqd->serving_prio = BE_WORKLOAD;
2210	else {
2211		cfqd->serving_prio = IDLE_WORKLOAD;
2212		cfqd->workload_expires = jiffies + 1;
2213		return;
2214	}
2215
2216	if (original_prio != cfqd->serving_prio)
2217		goto new_workload;
2218
2219	/*
2220	 * For RT and BE, we have to choose also the type
2221	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2222	 * expiration time
2223	 */
2224	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2225	count = st->count;
2226
2227	/*
2228	 * check workload expiration, and that we still have other queues ready
2229	 */
2230	if (count && !time_after(jiffies, cfqd->workload_expires))
2231		return;
2232
2233new_workload:
2234	/* otherwise select new workload type */
2235	cfqd->serving_type =
2236		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2237	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2238	count = st->count;
2239
2240	/*
2241	 * the workload slice is computed as a fraction of target latency
2242	 * proportional to the number of queues in that workload, over
2243	 * all the queues in the same priority class
2244	 */
2245	group_slice = cfq_group_slice(cfqd, cfqg);
2246
2247	slice = group_slice * count /
2248		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2249		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2250
2251	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2252		unsigned int tmp;
2253
2254		/*
2255		 * Async queues are currently system wide. Just taking
2256		 * proportion of queues with-in same group will lead to higher
2257		 * async ratio system wide as generally root group is going
2258		 * to have higher weight. A more accurate thing would be to
2259		 * calculate system wide asnc/sync ratio.
2260		 */
2261		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2262		tmp = tmp/cfqd->busy_queues;
2263		slice = min_t(unsigned, slice, tmp);
2264
2265		/* async workload slice is scaled down according to
2266		 * the sync/async slice ratio. */
2267		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2268	} else
2269		/* sync workload slice is at least 2 * cfq_slice_idle */
2270		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2271
2272	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2273	cfq_log(cfqd, "workload slice:%d", slice);
2274	cfqd->workload_expires = jiffies + slice;
2275}
2276
2277static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2278{
2279	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2280	struct cfq_group *cfqg;
2281
2282	if (RB_EMPTY_ROOT(&st->rb))
2283		return NULL;
2284	cfqg = cfq_rb_first_group(st);
2285	update_min_vdisktime(st);
2286	return cfqg;
2287}
2288
2289static void cfq_choose_cfqg(struct cfq_data *cfqd)
2290{
2291	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2292
2293	cfqd->serving_group = cfqg;
2294
2295	/* Restore the workload type data */
2296	if (cfqg->saved_workload_slice) {
2297		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2298		cfqd->serving_type = cfqg->saved_workload;
2299		cfqd->serving_prio = cfqg->saved_serving_prio;
2300	} else
2301		cfqd->workload_expires = jiffies - 1;
2302
2303	choose_service_tree(cfqd, cfqg);
2304}
2305
2306/*
2307 * Select a queue for service. If we have a current active queue,
2308 * check whether to continue servicing it, or retrieve and set a new one.
2309 */
2310static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2311{
2312	struct cfq_queue *cfqq, *new_cfqq = NULL;
2313
2314	cfqq = cfqd->active_queue;
2315	if (!cfqq)
2316		goto new_queue;
2317
2318	if (!cfqd->rq_queued)
2319		return NULL;
2320
2321	/*
2322	 * We were waiting for group to get backlogged. Expire the queue
2323	 */
2324	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2325		goto expire;
2326
2327	/*
2328	 * The active queue has run out of time, expire it and select new.
2329	 */
2330	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2331		/*
2332		 * If slice had not expired at the completion of last request
2333		 * we might not have turned on wait_busy flag. Don't expire
2334		 * the queue yet. Allow the group to get backlogged.
2335		 *
2336		 * The very fact that we have used the slice, that means we
2337		 * have been idling all along on this queue and it should be
2338		 * ok to wait for this request to complete.
2339		 */
2340		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2341		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2342			cfqq = NULL;
2343			goto keep_queue;
2344		} else
2345			goto check_group_idle;
2346	}
2347
2348	/*
2349	 * The active queue has requests and isn't expired, allow it to
2350	 * dispatch.
2351	 */
2352	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2353		goto keep_queue;
2354
2355	/*
2356	 * If another queue has a request waiting within our mean seek
2357	 * distance, let it run.  The expire code will check for close
2358	 * cooperators and put the close queue at the front of the service
2359	 * tree.  If possible, merge the expiring queue with the new cfqq.
2360	 */
2361	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2362	if (new_cfqq) {
2363		if (!cfqq->new_cfqq)
2364			cfq_setup_merge(cfqq, new_cfqq);
2365		goto expire;
2366	}
2367
2368	/*
2369	 * No requests pending. If the active queue still has requests in
2370	 * flight or is idling for a new request, allow either of these
2371	 * conditions to happen (or time out) before selecting a new queue.
2372	 */
2373	if (timer_pending(&cfqd->idle_slice_timer)) {
2374		cfqq = NULL;
2375		goto keep_queue;
2376	}
2377
2378	/*
2379	 * This is a deep seek queue, but the device is much faster than
2380	 * the queue can deliver, don't idle
2381	 **/
2382	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2383	    (cfq_cfqq_slice_new(cfqq) ||
2384	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2385		cfq_clear_cfqq_deep(cfqq);
2386		cfq_clear_cfqq_idle_window(cfqq);
2387	}
2388
2389	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2390		cfqq = NULL;
2391		goto keep_queue;
2392	}
2393
2394	/*
2395	 * If group idle is enabled and there are requests dispatched from
2396	 * this group, wait for requests to complete.
2397	 */
2398check_group_idle:
2399	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2400	    cfqq->cfqg->dispatched &&
2401	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2402		cfqq = NULL;
2403		goto keep_queue;
2404	}
2405
2406expire:
2407	cfq_slice_expired(cfqd, 0);
2408new_queue:
2409	/*
2410	 * Current queue expired. Check if we have to switch to a new
2411	 * service tree
2412	 */
2413	if (!new_cfqq)
2414		cfq_choose_cfqg(cfqd);
2415
2416	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2417keep_queue:
2418	return cfqq;
2419}
2420
2421static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2422{
2423	int dispatched = 0;
2424
2425	while (cfqq->next_rq) {
2426		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2427		dispatched++;
2428	}
2429
2430	BUG_ON(!list_empty(&cfqq->fifo));
2431
2432	/* By default cfqq is not expired if it is empty. Do it explicitly */
2433	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2434	return dispatched;
2435}
2436
2437/*
2438 * Drain our current requests. Used for barriers and when switching
2439 * io schedulers on-the-fly.
2440 */
2441static int cfq_forced_dispatch(struct cfq_data *cfqd)
2442{
2443	struct cfq_queue *cfqq;
2444	int dispatched = 0;
2445
2446	/* Expire the timeslice of the current active queue first */
2447	cfq_slice_expired(cfqd, 0);
2448	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2449		__cfq_set_active_queue(cfqd, cfqq);
2450		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2451	}
2452
2453	BUG_ON(cfqd->busy_queues);
2454
2455	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2456	return dispatched;
2457}
2458
2459static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2460	struct cfq_queue *cfqq)
2461{
2462	/* the queue hasn't finished any request, can't estimate */
2463	if (cfq_cfqq_slice_new(cfqq))
2464		return true;
2465	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2466		cfqq->slice_end))
2467		return true;
2468
2469	return false;
2470}
2471
2472static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2473{
2474	unsigned int max_dispatch;
2475
2476	/*
2477	 * Drain async requests before we start sync IO
2478	 */
2479	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2480		return false;
2481
2482	/*
2483	 * If this is an async queue and we have sync IO in flight, let it wait
2484	 */
2485	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2486		return false;
2487
2488	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2489	if (cfq_class_idle(cfqq))
2490		max_dispatch = 1;
2491
2492	/*
2493	 * Does this cfqq already have too much IO in flight?
2494	 */
2495	if (cfqq->dispatched >= max_dispatch) {
2496		bool promote_sync = false;
2497		/*
2498		 * idle queue must always only have a single IO in flight
2499		 */
2500		if (cfq_class_idle(cfqq))
2501			return false;
2502
2503		/*
2504		 * If there is only one sync queue
2505		 * we can ignore async queue here and give the sync
2506		 * queue no dispatch limit. The reason is a sync queue can
2507		 * preempt async queue, limiting the sync queue doesn't make
2508		 * sense. This is useful for aiostress test.
2509		 */
2510		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2511			promote_sync = true;
2512
2513		/*
2514		 * We have other queues, don't allow more IO from this one
2515		 */
2516		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2517				!promote_sync)
2518			return false;
2519
2520		/*
2521		 * Sole queue user, no limit
2522		 */
2523		if (cfqd->busy_queues == 1 || promote_sync)
2524			max_dispatch = -1;
2525		else
2526			/*
2527			 * Normally we start throttling cfqq when cfq_quantum/2
2528			 * requests have been dispatched. But we can drive
2529			 * deeper queue depths at the beginning of slice
2530			 * subjected to upper limit of cfq_quantum.
2531			 * */
2532			max_dispatch = cfqd->cfq_quantum;
2533	}
2534
2535	/*
2536	 * Async queues must wait a bit before being allowed dispatch.
2537	 * We also ramp up the dispatch depth gradually for async IO,
2538	 * based on the last sync IO we serviced
2539	 */
2540	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2541		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2542		unsigned int depth;
2543
2544		depth = last_sync / cfqd->cfq_slice[1];
2545		if (!depth && !cfqq->dispatched)
2546			depth = 1;
2547		if (depth < max_dispatch)
2548			max_dispatch = depth;
2549	}
2550
2551	/*
2552	 * If we're below the current max, allow a dispatch
2553	 */
2554	return cfqq->dispatched < max_dispatch;
2555}
2556
2557/*
2558 * Dispatch a request from cfqq, moving them to the request queue
2559 * dispatch list.
2560 */
2561static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2562{
2563	struct request *rq;
2564
2565	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2566
2567	if (!cfq_may_dispatch(cfqd, cfqq))
2568		return false;
2569
2570	/*
2571	 * follow expired path, else get first next available
2572	 */
2573	rq = cfq_check_fifo(cfqq);
2574	if (!rq)
2575		rq = cfqq->next_rq;
2576
2577	/*
2578	 * insert request into driver dispatch list
2579	 */
2580	cfq_dispatch_insert(cfqd->queue, rq);
2581
2582	if (!cfqd->active_cic) {
2583		struct cfq_io_context *cic = RQ_CIC(rq);
2584
2585		atomic_long_inc(&cic->ioc->refcount);
2586		cfqd->active_cic = cic;
2587	}
2588
2589	return true;
2590}
2591
2592/*
2593 * Find the cfqq that we need to service and move a request from that to the
2594 * dispatch list
2595 */
2596static int cfq_dispatch_requests(struct request_queue *q, int force)
2597{
2598	struct cfq_data *cfqd = q->elevator->elevator_data;
2599	struct cfq_queue *cfqq;
2600
2601	if (!cfqd->busy_queues)
2602		return 0;
2603
2604	if (unlikely(force))
2605		return cfq_forced_dispatch(cfqd);
2606
2607	cfqq = cfq_select_queue(cfqd);
2608	if (!cfqq)
2609		return 0;
2610
2611	/*
2612	 * Dispatch a request from this cfqq, if it is allowed
2613	 */
2614	if (!cfq_dispatch_request(cfqd, cfqq))
2615		return 0;
2616
2617	cfqq->slice_dispatch++;
2618	cfq_clear_cfqq_must_dispatch(cfqq);
2619
2620	/*
2621	 * expire an async queue immediately if it has used up its slice. idle
2622	 * queue always expire after 1 dispatch round.
2623	 */
2624	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2625	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2626	    cfq_class_idle(cfqq))) {
2627		cfqq->slice_end = jiffies + 1;
2628		cfq_slice_expired(cfqd, 0);
2629	}
2630
2631	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2632	return 1;
2633}
2634
2635/*
2636 * task holds one reference to the queue, dropped when task exits. each rq
2637 * in-flight on this queue also holds a reference, dropped when rq is freed.
2638 *
2639 * Each cfq queue took a reference on the parent group. Drop it now.
2640 * queue lock must be held here.
2641 */
2642static void cfq_put_queue(struct cfq_queue *cfqq)
2643{
2644	struct cfq_data *cfqd = cfqq->cfqd;
2645	struct cfq_group *cfqg;
2646
2647	BUG_ON(cfqq->ref <= 0);
2648
2649	cfqq->ref--;
2650	if (cfqq->ref)
2651		return;
2652
2653	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2654	BUG_ON(rb_first(&cfqq->sort_list));
2655	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2656	cfqg = cfqq->cfqg;
2657
2658	if (unlikely(cfqd->active_queue == cfqq)) {
2659		__cfq_slice_expired(cfqd, cfqq, 0);
2660		cfq_schedule_dispatch(cfqd);
2661	}
2662
2663	BUG_ON(cfq_cfqq_on_rr(cfqq));
2664	kmem_cache_free(cfq_pool, cfqq);
2665	cfq_put_cfqg(cfqg);
2666}
2667
2668/*
2669 * Call func for each cic attached to this ioc.
2670 */
2671static void
2672call_for_each_cic(struct io_context *ioc,
2673		  void (*func)(struct io_context *, struct cfq_io_context *))
2674{
2675	struct cfq_io_context *cic;
2676	struct hlist_node *n;
2677
2678	rcu_read_lock();
2679
2680	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2681		func(ioc, cic);
2682
2683	rcu_read_unlock();
2684}
2685
2686static void cfq_cic_free_rcu(struct rcu_head *head)
2687{
2688	struct cfq_io_context *cic;
2689
2690	cic = container_of(head, struct cfq_io_context, rcu_head);
2691
2692	kmem_cache_free(cfq_ioc_pool, cic);
2693	elv_ioc_count_dec(cfq_ioc_count);
2694
2695	if (ioc_gone) {
2696		/*
2697		 * CFQ scheduler is exiting, grab exit lock and check
2698		 * the pending io context count. If it hits zero,
2699		 * complete ioc_gone and set it back to NULL
2700		 */
2701		spin_lock(&ioc_gone_lock);
2702		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2703			complete(ioc_gone);
2704			ioc_gone = NULL;
2705		}
2706		spin_unlock(&ioc_gone_lock);
2707	}
2708}
2709
2710static void cfq_cic_free(struct cfq_io_context *cic)
2711{
2712	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2713}
2714
2715static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2716{
2717	unsigned long flags;
2718	unsigned long dead_key = (unsigned long) cic->key;
2719
2720	BUG_ON(!(dead_key & CIC_DEAD_KEY));
2721
2722	spin_lock_irqsave(&ioc->lock, flags);
2723	radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2724	hlist_del_rcu(&cic->cic_list);
2725	spin_unlock_irqrestore(&ioc->lock, flags);
2726
2727	cfq_cic_free(cic);
2728}
2729
2730/*
2731 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2732 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2733 * and ->trim() which is called with the task lock held
2734 */
2735static void cfq_free_io_context(struct io_context *ioc)
2736{
2737	/*
2738	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2739	 * so no more cic's are allowed to be linked into this ioc.  So it
2740	 * should be ok to iterate over the known list, we will see all cic's
2741	 * since no new ones are added.
2742	 */
2743	call_for_each_cic(ioc, cic_free_func);
2744}
2745
2746static void cfq_put_cooperator(struct cfq_queue *cfqq)
2747{
2748	struct cfq_queue *__cfqq, *next;
2749
2750	/*
2751	 * If this queue was scheduled to merge with another queue, be
2752	 * sure to drop the reference taken on that queue (and others in
2753	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2754	 */
2755	__cfqq = cfqq->new_cfqq;
2756	while (__cfqq) {
2757		if (__cfqq == cfqq) {
2758			WARN(1, "cfqq->new_cfqq loop detected\n");
2759			break;
2760		}
2761		next = __cfqq->new_cfqq;
2762		cfq_put_queue(__cfqq);
2763		__cfqq = next;
2764	}
2765}
2766
2767static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2768{
2769	if (unlikely(cfqq == cfqd->active_queue)) {
2770		__cfq_slice_expired(cfqd, cfqq, 0);
2771		cfq_schedule_dispatch(cfqd);
2772	}
2773
2774	cfq_put_cooperator(cfqq);
2775
2776	cfq_put_queue(cfqq);
2777}
2778
2779static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2780					 struct cfq_io_context *cic)
2781{
2782	struct io_context *ioc = cic->ioc;
2783
2784	list_del_init(&cic->queue_list);
2785
2786	/*
2787	 * Make sure dead mark is seen for dead queues
2788	 */
2789	smp_wmb();
2790	cic->key = cfqd_dead_key(cfqd);
2791
2792	rcu_read_lock();
2793	if (rcu_dereference(ioc->ioc_data) == cic) {
2794		rcu_read_unlock();
2795		spin_lock(&ioc->lock);
2796		rcu_assign_pointer(ioc->ioc_data, NULL);
2797		spin_unlock(&ioc->lock);
2798	} else
2799		rcu_read_unlock();
2800
2801	if (cic->cfqq[BLK_RW_ASYNC]) {
2802		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2803		cic->cfqq[BLK_RW_ASYNC] = NULL;
2804	}
2805
2806	if (cic->cfqq[BLK_RW_SYNC]) {
2807		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2808		cic->cfqq[BLK_RW_SYNC] = NULL;
2809	}
2810}
2811
2812static void cfq_exit_single_io_context(struct io_context *ioc,
2813				       struct cfq_io_context *cic)
2814{
2815	struct cfq_data *cfqd = cic_to_cfqd(cic);
2816
2817	if (cfqd) {
2818		struct request_queue *q = cfqd->queue;
2819		unsigned long flags;
2820
2821		spin_lock_irqsave(q->queue_lock, flags);
2822
2823		/*
2824		 * Ensure we get a fresh copy of the ->key to prevent
2825		 * race between exiting task and queue
2826		 */
2827		smp_read_barrier_depends();
2828		if (cic->key == cfqd)
2829			__cfq_exit_single_io_context(cfqd, cic);
2830
2831		spin_unlock_irqrestore(q->queue_lock, flags);
2832	}
2833}
2834
2835/*
2836 * The process that ioc belongs to has exited, we need to clean up
2837 * and put the internal structures we have that belongs to that process.
2838 */
2839static void cfq_exit_io_context(struct io_context *ioc)
2840{
2841	call_for_each_cic(ioc, cfq_exit_single_io_context);
2842}
2843
2844static struct cfq_io_context *
2845cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2846{
2847	struct cfq_io_context *cic;
2848
2849	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2850							cfqd->queue->node);
2851	if (cic) {
2852		cic->ttime.last_end_request = jiffies;
2853		INIT_LIST_HEAD(&cic->queue_list);
2854		INIT_HLIST_NODE(&cic->cic_list);
2855		cic->dtor = cfq_free_io_context;
2856		cic->exit = cfq_exit_io_context;
2857		elv_ioc_count_inc(cfq_ioc_count);
2858	}
2859
2860	return cic;
2861}
2862
2863static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2864{
2865	struct task_struct *tsk = current;
2866	int ioprio_class;
2867
2868	if (!cfq_cfqq_prio_changed(cfqq))
2869		return;
2870
2871	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2872	switch (ioprio_class) {
2873	default:
2874		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2875	case IOPRIO_CLASS_NONE:
2876		/*
2877		 * no prio set, inherit CPU scheduling settings
2878		 */
2879		cfqq->ioprio = task_nice_ioprio(tsk);
2880		cfqq->ioprio_class = task_nice_ioclass(tsk);
2881		break;
2882	case IOPRIO_CLASS_RT:
2883		cfqq->ioprio = task_ioprio(ioc);
2884		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2885		break;
2886	case IOPRIO_CLASS_BE:
2887		cfqq->ioprio = task_ioprio(ioc);
2888		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2889		break;
2890	case IOPRIO_CLASS_IDLE:
2891		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2892		cfqq->ioprio = 7;
2893		cfq_clear_cfqq_idle_window(cfqq);
2894		break;
2895	}
2896
2897	/*
2898	 * keep track of original prio settings in case we have to temporarily
2899	 * elevate the priority of this queue
2900	 */
2901	cfqq->org_ioprio = cfqq->ioprio;
2902	cfq_clear_cfqq_prio_changed(cfqq);
2903}
2904
2905static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2906{
2907	struct cfq_data *cfqd = cic_to_cfqd(cic);
2908	struct cfq_queue *cfqq;
2909	unsigned long flags;
2910
2911	if (unlikely(!cfqd))
2912		return;
2913
2914	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2915
2916	cfqq = cic->cfqq[BLK_RW_ASYNC];
2917	if (cfqq) {
2918		struct cfq_queue *new_cfqq;
2919		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2920						GFP_ATOMIC);
2921		if (new_cfqq) {
2922			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2923			cfq_put_queue(cfqq);
2924		}
2925	}
2926
2927	cfqq = cic->cfqq[BLK_RW_SYNC];
2928	if (cfqq)
2929		cfq_mark_cfqq_prio_changed(cfqq);
2930
2931	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2932}
2933
2934static void cfq_ioc_set_ioprio(struct io_context *ioc)
2935{
2936	call_for_each_cic(ioc, changed_ioprio);
2937	ioc->ioprio_changed = 0;
2938}
2939
2940static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2941			  pid_t pid, bool is_sync)
2942{
2943	RB_CLEAR_NODE(&cfqq->rb_node);
2944	RB_CLEAR_NODE(&cfqq->p_node);
2945	INIT_LIST_HEAD(&cfqq->fifo);
2946
2947	cfqq->ref = 0;
2948	cfqq->cfqd = cfqd;
2949
2950	cfq_mark_cfqq_prio_changed(cfqq);
2951
2952	if (is_sync) {
2953		if (!cfq_class_idle(cfqq))
2954			cfq_mark_cfqq_idle_window(cfqq);
2955		cfq_mark_cfqq_sync(cfqq);
2956	}
2957	cfqq->pid = pid;
2958}
2959
2960#ifdef CONFIG_CFQ_GROUP_IOSCHED
2961static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2962{
2963	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2964	struct cfq_data *cfqd = cic_to_cfqd(cic);
2965	unsigned long flags;
2966	struct request_queue *q;
2967
2968	if (unlikely(!cfqd))
2969		return;
2970
2971	q = cfqd->queue;
2972
2973	spin_lock_irqsave(q->queue_lock, flags);
2974
2975	if (sync_cfqq) {
2976		/*
2977		 * Drop reference to sync queue. A new sync queue will be
2978		 * assigned in new group upon arrival of a fresh request.
2979		 */
2980		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2981		cic_set_cfqq(cic, NULL, 1);
2982		cfq_put_queue(sync_cfqq);
2983	}
2984
2985	spin_unlock_irqrestore(q->queue_lock, flags);
2986}
2987
2988static void cfq_ioc_set_cgroup(struct io_context *ioc)
2989{
2990	call_for_each_cic(ioc, changed_cgroup);
2991	ioc->cgroup_changed = 0;
2992}
2993#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2994
2995static struct cfq_queue *
2996cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2997		     struct io_context *ioc, gfp_t gfp_mask)
2998{
2999	struct cfq_queue *cfqq, *new_cfqq = NULL;
3000	struct cfq_io_context *cic;
3001	struct cfq_group *cfqg;
3002
3003retry:
3004	cfqg = cfq_get_cfqg(cfqd);
3005	cic = cfq_cic_lookup(cfqd, ioc);
3006	/* cic always exists here */
3007	cfqq = cic_to_cfqq(cic, is_sync);
3008
3009	/*
3010	 * Always try a new alloc if we fell back to the OOM cfqq
3011	 * originally, since it should just be a temporary situation.
3012	 */
3013	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3014		cfqq = NULL;
3015		if (new_cfqq) {
3016			cfqq = new_cfqq;
3017			new_cfqq = NULL;
3018		} else if (gfp_mask & __GFP_WAIT) {
3019			spin_unlock_irq(cfqd->queue->queue_lock);
3020			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3021					gfp_mask | __GFP_ZERO,
3022					cfqd->queue->node);
3023			spin_lock_irq(cfqd->queue->queue_lock);
3024			if (new_cfqq)
3025				goto retry;
3026		} else {
3027			cfqq = kmem_cache_alloc_node(cfq_pool,
3028					gfp_mask | __GFP_ZERO,
3029					cfqd->queue->node);
3030		}
3031
3032		if (cfqq) {
3033			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3034			cfq_init_prio_data(cfqq, ioc);
3035			cfq_link_cfqq_cfqg(cfqq, cfqg);
3036			cfq_log_cfqq(cfqd, cfqq, "alloced");
3037		} else
3038			cfqq = &cfqd->oom_cfqq;
3039	}
3040
3041	if (new_cfqq)
3042		kmem_cache_free(cfq_pool, new_cfqq);
3043
3044	return cfqq;
3045}
3046
3047static struct cfq_queue **
3048cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3049{
3050	switch (ioprio_class) {
3051	case IOPRIO_CLASS_RT:
3052		return &cfqd->async_cfqq[0][ioprio];
3053	case IOPRIO_CLASS_BE:
3054		return &cfqd->async_cfqq[1][ioprio];
3055	case IOPRIO_CLASS_IDLE:
3056		return &cfqd->async_idle_cfqq;
3057	default:
3058		BUG();
3059	}
3060}
3061
3062static struct cfq_queue *
3063cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3064	      gfp_t gfp_mask)
3065{
3066	const int ioprio = task_ioprio(ioc);
3067	const int ioprio_class = task_ioprio_class(ioc);
3068	struct cfq_queue **async_cfqq = NULL;
3069	struct cfq_queue *cfqq = NULL;
3070
3071	if (!is_sync) {
3072		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3073		cfqq = *async_cfqq;
3074	}
3075
3076	if (!cfqq)
3077		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3078
3079	/*
3080	 * pin the queue now that it's allocated, scheduler exit will prune it
3081	 */
3082	if (!is_sync && !(*async_cfqq)) {
3083		cfqq->ref++;
3084		*async_cfqq = cfqq;
3085	}
3086
3087	cfqq->ref++;
3088	return cfqq;
3089}
3090
3091/*
3092 * We drop cfq io contexts lazily, so we may find a dead one.
3093 */
3094static void
3095cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3096		  struct cfq_io_context *cic)
3097{
3098	unsigned long flags;
3099
3100	WARN_ON(!list_empty(&cic->queue_list));
3101	BUG_ON(cic->key != cfqd_dead_key(cfqd));
3102
3103	spin_lock_irqsave(&ioc->lock, flags);
3104
3105	BUG_ON(rcu_dereference_check(ioc->ioc_data,
3106		lockdep_is_held(&ioc->lock)) == cic);
3107
3108	radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3109	hlist_del_rcu(&cic->cic_list);
3110	spin_unlock_irqrestore(&ioc->lock, flags);
3111
3112	cfq_cic_free(cic);
3113}
3114
3115static struct cfq_io_context *
3116cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3117{
3118	struct cfq_io_context *cic;
3119	unsigned long flags;
3120
3121	if (unlikely(!ioc))
3122		return NULL;
3123
3124	rcu_read_lock();
3125
3126	/*
3127	 * we maintain a last-hit cache, to avoid browsing over the tree
3128	 */
3129	cic = rcu_dereference(ioc->ioc_data);
3130	if (cic && cic->key == cfqd) {
3131		rcu_read_unlock();
3132		return cic;
3133	}
3134
3135	do {
3136		cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3137		rcu_read_unlock();
3138		if (!cic)
3139			break;
3140		if (unlikely(cic->key != cfqd)) {
3141			cfq_drop_dead_cic(cfqd, ioc, cic);
3142			rcu_read_lock();
3143			continue;
3144		}
3145
3146		spin_lock_irqsave(&ioc->lock, flags);
3147		rcu_assign_pointer(ioc->ioc_data, cic);
3148		spin_unlock_irqrestore(&ioc->lock, flags);
3149		break;
3150	} while (1);
3151
3152	return cic;
3153}
3154
3155/*
3156 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3157 * the process specific cfq io context when entered from the block layer.
3158 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3159 */
3160static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3161			struct cfq_io_context *cic, gfp_t gfp_mask)
3162{
3163	unsigned long flags;
3164	int ret;
3165
3166	ret = radix_tree_preload(gfp_mask);
3167	if (!ret) {
3168		cic->ioc = ioc;
3169		cic->key = cfqd;
3170
3171		spin_lock_irqsave(&ioc->lock, flags);
3172		ret = radix_tree_insert(&ioc->radix_root,
3173						cfqd->cic_index, cic);
3174		if (!ret)
3175			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3176		spin_unlock_irqrestore(&ioc->lock, flags);
3177
3178		radix_tree_preload_end();
3179
3180		if (!ret) {
3181			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3182			list_add(&cic->queue_list, &cfqd->cic_list);
3183			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3184		}
3185	}
3186
3187	if (ret && ret != -EEXIST)
3188		printk(KERN_ERR "cfq: cic link failed!\n");
3189
3190	return ret;
3191}
3192
3193/*
3194 * Setup general io context and cfq io context. There can be several cfq
3195 * io contexts per general io context, if this process is doing io to more
3196 * than one device managed by cfq.
3197 */
3198static struct cfq_io_context *
3199cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3200{
3201	struct io_context *ioc = NULL;
3202	struct cfq_io_context *cic;
3203	int ret;
3204
3205	might_sleep_if(gfp_mask & __GFP_WAIT);
3206
3207	ioc = get_io_context(gfp_mask, cfqd->queue->node);
3208	if (!ioc)
3209		return NULL;
3210
3211retry:
3212	cic = cfq_cic_lookup(cfqd, ioc);
3213	if (cic)
3214		goto out;
3215
3216	cic = cfq_alloc_io_context(cfqd, gfp_mask);
3217	if (cic == NULL)
3218		goto err;
3219
3220	ret = cfq_cic_link(cfqd, ioc, cic, gfp_mask);
3221	if (ret == -EEXIST) {
3222		/* someone has linked cic to ioc already */
3223		cfq_cic_free(cic);
3224		goto retry;
3225	} else if (ret)
3226		goto err_free;
3227
3228out:
3229	smp_read_barrier_depends();
3230	if (unlikely(ioc->ioprio_changed))
3231		cfq_ioc_set_ioprio(ioc);
3232
3233#ifdef CONFIG_CFQ_GROUP_IOSCHED
3234	if (unlikely(ioc->cgroup_changed))
3235		cfq_ioc_set_cgroup(ioc);
3236#endif
3237	return cic;
3238err_free:
3239	cfq_cic_free(cic);
3240err:
3241	put_io_context(ioc);
3242	return NULL;
3243}
3244
3245static void
3246__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3247{
3248	unsigned long elapsed = jiffies - ttime->last_end_request;
3249	elapsed = min(elapsed, 2UL * slice_idle);
3250
3251	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3252	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3253	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3254}
3255
3256static void
3257cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3258	struct cfq_io_context *cic)
3259{
3260	if (cfq_cfqq_sync(cfqq)) {
3261		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3262		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3263			cfqd->cfq_slice_idle);
3264	}
3265#ifdef CONFIG_CFQ_GROUP_IOSCHED
3266	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3267#endif
3268}
3269
3270static void
3271cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3272		       struct request *rq)
3273{
3274	sector_t sdist = 0;
3275	sector_t n_sec = blk_rq_sectors(rq);
3276	if (cfqq->last_request_pos) {
3277		if (cfqq->last_request_pos < blk_rq_pos(rq))
3278			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3279		else
3280			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3281	}
3282
3283	cfqq->seek_history <<= 1;
3284	if (blk_queue_nonrot(cfqd->queue))
3285		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3286	else
3287		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3288}
3289
3290/*
3291 * Disable idle window if the process thinks too long or seeks so much that
3292 * it doesn't matter
3293 */
3294static void
3295cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3296		       struct cfq_io_context *cic)
3297{
3298	int old_idle, enable_idle;
3299
3300	/*
3301	 * Don't idle for async or idle io prio class
3302	 */
3303	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3304		return;
3305
3306	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3307
3308	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3309		cfq_mark_cfqq_deep(cfqq);
3310
3311	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3312		enable_idle = 0;
3313	else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3314	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3315		enable_idle = 0;
3316	else if (sample_valid(cic->ttime.ttime_samples)) {
3317		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3318			enable_idle = 0;
3319		else
3320			enable_idle = 1;
3321	}
3322
3323	if (old_idle != enable_idle) {
3324		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3325		if (enable_idle)
3326			cfq_mark_cfqq_idle_window(cfqq);
3327		else
3328			cfq_clear_cfqq_idle_window(cfqq);
3329	}
3330}
3331
3332/*
3333 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3334 * no or if we aren't sure, a 1 will cause a preempt.
3335 */
3336static bool
3337cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3338		   struct request *rq)
3339{
3340	struct cfq_queue *cfqq;
3341
3342	cfqq = cfqd->active_queue;
3343	if (!cfqq)
3344		return false;
3345
3346	if (cfq_class_idle(new_cfqq))
3347		return false;
3348
3349	if (cfq_class_idle(cfqq))
3350		return true;
3351
3352	/*
3353	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3354	 */
3355	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3356		return false;
3357
3358	/*
3359	 * if the new request is sync, but the currently running queue is
3360	 * not, let the sync request have priority.
3361	 */
3362	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3363		return true;
3364
3365	if (new_cfqq->cfqg != cfqq->cfqg)
3366		return false;
3367
3368	if (cfq_slice_used(cfqq))
3369		return true;
3370
3371	/* Allow preemption only if we are idling on sync-noidle tree */
3372	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3373	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3374	    new_cfqq->service_tree->count == 2 &&
3375	    RB_EMPTY_ROOT(&cfqq->sort_list))
3376		return true;
3377
3378	/*
3379	 * So both queues are sync. Let the new request get disk time if
3380	 * it's a metadata request and the current queue is doing regular IO.
3381	 */
3382	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3383		return true;
3384
3385	/*
3386	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3387	 */
3388	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3389		return true;
3390
3391	/* An idle queue should not be idle now for some reason */
3392	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3393		return true;
3394
3395	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3396		return false;
3397
3398	/*
3399	 * if this request is as-good as one we would expect from the
3400	 * current cfqq, let it preempt
3401	 */
3402	if (cfq_rq_close(cfqd, cfqq, rq))
3403		return true;
3404
3405	return false;
3406}
3407
3408/*
3409 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3410 * let it have half of its nominal slice.
3411 */
3412static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3413{
3414	struct cfq_queue *old_cfqq = cfqd->active_queue;
3415
3416	cfq_log_cfqq(cfqd, cfqq, "preempt");
3417	cfq_slice_expired(cfqd, 1);
3418
3419	/*
3420	 * workload type is changed, don't save slice, otherwise preempt
3421	 * doesn't happen
3422	 */
3423	if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3424		cfqq->cfqg->saved_workload_slice = 0;
3425
3426	/*
3427	 * Put the new queue at the front of the of the current list,
3428	 * so we know that it will be selected next.
3429	 */
3430	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3431
3432	cfq_service_tree_add(cfqd, cfqq, 1);
3433
3434	cfqq->slice_end = 0;
3435	cfq_mark_cfqq_slice_new(cfqq);
3436}
3437
3438/*
3439 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3440 * something we should do about it
3441 */
3442static void
3443cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3444		struct request *rq)
3445{
3446	struct cfq_io_context *cic = RQ_CIC(rq);
3447
3448	cfqd->rq_queued++;
3449	if (rq->cmd_flags & REQ_PRIO)
3450		cfqq->prio_pending++;
3451
3452	cfq_update_io_thinktime(cfqd, cfqq, cic);
3453	cfq_update_io_seektime(cfqd, cfqq, rq);
3454	cfq_update_idle_window(cfqd, cfqq, cic);
3455
3456	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3457
3458	if (cfqq == cfqd->active_queue) {
3459		/*
3460		 * Remember that we saw a request from this process, but
3461		 * don't start queuing just yet. Otherwise we risk seeing lots
3462		 * of tiny requests, because we disrupt the normal plugging
3463		 * and merging. If the request is already larger than a single
3464		 * page, let it rip immediately. For that case we assume that
3465		 * merging is already done. Ditto for a busy system that
3466		 * has other work pending, don't risk delaying until the
3467		 * idle timer unplug to continue working.
3468		 */
3469		if (cfq_cfqq_wait_request(cfqq)) {
3470			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3471			    cfqd->busy_queues > 1) {
3472				cfq_del_timer(cfqd, cfqq);
3473				cfq_clear_cfqq_wait_request(cfqq);
3474				__blk_run_queue(cfqd->queue);
3475			} else {
3476				cfq_blkiocg_update_idle_time_stats(
3477						&cfqq->cfqg->blkg);
3478				cfq_mark_cfqq_must_dispatch(cfqq);
3479			}
3480		}
3481	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3482		/*
3483		 * not the active queue - expire current slice if it is
3484		 * idle and has expired it's mean thinktime or this new queue
3485		 * has some old slice time left and is of higher priority or
3486		 * this new queue is RT and the current one is BE
3487		 */
3488		cfq_preempt_queue(cfqd, cfqq);
3489		__blk_run_queue(cfqd->queue);
3490	}
3491}
3492
3493static void cfq_insert_request(struct request_queue *q, struct request *rq)
3494{
3495	struct cfq_data *cfqd = q->elevator->elevator_data;
3496	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3497
3498	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3499	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3500
3501	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3502	list_add_tail(&rq->queuelist, &cfqq->fifo);
3503	cfq_add_rq_rb(rq);
3504	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3505			&cfqd->serving_group->blkg, rq_data_dir(rq),
3506			rq_is_sync(rq));
3507	cfq_rq_enqueued(cfqd, cfqq, rq);
3508}
3509
3510/*
3511 * Update hw_tag based on peak queue depth over 50 samples under
3512 * sufficient load.
3513 */
3514static void cfq_update_hw_tag(struct cfq_data *cfqd)
3515{
3516	struct cfq_queue *cfqq = cfqd->active_queue;
3517
3518	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3519		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3520
3521	if (cfqd->hw_tag == 1)
3522		return;
3523
3524	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3525	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3526		return;
3527
3528	/*
3529	 * If active queue hasn't enough requests and can idle, cfq might not
3530	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3531	 * case
3532	 */
3533	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3534	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3535	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3536		return;
3537
3538	if (cfqd->hw_tag_samples++ < 50)
3539		return;
3540
3541	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3542		cfqd->hw_tag = 1;
3543	else
3544		cfqd->hw_tag = 0;
3545}
3546
3547static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3548{
3549	struct cfq_io_context *cic = cfqd->active_cic;
3550
3551	/* If the queue already has requests, don't wait */
3552	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3553		return false;
3554
3555	/* If there are other queues in the group, don't wait */
3556	if (cfqq->cfqg->nr_cfqq > 1)
3557		return false;
3558
3559	/* the only queue in the group, but think time is big */
3560	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3561		return false;
3562
3563	if (cfq_slice_used(cfqq))
3564		return true;
3565
3566	/* if slice left is less than think time, wait busy */
3567	if (cic && sample_valid(cic->ttime.ttime_samples)
3568	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3569		return true;
3570
3571	/*
3572	 * If think times is less than a jiffy than ttime_mean=0 and above
3573	 * will not be true. It might happen that slice has not expired yet
3574	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3575	 * case where think time is less than a jiffy, mark the queue wait
3576	 * busy if only 1 jiffy is left in the slice.
3577	 */
3578	if (cfqq->slice_end - jiffies == 1)
3579		return true;
3580
3581	return false;
3582}
3583
3584static void cfq_completed_request(struct request_queue *q, struct request *rq)
3585{
3586	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3587	struct cfq_data *cfqd = cfqq->cfqd;
3588	const int sync = rq_is_sync(rq);
3589	unsigned long now;
3590
3591	now = jiffies;
3592	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3593		     !!(rq->cmd_flags & REQ_NOIDLE));
3594
3595	cfq_update_hw_tag(cfqd);
3596
3597	WARN_ON(!cfqd->rq_in_driver);
3598	WARN_ON(!cfqq->dispatched);
3599	cfqd->rq_in_driver--;
3600	cfqq->dispatched--;
3601	(RQ_CFQG(rq))->dispatched--;
3602	cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3603			rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3604			rq_data_dir(rq), rq_is_sync(rq));
3605
3606	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3607
3608	if (sync) {
3609		struct cfq_rb_root *service_tree;
3610
3611		RQ_CIC(rq)->ttime.last_end_request = now;
3612
3613		if (cfq_cfqq_on_rr(cfqq))
3614			service_tree = cfqq->service_tree;
3615		else
3616			service_tree = service_tree_for(cfqq->cfqg,
3617				cfqq_prio(cfqq), cfqq_type(cfqq));
3618		service_tree->ttime.last_end_request = now;
3619		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3620			cfqd->last_delayed_sync = now;
3621	}
3622
3623#ifdef CONFIG_CFQ_GROUP_IOSCHED
3624	cfqq->cfqg->ttime.last_end_request = now;
3625#endif
3626
3627	/*
3628	 * If this is the active queue, check if it needs to be expired,
3629	 * or if we want to idle in case it has no pending requests.
3630	 */
3631	if (cfqd->active_queue == cfqq) {
3632		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3633
3634		if (cfq_cfqq_slice_new(cfqq)) {
3635			cfq_set_prio_slice(cfqd, cfqq);
3636			cfq_clear_cfqq_slice_new(cfqq);
3637		}
3638
3639		/*
3640		 * Should we wait for next request to come in before we expire
3641		 * the queue.
3642		 */
3643		if (cfq_should_wait_busy(cfqd, cfqq)) {
3644			unsigned long extend_sl = cfqd->cfq_slice_idle;
3645			if (!cfqd->cfq_slice_idle)
3646				extend_sl = cfqd->cfq_group_idle;
3647			cfqq->slice_end = jiffies + extend_sl;
3648			cfq_mark_cfqq_wait_busy(cfqq);
3649			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3650		}
3651
3652		/*
3653		 * Idling is not enabled on:
3654		 * - expired queues
3655		 * - idle-priority queues
3656		 * - async queues
3657		 * - queues with still some requests queued
3658		 * - when there is a close cooperator
3659		 */
3660		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3661			cfq_slice_expired(cfqd, 1);
3662		else if (sync && cfqq_empty &&
3663			 !cfq_close_cooperator(cfqd, cfqq)) {
3664			cfq_arm_slice_timer(cfqd);
3665		}
3666	}
3667
3668	if (!cfqd->rq_in_driver)
3669		cfq_schedule_dispatch(cfqd);
3670}
3671
3672static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3673{
3674	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3675		cfq_mark_cfqq_must_alloc_slice(cfqq);
3676		return ELV_MQUEUE_MUST;
3677	}
3678
3679	return ELV_MQUEUE_MAY;
3680}
3681
3682static int cfq_may_queue(struct request_queue *q, int rw)
3683{
3684	struct cfq_data *cfqd = q->elevator->elevator_data;
3685	struct task_struct *tsk = current;
3686	struct cfq_io_context *cic;
3687	struct cfq_queue *cfqq;
3688
3689	/*
3690	 * don't force setup of a queue from here, as a call to may_queue
3691	 * does not necessarily imply that a request actually will be queued.
3692	 * so just lookup a possibly existing queue, or return 'may queue'
3693	 * if that fails
3694	 */
3695	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3696	if (!cic)
3697		return ELV_MQUEUE_MAY;
3698
3699	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3700	if (cfqq) {
3701		cfq_init_prio_data(cfqq, cic->ioc);
3702
3703		return __cfq_may_queue(cfqq);
3704	}
3705
3706	return ELV_MQUEUE_MAY;
3707}
3708
3709/*
3710 * queue lock held here
3711 */
3712static void cfq_put_request(struct request *rq)
3713{
3714	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3715
3716	if (cfqq) {
3717		const int rw = rq_data_dir(rq);
3718
3719		BUG_ON(!cfqq->allocated[rw]);
3720		cfqq->allocated[rw]--;
3721
3722		put_io_context(RQ_CIC(rq)->ioc);
3723
3724		rq->elevator_private[0] = NULL;
3725		rq->elevator_private[1] = NULL;
3726
3727		/* Put down rq reference on cfqg */
3728		cfq_put_cfqg(RQ_CFQG(rq));
3729		rq->elevator_private[2] = NULL;
3730
3731		cfq_put_queue(cfqq);
3732	}
3733}
3734
3735static struct cfq_queue *
3736cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3737		struct cfq_queue *cfqq)
3738{
3739	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3740	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3741	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3742	cfq_put_queue(cfqq);
3743	return cic_to_cfqq(cic, 1);
3744}
3745
3746/*
3747 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3748 * was the last process referring to said cfqq.
3749 */
3750static struct cfq_queue *
3751split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3752{
3753	if (cfqq_process_refs(cfqq) == 1) {
3754		cfqq->pid = current->pid;
3755		cfq_clear_cfqq_coop(cfqq);
3756		cfq_clear_cfqq_split_coop(cfqq);
3757		return cfqq;
3758	}
3759
3760	cic_set_cfqq(cic, NULL, 1);
3761
3762	cfq_put_cooperator(cfqq);
3763
3764	cfq_put_queue(cfqq);
3765	return NULL;
3766}
3767/*
3768 * Allocate cfq data structures associated with this request.
3769 */
3770static int
3771cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3772{
3773	struct cfq_data *cfqd = q->elevator->elevator_data;
3774	struct cfq_io_context *cic;
3775	const int rw = rq_data_dir(rq);
3776	const bool is_sync = rq_is_sync(rq);
3777	struct cfq_queue *cfqq;
3778	unsigned long flags;
3779
3780	might_sleep_if(gfp_mask & __GFP_WAIT);
3781
3782	cic = cfq_get_io_context(cfqd, gfp_mask);
3783
3784	spin_lock_irqsave(q->queue_lock, flags);
3785
3786	if (!cic)
3787		goto queue_fail;
3788
3789new_queue:
3790	cfqq = cic_to_cfqq(cic, is_sync);
3791	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3792		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3793		cic_set_cfqq(cic, cfqq, is_sync);
3794	} else {
3795		/*
3796		 * If the queue was seeky for too long, break it apart.
3797		 */
3798		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3799			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3800			cfqq = split_cfqq(cic, cfqq);
3801			if (!cfqq)
3802				goto new_queue;
3803		}
3804
3805		/*
3806		 * Check to see if this queue is scheduled to merge with
3807		 * another, closely cooperating queue.  The merging of
3808		 * queues happens here as it must be done in process context.
3809		 * The reference on new_cfqq was taken in merge_cfqqs.
3810		 */
3811		if (cfqq->new_cfqq)
3812			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3813	}
3814
3815	cfqq->allocated[rw]++;
3816
3817	cfqq->ref++;
3818	rq->elevator_private[0] = cic;
3819	rq->elevator_private[1] = cfqq;
3820	rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3821	spin_unlock_irqrestore(q->queue_lock, flags);
3822	return 0;
3823
3824queue_fail:
3825	cfq_schedule_dispatch(cfqd);
3826	spin_unlock_irqrestore(q->queue_lock, flags);
3827	cfq_log(cfqd, "set_request fail");
3828	return 1;
3829}
3830
3831static void cfq_kick_queue(struct work_struct *work)
3832{
3833	struct cfq_data *cfqd =
3834		container_of(work, struct cfq_data, unplug_work);
3835	struct request_queue *q = cfqd->queue;
3836
3837	spin_lock_irq(q->queue_lock);
3838	__blk_run_queue(cfqd->queue);
3839	spin_unlock_irq(q->queue_lock);
3840}
3841
3842/*
3843 * Timer running if the active_queue is currently idling inside its time slice
3844 */
3845static void cfq_idle_slice_timer(unsigned long data)
3846{
3847	struct cfq_data *cfqd = (struct cfq_data *) data;
3848	struct cfq_queue *cfqq;
3849	unsigned long flags;
3850	int timed_out = 1;
3851
3852	cfq_log(cfqd, "idle timer fired");
3853
3854	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3855
3856	cfqq = cfqd->active_queue;
3857	if (cfqq) {
3858		timed_out = 0;
3859
3860		/*
3861		 * We saw a request before the queue expired, let it through
3862		 */
3863		if (cfq_cfqq_must_dispatch(cfqq))
3864			goto out_kick;
3865
3866		/*
3867		 * expired
3868		 */
3869		if (cfq_slice_used(cfqq))
3870			goto expire;
3871
3872		/*
3873		 * only expire and reinvoke request handler, if there are
3874		 * other queues with pending requests
3875		 */
3876		if (!cfqd->busy_queues)
3877			goto out_cont;
3878
3879		/*
3880		 * not expired and it has a request pending, let it dispatch
3881		 */
3882		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3883			goto out_kick;
3884
3885		/*
3886		 * Queue depth flag is reset only when the idle didn't succeed
3887		 */
3888		cfq_clear_cfqq_deep(cfqq);
3889	}
3890expire:
3891	cfq_slice_expired(cfqd, timed_out);
3892out_kick:
3893	cfq_schedule_dispatch(cfqd);
3894out_cont:
3895	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3896}
3897
3898static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3899{
3900	del_timer_sync(&cfqd->idle_slice_timer);
3901	cancel_work_sync(&cfqd->unplug_work);
3902}
3903
3904static void cfq_put_async_queues(struct cfq_data *cfqd)
3905{
3906	int i;
3907
3908	for (i = 0; i < IOPRIO_BE_NR; i++) {
3909		if (cfqd->async_cfqq[0][i])
3910			cfq_put_queue(cfqd->async_cfqq[0][i]);
3911		if (cfqd->async_cfqq[1][i])
3912			cfq_put_queue(cfqd->async_cfqq[1][i]);
3913	}
3914
3915	if (cfqd->async_idle_cfqq)
3916		cfq_put_queue(cfqd->async_idle_cfqq);
3917}
3918
3919static void cfq_exit_queue(struct elevator_queue *e)
3920{
3921	struct cfq_data *cfqd = e->elevator_data;
3922	struct request_queue *q = cfqd->queue;
3923	bool wait = false;
3924
3925	cfq_shutdown_timer_wq(cfqd);
3926
3927	spin_lock_irq(q->queue_lock);
3928
3929	if (cfqd->active_queue)
3930		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3931
3932	while (!list_empty(&cfqd->cic_list)) {
3933		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3934							struct cfq_io_context,
3935							queue_list);
3936
3937		__cfq_exit_single_io_context(cfqd, cic);
3938	}
3939
3940	cfq_put_async_queues(cfqd);
3941	cfq_release_cfq_groups(cfqd);
3942
3943	/*
3944	 * If there are groups which we could not unlink from blkcg list,
3945	 * wait for a rcu period for them to be freed.
3946	 */
3947	if (cfqd->nr_blkcg_linked_grps)
3948		wait = true;
3949
3950	spin_unlock_irq(q->queue_lock);
3951
3952	cfq_shutdown_timer_wq(cfqd);
3953
3954	spin_lock(&cic_index_lock);
3955	ida_remove(&cic_index_ida, cfqd->cic_index);
3956	spin_unlock(&cic_index_lock);
3957
3958	/*
3959	 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3960	 * Do this wait only if there are other unlinked groups out
3961	 * there. This can happen if cgroup deletion path claimed the
3962	 * responsibility of cleaning up a group before queue cleanup code
3963	 * get to the group.
3964	 *
3965	 * Do not call synchronize_rcu() unconditionally as there are drivers
3966	 * which create/delete request queue hundreds of times during scan/boot
3967	 * and synchronize_rcu() can take significant time and slow down boot.
3968	 */
3969	if (wait)
3970		synchronize_rcu();
3971
3972#ifdef CONFIG_CFQ_GROUP_IOSCHED
3973	/* Free up per cpu stats for root group */
3974	free_percpu(cfqd->root_group.blkg.stats_cpu);
3975#endif
3976	kfree(cfqd);
3977}
3978
3979static int cfq_alloc_cic_index(void)
3980{
3981	int index, error;
3982
3983	do {
3984		if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3985			return -ENOMEM;
3986
3987		spin_lock(&cic_index_lock);
3988		error = ida_get_new(&cic_index_ida, &index);
3989		spin_unlock(&cic_index_lock);
3990		if (error && error != -EAGAIN)
3991			return error;
3992	} while (error);
3993
3994	return index;
3995}
3996
3997static void *cfq_init_queue(struct request_queue *q)
3998{
3999	struct cfq_data *cfqd;
4000	int i, j;
4001	struct cfq_group *cfqg;
4002	struct cfq_rb_root *st;
4003
4004	i = cfq_alloc_cic_index();
4005	if (i < 0)
4006		return NULL;
4007
4008	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4009	if (!cfqd) {
4010		spin_lock(&cic_index_lock);
4011		ida_remove(&cic_index_ida, i);
4012		spin_unlock(&cic_index_lock);
4013		return NULL;
4014	}
4015
4016	/*
4017	 * Don't need take queue_lock in the routine, since we are
4018	 * initializing the ioscheduler, and nobody is using cfqd
4019	 */
4020	cfqd->cic_index = i;
4021
4022	/* Init root service tree */
4023	cfqd->grp_service_tree = CFQ_RB_ROOT;
4024
4025	/* Init root group */
4026	cfqg = &cfqd->root_group;
4027	for_each_cfqg_st(cfqg, i, j, st)
4028		*st = CFQ_RB_ROOT;
4029	RB_CLEAR_NODE(&cfqg->rb_node);
4030
4031	/* Give preference to root group over other groups */
4032	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
4033
4034#ifdef CONFIG_CFQ_GROUP_IOSCHED
4035	/*
4036	 * Set root group reference to 2. One reference will be dropped when
4037	 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4038	 * Other reference will remain there as we don't want to delete this
4039	 * group as it is statically allocated and gets destroyed when
4040	 * throtl_data goes away.
4041	 */
4042	cfqg->ref = 2;
4043
4044	if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
4045		kfree(cfqg);
4046
4047		spin_lock(&cic_index_lock);
4048		ida_remove(&cic_index_ida, cfqd->cic_index);
4049		spin_unlock(&cic_index_lock);
4050
4051		kfree(cfqd);
4052		return NULL;
4053	}
4054
4055	rcu_read_lock();
4056
4057	cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4058					(void *)cfqd, 0);
4059	rcu_read_unlock();
4060	cfqd->nr_blkcg_linked_grps++;
4061
4062	/* Add group on cfqd->cfqg_list */
4063	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4064#endif
4065	/*
4066	 * Not strictly needed (since RB_ROOT just clears the node and we
4067	 * zeroed cfqd on alloc), but better be safe in case someone decides
4068	 * to add magic to the rb code
4069	 */
4070	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4071		cfqd->prio_trees[i] = RB_ROOT;
4072
4073	/*
4074	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4075	 * Grab a permanent reference to it, so that the normal code flow
4076	 * will not attempt to free it.
4077	 */
4078	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4079	cfqd->oom_cfqq.ref++;
4080	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4081
4082	INIT_LIST_HEAD(&cfqd->cic_list);
4083
4084	cfqd->queue = q;
4085
4086	init_timer(&cfqd->idle_slice_timer);
4087	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4088	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4089
4090	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4091
4092	cfqd->cfq_quantum = cfq_quantum;
4093	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4094	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4095	cfqd->cfq_back_max = cfq_back_max;
4096	cfqd->cfq_back_penalty = cfq_back_penalty;
4097	cfqd->cfq_slice[0] = cfq_slice_async;
4098	cfqd->cfq_slice[1] = cfq_slice_sync;
4099	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4100	cfqd->cfq_slice_idle = cfq_slice_idle;
4101	cfqd->cfq_group_idle = cfq_group_idle;
4102	cfqd->cfq_latency = 1;
4103	cfqd->hw_tag = -1;
4104	/*
4105	 * we optimistically start assuming sync ops weren't delayed in last
4106	 * second, in order to have larger depth for async operations.
4107	 */
4108	cfqd->last_delayed_sync = jiffies - HZ;
4109	return cfqd;
4110}
4111
4112static void cfq_slab_kill(void)
4113{
4114	/*
4115	 * Caller already ensured that pending RCU callbacks are completed,
4116	 * so we should have no busy allocations at this point.
4117	 */
4118	if (cfq_pool)
4119		kmem_cache_destroy(cfq_pool);
4120	if (cfq_ioc_pool)
4121		kmem_cache_destroy(cfq_ioc_pool);
4122}
4123
4124static int __init cfq_slab_setup(void)
4125{
4126	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4127	if (!cfq_pool)
4128		goto fail;
4129
4130	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4131	if (!cfq_ioc_pool)
4132		goto fail;
4133
4134	return 0;
4135fail:
4136	cfq_slab_kill();
4137	return -ENOMEM;
4138}
4139
4140/*
4141 * sysfs parts below -->
4142 */
4143static ssize_t
4144cfq_var_show(unsigned int var, char *page)
4145{
4146	return sprintf(page, "%d\n", var);
4147}
4148
4149static ssize_t
4150cfq_var_store(unsigned int *var, const char *page, size_t count)
4151{
4152	char *p = (char *) page;
4153
4154	*var = simple_strtoul(p, &p, 10);
4155	return count;
4156}
4157
4158#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4159static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4160{									\
4161	struct cfq_data *cfqd = e->elevator_data;			\
4162	unsigned int __data = __VAR;					\
4163	if (__CONV)							\
4164		__data = jiffies_to_msecs(__data);			\
4165	return cfq_var_show(__data, (page));				\
4166}
4167SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4168SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4169SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4170SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4171SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4172SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4173SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4174SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4175SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4176SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4177SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4178#undef SHOW_FUNCTION
4179
4180#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4181static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4182{									\
4183	struct cfq_data *cfqd = e->elevator_data;			\
4184	unsigned int __data;						\
4185	int ret = cfq_var_store(&__data, (page), count);		\
4186	if (__data < (MIN))						\
4187		__data = (MIN);						\
4188	else if (__data > (MAX))					\
4189		__data = (MAX);						\
4190	if (__CONV)							\
4191		*(__PTR) = msecs_to_jiffies(__data);			\
4192	else								\
4193		*(__PTR) = __data;					\
4194	return ret;							\
4195}
4196STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4197STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4198		UINT_MAX, 1);
4199STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4200		UINT_MAX, 1);
4201STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4202STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4203		UINT_MAX, 0);
4204STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4205STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4206STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4207STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4208STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4209		UINT_MAX, 0);
4210STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4211#undef STORE_FUNCTION
4212
4213#define CFQ_ATTR(name) \
4214	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4215
4216static struct elv_fs_entry cfq_attrs[] = {
4217	CFQ_ATTR(quantum),
4218	CFQ_ATTR(fifo_expire_sync),
4219	CFQ_ATTR(fifo_expire_async),
4220	CFQ_ATTR(back_seek_max),
4221	CFQ_ATTR(back_seek_penalty),
4222	CFQ_ATTR(slice_sync),
4223	CFQ_ATTR(slice_async),
4224	CFQ_ATTR(slice_async_rq),
4225	CFQ_ATTR(slice_idle),
4226	CFQ_ATTR(group_idle),
4227	CFQ_ATTR(low_latency),
4228	__ATTR_NULL
4229};
4230
4231static struct elevator_type iosched_cfq = {
4232	.ops = {
4233		.elevator_merge_fn = 		cfq_merge,
4234		.elevator_merged_fn =		cfq_merged_request,
4235		.elevator_merge_req_fn =	cfq_merged_requests,
4236		.elevator_allow_merge_fn =	cfq_allow_merge,
4237		.elevator_bio_merged_fn =	cfq_bio_merged,
4238		.elevator_dispatch_fn =		cfq_dispatch_requests,
4239		.elevator_add_req_fn =		cfq_insert_request,
4240		.elevator_activate_req_fn =	cfq_activate_request,
4241		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4242		.elevator_completed_req_fn =	cfq_completed_request,
4243		.elevator_former_req_fn =	elv_rb_former_request,
4244		.elevator_latter_req_fn =	elv_rb_latter_request,
4245		.elevator_set_req_fn =		cfq_set_request,
4246		.elevator_put_req_fn =		cfq_put_request,
4247		.elevator_may_queue_fn =	cfq_may_queue,
4248		.elevator_init_fn =		cfq_init_queue,
4249		.elevator_exit_fn =		cfq_exit_queue,
4250		.trim =				cfq_free_io_context,
4251	},
4252	.elevator_attrs =	cfq_attrs,
4253	.elevator_name =	"cfq",
4254	.elevator_owner =	THIS_MODULE,
4255};
4256
4257#ifdef CONFIG_CFQ_GROUP_IOSCHED
4258static struct blkio_policy_type blkio_policy_cfq = {
4259	.ops = {
4260		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
4261		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
4262	},
4263	.plid = BLKIO_POLICY_PROP,
4264};
4265#else
4266static struct blkio_policy_type blkio_policy_cfq;
4267#endif
4268
4269static int __init cfq_init(void)
4270{
4271	/*
4272	 * could be 0 on HZ < 1000 setups
4273	 */
4274	if (!cfq_slice_async)
4275		cfq_slice_async = 1;
4276	if (!cfq_slice_idle)
4277		cfq_slice_idle = 1;
4278
4279#ifdef CONFIG_CFQ_GROUP_IOSCHED
4280	if (!cfq_group_idle)
4281		cfq_group_idle = 1;
4282#else
4283		cfq_group_idle = 0;
4284#endif
4285	if (cfq_slab_setup())
4286		return -ENOMEM;
4287
4288	elv_register(&iosched_cfq);
4289	blkio_policy_register(&blkio_policy_cfq);
4290
4291	return 0;
4292}
4293
4294static void __exit cfq_exit(void)
4295{
4296	DECLARE_COMPLETION_ONSTACK(all_gone);
4297	blkio_policy_unregister(&blkio_policy_cfq);
4298	elv_unregister(&iosched_cfq);
4299	ioc_gone = &all_gone;
4300	/* ioc_gone's update must be visible before reading ioc_count */
4301	smp_wmb();
4302
4303	/*
4304	 * this also protects us from entering cfq_slab_kill() with
4305	 * pending RCU callbacks
4306	 */
4307	if (elv_ioc_count_read(cfq_ioc_count))
4308		wait_for_completion(&all_gone);
4309	ida_destroy(&cic_index_ida);
4310	cfq_slab_kill();
4311}
4312
4313module_init(cfq_init);
4314module_exit(cfq_exit);
4315
4316MODULE_AUTHOR("Jens Axboe");
4317MODULE_LICENSE("GPL");
4318MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4319