cfq-iosched.c revision 6d816ec7c83871da7c2472af7479d2438e641052
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "blk-cgroup.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY		(HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT		(2)
47
48#define CFQ_SLICE_SCALE		(5)
49#define CFQ_HW_QUEUE_MIN	(5)
50#define CFQ_SERVICE_SHIFT       12
51
52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples)	((samples) > 80)
68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71	unsigned long last_end_request;
72
73	unsigned long ttime_total;
74	unsigned long ttime_samples;
75	unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	unsigned total_weight;
89	u64 min_vdisktime;
90	struct cfq_ttime ttime;
91};
92#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
93			.ttime = {.last_end_request = jiffies,},}
94
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99	/* reference count */
100	int ref;
101	/* various state flags, see below */
102	unsigned int flags;
103	/* parent cfq_data */
104	struct cfq_data *cfqd;
105	/* service_tree member */
106	struct rb_node rb_node;
107	/* service_tree key */
108	unsigned long rb_key;
109	/* prio tree member */
110	struct rb_node p_node;
111	/* prio tree root we belong to, if any */
112	struct rb_root *p_root;
113	/* sorted list of pending requests */
114	struct rb_root sort_list;
115	/* if fifo isn't expired, next request to serve */
116	struct request *next_rq;
117	/* requests queued in sort_list */
118	int queued[2];
119	/* currently allocated requests */
120	int allocated[2];
121	/* fifo list of requests in sort_list */
122	struct list_head fifo;
123
124	/* time when queue got scheduled in to dispatch first request. */
125	unsigned long dispatch_start;
126	unsigned int allocated_slice;
127	unsigned int slice_dispatch;
128	/* time when first request from queue completed and slice started. */
129	unsigned long slice_start;
130	unsigned long slice_end;
131	long slice_resid;
132
133	/* pending priority requests */
134	int prio_pending;
135	/* number of requests that are on the dispatch list or inside driver */
136	int dispatched;
137
138	/* io prio of this group */
139	unsigned short ioprio, org_ioprio;
140	unsigned short ioprio_class;
141
142	pid_t pid;
143
144	u32 seek_history;
145	sector_t last_request_pos;
146
147	struct cfq_rb_root *service_tree;
148	struct cfq_queue *new_cfqq;
149	struct cfq_group *cfqg;
150	/* Number of sectors dispatched from queue in single dispatch round */
151	unsigned long nr_sectors;
152};
153
154/*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_class_t {
159	BE_WORKLOAD = 0,
160	RT_WORKLOAD = 1,
161	IDLE_WORKLOAD = 2,
162	CFQ_PRIO_NR,
163};
164
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169	ASYNC_WORKLOAD = 0,
170	SYNC_NOIDLE_WORKLOAD = 1,
171	SYNC_WORKLOAD = 2
172};
173
174struct cfqg_stats {
175#ifdef CONFIG_CFQ_GROUP_IOSCHED
176	/* total bytes transferred */
177	struct blkg_rwstat		service_bytes;
178	/* total IOs serviced, post merge */
179	struct blkg_rwstat		serviced;
180	/* number of ios merged */
181	struct blkg_rwstat		merged;
182	/* total time spent on device in ns, may not be accurate w/ queueing */
183	struct blkg_rwstat		service_time;
184	/* total time spent waiting in scheduler queue in ns */
185	struct blkg_rwstat		wait_time;
186	/* number of IOs queued up */
187	struct blkg_rwstat		queued;
188	/* total sectors transferred */
189	struct blkg_stat		sectors;
190	/* total disk time and nr sectors dispatched by this group */
191	struct blkg_stat		time;
192#ifdef CONFIG_DEBUG_BLK_CGROUP
193	/* time not charged to this cgroup */
194	struct blkg_stat		unaccounted_time;
195	/* sum of number of ios queued across all samples */
196	struct blkg_stat		avg_queue_size_sum;
197	/* count of samples taken for average */
198	struct blkg_stat		avg_queue_size_samples;
199	/* how many times this group has been removed from service tree */
200	struct blkg_stat		dequeue;
201	/* total time spent waiting for it to be assigned a timeslice. */
202	struct blkg_stat		group_wait_time;
203	/* time spent idling for this blkcg_gq */
204	struct blkg_stat		idle_time;
205	/* total time with empty current active q with other requests queued */
206	struct blkg_stat		empty_time;
207	/* fields after this shouldn't be cleared on stat reset */
208	uint64_t			start_group_wait_time;
209	uint64_t			start_idle_time;
210	uint64_t			start_empty_time;
211	uint16_t			flags;
212#endif	/* CONFIG_DEBUG_BLK_CGROUP */
213#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
214};
215
216/* This is per cgroup per device grouping structure */
217struct cfq_group {
218	/* must be the first member */
219	struct blkg_policy_data pd;
220
221	/* group service_tree member */
222	struct rb_node rb_node;
223
224	/* group service_tree key */
225	u64 vdisktime;
226	unsigned int weight;
227	unsigned int new_weight;
228	unsigned int dev_weight;
229
230	/* number of cfqq currently on this group */
231	int nr_cfqq;
232
233	/*
234	 * Per group busy queues average. Useful for workload slice calc. We
235	 * create the array for each prio class but at run time it is used
236	 * only for RT and BE class and slot for IDLE class remains unused.
237	 * This is primarily done to avoid confusion and a gcc warning.
238	 */
239	unsigned int busy_queues_avg[CFQ_PRIO_NR];
240	/*
241	 * rr lists of queues with requests. We maintain service trees for
242	 * RT and BE classes. These trees are subdivided in subclasses
243	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
244	 * class there is no subclassification and all the cfq queues go on
245	 * a single tree service_tree_idle.
246	 * Counts are embedded in the cfq_rb_root
247	 */
248	struct cfq_rb_root service_trees[2][3];
249	struct cfq_rb_root service_tree_idle;
250
251	unsigned long saved_wl_slice;
252	enum wl_type_t saved_wl_type;
253	enum wl_class_t saved_wl_class;
254
255	/* number of requests that are on the dispatch list or inside driver */
256	int dispatched;
257	struct cfq_ttime ttime;
258	struct cfqg_stats stats;
259};
260
261struct cfq_io_cq {
262	struct io_cq		icq;		/* must be the first member */
263	struct cfq_queue	*cfqq[2];
264	struct cfq_ttime	ttime;
265	int			ioprio;		/* the current ioprio */
266#ifdef CONFIG_CFQ_GROUP_IOSCHED
267	uint64_t		blkcg_id;	/* the current blkcg ID */
268#endif
269};
270
271/*
272 * Per block device queue structure
273 */
274struct cfq_data {
275	struct request_queue *queue;
276	/* Root service tree for cfq_groups */
277	struct cfq_rb_root grp_service_tree;
278	struct cfq_group *root_group;
279
280	/*
281	 * The priority currently being served
282	 */
283	enum wl_class_t serving_wl_class;
284	enum wl_type_t serving_wl_type;
285	unsigned long workload_expires;
286	struct cfq_group *serving_group;
287
288	/*
289	 * Each priority tree is sorted by next_request position.  These
290	 * trees are used when determining if two or more queues are
291	 * interleaving requests (see cfq_close_cooperator).
292	 */
293	struct rb_root prio_trees[CFQ_PRIO_LISTS];
294
295	unsigned int busy_queues;
296	unsigned int busy_sync_queues;
297
298	int rq_in_driver;
299	int rq_in_flight[2];
300
301	/*
302	 * queue-depth detection
303	 */
304	int rq_queued;
305	int hw_tag;
306	/*
307	 * hw_tag can be
308	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
309	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
310	 *  0 => no NCQ
311	 */
312	int hw_tag_est_depth;
313	unsigned int hw_tag_samples;
314
315	/*
316	 * idle window management
317	 */
318	struct timer_list idle_slice_timer;
319	struct work_struct unplug_work;
320
321	struct cfq_queue *active_queue;
322	struct cfq_io_cq *active_cic;
323
324	/*
325	 * async queue for each priority case
326	 */
327	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
328	struct cfq_queue *async_idle_cfqq;
329
330	sector_t last_position;
331
332	/*
333	 * tunables, see top of file
334	 */
335	unsigned int cfq_quantum;
336	unsigned int cfq_fifo_expire[2];
337	unsigned int cfq_back_penalty;
338	unsigned int cfq_back_max;
339	unsigned int cfq_slice[2];
340	unsigned int cfq_slice_async_rq;
341	unsigned int cfq_slice_idle;
342	unsigned int cfq_group_idle;
343	unsigned int cfq_latency;
344	unsigned int cfq_target_latency;
345
346	/*
347	 * Fallback dummy cfqq for extreme OOM conditions
348	 */
349	struct cfq_queue oom_cfqq;
350
351	unsigned long last_delayed_sync;
352};
353
354static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
355
356static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
357					    enum wl_class_t class,
358					    enum wl_type_t type)
359{
360	if (!cfqg)
361		return NULL;
362
363	if (class == IDLE_WORKLOAD)
364		return &cfqg->service_tree_idle;
365
366	return &cfqg->service_trees[class][type];
367}
368
369enum cfqq_state_flags {
370	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
371	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
372	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
373	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
374	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
375	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
376	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
377	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
378	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
379	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
380	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
381	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
382	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
383};
384
385#define CFQ_CFQQ_FNS(name)						\
386static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
387{									\
388	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
389}									\
390static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
391{									\
392	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
393}									\
394static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
395{									\
396	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
397}
398
399CFQ_CFQQ_FNS(on_rr);
400CFQ_CFQQ_FNS(wait_request);
401CFQ_CFQQ_FNS(must_dispatch);
402CFQ_CFQQ_FNS(must_alloc_slice);
403CFQ_CFQQ_FNS(fifo_expire);
404CFQ_CFQQ_FNS(idle_window);
405CFQ_CFQQ_FNS(prio_changed);
406CFQ_CFQQ_FNS(slice_new);
407CFQ_CFQQ_FNS(sync);
408CFQ_CFQQ_FNS(coop);
409CFQ_CFQQ_FNS(split_coop);
410CFQ_CFQQ_FNS(deep);
411CFQ_CFQQ_FNS(wait_busy);
412#undef CFQ_CFQQ_FNS
413
414static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
415{
416	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
417}
418
419static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
420{
421	return pd_to_blkg(&cfqg->pd);
422}
423
424#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
425
426/* cfqg stats flags */
427enum cfqg_stats_flags {
428	CFQG_stats_waiting = 0,
429	CFQG_stats_idling,
430	CFQG_stats_empty,
431};
432
433#define CFQG_FLAG_FNS(name)						\
434static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
435{									\
436	stats->flags |= (1 << CFQG_stats_##name);			\
437}									\
438static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
439{									\
440	stats->flags &= ~(1 << CFQG_stats_##name);			\
441}									\
442static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
443{									\
444	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
445}									\
446
447CFQG_FLAG_FNS(waiting)
448CFQG_FLAG_FNS(idling)
449CFQG_FLAG_FNS(empty)
450#undef CFQG_FLAG_FNS
451
452/* This should be called with the queue_lock held. */
453static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
454{
455	unsigned long long now;
456
457	if (!cfqg_stats_waiting(stats))
458		return;
459
460	now = sched_clock();
461	if (time_after64(now, stats->start_group_wait_time))
462		blkg_stat_add(&stats->group_wait_time,
463			      now - stats->start_group_wait_time);
464	cfqg_stats_clear_waiting(stats);
465}
466
467/* This should be called with the queue_lock held. */
468static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
469						 struct cfq_group *curr_cfqg)
470{
471	struct cfqg_stats *stats = &cfqg->stats;
472
473	if (cfqg_stats_waiting(stats))
474		return;
475	if (cfqg == curr_cfqg)
476		return;
477	stats->start_group_wait_time = sched_clock();
478	cfqg_stats_mark_waiting(stats);
479}
480
481/* This should be called with the queue_lock held. */
482static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
483{
484	unsigned long long now;
485
486	if (!cfqg_stats_empty(stats))
487		return;
488
489	now = sched_clock();
490	if (time_after64(now, stats->start_empty_time))
491		blkg_stat_add(&stats->empty_time,
492			      now - stats->start_empty_time);
493	cfqg_stats_clear_empty(stats);
494}
495
496static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
497{
498	blkg_stat_add(&cfqg->stats.dequeue, 1);
499}
500
501static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
502{
503	struct cfqg_stats *stats = &cfqg->stats;
504
505	if (blkg_rwstat_sum(&stats->queued))
506		return;
507
508	/*
509	 * group is already marked empty. This can happen if cfqq got new
510	 * request in parent group and moved to this group while being added
511	 * to service tree. Just ignore the event and move on.
512	 */
513	if (cfqg_stats_empty(stats))
514		return;
515
516	stats->start_empty_time = sched_clock();
517	cfqg_stats_mark_empty(stats);
518}
519
520static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
521{
522	struct cfqg_stats *stats = &cfqg->stats;
523
524	if (cfqg_stats_idling(stats)) {
525		unsigned long long now = sched_clock();
526
527		if (time_after64(now, stats->start_idle_time))
528			blkg_stat_add(&stats->idle_time,
529				      now - stats->start_idle_time);
530		cfqg_stats_clear_idling(stats);
531	}
532}
533
534static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
535{
536	struct cfqg_stats *stats = &cfqg->stats;
537
538	BUG_ON(cfqg_stats_idling(stats));
539
540	stats->start_idle_time = sched_clock();
541	cfqg_stats_mark_idling(stats);
542}
543
544static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
545{
546	struct cfqg_stats *stats = &cfqg->stats;
547
548	blkg_stat_add(&stats->avg_queue_size_sum,
549		      blkg_rwstat_sum(&stats->queued));
550	blkg_stat_add(&stats->avg_queue_size_samples, 1);
551	cfqg_stats_update_group_wait_time(stats);
552}
553
554#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
555
556static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
557static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
558static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
559static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
560static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
561static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
562static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
563
564#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
565
566#ifdef CONFIG_CFQ_GROUP_IOSCHED
567
568static struct blkcg_policy blkcg_policy_cfq;
569
570static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
571{
572	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
573}
574
575static inline void cfqg_get(struct cfq_group *cfqg)
576{
577	return blkg_get(cfqg_to_blkg(cfqg));
578}
579
580static inline void cfqg_put(struct cfq_group *cfqg)
581{
582	return blkg_put(cfqg_to_blkg(cfqg));
583}
584
585#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
586	char __pbuf[128];						\
587									\
588	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
589	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
590			  cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
591			  __pbuf, ##args);				\
592} while (0)
593
594#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
595	char __pbuf[128];						\
596									\
597	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
598	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
599} while (0)
600
601static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
602					    struct cfq_group *curr_cfqg, int rw)
603{
604	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
605	cfqg_stats_end_empty_time(&cfqg->stats);
606	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
607}
608
609static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
610			unsigned long time, unsigned long unaccounted_time)
611{
612	blkg_stat_add(&cfqg->stats.time, time);
613#ifdef CONFIG_DEBUG_BLK_CGROUP
614	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
615#endif
616}
617
618static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
619{
620	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
621}
622
623static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
624{
625	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
626}
627
628static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
629					      uint64_t bytes, int rw)
630{
631	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
632	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
633	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
634}
635
636static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
637			uint64_t start_time, uint64_t io_start_time, int rw)
638{
639	struct cfqg_stats *stats = &cfqg->stats;
640	unsigned long long now = sched_clock();
641
642	if (time_after64(now, io_start_time))
643		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
644	if (time_after64(io_start_time, start_time))
645		blkg_rwstat_add(&stats->wait_time, rw,
646				io_start_time - start_time);
647}
648
649static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
650{
651	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
652	struct cfqg_stats *stats = &cfqg->stats;
653
654	/* queued stats shouldn't be cleared */
655	blkg_rwstat_reset(&stats->service_bytes);
656	blkg_rwstat_reset(&stats->serviced);
657	blkg_rwstat_reset(&stats->merged);
658	blkg_rwstat_reset(&stats->service_time);
659	blkg_rwstat_reset(&stats->wait_time);
660	blkg_stat_reset(&stats->time);
661#ifdef CONFIG_DEBUG_BLK_CGROUP
662	blkg_stat_reset(&stats->unaccounted_time);
663	blkg_stat_reset(&stats->avg_queue_size_sum);
664	blkg_stat_reset(&stats->avg_queue_size_samples);
665	blkg_stat_reset(&stats->dequeue);
666	blkg_stat_reset(&stats->group_wait_time);
667	blkg_stat_reset(&stats->idle_time);
668	blkg_stat_reset(&stats->empty_time);
669#endif
670}
671
672#else	/* CONFIG_CFQ_GROUP_IOSCHED */
673
674static inline void cfqg_get(struct cfq_group *cfqg) { }
675static inline void cfqg_put(struct cfq_group *cfqg) { }
676
677#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
678	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
679#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
680
681static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
682			struct cfq_group *curr_cfqg, int rw) { }
683static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
684			unsigned long time, unsigned long unaccounted_time) { }
685static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
686static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
687static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
688					      uint64_t bytes, int rw) { }
689static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
690			uint64_t start_time, uint64_t io_start_time, int rw) { }
691
692#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
693
694#define cfq_log(cfqd, fmt, args...)	\
695	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
696
697/* Traverses through cfq group service trees */
698#define for_each_cfqg_st(cfqg, i, j, st) \
699	for (i = 0; i <= IDLE_WORKLOAD; i++) \
700		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
701			: &cfqg->service_tree_idle; \
702			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
703			(i == IDLE_WORKLOAD && j == 0); \
704			j++, st = i < IDLE_WORKLOAD ? \
705			&cfqg->service_trees[i][j]: NULL) \
706
707static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
708	struct cfq_ttime *ttime, bool group_idle)
709{
710	unsigned long slice;
711	if (!sample_valid(ttime->ttime_samples))
712		return false;
713	if (group_idle)
714		slice = cfqd->cfq_group_idle;
715	else
716		slice = cfqd->cfq_slice_idle;
717	return ttime->ttime_mean > slice;
718}
719
720static inline bool iops_mode(struct cfq_data *cfqd)
721{
722	/*
723	 * If we are not idling on queues and it is a NCQ drive, parallel
724	 * execution of requests is on and measuring time is not possible
725	 * in most of the cases until and unless we drive shallower queue
726	 * depths and that becomes a performance bottleneck. In such cases
727	 * switch to start providing fairness in terms of number of IOs.
728	 */
729	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
730		return true;
731	else
732		return false;
733}
734
735static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
736{
737	if (cfq_class_idle(cfqq))
738		return IDLE_WORKLOAD;
739	if (cfq_class_rt(cfqq))
740		return RT_WORKLOAD;
741	return BE_WORKLOAD;
742}
743
744
745static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
746{
747	if (!cfq_cfqq_sync(cfqq))
748		return ASYNC_WORKLOAD;
749	if (!cfq_cfqq_idle_window(cfqq))
750		return SYNC_NOIDLE_WORKLOAD;
751	return SYNC_WORKLOAD;
752}
753
754static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
755					struct cfq_data *cfqd,
756					struct cfq_group *cfqg)
757{
758	if (wl_class == IDLE_WORKLOAD)
759		return cfqg->service_tree_idle.count;
760
761	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
762		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
763		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
764}
765
766static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
767					struct cfq_group *cfqg)
768{
769	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
770		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
771}
772
773static void cfq_dispatch_insert(struct request_queue *, struct request *);
774static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
775				       struct cfq_io_cq *cic, struct bio *bio,
776				       gfp_t gfp_mask);
777
778static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
779{
780	/* cic->icq is the first member, %NULL will convert to %NULL */
781	return container_of(icq, struct cfq_io_cq, icq);
782}
783
784static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
785					       struct io_context *ioc)
786{
787	if (ioc)
788		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
789	return NULL;
790}
791
792static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
793{
794	return cic->cfqq[is_sync];
795}
796
797static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
798				bool is_sync)
799{
800	cic->cfqq[is_sync] = cfqq;
801}
802
803static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
804{
805	return cic->icq.q->elevator->elevator_data;
806}
807
808/*
809 * We regard a request as SYNC, if it's either a read or has the SYNC bit
810 * set (in which case it could also be direct WRITE).
811 */
812static inline bool cfq_bio_sync(struct bio *bio)
813{
814	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
815}
816
817/*
818 * scheduler run of queue, if there are requests pending and no one in the
819 * driver that will restart queueing
820 */
821static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
822{
823	if (cfqd->busy_queues) {
824		cfq_log(cfqd, "schedule dispatch");
825		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
826	}
827}
828
829/*
830 * Scale schedule slice based on io priority. Use the sync time slice only
831 * if a queue is marked sync and has sync io queued. A sync queue with async
832 * io only, should not get full sync slice length.
833 */
834static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
835				 unsigned short prio)
836{
837	const int base_slice = cfqd->cfq_slice[sync];
838
839	WARN_ON(prio >= IOPRIO_BE_NR);
840
841	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
842}
843
844static inline int
845cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
846{
847	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
848}
849
850static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
851{
852	u64 d = delta << CFQ_SERVICE_SHIFT;
853
854	d = d * CFQ_WEIGHT_DEFAULT;
855	do_div(d, cfqg->weight);
856	return d;
857}
858
859static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
860{
861	s64 delta = (s64)(vdisktime - min_vdisktime);
862	if (delta > 0)
863		min_vdisktime = vdisktime;
864
865	return min_vdisktime;
866}
867
868static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
869{
870	s64 delta = (s64)(vdisktime - min_vdisktime);
871	if (delta < 0)
872		min_vdisktime = vdisktime;
873
874	return min_vdisktime;
875}
876
877static void update_min_vdisktime(struct cfq_rb_root *st)
878{
879	struct cfq_group *cfqg;
880
881	if (st->left) {
882		cfqg = rb_entry_cfqg(st->left);
883		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
884						  cfqg->vdisktime);
885	}
886}
887
888/*
889 * get averaged number of queues of RT/BE priority.
890 * average is updated, with a formula that gives more weight to higher numbers,
891 * to quickly follows sudden increases and decrease slowly
892 */
893
894static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
895					struct cfq_group *cfqg, bool rt)
896{
897	unsigned min_q, max_q;
898	unsigned mult  = cfq_hist_divisor - 1;
899	unsigned round = cfq_hist_divisor / 2;
900	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
901
902	min_q = min(cfqg->busy_queues_avg[rt], busy);
903	max_q = max(cfqg->busy_queues_avg[rt], busy);
904	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
905		cfq_hist_divisor;
906	return cfqg->busy_queues_avg[rt];
907}
908
909static inline unsigned
910cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
911{
912	struct cfq_rb_root *st = &cfqd->grp_service_tree;
913
914	return cfqd->cfq_target_latency * cfqg->weight / st->total_weight;
915}
916
917static inline unsigned
918cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
919{
920	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
921	if (cfqd->cfq_latency) {
922		/*
923		 * interested queues (we consider only the ones with the same
924		 * priority class in the cfq group)
925		 */
926		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
927						cfq_class_rt(cfqq));
928		unsigned sync_slice = cfqd->cfq_slice[1];
929		unsigned expect_latency = sync_slice * iq;
930		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
931
932		if (expect_latency > group_slice) {
933			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
934			/* scale low_slice according to IO priority
935			 * and sync vs async */
936			unsigned low_slice =
937				min(slice, base_low_slice * slice / sync_slice);
938			/* the adapted slice value is scaled to fit all iqs
939			 * into the target latency */
940			slice = max(slice * group_slice / expect_latency,
941				    low_slice);
942		}
943	}
944	return slice;
945}
946
947static inline void
948cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
949{
950	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
951
952	cfqq->slice_start = jiffies;
953	cfqq->slice_end = jiffies + slice;
954	cfqq->allocated_slice = slice;
955	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
956}
957
958/*
959 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
960 * isn't valid until the first request from the dispatch is activated
961 * and the slice time set.
962 */
963static inline bool cfq_slice_used(struct cfq_queue *cfqq)
964{
965	if (cfq_cfqq_slice_new(cfqq))
966		return false;
967	if (time_before(jiffies, cfqq->slice_end))
968		return false;
969
970	return true;
971}
972
973/*
974 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
975 * We choose the request that is closest to the head right now. Distance
976 * behind the head is penalized and only allowed to a certain extent.
977 */
978static struct request *
979cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
980{
981	sector_t s1, s2, d1 = 0, d2 = 0;
982	unsigned long back_max;
983#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
984#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
985	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
986
987	if (rq1 == NULL || rq1 == rq2)
988		return rq2;
989	if (rq2 == NULL)
990		return rq1;
991
992	if (rq_is_sync(rq1) != rq_is_sync(rq2))
993		return rq_is_sync(rq1) ? rq1 : rq2;
994
995	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
996		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
997
998	s1 = blk_rq_pos(rq1);
999	s2 = blk_rq_pos(rq2);
1000
1001	/*
1002	 * by definition, 1KiB is 2 sectors
1003	 */
1004	back_max = cfqd->cfq_back_max * 2;
1005
1006	/*
1007	 * Strict one way elevator _except_ in the case where we allow
1008	 * short backward seeks which are biased as twice the cost of a
1009	 * similar forward seek.
1010	 */
1011	if (s1 >= last)
1012		d1 = s1 - last;
1013	else if (s1 + back_max >= last)
1014		d1 = (last - s1) * cfqd->cfq_back_penalty;
1015	else
1016		wrap |= CFQ_RQ1_WRAP;
1017
1018	if (s2 >= last)
1019		d2 = s2 - last;
1020	else if (s2 + back_max >= last)
1021		d2 = (last - s2) * cfqd->cfq_back_penalty;
1022	else
1023		wrap |= CFQ_RQ2_WRAP;
1024
1025	/* Found required data */
1026
1027	/*
1028	 * By doing switch() on the bit mask "wrap" we avoid having to
1029	 * check two variables for all permutations: --> faster!
1030	 */
1031	switch (wrap) {
1032	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1033		if (d1 < d2)
1034			return rq1;
1035		else if (d2 < d1)
1036			return rq2;
1037		else {
1038			if (s1 >= s2)
1039				return rq1;
1040			else
1041				return rq2;
1042		}
1043
1044	case CFQ_RQ2_WRAP:
1045		return rq1;
1046	case CFQ_RQ1_WRAP:
1047		return rq2;
1048	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1049	default:
1050		/*
1051		 * Since both rqs are wrapped,
1052		 * start with the one that's further behind head
1053		 * (--> only *one* back seek required),
1054		 * since back seek takes more time than forward.
1055		 */
1056		if (s1 <= s2)
1057			return rq1;
1058		else
1059			return rq2;
1060	}
1061}
1062
1063/*
1064 * The below is leftmost cache rbtree addon
1065 */
1066static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1067{
1068	/* Service tree is empty */
1069	if (!root->count)
1070		return NULL;
1071
1072	if (!root->left)
1073		root->left = rb_first(&root->rb);
1074
1075	if (root->left)
1076		return rb_entry(root->left, struct cfq_queue, rb_node);
1077
1078	return NULL;
1079}
1080
1081static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1082{
1083	if (!root->left)
1084		root->left = rb_first(&root->rb);
1085
1086	if (root->left)
1087		return rb_entry_cfqg(root->left);
1088
1089	return NULL;
1090}
1091
1092static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1093{
1094	rb_erase(n, root);
1095	RB_CLEAR_NODE(n);
1096}
1097
1098static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1099{
1100	if (root->left == n)
1101		root->left = NULL;
1102	rb_erase_init(n, &root->rb);
1103	--root->count;
1104}
1105
1106/*
1107 * would be nice to take fifo expire time into account as well
1108 */
1109static struct request *
1110cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1111		  struct request *last)
1112{
1113	struct rb_node *rbnext = rb_next(&last->rb_node);
1114	struct rb_node *rbprev = rb_prev(&last->rb_node);
1115	struct request *next = NULL, *prev = NULL;
1116
1117	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1118
1119	if (rbprev)
1120		prev = rb_entry_rq(rbprev);
1121
1122	if (rbnext)
1123		next = rb_entry_rq(rbnext);
1124	else {
1125		rbnext = rb_first(&cfqq->sort_list);
1126		if (rbnext && rbnext != &last->rb_node)
1127			next = rb_entry_rq(rbnext);
1128	}
1129
1130	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1131}
1132
1133static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1134				      struct cfq_queue *cfqq)
1135{
1136	/*
1137	 * just an approximation, should be ok.
1138	 */
1139	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1140		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1141}
1142
1143static inline s64
1144cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1145{
1146	return cfqg->vdisktime - st->min_vdisktime;
1147}
1148
1149static void
1150__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1151{
1152	struct rb_node **node = &st->rb.rb_node;
1153	struct rb_node *parent = NULL;
1154	struct cfq_group *__cfqg;
1155	s64 key = cfqg_key(st, cfqg);
1156	int left = 1;
1157
1158	while (*node != NULL) {
1159		parent = *node;
1160		__cfqg = rb_entry_cfqg(parent);
1161
1162		if (key < cfqg_key(st, __cfqg))
1163			node = &parent->rb_left;
1164		else {
1165			node = &parent->rb_right;
1166			left = 0;
1167		}
1168	}
1169
1170	if (left)
1171		st->left = &cfqg->rb_node;
1172
1173	rb_link_node(&cfqg->rb_node, parent, node);
1174	rb_insert_color(&cfqg->rb_node, &st->rb);
1175}
1176
1177static void
1178cfq_update_group_weight(struct cfq_group *cfqg)
1179{
1180	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1181	if (cfqg->new_weight) {
1182		cfqg->weight = cfqg->new_weight;
1183		cfqg->new_weight = 0;
1184	}
1185}
1186
1187static void
1188cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1189{
1190	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1191
1192	cfq_update_group_weight(cfqg);
1193	__cfq_group_service_tree_add(st, cfqg);
1194	st->total_weight += cfqg->weight;
1195}
1196
1197static void
1198cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1199{
1200	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1201	struct cfq_group *__cfqg;
1202	struct rb_node *n;
1203
1204	cfqg->nr_cfqq++;
1205	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1206		return;
1207
1208	/*
1209	 * Currently put the group at the end. Later implement something
1210	 * so that groups get lesser vtime based on their weights, so that
1211	 * if group does not loose all if it was not continuously backlogged.
1212	 */
1213	n = rb_last(&st->rb);
1214	if (n) {
1215		__cfqg = rb_entry_cfqg(n);
1216		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1217	} else
1218		cfqg->vdisktime = st->min_vdisktime;
1219	cfq_group_service_tree_add(st, cfqg);
1220}
1221
1222static void
1223cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1224{
1225	st->total_weight -= cfqg->weight;
1226	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1227		cfq_rb_erase(&cfqg->rb_node, st);
1228}
1229
1230static void
1231cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1232{
1233	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1234
1235	BUG_ON(cfqg->nr_cfqq < 1);
1236	cfqg->nr_cfqq--;
1237
1238	/* If there are other cfq queues under this group, don't delete it */
1239	if (cfqg->nr_cfqq)
1240		return;
1241
1242	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1243	cfq_group_service_tree_del(st, cfqg);
1244	cfqg->saved_wl_slice = 0;
1245	cfqg_stats_update_dequeue(cfqg);
1246}
1247
1248static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1249						unsigned int *unaccounted_time)
1250{
1251	unsigned int slice_used;
1252
1253	/*
1254	 * Queue got expired before even a single request completed or
1255	 * got expired immediately after first request completion.
1256	 */
1257	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1258		/*
1259		 * Also charge the seek time incurred to the group, otherwise
1260		 * if there are mutiple queues in the group, each can dispatch
1261		 * a single request on seeky media and cause lots of seek time
1262		 * and group will never know it.
1263		 */
1264		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1265					1);
1266	} else {
1267		slice_used = jiffies - cfqq->slice_start;
1268		if (slice_used > cfqq->allocated_slice) {
1269			*unaccounted_time = slice_used - cfqq->allocated_slice;
1270			slice_used = cfqq->allocated_slice;
1271		}
1272		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1273			*unaccounted_time += cfqq->slice_start -
1274					cfqq->dispatch_start;
1275	}
1276
1277	return slice_used;
1278}
1279
1280static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1281				struct cfq_queue *cfqq)
1282{
1283	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1284	unsigned int used_sl, charge, unaccounted_sl = 0;
1285	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1286			- cfqg->service_tree_idle.count;
1287
1288	BUG_ON(nr_sync < 0);
1289	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1290
1291	if (iops_mode(cfqd))
1292		charge = cfqq->slice_dispatch;
1293	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1294		charge = cfqq->allocated_slice;
1295
1296	/* Can't update vdisktime while group is on service tree */
1297	cfq_group_service_tree_del(st, cfqg);
1298	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
1299	/* If a new weight was requested, update now, off tree */
1300	cfq_group_service_tree_add(st, cfqg);
1301
1302	/* This group is being expired. Save the context */
1303	if (time_after(cfqd->workload_expires, jiffies)) {
1304		cfqg->saved_wl_slice = cfqd->workload_expires
1305						- jiffies;
1306		cfqg->saved_wl_type = cfqd->serving_wl_type;
1307		cfqg->saved_wl_class = cfqd->serving_wl_class;
1308	} else
1309		cfqg->saved_wl_slice = 0;
1310
1311	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1312					st->min_vdisktime);
1313	cfq_log_cfqq(cfqq->cfqd, cfqq,
1314		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1315		     used_sl, cfqq->slice_dispatch, charge,
1316		     iops_mode(cfqd), cfqq->nr_sectors);
1317	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1318	cfqg_stats_set_start_empty_time(cfqg);
1319}
1320
1321/**
1322 * cfq_init_cfqg_base - initialize base part of a cfq_group
1323 * @cfqg: cfq_group to initialize
1324 *
1325 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1326 * is enabled or not.
1327 */
1328static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1329{
1330	struct cfq_rb_root *st;
1331	int i, j;
1332
1333	for_each_cfqg_st(cfqg, i, j, st)
1334		*st = CFQ_RB_ROOT;
1335	RB_CLEAR_NODE(&cfqg->rb_node);
1336
1337	cfqg->ttime.last_end_request = jiffies;
1338}
1339
1340#ifdef CONFIG_CFQ_GROUP_IOSCHED
1341static void cfq_pd_init(struct blkcg_gq *blkg)
1342{
1343	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1344
1345	cfq_init_cfqg_base(cfqg);
1346	cfqg->weight = blkg->blkcg->cfq_weight;
1347}
1348
1349/*
1350 * Search for the cfq group current task belongs to. request_queue lock must
1351 * be held.
1352 */
1353static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1354						struct blkcg *blkcg)
1355{
1356	struct request_queue *q = cfqd->queue;
1357	struct cfq_group *cfqg = NULL;
1358
1359	/* avoid lookup for the common case where there's no blkcg */
1360	if (blkcg == &blkcg_root) {
1361		cfqg = cfqd->root_group;
1362	} else {
1363		struct blkcg_gq *blkg;
1364
1365		blkg = blkg_lookup_create(blkcg, q);
1366		if (!IS_ERR(blkg))
1367			cfqg = blkg_to_cfqg(blkg);
1368	}
1369
1370	return cfqg;
1371}
1372
1373static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1374{
1375	/* Currently, all async queues are mapped to root group */
1376	if (!cfq_cfqq_sync(cfqq))
1377		cfqg = cfqq->cfqd->root_group;
1378
1379	cfqq->cfqg = cfqg;
1380	/* cfqq reference on cfqg */
1381	cfqg_get(cfqg);
1382}
1383
1384static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1385				     struct blkg_policy_data *pd, int off)
1386{
1387	struct cfq_group *cfqg = pd_to_cfqg(pd);
1388
1389	if (!cfqg->dev_weight)
1390		return 0;
1391	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1392}
1393
1394static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1395				    struct seq_file *sf)
1396{
1397	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1398			  cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1399			  false);
1400	return 0;
1401}
1402
1403static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1404			    struct seq_file *sf)
1405{
1406	seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1407	return 0;
1408}
1409
1410static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1411				  const char *buf)
1412{
1413	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1414	struct blkg_conf_ctx ctx;
1415	struct cfq_group *cfqg;
1416	int ret;
1417
1418	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1419	if (ret)
1420		return ret;
1421
1422	ret = -EINVAL;
1423	cfqg = blkg_to_cfqg(ctx.blkg);
1424	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1425		cfqg->dev_weight = ctx.v;
1426		cfqg->new_weight = cfqg->dev_weight ?: blkcg->cfq_weight;
1427		ret = 0;
1428	}
1429
1430	blkg_conf_finish(&ctx);
1431	return ret;
1432}
1433
1434static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1435{
1436	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1437	struct blkcg_gq *blkg;
1438	struct hlist_node *n;
1439
1440	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1441		return -EINVAL;
1442
1443	spin_lock_irq(&blkcg->lock);
1444	blkcg->cfq_weight = (unsigned int)val;
1445
1446	hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1447		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1448
1449		if (cfqg && !cfqg->dev_weight)
1450			cfqg->new_weight = blkcg->cfq_weight;
1451	}
1452
1453	spin_unlock_irq(&blkcg->lock);
1454	return 0;
1455}
1456
1457static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1458			   struct seq_file *sf)
1459{
1460	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1461
1462	blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1463			  cft->private, false);
1464	return 0;
1465}
1466
1467static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1468			     struct seq_file *sf)
1469{
1470	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1471
1472	blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1473			  cft->private, true);
1474	return 0;
1475}
1476
1477#ifdef CONFIG_DEBUG_BLK_CGROUP
1478static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1479				      struct blkg_policy_data *pd, int off)
1480{
1481	struct cfq_group *cfqg = pd_to_cfqg(pd);
1482	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1483	u64 v = 0;
1484
1485	if (samples) {
1486		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1487		do_div(v, samples);
1488	}
1489	__blkg_prfill_u64(sf, pd, v);
1490	return 0;
1491}
1492
1493/* print avg_queue_size */
1494static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1495				     struct seq_file *sf)
1496{
1497	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1498
1499	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1500			  &blkcg_policy_cfq, 0, false);
1501	return 0;
1502}
1503#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1504
1505static struct cftype cfq_blkcg_files[] = {
1506	{
1507		.name = "weight_device",
1508		.read_seq_string = cfqg_print_weight_device,
1509		.write_string = cfqg_set_weight_device,
1510		.max_write_len = 256,
1511	},
1512	{
1513		.name = "weight",
1514		.read_seq_string = cfq_print_weight,
1515		.write_u64 = cfq_set_weight,
1516	},
1517	{
1518		.name = "time",
1519		.private = offsetof(struct cfq_group, stats.time),
1520		.read_seq_string = cfqg_print_stat,
1521	},
1522	{
1523		.name = "sectors",
1524		.private = offsetof(struct cfq_group, stats.sectors),
1525		.read_seq_string = cfqg_print_stat,
1526	},
1527	{
1528		.name = "io_service_bytes",
1529		.private = offsetof(struct cfq_group, stats.service_bytes),
1530		.read_seq_string = cfqg_print_rwstat,
1531	},
1532	{
1533		.name = "io_serviced",
1534		.private = offsetof(struct cfq_group, stats.serviced),
1535		.read_seq_string = cfqg_print_rwstat,
1536	},
1537	{
1538		.name = "io_service_time",
1539		.private = offsetof(struct cfq_group, stats.service_time),
1540		.read_seq_string = cfqg_print_rwstat,
1541	},
1542	{
1543		.name = "io_wait_time",
1544		.private = offsetof(struct cfq_group, stats.wait_time),
1545		.read_seq_string = cfqg_print_rwstat,
1546	},
1547	{
1548		.name = "io_merged",
1549		.private = offsetof(struct cfq_group, stats.merged),
1550		.read_seq_string = cfqg_print_rwstat,
1551	},
1552	{
1553		.name = "io_queued",
1554		.private = offsetof(struct cfq_group, stats.queued),
1555		.read_seq_string = cfqg_print_rwstat,
1556	},
1557#ifdef CONFIG_DEBUG_BLK_CGROUP
1558	{
1559		.name = "avg_queue_size",
1560		.read_seq_string = cfqg_print_avg_queue_size,
1561	},
1562	{
1563		.name = "group_wait_time",
1564		.private = offsetof(struct cfq_group, stats.group_wait_time),
1565		.read_seq_string = cfqg_print_stat,
1566	},
1567	{
1568		.name = "idle_time",
1569		.private = offsetof(struct cfq_group, stats.idle_time),
1570		.read_seq_string = cfqg_print_stat,
1571	},
1572	{
1573		.name = "empty_time",
1574		.private = offsetof(struct cfq_group, stats.empty_time),
1575		.read_seq_string = cfqg_print_stat,
1576	},
1577	{
1578		.name = "dequeue",
1579		.private = offsetof(struct cfq_group, stats.dequeue),
1580		.read_seq_string = cfqg_print_stat,
1581	},
1582	{
1583		.name = "unaccounted_time",
1584		.private = offsetof(struct cfq_group, stats.unaccounted_time),
1585		.read_seq_string = cfqg_print_stat,
1586	},
1587#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1588	{ }	/* terminate */
1589};
1590#else /* GROUP_IOSCHED */
1591static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1592						struct blkcg *blkcg)
1593{
1594	return cfqd->root_group;
1595}
1596
1597static inline void
1598cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1599	cfqq->cfqg = cfqg;
1600}
1601
1602#endif /* GROUP_IOSCHED */
1603
1604/*
1605 * The cfqd->service_trees holds all pending cfq_queue's that have
1606 * requests waiting to be processed. It is sorted in the order that
1607 * we will service the queues.
1608 */
1609static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1610				 bool add_front)
1611{
1612	struct rb_node **p, *parent;
1613	struct cfq_queue *__cfqq;
1614	unsigned long rb_key;
1615	struct cfq_rb_root *st;
1616	int left;
1617	int new_cfqq = 1;
1618
1619	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
1620	if (cfq_class_idle(cfqq)) {
1621		rb_key = CFQ_IDLE_DELAY;
1622		parent = rb_last(&st->rb);
1623		if (parent && parent != &cfqq->rb_node) {
1624			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1625			rb_key += __cfqq->rb_key;
1626		} else
1627			rb_key += jiffies;
1628	} else if (!add_front) {
1629		/*
1630		 * Get our rb key offset. Subtract any residual slice
1631		 * value carried from last service. A negative resid
1632		 * count indicates slice overrun, and this should position
1633		 * the next service time further away in the tree.
1634		 */
1635		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1636		rb_key -= cfqq->slice_resid;
1637		cfqq->slice_resid = 0;
1638	} else {
1639		rb_key = -HZ;
1640		__cfqq = cfq_rb_first(st);
1641		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1642	}
1643
1644	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1645		new_cfqq = 0;
1646		/*
1647		 * same position, nothing more to do
1648		 */
1649		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
1650			return;
1651
1652		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1653		cfqq->service_tree = NULL;
1654	}
1655
1656	left = 1;
1657	parent = NULL;
1658	cfqq->service_tree = st;
1659	p = &st->rb.rb_node;
1660	while (*p) {
1661		struct rb_node **n;
1662
1663		parent = *p;
1664		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1665
1666		/*
1667		 * sort by key, that represents service time.
1668		 */
1669		if (time_before(rb_key, __cfqq->rb_key))
1670			n = &(*p)->rb_left;
1671		else {
1672			n = &(*p)->rb_right;
1673			left = 0;
1674		}
1675
1676		p = n;
1677	}
1678
1679	if (left)
1680		st->left = &cfqq->rb_node;
1681
1682	cfqq->rb_key = rb_key;
1683	rb_link_node(&cfqq->rb_node, parent, p);
1684	rb_insert_color(&cfqq->rb_node, &st->rb);
1685	st->count++;
1686	if (add_front || !new_cfqq)
1687		return;
1688	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1689}
1690
1691static struct cfq_queue *
1692cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1693		     sector_t sector, struct rb_node **ret_parent,
1694		     struct rb_node ***rb_link)
1695{
1696	struct rb_node **p, *parent;
1697	struct cfq_queue *cfqq = NULL;
1698
1699	parent = NULL;
1700	p = &root->rb_node;
1701	while (*p) {
1702		struct rb_node **n;
1703
1704		parent = *p;
1705		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1706
1707		/*
1708		 * Sort strictly based on sector.  Smallest to the left,
1709		 * largest to the right.
1710		 */
1711		if (sector > blk_rq_pos(cfqq->next_rq))
1712			n = &(*p)->rb_right;
1713		else if (sector < blk_rq_pos(cfqq->next_rq))
1714			n = &(*p)->rb_left;
1715		else
1716			break;
1717		p = n;
1718		cfqq = NULL;
1719	}
1720
1721	*ret_parent = parent;
1722	if (rb_link)
1723		*rb_link = p;
1724	return cfqq;
1725}
1726
1727static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1728{
1729	struct rb_node **p, *parent;
1730	struct cfq_queue *__cfqq;
1731
1732	if (cfqq->p_root) {
1733		rb_erase(&cfqq->p_node, cfqq->p_root);
1734		cfqq->p_root = NULL;
1735	}
1736
1737	if (cfq_class_idle(cfqq))
1738		return;
1739	if (!cfqq->next_rq)
1740		return;
1741
1742	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1743	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1744				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1745	if (!__cfqq) {
1746		rb_link_node(&cfqq->p_node, parent, p);
1747		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1748	} else
1749		cfqq->p_root = NULL;
1750}
1751
1752/*
1753 * Update cfqq's position in the service tree.
1754 */
1755static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1756{
1757	/*
1758	 * Resorting requires the cfqq to be on the RR list already.
1759	 */
1760	if (cfq_cfqq_on_rr(cfqq)) {
1761		cfq_service_tree_add(cfqd, cfqq, 0);
1762		cfq_prio_tree_add(cfqd, cfqq);
1763	}
1764}
1765
1766/*
1767 * add to busy list of queues for service, trying to be fair in ordering
1768 * the pending list according to last request service
1769 */
1770static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1771{
1772	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1773	BUG_ON(cfq_cfqq_on_rr(cfqq));
1774	cfq_mark_cfqq_on_rr(cfqq);
1775	cfqd->busy_queues++;
1776	if (cfq_cfqq_sync(cfqq))
1777		cfqd->busy_sync_queues++;
1778
1779	cfq_resort_rr_list(cfqd, cfqq);
1780}
1781
1782/*
1783 * Called when the cfqq no longer has requests pending, remove it from
1784 * the service tree.
1785 */
1786static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1787{
1788	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1789	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1790	cfq_clear_cfqq_on_rr(cfqq);
1791
1792	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1793		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1794		cfqq->service_tree = NULL;
1795	}
1796	if (cfqq->p_root) {
1797		rb_erase(&cfqq->p_node, cfqq->p_root);
1798		cfqq->p_root = NULL;
1799	}
1800
1801	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1802	BUG_ON(!cfqd->busy_queues);
1803	cfqd->busy_queues--;
1804	if (cfq_cfqq_sync(cfqq))
1805		cfqd->busy_sync_queues--;
1806}
1807
1808/*
1809 * rb tree support functions
1810 */
1811static void cfq_del_rq_rb(struct request *rq)
1812{
1813	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1814	const int sync = rq_is_sync(rq);
1815
1816	BUG_ON(!cfqq->queued[sync]);
1817	cfqq->queued[sync]--;
1818
1819	elv_rb_del(&cfqq->sort_list, rq);
1820
1821	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1822		/*
1823		 * Queue will be deleted from service tree when we actually
1824		 * expire it later. Right now just remove it from prio tree
1825		 * as it is empty.
1826		 */
1827		if (cfqq->p_root) {
1828			rb_erase(&cfqq->p_node, cfqq->p_root);
1829			cfqq->p_root = NULL;
1830		}
1831	}
1832}
1833
1834static void cfq_add_rq_rb(struct request *rq)
1835{
1836	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1837	struct cfq_data *cfqd = cfqq->cfqd;
1838	struct request *prev;
1839
1840	cfqq->queued[rq_is_sync(rq)]++;
1841
1842	elv_rb_add(&cfqq->sort_list, rq);
1843
1844	if (!cfq_cfqq_on_rr(cfqq))
1845		cfq_add_cfqq_rr(cfqd, cfqq);
1846
1847	/*
1848	 * check if this request is a better next-serve candidate
1849	 */
1850	prev = cfqq->next_rq;
1851	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1852
1853	/*
1854	 * adjust priority tree position, if ->next_rq changes
1855	 */
1856	if (prev != cfqq->next_rq)
1857		cfq_prio_tree_add(cfqd, cfqq);
1858
1859	BUG_ON(!cfqq->next_rq);
1860}
1861
1862static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1863{
1864	elv_rb_del(&cfqq->sort_list, rq);
1865	cfqq->queued[rq_is_sync(rq)]--;
1866	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1867	cfq_add_rq_rb(rq);
1868	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
1869				 rq->cmd_flags);
1870}
1871
1872static struct request *
1873cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1874{
1875	struct task_struct *tsk = current;
1876	struct cfq_io_cq *cic;
1877	struct cfq_queue *cfqq;
1878
1879	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1880	if (!cic)
1881		return NULL;
1882
1883	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1884	if (cfqq) {
1885		sector_t sector = bio->bi_sector + bio_sectors(bio);
1886
1887		return elv_rb_find(&cfqq->sort_list, sector);
1888	}
1889
1890	return NULL;
1891}
1892
1893static void cfq_activate_request(struct request_queue *q, struct request *rq)
1894{
1895	struct cfq_data *cfqd = q->elevator->elevator_data;
1896
1897	cfqd->rq_in_driver++;
1898	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1899						cfqd->rq_in_driver);
1900
1901	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1902}
1903
1904static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1905{
1906	struct cfq_data *cfqd = q->elevator->elevator_data;
1907
1908	WARN_ON(!cfqd->rq_in_driver);
1909	cfqd->rq_in_driver--;
1910	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1911						cfqd->rq_in_driver);
1912}
1913
1914static void cfq_remove_request(struct request *rq)
1915{
1916	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1917
1918	if (cfqq->next_rq == rq)
1919		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1920
1921	list_del_init(&rq->queuelist);
1922	cfq_del_rq_rb(rq);
1923
1924	cfqq->cfqd->rq_queued--;
1925	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
1926	if (rq->cmd_flags & REQ_PRIO) {
1927		WARN_ON(!cfqq->prio_pending);
1928		cfqq->prio_pending--;
1929	}
1930}
1931
1932static int cfq_merge(struct request_queue *q, struct request **req,
1933		     struct bio *bio)
1934{
1935	struct cfq_data *cfqd = q->elevator->elevator_data;
1936	struct request *__rq;
1937
1938	__rq = cfq_find_rq_fmerge(cfqd, bio);
1939	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1940		*req = __rq;
1941		return ELEVATOR_FRONT_MERGE;
1942	}
1943
1944	return ELEVATOR_NO_MERGE;
1945}
1946
1947static void cfq_merged_request(struct request_queue *q, struct request *req,
1948			       int type)
1949{
1950	if (type == ELEVATOR_FRONT_MERGE) {
1951		struct cfq_queue *cfqq = RQ_CFQQ(req);
1952
1953		cfq_reposition_rq_rb(cfqq, req);
1954	}
1955}
1956
1957static void cfq_bio_merged(struct request_queue *q, struct request *req,
1958				struct bio *bio)
1959{
1960	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
1961}
1962
1963static void
1964cfq_merged_requests(struct request_queue *q, struct request *rq,
1965		    struct request *next)
1966{
1967	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1968	struct cfq_data *cfqd = q->elevator->elevator_data;
1969
1970	/*
1971	 * reposition in fifo if next is older than rq
1972	 */
1973	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1974	    time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
1975	    cfqq == RQ_CFQQ(next)) {
1976		list_move(&rq->queuelist, &next->queuelist);
1977		rq_set_fifo_time(rq, rq_fifo_time(next));
1978	}
1979
1980	if (cfqq->next_rq == next)
1981		cfqq->next_rq = rq;
1982	cfq_remove_request(next);
1983	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
1984
1985	cfqq = RQ_CFQQ(next);
1986	/*
1987	 * all requests of this queue are merged to other queues, delete it
1988	 * from the service tree. If it's the active_queue,
1989	 * cfq_dispatch_requests() will choose to expire it or do idle
1990	 */
1991	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1992	    cfqq != cfqd->active_queue)
1993		cfq_del_cfqq_rr(cfqd, cfqq);
1994}
1995
1996static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1997			   struct bio *bio)
1998{
1999	struct cfq_data *cfqd = q->elevator->elevator_data;
2000	struct cfq_io_cq *cic;
2001	struct cfq_queue *cfqq;
2002
2003	/*
2004	 * Disallow merge of a sync bio into an async request.
2005	 */
2006	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2007		return false;
2008
2009	/*
2010	 * Lookup the cfqq that this bio will be queued with and allow
2011	 * merge only if rq is queued there.
2012	 */
2013	cic = cfq_cic_lookup(cfqd, current->io_context);
2014	if (!cic)
2015		return false;
2016
2017	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2018	return cfqq == RQ_CFQQ(rq);
2019}
2020
2021static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2022{
2023	del_timer(&cfqd->idle_slice_timer);
2024	cfqg_stats_update_idle_time(cfqq->cfqg);
2025}
2026
2027static void __cfq_set_active_queue(struct cfq_data *cfqd,
2028				   struct cfq_queue *cfqq)
2029{
2030	if (cfqq) {
2031		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2032				cfqd->serving_wl_class, cfqd->serving_wl_type);
2033		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2034		cfqq->slice_start = 0;
2035		cfqq->dispatch_start = jiffies;
2036		cfqq->allocated_slice = 0;
2037		cfqq->slice_end = 0;
2038		cfqq->slice_dispatch = 0;
2039		cfqq->nr_sectors = 0;
2040
2041		cfq_clear_cfqq_wait_request(cfqq);
2042		cfq_clear_cfqq_must_dispatch(cfqq);
2043		cfq_clear_cfqq_must_alloc_slice(cfqq);
2044		cfq_clear_cfqq_fifo_expire(cfqq);
2045		cfq_mark_cfqq_slice_new(cfqq);
2046
2047		cfq_del_timer(cfqd, cfqq);
2048	}
2049
2050	cfqd->active_queue = cfqq;
2051}
2052
2053/*
2054 * current cfqq expired its slice (or was too idle), select new one
2055 */
2056static void
2057__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2058		    bool timed_out)
2059{
2060	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2061
2062	if (cfq_cfqq_wait_request(cfqq))
2063		cfq_del_timer(cfqd, cfqq);
2064
2065	cfq_clear_cfqq_wait_request(cfqq);
2066	cfq_clear_cfqq_wait_busy(cfqq);
2067
2068	/*
2069	 * If this cfqq is shared between multiple processes, check to
2070	 * make sure that those processes are still issuing I/Os within
2071	 * the mean seek distance.  If not, it may be time to break the
2072	 * queues apart again.
2073	 */
2074	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2075		cfq_mark_cfqq_split_coop(cfqq);
2076
2077	/*
2078	 * store what was left of this slice, if the queue idled/timed out
2079	 */
2080	if (timed_out) {
2081		if (cfq_cfqq_slice_new(cfqq))
2082			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2083		else
2084			cfqq->slice_resid = cfqq->slice_end - jiffies;
2085		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2086	}
2087
2088	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2089
2090	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2091		cfq_del_cfqq_rr(cfqd, cfqq);
2092
2093	cfq_resort_rr_list(cfqd, cfqq);
2094
2095	if (cfqq == cfqd->active_queue)
2096		cfqd->active_queue = NULL;
2097
2098	if (cfqd->active_cic) {
2099		put_io_context(cfqd->active_cic->icq.ioc);
2100		cfqd->active_cic = NULL;
2101	}
2102}
2103
2104static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2105{
2106	struct cfq_queue *cfqq = cfqd->active_queue;
2107
2108	if (cfqq)
2109		__cfq_slice_expired(cfqd, cfqq, timed_out);
2110}
2111
2112/*
2113 * Get next queue for service. Unless we have a queue preemption,
2114 * we'll simply select the first cfqq in the service tree.
2115 */
2116static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2117{
2118	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2119			cfqd->serving_wl_class, cfqd->serving_wl_type);
2120
2121	if (!cfqd->rq_queued)
2122		return NULL;
2123
2124	/* There is nothing to dispatch */
2125	if (!st)
2126		return NULL;
2127	if (RB_EMPTY_ROOT(&st->rb))
2128		return NULL;
2129	return cfq_rb_first(st);
2130}
2131
2132static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2133{
2134	struct cfq_group *cfqg;
2135	struct cfq_queue *cfqq;
2136	int i, j;
2137	struct cfq_rb_root *st;
2138
2139	if (!cfqd->rq_queued)
2140		return NULL;
2141
2142	cfqg = cfq_get_next_cfqg(cfqd);
2143	if (!cfqg)
2144		return NULL;
2145
2146	for_each_cfqg_st(cfqg, i, j, st)
2147		if ((cfqq = cfq_rb_first(st)) != NULL)
2148			return cfqq;
2149	return NULL;
2150}
2151
2152/*
2153 * Get and set a new active queue for service.
2154 */
2155static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2156					      struct cfq_queue *cfqq)
2157{
2158	if (!cfqq)
2159		cfqq = cfq_get_next_queue(cfqd);
2160
2161	__cfq_set_active_queue(cfqd, cfqq);
2162	return cfqq;
2163}
2164
2165static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2166					  struct request *rq)
2167{
2168	if (blk_rq_pos(rq) >= cfqd->last_position)
2169		return blk_rq_pos(rq) - cfqd->last_position;
2170	else
2171		return cfqd->last_position - blk_rq_pos(rq);
2172}
2173
2174static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2175			       struct request *rq)
2176{
2177	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2178}
2179
2180static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2181				    struct cfq_queue *cur_cfqq)
2182{
2183	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2184	struct rb_node *parent, *node;
2185	struct cfq_queue *__cfqq;
2186	sector_t sector = cfqd->last_position;
2187
2188	if (RB_EMPTY_ROOT(root))
2189		return NULL;
2190
2191	/*
2192	 * First, if we find a request starting at the end of the last
2193	 * request, choose it.
2194	 */
2195	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2196	if (__cfqq)
2197		return __cfqq;
2198
2199	/*
2200	 * If the exact sector wasn't found, the parent of the NULL leaf
2201	 * will contain the closest sector.
2202	 */
2203	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2204	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2205		return __cfqq;
2206
2207	if (blk_rq_pos(__cfqq->next_rq) < sector)
2208		node = rb_next(&__cfqq->p_node);
2209	else
2210		node = rb_prev(&__cfqq->p_node);
2211	if (!node)
2212		return NULL;
2213
2214	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2215	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2216		return __cfqq;
2217
2218	return NULL;
2219}
2220
2221/*
2222 * cfqd - obvious
2223 * cur_cfqq - passed in so that we don't decide that the current queue is
2224 * 	      closely cooperating with itself.
2225 *
2226 * So, basically we're assuming that that cur_cfqq has dispatched at least
2227 * one request, and that cfqd->last_position reflects a position on the disk
2228 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2229 * assumption.
2230 */
2231static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2232					      struct cfq_queue *cur_cfqq)
2233{
2234	struct cfq_queue *cfqq;
2235
2236	if (cfq_class_idle(cur_cfqq))
2237		return NULL;
2238	if (!cfq_cfqq_sync(cur_cfqq))
2239		return NULL;
2240	if (CFQQ_SEEKY(cur_cfqq))
2241		return NULL;
2242
2243	/*
2244	 * Don't search priority tree if it's the only queue in the group.
2245	 */
2246	if (cur_cfqq->cfqg->nr_cfqq == 1)
2247		return NULL;
2248
2249	/*
2250	 * We should notice if some of the queues are cooperating, eg
2251	 * working closely on the same area of the disk. In that case,
2252	 * we can group them together and don't waste time idling.
2253	 */
2254	cfqq = cfqq_close(cfqd, cur_cfqq);
2255	if (!cfqq)
2256		return NULL;
2257
2258	/* If new queue belongs to different cfq_group, don't choose it */
2259	if (cur_cfqq->cfqg != cfqq->cfqg)
2260		return NULL;
2261
2262	/*
2263	 * It only makes sense to merge sync queues.
2264	 */
2265	if (!cfq_cfqq_sync(cfqq))
2266		return NULL;
2267	if (CFQQ_SEEKY(cfqq))
2268		return NULL;
2269
2270	/*
2271	 * Do not merge queues of different priority classes
2272	 */
2273	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2274		return NULL;
2275
2276	return cfqq;
2277}
2278
2279/*
2280 * Determine whether we should enforce idle window for this queue.
2281 */
2282
2283static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2284{
2285	enum wl_class_t wl_class = cfqq_class(cfqq);
2286	struct cfq_rb_root *st = cfqq->service_tree;
2287
2288	BUG_ON(!st);
2289	BUG_ON(!st->count);
2290
2291	if (!cfqd->cfq_slice_idle)
2292		return false;
2293
2294	/* We never do for idle class queues. */
2295	if (wl_class == IDLE_WORKLOAD)
2296		return false;
2297
2298	/* We do for queues that were marked with idle window flag. */
2299	if (cfq_cfqq_idle_window(cfqq) &&
2300	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2301		return true;
2302
2303	/*
2304	 * Otherwise, we do only if they are the last ones
2305	 * in their service tree.
2306	 */
2307	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2308	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2309		return true;
2310	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2311	return false;
2312}
2313
2314static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2315{
2316	struct cfq_queue *cfqq = cfqd->active_queue;
2317	struct cfq_io_cq *cic;
2318	unsigned long sl, group_idle = 0;
2319
2320	/*
2321	 * SSD device without seek penalty, disable idling. But only do so
2322	 * for devices that support queuing, otherwise we still have a problem
2323	 * with sync vs async workloads.
2324	 */
2325	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2326		return;
2327
2328	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2329	WARN_ON(cfq_cfqq_slice_new(cfqq));
2330
2331	/*
2332	 * idle is disabled, either manually or by past process history
2333	 */
2334	if (!cfq_should_idle(cfqd, cfqq)) {
2335		/* no queue idling. Check for group idling */
2336		if (cfqd->cfq_group_idle)
2337			group_idle = cfqd->cfq_group_idle;
2338		else
2339			return;
2340	}
2341
2342	/*
2343	 * still active requests from this queue, don't idle
2344	 */
2345	if (cfqq->dispatched)
2346		return;
2347
2348	/*
2349	 * task has exited, don't wait
2350	 */
2351	cic = cfqd->active_cic;
2352	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2353		return;
2354
2355	/*
2356	 * If our average think time is larger than the remaining time
2357	 * slice, then don't idle. This avoids overrunning the allotted
2358	 * time slice.
2359	 */
2360	if (sample_valid(cic->ttime.ttime_samples) &&
2361	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2362		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2363			     cic->ttime.ttime_mean);
2364		return;
2365	}
2366
2367	/* There are other queues in the group, don't do group idle */
2368	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2369		return;
2370
2371	cfq_mark_cfqq_wait_request(cfqq);
2372
2373	if (group_idle)
2374		sl = cfqd->cfq_group_idle;
2375	else
2376		sl = cfqd->cfq_slice_idle;
2377
2378	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2379	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2380	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2381			group_idle ? 1 : 0);
2382}
2383
2384/*
2385 * Move request from internal lists to the request queue dispatch list.
2386 */
2387static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2388{
2389	struct cfq_data *cfqd = q->elevator->elevator_data;
2390	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2391
2392	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2393
2394	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2395	cfq_remove_request(rq);
2396	cfqq->dispatched++;
2397	(RQ_CFQG(rq))->dispatched++;
2398	elv_dispatch_sort(q, rq);
2399
2400	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2401	cfqq->nr_sectors += blk_rq_sectors(rq);
2402	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2403}
2404
2405/*
2406 * return expired entry, or NULL to just start from scratch in rbtree
2407 */
2408static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2409{
2410	struct request *rq = NULL;
2411
2412	if (cfq_cfqq_fifo_expire(cfqq))
2413		return NULL;
2414
2415	cfq_mark_cfqq_fifo_expire(cfqq);
2416
2417	if (list_empty(&cfqq->fifo))
2418		return NULL;
2419
2420	rq = rq_entry_fifo(cfqq->fifo.next);
2421	if (time_before(jiffies, rq_fifo_time(rq)))
2422		rq = NULL;
2423
2424	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2425	return rq;
2426}
2427
2428static inline int
2429cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2430{
2431	const int base_rq = cfqd->cfq_slice_async_rq;
2432
2433	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2434
2435	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2436}
2437
2438/*
2439 * Must be called with the queue_lock held.
2440 */
2441static int cfqq_process_refs(struct cfq_queue *cfqq)
2442{
2443	int process_refs, io_refs;
2444
2445	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2446	process_refs = cfqq->ref - io_refs;
2447	BUG_ON(process_refs < 0);
2448	return process_refs;
2449}
2450
2451static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2452{
2453	int process_refs, new_process_refs;
2454	struct cfq_queue *__cfqq;
2455
2456	/*
2457	 * If there are no process references on the new_cfqq, then it is
2458	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2459	 * chain may have dropped their last reference (not just their
2460	 * last process reference).
2461	 */
2462	if (!cfqq_process_refs(new_cfqq))
2463		return;
2464
2465	/* Avoid a circular list and skip interim queue merges */
2466	while ((__cfqq = new_cfqq->new_cfqq)) {
2467		if (__cfqq == cfqq)
2468			return;
2469		new_cfqq = __cfqq;
2470	}
2471
2472	process_refs = cfqq_process_refs(cfqq);
2473	new_process_refs = cfqq_process_refs(new_cfqq);
2474	/*
2475	 * If the process for the cfqq has gone away, there is no
2476	 * sense in merging the queues.
2477	 */
2478	if (process_refs == 0 || new_process_refs == 0)
2479		return;
2480
2481	/*
2482	 * Merge in the direction of the lesser amount of work.
2483	 */
2484	if (new_process_refs >= process_refs) {
2485		cfqq->new_cfqq = new_cfqq;
2486		new_cfqq->ref += process_refs;
2487	} else {
2488		new_cfqq->new_cfqq = cfqq;
2489		cfqq->ref += new_process_refs;
2490	}
2491}
2492
2493static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2494			struct cfq_group *cfqg, enum wl_class_t wl_class)
2495{
2496	struct cfq_queue *queue;
2497	int i;
2498	bool key_valid = false;
2499	unsigned long lowest_key = 0;
2500	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2501
2502	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2503		/* select the one with lowest rb_key */
2504		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2505		if (queue &&
2506		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2507			lowest_key = queue->rb_key;
2508			cur_best = i;
2509			key_valid = true;
2510		}
2511	}
2512
2513	return cur_best;
2514}
2515
2516static void
2517choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2518{
2519	unsigned slice;
2520	unsigned count;
2521	struct cfq_rb_root *st;
2522	unsigned group_slice;
2523	enum wl_class_t original_class = cfqd->serving_wl_class;
2524
2525	/* Choose next priority. RT > BE > IDLE */
2526	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2527		cfqd->serving_wl_class = RT_WORKLOAD;
2528	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2529		cfqd->serving_wl_class = BE_WORKLOAD;
2530	else {
2531		cfqd->serving_wl_class = IDLE_WORKLOAD;
2532		cfqd->workload_expires = jiffies + 1;
2533		return;
2534	}
2535
2536	if (original_class != cfqd->serving_wl_class)
2537		goto new_workload;
2538
2539	/*
2540	 * For RT and BE, we have to choose also the type
2541	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2542	 * expiration time
2543	 */
2544	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2545	count = st->count;
2546
2547	/*
2548	 * check workload expiration, and that we still have other queues ready
2549	 */
2550	if (count && !time_after(jiffies, cfqd->workload_expires))
2551		return;
2552
2553new_workload:
2554	/* otherwise select new workload type */
2555	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2556					cfqd->serving_wl_class);
2557	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2558	count = st->count;
2559
2560	/*
2561	 * the workload slice is computed as a fraction of target latency
2562	 * proportional to the number of queues in that workload, over
2563	 * all the queues in the same priority class
2564	 */
2565	group_slice = cfq_group_slice(cfqd, cfqg);
2566
2567	slice = group_slice * count /
2568		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2569		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2570					cfqg));
2571
2572	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2573		unsigned int tmp;
2574
2575		/*
2576		 * Async queues are currently system wide. Just taking
2577		 * proportion of queues with-in same group will lead to higher
2578		 * async ratio system wide as generally root group is going
2579		 * to have higher weight. A more accurate thing would be to
2580		 * calculate system wide asnc/sync ratio.
2581		 */
2582		tmp = cfqd->cfq_target_latency *
2583			cfqg_busy_async_queues(cfqd, cfqg);
2584		tmp = tmp/cfqd->busy_queues;
2585		slice = min_t(unsigned, slice, tmp);
2586
2587		/* async workload slice is scaled down according to
2588		 * the sync/async slice ratio. */
2589		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2590	} else
2591		/* sync workload slice is at least 2 * cfq_slice_idle */
2592		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2593
2594	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2595	cfq_log(cfqd, "workload slice:%d", slice);
2596	cfqd->workload_expires = jiffies + slice;
2597}
2598
2599static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2600{
2601	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2602	struct cfq_group *cfqg;
2603
2604	if (RB_EMPTY_ROOT(&st->rb))
2605		return NULL;
2606	cfqg = cfq_rb_first_group(st);
2607	update_min_vdisktime(st);
2608	return cfqg;
2609}
2610
2611static void cfq_choose_cfqg(struct cfq_data *cfqd)
2612{
2613	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2614
2615	cfqd->serving_group = cfqg;
2616
2617	/* Restore the workload type data */
2618	if (cfqg->saved_wl_slice) {
2619		cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
2620		cfqd->serving_wl_type = cfqg->saved_wl_type;
2621		cfqd->serving_wl_class = cfqg->saved_wl_class;
2622	} else
2623		cfqd->workload_expires = jiffies - 1;
2624
2625	choose_wl_class_and_type(cfqd, cfqg);
2626}
2627
2628/*
2629 * Select a queue for service. If we have a current active queue,
2630 * check whether to continue servicing it, or retrieve and set a new one.
2631 */
2632static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2633{
2634	struct cfq_queue *cfqq, *new_cfqq = NULL;
2635
2636	cfqq = cfqd->active_queue;
2637	if (!cfqq)
2638		goto new_queue;
2639
2640	if (!cfqd->rq_queued)
2641		return NULL;
2642
2643	/*
2644	 * We were waiting for group to get backlogged. Expire the queue
2645	 */
2646	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2647		goto expire;
2648
2649	/*
2650	 * The active queue has run out of time, expire it and select new.
2651	 */
2652	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2653		/*
2654		 * If slice had not expired at the completion of last request
2655		 * we might not have turned on wait_busy flag. Don't expire
2656		 * the queue yet. Allow the group to get backlogged.
2657		 *
2658		 * The very fact that we have used the slice, that means we
2659		 * have been idling all along on this queue and it should be
2660		 * ok to wait for this request to complete.
2661		 */
2662		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2663		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2664			cfqq = NULL;
2665			goto keep_queue;
2666		} else
2667			goto check_group_idle;
2668	}
2669
2670	/*
2671	 * The active queue has requests and isn't expired, allow it to
2672	 * dispatch.
2673	 */
2674	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2675		goto keep_queue;
2676
2677	/*
2678	 * If another queue has a request waiting within our mean seek
2679	 * distance, let it run.  The expire code will check for close
2680	 * cooperators and put the close queue at the front of the service
2681	 * tree.  If possible, merge the expiring queue with the new cfqq.
2682	 */
2683	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2684	if (new_cfqq) {
2685		if (!cfqq->new_cfqq)
2686			cfq_setup_merge(cfqq, new_cfqq);
2687		goto expire;
2688	}
2689
2690	/*
2691	 * No requests pending. If the active queue still has requests in
2692	 * flight or is idling for a new request, allow either of these
2693	 * conditions to happen (or time out) before selecting a new queue.
2694	 */
2695	if (timer_pending(&cfqd->idle_slice_timer)) {
2696		cfqq = NULL;
2697		goto keep_queue;
2698	}
2699
2700	/*
2701	 * This is a deep seek queue, but the device is much faster than
2702	 * the queue can deliver, don't idle
2703	 **/
2704	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2705	    (cfq_cfqq_slice_new(cfqq) ||
2706	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2707		cfq_clear_cfqq_deep(cfqq);
2708		cfq_clear_cfqq_idle_window(cfqq);
2709	}
2710
2711	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2712		cfqq = NULL;
2713		goto keep_queue;
2714	}
2715
2716	/*
2717	 * If group idle is enabled and there are requests dispatched from
2718	 * this group, wait for requests to complete.
2719	 */
2720check_group_idle:
2721	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2722	    cfqq->cfqg->dispatched &&
2723	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2724		cfqq = NULL;
2725		goto keep_queue;
2726	}
2727
2728expire:
2729	cfq_slice_expired(cfqd, 0);
2730new_queue:
2731	/*
2732	 * Current queue expired. Check if we have to switch to a new
2733	 * service tree
2734	 */
2735	if (!new_cfqq)
2736		cfq_choose_cfqg(cfqd);
2737
2738	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2739keep_queue:
2740	return cfqq;
2741}
2742
2743static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2744{
2745	int dispatched = 0;
2746
2747	while (cfqq->next_rq) {
2748		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2749		dispatched++;
2750	}
2751
2752	BUG_ON(!list_empty(&cfqq->fifo));
2753
2754	/* By default cfqq is not expired if it is empty. Do it explicitly */
2755	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2756	return dispatched;
2757}
2758
2759/*
2760 * Drain our current requests. Used for barriers and when switching
2761 * io schedulers on-the-fly.
2762 */
2763static int cfq_forced_dispatch(struct cfq_data *cfqd)
2764{
2765	struct cfq_queue *cfqq;
2766	int dispatched = 0;
2767
2768	/* Expire the timeslice of the current active queue first */
2769	cfq_slice_expired(cfqd, 0);
2770	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2771		__cfq_set_active_queue(cfqd, cfqq);
2772		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2773	}
2774
2775	BUG_ON(cfqd->busy_queues);
2776
2777	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2778	return dispatched;
2779}
2780
2781static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2782	struct cfq_queue *cfqq)
2783{
2784	/* the queue hasn't finished any request, can't estimate */
2785	if (cfq_cfqq_slice_new(cfqq))
2786		return true;
2787	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2788		cfqq->slice_end))
2789		return true;
2790
2791	return false;
2792}
2793
2794static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2795{
2796	unsigned int max_dispatch;
2797
2798	/*
2799	 * Drain async requests before we start sync IO
2800	 */
2801	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2802		return false;
2803
2804	/*
2805	 * If this is an async queue and we have sync IO in flight, let it wait
2806	 */
2807	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2808		return false;
2809
2810	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2811	if (cfq_class_idle(cfqq))
2812		max_dispatch = 1;
2813
2814	/*
2815	 * Does this cfqq already have too much IO in flight?
2816	 */
2817	if (cfqq->dispatched >= max_dispatch) {
2818		bool promote_sync = false;
2819		/*
2820		 * idle queue must always only have a single IO in flight
2821		 */
2822		if (cfq_class_idle(cfqq))
2823			return false;
2824
2825		/*
2826		 * If there is only one sync queue
2827		 * we can ignore async queue here and give the sync
2828		 * queue no dispatch limit. The reason is a sync queue can
2829		 * preempt async queue, limiting the sync queue doesn't make
2830		 * sense. This is useful for aiostress test.
2831		 */
2832		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2833			promote_sync = true;
2834
2835		/*
2836		 * We have other queues, don't allow more IO from this one
2837		 */
2838		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2839				!promote_sync)
2840			return false;
2841
2842		/*
2843		 * Sole queue user, no limit
2844		 */
2845		if (cfqd->busy_queues == 1 || promote_sync)
2846			max_dispatch = -1;
2847		else
2848			/*
2849			 * Normally we start throttling cfqq when cfq_quantum/2
2850			 * requests have been dispatched. But we can drive
2851			 * deeper queue depths at the beginning of slice
2852			 * subjected to upper limit of cfq_quantum.
2853			 * */
2854			max_dispatch = cfqd->cfq_quantum;
2855	}
2856
2857	/*
2858	 * Async queues must wait a bit before being allowed dispatch.
2859	 * We also ramp up the dispatch depth gradually for async IO,
2860	 * based on the last sync IO we serviced
2861	 */
2862	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2863		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2864		unsigned int depth;
2865
2866		depth = last_sync / cfqd->cfq_slice[1];
2867		if (!depth && !cfqq->dispatched)
2868			depth = 1;
2869		if (depth < max_dispatch)
2870			max_dispatch = depth;
2871	}
2872
2873	/*
2874	 * If we're below the current max, allow a dispatch
2875	 */
2876	return cfqq->dispatched < max_dispatch;
2877}
2878
2879/*
2880 * Dispatch a request from cfqq, moving them to the request queue
2881 * dispatch list.
2882 */
2883static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2884{
2885	struct request *rq;
2886
2887	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2888
2889	if (!cfq_may_dispatch(cfqd, cfqq))
2890		return false;
2891
2892	/*
2893	 * follow expired path, else get first next available
2894	 */
2895	rq = cfq_check_fifo(cfqq);
2896	if (!rq)
2897		rq = cfqq->next_rq;
2898
2899	/*
2900	 * insert request into driver dispatch list
2901	 */
2902	cfq_dispatch_insert(cfqd->queue, rq);
2903
2904	if (!cfqd->active_cic) {
2905		struct cfq_io_cq *cic = RQ_CIC(rq);
2906
2907		atomic_long_inc(&cic->icq.ioc->refcount);
2908		cfqd->active_cic = cic;
2909	}
2910
2911	return true;
2912}
2913
2914/*
2915 * Find the cfqq that we need to service and move a request from that to the
2916 * dispatch list
2917 */
2918static int cfq_dispatch_requests(struct request_queue *q, int force)
2919{
2920	struct cfq_data *cfqd = q->elevator->elevator_data;
2921	struct cfq_queue *cfqq;
2922
2923	if (!cfqd->busy_queues)
2924		return 0;
2925
2926	if (unlikely(force))
2927		return cfq_forced_dispatch(cfqd);
2928
2929	cfqq = cfq_select_queue(cfqd);
2930	if (!cfqq)
2931		return 0;
2932
2933	/*
2934	 * Dispatch a request from this cfqq, if it is allowed
2935	 */
2936	if (!cfq_dispatch_request(cfqd, cfqq))
2937		return 0;
2938
2939	cfqq->slice_dispatch++;
2940	cfq_clear_cfqq_must_dispatch(cfqq);
2941
2942	/*
2943	 * expire an async queue immediately if it has used up its slice. idle
2944	 * queue always expire after 1 dispatch round.
2945	 */
2946	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2947	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2948	    cfq_class_idle(cfqq))) {
2949		cfqq->slice_end = jiffies + 1;
2950		cfq_slice_expired(cfqd, 0);
2951	}
2952
2953	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2954	return 1;
2955}
2956
2957/*
2958 * task holds one reference to the queue, dropped when task exits. each rq
2959 * in-flight on this queue also holds a reference, dropped when rq is freed.
2960 *
2961 * Each cfq queue took a reference on the parent group. Drop it now.
2962 * queue lock must be held here.
2963 */
2964static void cfq_put_queue(struct cfq_queue *cfqq)
2965{
2966	struct cfq_data *cfqd = cfqq->cfqd;
2967	struct cfq_group *cfqg;
2968
2969	BUG_ON(cfqq->ref <= 0);
2970
2971	cfqq->ref--;
2972	if (cfqq->ref)
2973		return;
2974
2975	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2976	BUG_ON(rb_first(&cfqq->sort_list));
2977	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2978	cfqg = cfqq->cfqg;
2979
2980	if (unlikely(cfqd->active_queue == cfqq)) {
2981		__cfq_slice_expired(cfqd, cfqq, 0);
2982		cfq_schedule_dispatch(cfqd);
2983	}
2984
2985	BUG_ON(cfq_cfqq_on_rr(cfqq));
2986	kmem_cache_free(cfq_pool, cfqq);
2987	cfqg_put(cfqg);
2988}
2989
2990static void cfq_put_cooperator(struct cfq_queue *cfqq)
2991{
2992	struct cfq_queue *__cfqq, *next;
2993
2994	/*
2995	 * If this queue was scheduled to merge with another queue, be
2996	 * sure to drop the reference taken on that queue (and others in
2997	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2998	 */
2999	__cfqq = cfqq->new_cfqq;
3000	while (__cfqq) {
3001		if (__cfqq == cfqq) {
3002			WARN(1, "cfqq->new_cfqq loop detected\n");
3003			break;
3004		}
3005		next = __cfqq->new_cfqq;
3006		cfq_put_queue(__cfqq);
3007		__cfqq = next;
3008	}
3009}
3010
3011static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3012{
3013	if (unlikely(cfqq == cfqd->active_queue)) {
3014		__cfq_slice_expired(cfqd, cfqq, 0);
3015		cfq_schedule_dispatch(cfqd);
3016	}
3017
3018	cfq_put_cooperator(cfqq);
3019
3020	cfq_put_queue(cfqq);
3021}
3022
3023static void cfq_init_icq(struct io_cq *icq)
3024{
3025	struct cfq_io_cq *cic = icq_to_cic(icq);
3026
3027	cic->ttime.last_end_request = jiffies;
3028}
3029
3030static void cfq_exit_icq(struct io_cq *icq)
3031{
3032	struct cfq_io_cq *cic = icq_to_cic(icq);
3033	struct cfq_data *cfqd = cic_to_cfqd(cic);
3034
3035	if (cic->cfqq[BLK_RW_ASYNC]) {
3036		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3037		cic->cfqq[BLK_RW_ASYNC] = NULL;
3038	}
3039
3040	if (cic->cfqq[BLK_RW_SYNC]) {
3041		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3042		cic->cfqq[BLK_RW_SYNC] = NULL;
3043	}
3044}
3045
3046static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3047{
3048	struct task_struct *tsk = current;
3049	int ioprio_class;
3050
3051	if (!cfq_cfqq_prio_changed(cfqq))
3052		return;
3053
3054	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3055	switch (ioprio_class) {
3056	default:
3057		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3058	case IOPRIO_CLASS_NONE:
3059		/*
3060		 * no prio set, inherit CPU scheduling settings
3061		 */
3062		cfqq->ioprio = task_nice_ioprio(tsk);
3063		cfqq->ioprio_class = task_nice_ioclass(tsk);
3064		break;
3065	case IOPRIO_CLASS_RT:
3066		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3067		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3068		break;
3069	case IOPRIO_CLASS_BE:
3070		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3071		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3072		break;
3073	case IOPRIO_CLASS_IDLE:
3074		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3075		cfqq->ioprio = 7;
3076		cfq_clear_cfqq_idle_window(cfqq);
3077		break;
3078	}
3079
3080	/*
3081	 * keep track of original prio settings in case we have to temporarily
3082	 * elevate the priority of this queue
3083	 */
3084	cfqq->org_ioprio = cfqq->ioprio;
3085	cfq_clear_cfqq_prio_changed(cfqq);
3086}
3087
3088static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3089{
3090	int ioprio = cic->icq.ioc->ioprio;
3091	struct cfq_data *cfqd = cic_to_cfqd(cic);
3092	struct cfq_queue *cfqq;
3093
3094	/*
3095	 * Check whether ioprio has changed.  The condition may trigger
3096	 * spuriously on a newly created cic but there's no harm.
3097	 */
3098	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3099		return;
3100
3101	cfqq = cic->cfqq[BLK_RW_ASYNC];
3102	if (cfqq) {
3103		struct cfq_queue *new_cfqq;
3104		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3105					 GFP_ATOMIC);
3106		if (new_cfqq) {
3107			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3108			cfq_put_queue(cfqq);
3109		}
3110	}
3111
3112	cfqq = cic->cfqq[BLK_RW_SYNC];
3113	if (cfqq)
3114		cfq_mark_cfqq_prio_changed(cfqq);
3115
3116	cic->ioprio = ioprio;
3117}
3118
3119static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3120			  pid_t pid, bool is_sync)
3121{
3122	RB_CLEAR_NODE(&cfqq->rb_node);
3123	RB_CLEAR_NODE(&cfqq->p_node);
3124	INIT_LIST_HEAD(&cfqq->fifo);
3125
3126	cfqq->ref = 0;
3127	cfqq->cfqd = cfqd;
3128
3129	cfq_mark_cfqq_prio_changed(cfqq);
3130
3131	if (is_sync) {
3132		if (!cfq_class_idle(cfqq))
3133			cfq_mark_cfqq_idle_window(cfqq);
3134		cfq_mark_cfqq_sync(cfqq);
3135	}
3136	cfqq->pid = pid;
3137}
3138
3139#ifdef CONFIG_CFQ_GROUP_IOSCHED
3140static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3141{
3142	struct cfq_data *cfqd = cic_to_cfqd(cic);
3143	struct cfq_queue *sync_cfqq;
3144	uint64_t id;
3145
3146	rcu_read_lock();
3147	id = bio_blkcg(bio)->id;
3148	rcu_read_unlock();
3149
3150	/*
3151	 * Check whether blkcg has changed.  The condition may trigger
3152	 * spuriously on a newly created cic but there's no harm.
3153	 */
3154	if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3155		return;
3156
3157	sync_cfqq = cic_to_cfqq(cic, 1);
3158	if (sync_cfqq) {
3159		/*
3160		 * Drop reference to sync queue. A new sync queue will be
3161		 * assigned in new group upon arrival of a fresh request.
3162		 */
3163		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3164		cic_set_cfqq(cic, NULL, 1);
3165		cfq_put_queue(sync_cfqq);
3166	}
3167
3168	cic->blkcg_id = id;
3169}
3170#else
3171static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3172#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3173
3174static struct cfq_queue *
3175cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3176		     struct bio *bio, gfp_t gfp_mask)
3177{
3178	struct blkcg *blkcg;
3179	struct cfq_queue *cfqq, *new_cfqq = NULL;
3180	struct cfq_group *cfqg;
3181
3182retry:
3183	rcu_read_lock();
3184
3185	blkcg = bio_blkcg(bio);
3186	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3187	cfqq = cic_to_cfqq(cic, is_sync);
3188
3189	/*
3190	 * Always try a new alloc if we fell back to the OOM cfqq
3191	 * originally, since it should just be a temporary situation.
3192	 */
3193	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3194		cfqq = NULL;
3195		if (new_cfqq) {
3196			cfqq = new_cfqq;
3197			new_cfqq = NULL;
3198		} else if (gfp_mask & __GFP_WAIT) {
3199			rcu_read_unlock();
3200			spin_unlock_irq(cfqd->queue->queue_lock);
3201			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3202					gfp_mask | __GFP_ZERO,
3203					cfqd->queue->node);
3204			spin_lock_irq(cfqd->queue->queue_lock);
3205			if (new_cfqq)
3206				goto retry;
3207		} else {
3208			cfqq = kmem_cache_alloc_node(cfq_pool,
3209					gfp_mask | __GFP_ZERO,
3210					cfqd->queue->node);
3211		}
3212
3213		if (cfqq) {
3214			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3215			cfq_init_prio_data(cfqq, cic);
3216			cfq_link_cfqq_cfqg(cfqq, cfqg);
3217			cfq_log_cfqq(cfqd, cfqq, "alloced");
3218		} else
3219			cfqq = &cfqd->oom_cfqq;
3220	}
3221
3222	if (new_cfqq)
3223		kmem_cache_free(cfq_pool, new_cfqq);
3224
3225	rcu_read_unlock();
3226	return cfqq;
3227}
3228
3229static struct cfq_queue **
3230cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3231{
3232	switch (ioprio_class) {
3233	case IOPRIO_CLASS_RT:
3234		return &cfqd->async_cfqq[0][ioprio];
3235	case IOPRIO_CLASS_NONE:
3236		ioprio = IOPRIO_NORM;
3237		/* fall through */
3238	case IOPRIO_CLASS_BE:
3239		return &cfqd->async_cfqq[1][ioprio];
3240	case IOPRIO_CLASS_IDLE:
3241		return &cfqd->async_idle_cfqq;
3242	default:
3243		BUG();
3244	}
3245}
3246
3247static struct cfq_queue *
3248cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3249	      struct bio *bio, gfp_t gfp_mask)
3250{
3251	const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3252	const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3253	struct cfq_queue **async_cfqq = NULL;
3254	struct cfq_queue *cfqq = NULL;
3255
3256	if (!is_sync) {
3257		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3258		cfqq = *async_cfqq;
3259	}
3260
3261	if (!cfqq)
3262		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3263
3264	/*
3265	 * pin the queue now that it's allocated, scheduler exit will prune it
3266	 */
3267	if (!is_sync && !(*async_cfqq)) {
3268		cfqq->ref++;
3269		*async_cfqq = cfqq;
3270	}
3271
3272	cfqq->ref++;
3273	return cfqq;
3274}
3275
3276static void
3277__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3278{
3279	unsigned long elapsed = jiffies - ttime->last_end_request;
3280	elapsed = min(elapsed, 2UL * slice_idle);
3281
3282	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3283	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3284	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3285}
3286
3287static void
3288cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3289			struct cfq_io_cq *cic)
3290{
3291	if (cfq_cfqq_sync(cfqq)) {
3292		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3293		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3294			cfqd->cfq_slice_idle);
3295	}
3296#ifdef CONFIG_CFQ_GROUP_IOSCHED
3297	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3298#endif
3299}
3300
3301static void
3302cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3303		       struct request *rq)
3304{
3305	sector_t sdist = 0;
3306	sector_t n_sec = blk_rq_sectors(rq);
3307	if (cfqq->last_request_pos) {
3308		if (cfqq->last_request_pos < blk_rq_pos(rq))
3309			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3310		else
3311			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3312	}
3313
3314	cfqq->seek_history <<= 1;
3315	if (blk_queue_nonrot(cfqd->queue))
3316		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3317	else
3318		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3319}
3320
3321/*
3322 * Disable idle window if the process thinks too long or seeks so much that
3323 * it doesn't matter
3324 */
3325static void
3326cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3327		       struct cfq_io_cq *cic)
3328{
3329	int old_idle, enable_idle;
3330
3331	/*
3332	 * Don't idle for async or idle io prio class
3333	 */
3334	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3335		return;
3336
3337	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3338
3339	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3340		cfq_mark_cfqq_deep(cfqq);
3341
3342	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3343		enable_idle = 0;
3344	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3345		 !cfqd->cfq_slice_idle ||
3346		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3347		enable_idle = 0;
3348	else if (sample_valid(cic->ttime.ttime_samples)) {
3349		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3350			enable_idle = 0;
3351		else
3352			enable_idle = 1;
3353	}
3354
3355	if (old_idle != enable_idle) {
3356		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3357		if (enable_idle)
3358			cfq_mark_cfqq_idle_window(cfqq);
3359		else
3360			cfq_clear_cfqq_idle_window(cfqq);
3361	}
3362}
3363
3364/*
3365 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3366 * no or if we aren't sure, a 1 will cause a preempt.
3367 */
3368static bool
3369cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3370		   struct request *rq)
3371{
3372	struct cfq_queue *cfqq;
3373
3374	cfqq = cfqd->active_queue;
3375	if (!cfqq)
3376		return false;
3377
3378	if (cfq_class_idle(new_cfqq))
3379		return false;
3380
3381	if (cfq_class_idle(cfqq))
3382		return true;
3383
3384	/*
3385	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3386	 */
3387	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3388		return false;
3389
3390	/*
3391	 * if the new request is sync, but the currently running queue is
3392	 * not, let the sync request have priority.
3393	 */
3394	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3395		return true;
3396
3397	if (new_cfqq->cfqg != cfqq->cfqg)
3398		return false;
3399
3400	if (cfq_slice_used(cfqq))
3401		return true;
3402
3403	/* Allow preemption only if we are idling on sync-noidle tree */
3404	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3405	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3406	    new_cfqq->service_tree->count == 2 &&
3407	    RB_EMPTY_ROOT(&cfqq->sort_list))
3408		return true;
3409
3410	/*
3411	 * So both queues are sync. Let the new request get disk time if
3412	 * it's a metadata request and the current queue is doing regular IO.
3413	 */
3414	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3415		return true;
3416
3417	/*
3418	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3419	 */
3420	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3421		return true;
3422
3423	/* An idle queue should not be idle now for some reason */
3424	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3425		return true;
3426
3427	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3428		return false;
3429
3430	/*
3431	 * if this request is as-good as one we would expect from the
3432	 * current cfqq, let it preempt
3433	 */
3434	if (cfq_rq_close(cfqd, cfqq, rq))
3435		return true;
3436
3437	return false;
3438}
3439
3440/*
3441 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3442 * let it have half of its nominal slice.
3443 */
3444static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3445{
3446	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3447
3448	cfq_log_cfqq(cfqd, cfqq, "preempt");
3449	cfq_slice_expired(cfqd, 1);
3450
3451	/*
3452	 * workload type is changed, don't save slice, otherwise preempt
3453	 * doesn't happen
3454	 */
3455	if (old_type != cfqq_type(cfqq))
3456		cfqq->cfqg->saved_wl_slice = 0;
3457
3458	/*
3459	 * Put the new queue at the front of the of the current list,
3460	 * so we know that it will be selected next.
3461	 */
3462	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3463
3464	cfq_service_tree_add(cfqd, cfqq, 1);
3465
3466	cfqq->slice_end = 0;
3467	cfq_mark_cfqq_slice_new(cfqq);
3468}
3469
3470/*
3471 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3472 * something we should do about it
3473 */
3474static void
3475cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3476		struct request *rq)
3477{
3478	struct cfq_io_cq *cic = RQ_CIC(rq);
3479
3480	cfqd->rq_queued++;
3481	if (rq->cmd_flags & REQ_PRIO)
3482		cfqq->prio_pending++;
3483
3484	cfq_update_io_thinktime(cfqd, cfqq, cic);
3485	cfq_update_io_seektime(cfqd, cfqq, rq);
3486	cfq_update_idle_window(cfqd, cfqq, cic);
3487
3488	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3489
3490	if (cfqq == cfqd->active_queue) {
3491		/*
3492		 * Remember that we saw a request from this process, but
3493		 * don't start queuing just yet. Otherwise we risk seeing lots
3494		 * of tiny requests, because we disrupt the normal plugging
3495		 * and merging. If the request is already larger than a single
3496		 * page, let it rip immediately. For that case we assume that
3497		 * merging is already done. Ditto for a busy system that
3498		 * has other work pending, don't risk delaying until the
3499		 * idle timer unplug to continue working.
3500		 */
3501		if (cfq_cfqq_wait_request(cfqq)) {
3502			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3503			    cfqd->busy_queues > 1) {
3504				cfq_del_timer(cfqd, cfqq);
3505				cfq_clear_cfqq_wait_request(cfqq);
3506				__blk_run_queue(cfqd->queue);
3507			} else {
3508				cfqg_stats_update_idle_time(cfqq->cfqg);
3509				cfq_mark_cfqq_must_dispatch(cfqq);
3510			}
3511		}
3512	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3513		/*
3514		 * not the active queue - expire current slice if it is
3515		 * idle and has expired it's mean thinktime or this new queue
3516		 * has some old slice time left and is of higher priority or
3517		 * this new queue is RT and the current one is BE
3518		 */
3519		cfq_preempt_queue(cfqd, cfqq);
3520		__blk_run_queue(cfqd->queue);
3521	}
3522}
3523
3524static void cfq_insert_request(struct request_queue *q, struct request *rq)
3525{
3526	struct cfq_data *cfqd = q->elevator->elevator_data;
3527	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3528
3529	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3530	cfq_init_prio_data(cfqq, RQ_CIC(rq));
3531
3532	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3533	list_add_tail(&rq->queuelist, &cfqq->fifo);
3534	cfq_add_rq_rb(rq);
3535	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3536				 rq->cmd_flags);
3537	cfq_rq_enqueued(cfqd, cfqq, rq);
3538}
3539
3540/*
3541 * Update hw_tag based on peak queue depth over 50 samples under
3542 * sufficient load.
3543 */
3544static void cfq_update_hw_tag(struct cfq_data *cfqd)
3545{
3546	struct cfq_queue *cfqq = cfqd->active_queue;
3547
3548	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3549		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3550
3551	if (cfqd->hw_tag == 1)
3552		return;
3553
3554	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3555	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3556		return;
3557
3558	/*
3559	 * If active queue hasn't enough requests and can idle, cfq might not
3560	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3561	 * case
3562	 */
3563	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3564	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3565	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3566		return;
3567
3568	if (cfqd->hw_tag_samples++ < 50)
3569		return;
3570
3571	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3572		cfqd->hw_tag = 1;
3573	else
3574		cfqd->hw_tag = 0;
3575}
3576
3577static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3578{
3579	struct cfq_io_cq *cic = cfqd->active_cic;
3580
3581	/* If the queue already has requests, don't wait */
3582	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3583		return false;
3584
3585	/* If there are other queues in the group, don't wait */
3586	if (cfqq->cfqg->nr_cfqq > 1)
3587		return false;
3588
3589	/* the only queue in the group, but think time is big */
3590	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3591		return false;
3592
3593	if (cfq_slice_used(cfqq))
3594		return true;
3595
3596	/* if slice left is less than think time, wait busy */
3597	if (cic && sample_valid(cic->ttime.ttime_samples)
3598	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3599		return true;
3600
3601	/*
3602	 * If think times is less than a jiffy than ttime_mean=0 and above
3603	 * will not be true. It might happen that slice has not expired yet
3604	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3605	 * case where think time is less than a jiffy, mark the queue wait
3606	 * busy if only 1 jiffy is left in the slice.
3607	 */
3608	if (cfqq->slice_end - jiffies == 1)
3609		return true;
3610
3611	return false;
3612}
3613
3614static void cfq_completed_request(struct request_queue *q, struct request *rq)
3615{
3616	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3617	struct cfq_data *cfqd = cfqq->cfqd;
3618	const int sync = rq_is_sync(rq);
3619	unsigned long now;
3620
3621	now = jiffies;
3622	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3623		     !!(rq->cmd_flags & REQ_NOIDLE));
3624
3625	cfq_update_hw_tag(cfqd);
3626
3627	WARN_ON(!cfqd->rq_in_driver);
3628	WARN_ON(!cfqq->dispatched);
3629	cfqd->rq_in_driver--;
3630	cfqq->dispatched--;
3631	(RQ_CFQG(rq))->dispatched--;
3632	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
3633				     rq_io_start_time_ns(rq), rq->cmd_flags);
3634
3635	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3636
3637	if (sync) {
3638		struct cfq_rb_root *st;
3639
3640		RQ_CIC(rq)->ttime.last_end_request = now;
3641
3642		if (cfq_cfqq_on_rr(cfqq))
3643			st = cfqq->service_tree;
3644		else
3645			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
3646					cfqq_type(cfqq));
3647
3648		st->ttime.last_end_request = now;
3649		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3650			cfqd->last_delayed_sync = now;
3651	}
3652
3653#ifdef CONFIG_CFQ_GROUP_IOSCHED
3654	cfqq->cfqg->ttime.last_end_request = now;
3655#endif
3656
3657	/*
3658	 * If this is the active queue, check if it needs to be expired,
3659	 * or if we want to idle in case it has no pending requests.
3660	 */
3661	if (cfqd->active_queue == cfqq) {
3662		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3663
3664		if (cfq_cfqq_slice_new(cfqq)) {
3665			cfq_set_prio_slice(cfqd, cfqq);
3666			cfq_clear_cfqq_slice_new(cfqq);
3667		}
3668
3669		/*
3670		 * Should we wait for next request to come in before we expire
3671		 * the queue.
3672		 */
3673		if (cfq_should_wait_busy(cfqd, cfqq)) {
3674			unsigned long extend_sl = cfqd->cfq_slice_idle;
3675			if (!cfqd->cfq_slice_idle)
3676				extend_sl = cfqd->cfq_group_idle;
3677			cfqq->slice_end = jiffies + extend_sl;
3678			cfq_mark_cfqq_wait_busy(cfqq);
3679			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3680		}
3681
3682		/*
3683		 * Idling is not enabled on:
3684		 * - expired queues
3685		 * - idle-priority queues
3686		 * - async queues
3687		 * - queues with still some requests queued
3688		 * - when there is a close cooperator
3689		 */
3690		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3691			cfq_slice_expired(cfqd, 1);
3692		else if (sync && cfqq_empty &&
3693			 !cfq_close_cooperator(cfqd, cfqq)) {
3694			cfq_arm_slice_timer(cfqd);
3695		}
3696	}
3697
3698	if (!cfqd->rq_in_driver)
3699		cfq_schedule_dispatch(cfqd);
3700}
3701
3702static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3703{
3704	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3705		cfq_mark_cfqq_must_alloc_slice(cfqq);
3706		return ELV_MQUEUE_MUST;
3707	}
3708
3709	return ELV_MQUEUE_MAY;
3710}
3711
3712static int cfq_may_queue(struct request_queue *q, int rw)
3713{
3714	struct cfq_data *cfqd = q->elevator->elevator_data;
3715	struct task_struct *tsk = current;
3716	struct cfq_io_cq *cic;
3717	struct cfq_queue *cfqq;
3718
3719	/*
3720	 * don't force setup of a queue from here, as a call to may_queue
3721	 * does not necessarily imply that a request actually will be queued.
3722	 * so just lookup a possibly existing queue, or return 'may queue'
3723	 * if that fails
3724	 */
3725	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3726	if (!cic)
3727		return ELV_MQUEUE_MAY;
3728
3729	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3730	if (cfqq) {
3731		cfq_init_prio_data(cfqq, cic);
3732
3733		return __cfq_may_queue(cfqq);
3734	}
3735
3736	return ELV_MQUEUE_MAY;
3737}
3738
3739/*
3740 * queue lock held here
3741 */
3742static void cfq_put_request(struct request *rq)
3743{
3744	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3745
3746	if (cfqq) {
3747		const int rw = rq_data_dir(rq);
3748
3749		BUG_ON(!cfqq->allocated[rw]);
3750		cfqq->allocated[rw]--;
3751
3752		/* Put down rq reference on cfqg */
3753		cfqg_put(RQ_CFQG(rq));
3754		rq->elv.priv[0] = NULL;
3755		rq->elv.priv[1] = NULL;
3756
3757		cfq_put_queue(cfqq);
3758	}
3759}
3760
3761static struct cfq_queue *
3762cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3763		struct cfq_queue *cfqq)
3764{
3765	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3766	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3767	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3768	cfq_put_queue(cfqq);
3769	return cic_to_cfqq(cic, 1);
3770}
3771
3772/*
3773 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3774 * was the last process referring to said cfqq.
3775 */
3776static struct cfq_queue *
3777split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3778{
3779	if (cfqq_process_refs(cfqq) == 1) {
3780		cfqq->pid = current->pid;
3781		cfq_clear_cfqq_coop(cfqq);
3782		cfq_clear_cfqq_split_coop(cfqq);
3783		return cfqq;
3784	}
3785
3786	cic_set_cfqq(cic, NULL, 1);
3787
3788	cfq_put_cooperator(cfqq);
3789
3790	cfq_put_queue(cfqq);
3791	return NULL;
3792}
3793/*
3794 * Allocate cfq data structures associated with this request.
3795 */
3796static int
3797cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
3798		gfp_t gfp_mask)
3799{
3800	struct cfq_data *cfqd = q->elevator->elevator_data;
3801	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3802	const int rw = rq_data_dir(rq);
3803	const bool is_sync = rq_is_sync(rq);
3804	struct cfq_queue *cfqq;
3805
3806	might_sleep_if(gfp_mask & __GFP_WAIT);
3807
3808	spin_lock_irq(q->queue_lock);
3809
3810	check_ioprio_changed(cic, bio);
3811	check_blkcg_changed(cic, bio);
3812new_queue:
3813	cfqq = cic_to_cfqq(cic, is_sync);
3814	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3815		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
3816		cic_set_cfqq(cic, cfqq, is_sync);
3817	} else {
3818		/*
3819		 * If the queue was seeky for too long, break it apart.
3820		 */
3821		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3822			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3823			cfqq = split_cfqq(cic, cfqq);
3824			if (!cfqq)
3825				goto new_queue;
3826		}
3827
3828		/*
3829		 * Check to see if this queue is scheduled to merge with
3830		 * another, closely cooperating queue.  The merging of
3831		 * queues happens here as it must be done in process context.
3832		 * The reference on new_cfqq was taken in merge_cfqqs.
3833		 */
3834		if (cfqq->new_cfqq)
3835			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3836	}
3837
3838	cfqq->allocated[rw]++;
3839
3840	cfqq->ref++;
3841	cfqg_get(cfqq->cfqg);
3842	rq->elv.priv[0] = cfqq;
3843	rq->elv.priv[1] = cfqq->cfqg;
3844	spin_unlock_irq(q->queue_lock);
3845	return 0;
3846}
3847
3848static void cfq_kick_queue(struct work_struct *work)
3849{
3850	struct cfq_data *cfqd =
3851		container_of(work, struct cfq_data, unplug_work);
3852	struct request_queue *q = cfqd->queue;
3853
3854	spin_lock_irq(q->queue_lock);
3855	__blk_run_queue(cfqd->queue);
3856	spin_unlock_irq(q->queue_lock);
3857}
3858
3859/*
3860 * Timer running if the active_queue is currently idling inside its time slice
3861 */
3862static void cfq_idle_slice_timer(unsigned long data)
3863{
3864	struct cfq_data *cfqd = (struct cfq_data *) data;
3865	struct cfq_queue *cfqq;
3866	unsigned long flags;
3867	int timed_out = 1;
3868
3869	cfq_log(cfqd, "idle timer fired");
3870
3871	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3872
3873	cfqq = cfqd->active_queue;
3874	if (cfqq) {
3875		timed_out = 0;
3876
3877		/*
3878		 * We saw a request before the queue expired, let it through
3879		 */
3880		if (cfq_cfqq_must_dispatch(cfqq))
3881			goto out_kick;
3882
3883		/*
3884		 * expired
3885		 */
3886		if (cfq_slice_used(cfqq))
3887			goto expire;
3888
3889		/*
3890		 * only expire and reinvoke request handler, if there are
3891		 * other queues with pending requests
3892		 */
3893		if (!cfqd->busy_queues)
3894			goto out_cont;
3895
3896		/*
3897		 * not expired and it has a request pending, let it dispatch
3898		 */
3899		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3900			goto out_kick;
3901
3902		/*
3903		 * Queue depth flag is reset only when the idle didn't succeed
3904		 */
3905		cfq_clear_cfqq_deep(cfqq);
3906	}
3907expire:
3908	cfq_slice_expired(cfqd, timed_out);
3909out_kick:
3910	cfq_schedule_dispatch(cfqd);
3911out_cont:
3912	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3913}
3914
3915static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3916{
3917	del_timer_sync(&cfqd->idle_slice_timer);
3918	cancel_work_sync(&cfqd->unplug_work);
3919}
3920
3921static void cfq_put_async_queues(struct cfq_data *cfqd)
3922{
3923	int i;
3924
3925	for (i = 0; i < IOPRIO_BE_NR; i++) {
3926		if (cfqd->async_cfqq[0][i])
3927			cfq_put_queue(cfqd->async_cfqq[0][i]);
3928		if (cfqd->async_cfqq[1][i])
3929			cfq_put_queue(cfqd->async_cfqq[1][i]);
3930	}
3931
3932	if (cfqd->async_idle_cfqq)
3933		cfq_put_queue(cfqd->async_idle_cfqq);
3934}
3935
3936static void cfq_exit_queue(struct elevator_queue *e)
3937{
3938	struct cfq_data *cfqd = e->elevator_data;
3939	struct request_queue *q = cfqd->queue;
3940
3941	cfq_shutdown_timer_wq(cfqd);
3942
3943	spin_lock_irq(q->queue_lock);
3944
3945	if (cfqd->active_queue)
3946		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3947
3948	cfq_put_async_queues(cfqd);
3949
3950	spin_unlock_irq(q->queue_lock);
3951
3952	cfq_shutdown_timer_wq(cfqd);
3953
3954#ifdef CONFIG_CFQ_GROUP_IOSCHED
3955	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
3956#else
3957	kfree(cfqd->root_group);
3958#endif
3959	kfree(cfqd);
3960}
3961
3962static int cfq_init_queue(struct request_queue *q)
3963{
3964	struct cfq_data *cfqd;
3965	struct blkcg_gq *blkg __maybe_unused;
3966	int i, ret;
3967
3968	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3969	if (!cfqd)
3970		return -ENOMEM;
3971
3972	cfqd->queue = q;
3973	q->elevator->elevator_data = cfqd;
3974
3975	/* Init root service tree */
3976	cfqd->grp_service_tree = CFQ_RB_ROOT;
3977
3978	/* Init root group and prefer root group over other groups by default */
3979#ifdef CONFIG_CFQ_GROUP_IOSCHED
3980	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
3981	if (ret)
3982		goto out_free;
3983
3984	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
3985#else
3986	ret = -ENOMEM;
3987	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3988					GFP_KERNEL, cfqd->queue->node);
3989	if (!cfqd->root_group)
3990		goto out_free;
3991
3992	cfq_init_cfqg_base(cfqd->root_group);
3993#endif
3994	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
3995
3996	/*
3997	 * Not strictly needed (since RB_ROOT just clears the node and we
3998	 * zeroed cfqd on alloc), but better be safe in case someone decides
3999	 * to add magic to the rb code
4000	 */
4001	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4002		cfqd->prio_trees[i] = RB_ROOT;
4003
4004	/*
4005	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4006	 * Grab a permanent reference to it, so that the normal code flow
4007	 * will not attempt to free it.  oom_cfqq is linked to root_group
4008	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4009	 * the reference from linking right away.
4010	 */
4011	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4012	cfqd->oom_cfqq.ref++;
4013
4014	spin_lock_irq(q->queue_lock);
4015	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4016	cfqg_put(cfqd->root_group);
4017	spin_unlock_irq(q->queue_lock);
4018
4019	init_timer(&cfqd->idle_slice_timer);
4020	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4021	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4022
4023	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4024
4025	cfqd->cfq_quantum = cfq_quantum;
4026	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4027	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4028	cfqd->cfq_back_max = cfq_back_max;
4029	cfqd->cfq_back_penalty = cfq_back_penalty;
4030	cfqd->cfq_slice[0] = cfq_slice_async;
4031	cfqd->cfq_slice[1] = cfq_slice_sync;
4032	cfqd->cfq_target_latency = cfq_target_latency;
4033	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4034	cfqd->cfq_slice_idle = cfq_slice_idle;
4035	cfqd->cfq_group_idle = cfq_group_idle;
4036	cfqd->cfq_latency = 1;
4037	cfqd->hw_tag = -1;
4038	/*
4039	 * we optimistically start assuming sync ops weren't delayed in last
4040	 * second, in order to have larger depth for async operations.
4041	 */
4042	cfqd->last_delayed_sync = jiffies - HZ;
4043	return 0;
4044
4045out_free:
4046	kfree(cfqd);
4047	return ret;
4048}
4049
4050/*
4051 * sysfs parts below -->
4052 */
4053static ssize_t
4054cfq_var_show(unsigned int var, char *page)
4055{
4056	return sprintf(page, "%d\n", var);
4057}
4058
4059static ssize_t
4060cfq_var_store(unsigned int *var, const char *page, size_t count)
4061{
4062	char *p = (char *) page;
4063
4064	*var = simple_strtoul(p, &p, 10);
4065	return count;
4066}
4067
4068#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4069static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4070{									\
4071	struct cfq_data *cfqd = e->elevator_data;			\
4072	unsigned int __data = __VAR;					\
4073	if (__CONV)							\
4074		__data = jiffies_to_msecs(__data);			\
4075	return cfq_var_show(__data, (page));				\
4076}
4077SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4078SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4079SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4080SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4081SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4082SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4083SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4084SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4085SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4086SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4087SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4088SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4089#undef SHOW_FUNCTION
4090
4091#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4092static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4093{									\
4094	struct cfq_data *cfqd = e->elevator_data;			\
4095	unsigned int __data;						\
4096	int ret = cfq_var_store(&__data, (page), count);		\
4097	if (__data < (MIN))						\
4098		__data = (MIN);						\
4099	else if (__data > (MAX))					\
4100		__data = (MAX);						\
4101	if (__CONV)							\
4102		*(__PTR) = msecs_to_jiffies(__data);			\
4103	else								\
4104		*(__PTR) = __data;					\
4105	return ret;							\
4106}
4107STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4108STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4109		UINT_MAX, 1);
4110STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4111		UINT_MAX, 1);
4112STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4113STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4114		UINT_MAX, 0);
4115STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4116STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4117STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4118STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4119STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4120		UINT_MAX, 0);
4121STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4122STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4123#undef STORE_FUNCTION
4124
4125#define CFQ_ATTR(name) \
4126	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4127
4128static struct elv_fs_entry cfq_attrs[] = {
4129	CFQ_ATTR(quantum),
4130	CFQ_ATTR(fifo_expire_sync),
4131	CFQ_ATTR(fifo_expire_async),
4132	CFQ_ATTR(back_seek_max),
4133	CFQ_ATTR(back_seek_penalty),
4134	CFQ_ATTR(slice_sync),
4135	CFQ_ATTR(slice_async),
4136	CFQ_ATTR(slice_async_rq),
4137	CFQ_ATTR(slice_idle),
4138	CFQ_ATTR(group_idle),
4139	CFQ_ATTR(low_latency),
4140	CFQ_ATTR(target_latency),
4141	__ATTR_NULL
4142};
4143
4144static struct elevator_type iosched_cfq = {
4145	.ops = {
4146		.elevator_merge_fn = 		cfq_merge,
4147		.elevator_merged_fn =		cfq_merged_request,
4148		.elevator_merge_req_fn =	cfq_merged_requests,
4149		.elevator_allow_merge_fn =	cfq_allow_merge,
4150		.elevator_bio_merged_fn =	cfq_bio_merged,
4151		.elevator_dispatch_fn =		cfq_dispatch_requests,
4152		.elevator_add_req_fn =		cfq_insert_request,
4153		.elevator_activate_req_fn =	cfq_activate_request,
4154		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4155		.elevator_completed_req_fn =	cfq_completed_request,
4156		.elevator_former_req_fn =	elv_rb_former_request,
4157		.elevator_latter_req_fn =	elv_rb_latter_request,
4158		.elevator_init_icq_fn =		cfq_init_icq,
4159		.elevator_exit_icq_fn =		cfq_exit_icq,
4160		.elevator_set_req_fn =		cfq_set_request,
4161		.elevator_put_req_fn =		cfq_put_request,
4162		.elevator_may_queue_fn =	cfq_may_queue,
4163		.elevator_init_fn =		cfq_init_queue,
4164		.elevator_exit_fn =		cfq_exit_queue,
4165	},
4166	.icq_size	=	sizeof(struct cfq_io_cq),
4167	.icq_align	=	__alignof__(struct cfq_io_cq),
4168	.elevator_attrs =	cfq_attrs,
4169	.elevator_name	=	"cfq",
4170	.elevator_owner =	THIS_MODULE,
4171};
4172
4173#ifdef CONFIG_CFQ_GROUP_IOSCHED
4174static struct blkcg_policy blkcg_policy_cfq = {
4175	.pd_size		= sizeof(struct cfq_group),
4176	.cftypes		= cfq_blkcg_files,
4177
4178	.pd_init_fn		= cfq_pd_init,
4179	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4180};
4181#endif
4182
4183static int __init cfq_init(void)
4184{
4185	int ret;
4186
4187	/*
4188	 * could be 0 on HZ < 1000 setups
4189	 */
4190	if (!cfq_slice_async)
4191		cfq_slice_async = 1;
4192	if (!cfq_slice_idle)
4193		cfq_slice_idle = 1;
4194
4195#ifdef CONFIG_CFQ_GROUP_IOSCHED
4196	if (!cfq_group_idle)
4197		cfq_group_idle = 1;
4198
4199	ret = blkcg_policy_register(&blkcg_policy_cfq);
4200	if (ret)
4201		return ret;
4202#else
4203	cfq_group_idle = 0;
4204#endif
4205
4206	ret = -ENOMEM;
4207	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4208	if (!cfq_pool)
4209		goto err_pol_unreg;
4210
4211	ret = elv_register(&iosched_cfq);
4212	if (ret)
4213		goto err_free_pool;
4214
4215	return 0;
4216
4217err_free_pool:
4218	kmem_cache_destroy(cfq_pool);
4219err_pol_unreg:
4220#ifdef CONFIG_CFQ_GROUP_IOSCHED
4221	blkcg_policy_unregister(&blkcg_policy_cfq);
4222#endif
4223	return ret;
4224}
4225
4226static void __exit cfq_exit(void)
4227{
4228#ifdef CONFIG_CFQ_GROUP_IOSCHED
4229	blkcg_policy_unregister(&blkcg_policy_cfq);
4230#endif
4231	elv_unregister(&iosched_cfq);
4232	kmem_cache_destroy(cfq_pool);
4233}
4234
4235module_init(cfq_init);
4236module_exit(cfq_exit);
4237
4238MODULE_AUTHOR("Jens Axboe");
4239MODULE_LICENSE("GPL");
4240MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4241