cfq-iosched.c revision 6e736be7f282fff705db7c34a15313281b372a76
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "cfq.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY		(HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT		(2)
47
48#define CFQ_SLICE_SCALE		(5)
49#define CFQ_HW_QUEUE_MIN	(5)
50#define CFQ_SERVICE_SHIFT       12
51
52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq)		\
58	((struct cfq_io_context *) (rq)->elevator_private[0])
59#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private[1])
60#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elevator_private[2])
61
62static struct kmem_cache *cfq_pool;
63static struct kmem_cache *cfq_ioc_pool;
64
65static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
66static struct completion *ioc_gone;
67static DEFINE_SPINLOCK(ioc_gone_lock);
68
69#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
70#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
71#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
72
73#define sample_valid(samples)	((samples) > 80)
74#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
75
76/*
77 * Most of our rbtree usage is for sorting with min extraction, so
78 * if we cache the leftmost node we don't have to walk down the tree
79 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
80 * move this into the elevator for the rq sorting as well.
81 */
82struct cfq_rb_root {
83	struct rb_root rb;
84	struct rb_node *left;
85	unsigned count;
86	unsigned total_weight;
87	u64 min_vdisktime;
88	struct cfq_ttime ttime;
89};
90#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
91			.ttime = {.last_end_request = jiffies,},}
92
93/*
94 * Per process-grouping structure
95 */
96struct cfq_queue {
97	/* reference count */
98	int ref;
99	/* various state flags, see below */
100	unsigned int flags;
101	/* parent cfq_data */
102	struct cfq_data *cfqd;
103	/* service_tree member */
104	struct rb_node rb_node;
105	/* service_tree key */
106	unsigned long rb_key;
107	/* prio tree member */
108	struct rb_node p_node;
109	/* prio tree root we belong to, if any */
110	struct rb_root *p_root;
111	/* sorted list of pending requests */
112	struct rb_root sort_list;
113	/* if fifo isn't expired, next request to serve */
114	struct request *next_rq;
115	/* requests queued in sort_list */
116	int queued[2];
117	/* currently allocated requests */
118	int allocated[2];
119	/* fifo list of requests in sort_list */
120	struct list_head fifo;
121
122	/* time when queue got scheduled in to dispatch first request. */
123	unsigned long dispatch_start;
124	unsigned int allocated_slice;
125	unsigned int slice_dispatch;
126	/* time when first request from queue completed and slice started. */
127	unsigned long slice_start;
128	unsigned long slice_end;
129	long slice_resid;
130
131	/* pending priority requests */
132	int prio_pending;
133	/* number of requests that are on the dispatch list or inside driver */
134	int dispatched;
135
136	/* io prio of this group */
137	unsigned short ioprio, org_ioprio;
138	unsigned short ioprio_class;
139
140	pid_t pid;
141
142	u32 seek_history;
143	sector_t last_request_pos;
144
145	struct cfq_rb_root *service_tree;
146	struct cfq_queue *new_cfqq;
147	struct cfq_group *cfqg;
148	/* Number of sectors dispatched from queue in single dispatch round */
149	unsigned long nr_sectors;
150};
151
152/*
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
157	BE_WORKLOAD = 0,
158	RT_WORKLOAD = 1,
159	IDLE_WORKLOAD = 2,
160	CFQ_PRIO_NR,
161};
162
163/*
164 * Second index in the service_trees.
165 */
166enum wl_type_t {
167	ASYNC_WORKLOAD = 0,
168	SYNC_NOIDLE_WORKLOAD = 1,
169	SYNC_WORKLOAD = 2
170};
171
172/* This is per cgroup per device grouping structure */
173struct cfq_group {
174	/* group service_tree member */
175	struct rb_node rb_node;
176
177	/* group service_tree key */
178	u64 vdisktime;
179	unsigned int weight;
180	unsigned int new_weight;
181	bool needs_update;
182
183	/* number of cfqq currently on this group */
184	int nr_cfqq;
185
186	/*
187	 * Per group busy queues average. Useful for workload slice calc. We
188	 * create the array for each prio class but at run time it is used
189	 * only for RT and BE class and slot for IDLE class remains unused.
190	 * This is primarily done to avoid confusion and a gcc warning.
191	 */
192	unsigned int busy_queues_avg[CFQ_PRIO_NR];
193	/*
194	 * rr lists of queues with requests. We maintain service trees for
195	 * RT and BE classes. These trees are subdivided in subclasses
196	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
197	 * class there is no subclassification and all the cfq queues go on
198	 * a single tree service_tree_idle.
199	 * Counts are embedded in the cfq_rb_root
200	 */
201	struct cfq_rb_root service_trees[2][3];
202	struct cfq_rb_root service_tree_idle;
203
204	unsigned long saved_workload_slice;
205	enum wl_type_t saved_workload;
206	enum wl_prio_t saved_serving_prio;
207	struct blkio_group blkg;
208#ifdef CONFIG_CFQ_GROUP_IOSCHED
209	struct hlist_node cfqd_node;
210	int ref;
211#endif
212	/* number of requests that are on the dispatch list or inside driver */
213	int dispatched;
214	struct cfq_ttime ttime;
215};
216
217/*
218 * Per block device queue structure
219 */
220struct cfq_data {
221	struct request_queue *queue;
222	/* Root service tree for cfq_groups */
223	struct cfq_rb_root grp_service_tree;
224	struct cfq_group root_group;
225
226	/*
227	 * The priority currently being served
228	 */
229	enum wl_prio_t serving_prio;
230	enum wl_type_t serving_type;
231	unsigned long workload_expires;
232	struct cfq_group *serving_group;
233
234	/*
235	 * Each priority tree is sorted by next_request position.  These
236	 * trees are used when determining if two or more queues are
237	 * interleaving requests (see cfq_close_cooperator).
238	 */
239	struct rb_root prio_trees[CFQ_PRIO_LISTS];
240
241	unsigned int busy_queues;
242	unsigned int busy_sync_queues;
243
244	int rq_in_driver;
245	int rq_in_flight[2];
246
247	/*
248	 * queue-depth detection
249	 */
250	int rq_queued;
251	int hw_tag;
252	/*
253	 * hw_tag can be
254	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
256	 *  0 => no NCQ
257	 */
258	int hw_tag_est_depth;
259	unsigned int hw_tag_samples;
260
261	/*
262	 * idle window management
263	 */
264	struct timer_list idle_slice_timer;
265	struct work_struct unplug_work;
266
267	struct cfq_queue *active_queue;
268	struct cfq_io_context *active_cic;
269
270	/*
271	 * async queue for each priority case
272	 */
273	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
274	struct cfq_queue *async_idle_cfqq;
275
276	sector_t last_position;
277
278	/*
279	 * tunables, see top of file
280	 */
281	unsigned int cfq_quantum;
282	unsigned int cfq_fifo_expire[2];
283	unsigned int cfq_back_penalty;
284	unsigned int cfq_back_max;
285	unsigned int cfq_slice[2];
286	unsigned int cfq_slice_async_rq;
287	unsigned int cfq_slice_idle;
288	unsigned int cfq_group_idle;
289	unsigned int cfq_latency;
290
291	struct list_head cic_list;
292
293	/*
294	 * Fallback dummy cfqq for extreme OOM conditions
295	 */
296	struct cfq_queue oom_cfqq;
297
298	unsigned long last_delayed_sync;
299
300	/* List of cfq groups being managed on this device*/
301	struct hlist_head cfqg_list;
302
303	/* Number of groups which are on blkcg->blkg_list */
304	unsigned int nr_blkcg_linked_grps;
305};
306
307static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
308
309static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
310					    enum wl_prio_t prio,
311					    enum wl_type_t type)
312{
313	if (!cfqg)
314		return NULL;
315
316	if (prio == IDLE_WORKLOAD)
317		return &cfqg->service_tree_idle;
318
319	return &cfqg->service_trees[prio][type];
320}
321
322enum cfqq_state_flags {
323	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
324	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
325	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
326	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
327	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
328	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
329	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
330	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
331	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
332	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
333	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
334	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
335	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
336};
337
338#define CFQ_CFQQ_FNS(name)						\
339static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
340{									\
341	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
342}									\
343static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
344{									\
345	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
346}									\
347static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
348{									\
349	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
350}
351
352CFQ_CFQQ_FNS(on_rr);
353CFQ_CFQQ_FNS(wait_request);
354CFQ_CFQQ_FNS(must_dispatch);
355CFQ_CFQQ_FNS(must_alloc_slice);
356CFQ_CFQQ_FNS(fifo_expire);
357CFQ_CFQQ_FNS(idle_window);
358CFQ_CFQQ_FNS(prio_changed);
359CFQ_CFQQ_FNS(slice_new);
360CFQ_CFQQ_FNS(sync);
361CFQ_CFQQ_FNS(coop);
362CFQ_CFQQ_FNS(split_coop);
363CFQ_CFQQ_FNS(deep);
364CFQ_CFQQ_FNS(wait_busy);
365#undef CFQ_CFQQ_FNS
366
367#ifdef CONFIG_CFQ_GROUP_IOSCHED
368#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
369	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
370			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
371			blkg_path(&(cfqq)->cfqg->blkg), ##args)
372
373#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
374	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
375				blkg_path(&(cfqg)->blkg), ##args)       \
376
377#else
378#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
379	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
380#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
381#endif
382#define cfq_log(cfqd, fmt, args...)	\
383	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
384
385/* Traverses through cfq group service trees */
386#define for_each_cfqg_st(cfqg, i, j, st) \
387	for (i = 0; i <= IDLE_WORKLOAD; i++) \
388		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
389			: &cfqg->service_tree_idle; \
390			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
391			(i == IDLE_WORKLOAD && j == 0); \
392			j++, st = i < IDLE_WORKLOAD ? \
393			&cfqg->service_trees[i][j]: NULL) \
394
395static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
396	struct cfq_ttime *ttime, bool group_idle)
397{
398	unsigned long slice;
399	if (!sample_valid(ttime->ttime_samples))
400		return false;
401	if (group_idle)
402		slice = cfqd->cfq_group_idle;
403	else
404		slice = cfqd->cfq_slice_idle;
405	return ttime->ttime_mean > slice;
406}
407
408static inline bool iops_mode(struct cfq_data *cfqd)
409{
410	/*
411	 * If we are not idling on queues and it is a NCQ drive, parallel
412	 * execution of requests is on and measuring time is not possible
413	 * in most of the cases until and unless we drive shallower queue
414	 * depths and that becomes a performance bottleneck. In such cases
415	 * switch to start providing fairness in terms of number of IOs.
416	 */
417	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
418		return true;
419	else
420		return false;
421}
422
423static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
424{
425	if (cfq_class_idle(cfqq))
426		return IDLE_WORKLOAD;
427	if (cfq_class_rt(cfqq))
428		return RT_WORKLOAD;
429	return BE_WORKLOAD;
430}
431
432
433static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
434{
435	if (!cfq_cfqq_sync(cfqq))
436		return ASYNC_WORKLOAD;
437	if (!cfq_cfqq_idle_window(cfqq))
438		return SYNC_NOIDLE_WORKLOAD;
439	return SYNC_WORKLOAD;
440}
441
442static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
443					struct cfq_data *cfqd,
444					struct cfq_group *cfqg)
445{
446	if (wl == IDLE_WORKLOAD)
447		return cfqg->service_tree_idle.count;
448
449	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
450		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
451		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
452}
453
454static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
455					struct cfq_group *cfqg)
456{
457	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
458		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
459}
460
461static void cfq_dispatch_insert(struct request_queue *, struct request *);
462static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
463				       struct io_context *, gfp_t);
464static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
465						struct io_context *);
466
467static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
468					    bool is_sync)
469{
470	return cic->cfqq[is_sync];
471}
472
473static inline void cic_set_cfqq(struct cfq_io_context *cic,
474				struct cfq_queue *cfqq, bool is_sync)
475{
476	cic->cfqq[is_sync] = cfqq;
477}
478
479#define CIC_DEAD_KEY	1ul
480#define CIC_DEAD_INDEX_SHIFT	1
481
482static inline void *cfqd_dead_key(struct cfq_data *cfqd)
483{
484	return (void *)(cfqd->queue->id << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
485}
486
487static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
488{
489	struct cfq_data *cfqd = cic->key;
490
491	if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
492		return NULL;
493
494	return cfqd;
495}
496
497/*
498 * We regard a request as SYNC, if it's either a read or has the SYNC bit
499 * set (in which case it could also be direct WRITE).
500 */
501static inline bool cfq_bio_sync(struct bio *bio)
502{
503	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
504}
505
506/*
507 * scheduler run of queue, if there are requests pending and no one in the
508 * driver that will restart queueing
509 */
510static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
511{
512	if (cfqd->busy_queues) {
513		cfq_log(cfqd, "schedule dispatch");
514		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
515	}
516}
517
518/*
519 * Scale schedule slice based on io priority. Use the sync time slice only
520 * if a queue is marked sync and has sync io queued. A sync queue with async
521 * io only, should not get full sync slice length.
522 */
523static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
524				 unsigned short prio)
525{
526	const int base_slice = cfqd->cfq_slice[sync];
527
528	WARN_ON(prio >= IOPRIO_BE_NR);
529
530	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
531}
532
533static inline int
534cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
535{
536	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
537}
538
539static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
540{
541	u64 d = delta << CFQ_SERVICE_SHIFT;
542
543	d = d * BLKIO_WEIGHT_DEFAULT;
544	do_div(d, cfqg->weight);
545	return d;
546}
547
548static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
549{
550	s64 delta = (s64)(vdisktime - min_vdisktime);
551	if (delta > 0)
552		min_vdisktime = vdisktime;
553
554	return min_vdisktime;
555}
556
557static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
558{
559	s64 delta = (s64)(vdisktime - min_vdisktime);
560	if (delta < 0)
561		min_vdisktime = vdisktime;
562
563	return min_vdisktime;
564}
565
566static void update_min_vdisktime(struct cfq_rb_root *st)
567{
568	struct cfq_group *cfqg;
569
570	if (st->left) {
571		cfqg = rb_entry_cfqg(st->left);
572		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
573						  cfqg->vdisktime);
574	}
575}
576
577/*
578 * get averaged number of queues of RT/BE priority.
579 * average is updated, with a formula that gives more weight to higher numbers,
580 * to quickly follows sudden increases and decrease slowly
581 */
582
583static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
584					struct cfq_group *cfqg, bool rt)
585{
586	unsigned min_q, max_q;
587	unsigned mult  = cfq_hist_divisor - 1;
588	unsigned round = cfq_hist_divisor / 2;
589	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
590
591	min_q = min(cfqg->busy_queues_avg[rt], busy);
592	max_q = max(cfqg->busy_queues_avg[rt], busy);
593	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
594		cfq_hist_divisor;
595	return cfqg->busy_queues_avg[rt];
596}
597
598static inline unsigned
599cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
600{
601	struct cfq_rb_root *st = &cfqd->grp_service_tree;
602
603	return cfq_target_latency * cfqg->weight / st->total_weight;
604}
605
606static inline unsigned
607cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
608{
609	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
610	if (cfqd->cfq_latency) {
611		/*
612		 * interested queues (we consider only the ones with the same
613		 * priority class in the cfq group)
614		 */
615		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
616						cfq_class_rt(cfqq));
617		unsigned sync_slice = cfqd->cfq_slice[1];
618		unsigned expect_latency = sync_slice * iq;
619		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
620
621		if (expect_latency > group_slice) {
622			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
623			/* scale low_slice according to IO priority
624			 * and sync vs async */
625			unsigned low_slice =
626				min(slice, base_low_slice * slice / sync_slice);
627			/* the adapted slice value is scaled to fit all iqs
628			 * into the target latency */
629			slice = max(slice * group_slice / expect_latency,
630				    low_slice);
631		}
632	}
633	return slice;
634}
635
636static inline void
637cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
638{
639	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
640
641	cfqq->slice_start = jiffies;
642	cfqq->slice_end = jiffies + slice;
643	cfqq->allocated_slice = slice;
644	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
645}
646
647/*
648 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
649 * isn't valid until the first request from the dispatch is activated
650 * and the slice time set.
651 */
652static inline bool cfq_slice_used(struct cfq_queue *cfqq)
653{
654	if (cfq_cfqq_slice_new(cfqq))
655		return false;
656	if (time_before(jiffies, cfqq->slice_end))
657		return false;
658
659	return true;
660}
661
662/*
663 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
664 * We choose the request that is closest to the head right now. Distance
665 * behind the head is penalized and only allowed to a certain extent.
666 */
667static struct request *
668cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
669{
670	sector_t s1, s2, d1 = 0, d2 = 0;
671	unsigned long back_max;
672#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
673#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
674	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
675
676	if (rq1 == NULL || rq1 == rq2)
677		return rq2;
678	if (rq2 == NULL)
679		return rq1;
680
681	if (rq_is_sync(rq1) != rq_is_sync(rq2))
682		return rq_is_sync(rq1) ? rq1 : rq2;
683
684	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
685		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
686
687	s1 = blk_rq_pos(rq1);
688	s2 = blk_rq_pos(rq2);
689
690	/*
691	 * by definition, 1KiB is 2 sectors
692	 */
693	back_max = cfqd->cfq_back_max * 2;
694
695	/*
696	 * Strict one way elevator _except_ in the case where we allow
697	 * short backward seeks which are biased as twice the cost of a
698	 * similar forward seek.
699	 */
700	if (s1 >= last)
701		d1 = s1 - last;
702	else if (s1 + back_max >= last)
703		d1 = (last - s1) * cfqd->cfq_back_penalty;
704	else
705		wrap |= CFQ_RQ1_WRAP;
706
707	if (s2 >= last)
708		d2 = s2 - last;
709	else if (s2 + back_max >= last)
710		d2 = (last - s2) * cfqd->cfq_back_penalty;
711	else
712		wrap |= CFQ_RQ2_WRAP;
713
714	/* Found required data */
715
716	/*
717	 * By doing switch() on the bit mask "wrap" we avoid having to
718	 * check two variables for all permutations: --> faster!
719	 */
720	switch (wrap) {
721	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
722		if (d1 < d2)
723			return rq1;
724		else if (d2 < d1)
725			return rq2;
726		else {
727			if (s1 >= s2)
728				return rq1;
729			else
730				return rq2;
731		}
732
733	case CFQ_RQ2_WRAP:
734		return rq1;
735	case CFQ_RQ1_WRAP:
736		return rq2;
737	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
738	default:
739		/*
740		 * Since both rqs are wrapped,
741		 * start with the one that's further behind head
742		 * (--> only *one* back seek required),
743		 * since back seek takes more time than forward.
744		 */
745		if (s1 <= s2)
746			return rq1;
747		else
748			return rq2;
749	}
750}
751
752/*
753 * The below is leftmost cache rbtree addon
754 */
755static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
756{
757	/* Service tree is empty */
758	if (!root->count)
759		return NULL;
760
761	if (!root->left)
762		root->left = rb_first(&root->rb);
763
764	if (root->left)
765		return rb_entry(root->left, struct cfq_queue, rb_node);
766
767	return NULL;
768}
769
770static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
771{
772	if (!root->left)
773		root->left = rb_first(&root->rb);
774
775	if (root->left)
776		return rb_entry_cfqg(root->left);
777
778	return NULL;
779}
780
781static void rb_erase_init(struct rb_node *n, struct rb_root *root)
782{
783	rb_erase(n, root);
784	RB_CLEAR_NODE(n);
785}
786
787static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
788{
789	if (root->left == n)
790		root->left = NULL;
791	rb_erase_init(n, &root->rb);
792	--root->count;
793}
794
795/*
796 * would be nice to take fifo expire time into account as well
797 */
798static struct request *
799cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
800		  struct request *last)
801{
802	struct rb_node *rbnext = rb_next(&last->rb_node);
803	struct rb_node *rbprev = rb_prev(&last->rb_node);
804	struct request *next = NULL, *prev = NULL;
805
806	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
807
808	if (rbprev)
809		prev = rb_entry_rq(rbprev);
810
811	if (rbnext)
812		next = rb_entry_rq(rbnext);
813	else {
814		rbnext = rb_first(&cfqq->sort_list);
815		if (rbnext && rbnext != &last->rb_node)
816			next = rb_entry_rq(rbnext);
817	}
818
819	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
820}
821
822static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
823				      struct cfq_queue *cfqq)
824{
825	/*
826	 * just an approximation, should be ok.
827	 */
828	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
829		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
830}
831
832static inline s64
833cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
834{
835	return cfqg->vdisktime - st->min_vdisktime;
836}
837
838static void
839__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
840{
841	struct rb_node **node = &st->rb.rb_node;
842	struct rb_node *parent = NULL;
843	struct cfq_group *__cfqg;
844	s64 key = cfqg_key(st, cfqg);
845	int left = 1;
846
847	while (*node != NULL) {
848		parent = *node;
849		__cfqg = rb_entry_cfqg(parent);
850
851		if (key < cfqg_key(st, __cfqg))
852			node = &parent->rb_left;
853		else {
854			node = &parent->rb_right;
855			left = 0;
856		}
857	}
858
859	if (left)
860		st->left = &cfqg->rb_node;
861
862	rb_link_node(&cfqg->rb_node, parent, node);
863	rb_insert_color(&cfqg->rb_node, &st->rb);
864}
865
866static void
867cfq_update_group_weight(struct cfq_group *cfqg)
868{
869	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
870	if (cfqg->needs_update) {
871		cfqg->weight = cfqg->new_weight;
872		cfqg->needs_update = false;
873	}
874}
875
876static void
877cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
878{
879	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
880
881	cfq_update_group_weight(cfqg);
882	__cfq_group_service_tree_add(st, cfqg);
883	st->total_weight += cfqg->weight;
884}
885
886static void
887cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
888{
889	struct cfq_rb_root *st = &cfqd->grp_service_tree;
890	struct cfq_group *__cfqg;
891	struct rb_node *n;
892
893	cfqg->nr_cfqq++;
894	if (!RB_EMPTY_NODE(&cfqg->rb_node))
895		return;
896
897	/*
898	 * Currently put the group at the end. Later implement something
899	 * so that groups get lesser vtime based on their weights, so that
900	 * if group does not loose all if it was not continuously backlogged.
901	 */
902	n = rb_last(&st->rb);
903	if (n) {
904		__cfqg = rb_entry_cfqg(n);
905		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
906	} else
907		cfqg->vdisktime = st->min_vdisktime;
908	cfq_group_service_tree_add(st, cfqg);
909}
910
911static void
912cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
913{
914	st->total_weight -= cfqg->weight;
915	if (!RB_EMPTY_NODE(&cfqg->rb_node))
916		cfq_rb_erase(&cfqg->rb_node, st);
917}
918
919static void
920cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
921{
922	struct cfq_rb_root *st = &cfqd->grp_service_tree;
923
924	BUG_ON(cfqg->nr_cfqq < 1);
925	cfqg->nr_cfqq--;
926
927	/* If there are other cfq queues under this group, don't delete it */
928	if (cfqg->nr_cfqq)
929		return;
930
931	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
932	cfq_group_service_tree_del(st, cfqg);
933	cfqg->saved_workload_slice = 0;
934	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
935}
936
937static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
938						unsigned int *unaccounted_time)
939{
940	unsigned int slice_used;
941
942	/*
943	 * Queue got expired before even a single request completed or
944	 * got expired immediately after first request completion.
945	 */
946	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
947		/*
948		 * Also charge the seek time incurred to the group, otherwise
949		 * if there are mutiple queues in the group, each can dispatch
950		 * a single request on seeky media and cause lots of seek time
951		 * and group will never know it.
952		 */
953		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
954					1);
955	} else {
956		slice_used = jiffies - cfqq->slice_start;
957		if (slice_used > cfqq->allocated_slice) {
958			*unaccounted_time = slice_used - cfqq->allocated_slice;
959			slice_used = cfqq->allocated_slice;
960		}
961		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
962			*unaccounted_time += cfqq->slice_start -
963					cfqq->dispatch_start;
964	}
965
966	return slice_used;
967}
968
969static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
970				struct cfq_queue *cfqq)
971{
972	struct cfq_rb_root *st = &cfqd->grp_service_tree;
973	unsigned int used_sl, charge, unaccounted_sl = 0;
974	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
975			- cfqg->service_tree_idle.count;
976
977	BUG_ON(nr_sync < 0);
978	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
979
980	if (iops_mode(cfqd))
981		charge = cfqq->slice_dispatch;
982	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
983		charge = cfqq->allocated_slice;
984
985	/* Can't update vdisktime while group is on service tree */
986	cfq_group_service_tree_del(st, cfqg);
987	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
988	/* If a new weight was requested, update now, off tree */
989	cfq_group_service_tree_add(st, cfqg);
990
991	/* This group is being expired. Save the context */
992	if (time_after(cfqd->workload_expires, jiffies)) {
993		cfqg->saved_workload_slice = cfqd->workload_expires
994						- jiffies;
995		cfqg->saved_workload = cfqd->serving_type;
996		cfqg->saved_serving_prio = cfqd->serving_prio;
997	} else
998		cfqg->saved_workload_slice = 0;
999
1000	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1001					st->min_vdisktime);
1002	cfq_log_cfqq(cfqq->cfqd, cfqq,
1003		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1004		     used_sl, cfqq->slice_dispatch, charge,
1005		     iops_mode(cfqd), cfqq->nr_sectors);
1006	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1007					  unaccounted_sl);
1008	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1009}
1010
1011#ifdef CONFIG_CFQ_GROUP_IOSCHED
1012static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1013{
1014	if (blkg)
1015		return container_of(blkg, struct cfq_group, blkg);
1016	return NULL;
1017}
1018
1019static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1020					  unsigned int weight)
1021{
1022	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1023	cfqg->new_weight = weight;
1024	cfqg->needs_update = true;
1025}
1026
1027static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1028			struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1029{
1030	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1031	unsigned int major, minor;
1032
1033	/*
1034	 * Add group onto cgroup list. It might happen that bdi->dev is
1035	 * not initialized yet. Initialize this new group without major
1036	 * and minor info and this info will be filled in once a new thread
1037	 * comes for IO.
1038	 */
1039	if (bdi->dev) {
1040		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1041		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1042					(void *)cfqd, MKDEV(major, minor));
1043	} else
1044		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1045					(void *)cfqd, 0);
1046
1047	cfqd->nr_blkcg_linked_grps++;
1048	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1049
1050	/* Add group on cfqd list */
1051	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1052}
1053
1054/*
1055 * Should be called from sleepable context. No request queue lock as per
1056 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1057 * from sleepable context.
1058 */
1059static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1060{
1061	struct cfq_group *cfqg = NULL;
1062	int i, j, ret;
1063	struct cfq_rb_root *st;
1064
1065	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1066	if (!cfqg)
1067		return NULL;
1068
1069	for_each_cfqg_st(cfqg, i, j, st)
1070		*st = CFQ_RB_ROOT;
1071	RB_CLEAR_NODE(&cfqg->rb_node);
1072
1073	cfqg->ttime.last_end_request = jiffies;
1074
1075	/*
1076	 * Take the initial reference that will be released on destroy
1077	 * This can be thought of a joint reference by cgroup and
1078	 * elevator which will be dropped by either elevator exit
1079	 * or cgroup deletion path depending on who is exiting first.
1080	 */
1081	cfqg->ref = 1;
1082
1083	ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1084	if (ret) {
1085		kfree(cfqg);
1086		return NULL;
1087	}
1088
1089	return cfqg;
1090}
1091
1092static struct cfq_group *
1093cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1094{
1095	struct cfq_group *cfqg = NULL;
1096	void *key = cfqd;
1097	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1098	unsigned int major, minor;
1099
1100	/*
1101	 * This is the common case when there are no blkio cgroups.
1102	 * Avoid lookup in this case
1103	 */
1104	if (blkcg == &blkio_root_cgroup)
1105		cfqg = &cfqd->root_group;
1106	else
1107		cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1108
1109	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1110		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1111		cfqg->blkg.dev = MKDEV(major, minor);
1112	}
1113
1114	return cfqg;
1115}
1116
1117/*
1118 * Search for the cfq group current task belongs to. request_queue lock must
1119 * be held.
1120 */
1121static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1122{
1123	struct blkio_cgroup *blkcg;
1124	struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1125	struct request_queue *q = cfqd->queue;
1126
1127	rcu_read_lock();
1128	blkcg = task_blkio_cgroup(current);
1129	cfqg = cfq_find_cfqg(cfqd, blkcg);
1130	if (cfqg) {
1131		rcu_read_unlock();
1132		return cfqg;
1133	}
1134
1135	/*
1136	 * Need to allocate a group. Allocation of group also needs allocation
1137	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1138	 * we need to drop rcu lock and queue_lock before we call alloc.
1139	 *
1140	 * Not taking any queue reference here and assuming that queue is
1141	 * around by the time we return. CFQ queue allocation code does
1142	 * the same. It might be racy though.
1143	 */
1144
1145	rcu_read_unlock();
1146	spin_unlock_irq(q->queue_lock);
1147
1148	cfqg = cfq_alloc_cfqg(cfqd);
1149
1150	spin_lock_irq(q->queue_lock);
1151
1152	rcu_read_lock();
1153	blkcg = task_blkio_cgroup(current);
1154
1155	/*
1156	 * If some other thread already allocated the group while we were
1157	 * not holding queue lock, free up the group
1158	 */
1159	__cfqg = cfq_find_cfqg(cfqd, blkcg);
1160
1161	if (__cfqg) {
1162		kfree(cfqg);
1163		rcu_read_unlock();
1164		return __cfqg;
1165	}
1166
1167	if (!cfqg)
1168		cfqg = &cfqd->root_group;
1169
1170	cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1171	rcu_read_unlock();
1172	return cfqg;
1173}
1174
1175static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1176{
1177	cfqg->ref++;
1178	return cfqg;
1179}
1180
1181static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1182{
1183	/* Currently, all async queues are mapped to root group */
1184	if (!cfq_cfqq_sync(cfqq))
1185		cfqg = &cfqq->cfqd->root_group;
1186
1187	cfqq->cfqg = cfqg;
1188	/* cfqq reference on cfqg */
1189	cfqq->cfqg->ref++;
1190}
1191
1192static void cfq_put_cfqg(struct cfq_group *cfqg)
1193{
1194	struct cfq_rb_root *st;
1195	int i, j;
1196
1197	BUG_ON(cfqg->ref <= 0);
1198	cfqg->ref--;
1199	if (cfqg->ref)
1200		return;
1201	for_each_cfqg_st(cfqg, i, j, st)
1202		BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1203	free_percpu(cfqg->blkg.stats_cpu);
1204	kfree(cfqg);
1205}
1206
1207static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1208{
1209	/* Something wrong if we are trying to remove same group twice */
1210	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1211
1212	hlist_del_init(&cfqg->cfqd_node);
1213
1214	BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1215	cfqd->nr_blkcg_linked_grps--;
1216
1217	/*
1218	 * Put the reference taken at the time of creation so that when all
1219	 * queues are gone, group can be destroyed.
1220	 */
1221	cfq_put_cfqg(cfqg);
1222}
1223
1224static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1225{
1226	struct hlist_node *pos, *n;
1227	struct cfq_group *cfqg;
1228
1229	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1230		/*
1231		 * If cgroup removal path got to blk_group first and removed
1232		 * it from cgroup list, then it will take care of destroying
1233		 * cfqg also.
1234		 */
1235		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1236			cfq_destroy_cfqg(cfqd, cfqg);
1237	}
1238}
1239
1240/*
1241 * Blk cgroup controller notification saying that blkio_group object is being
1242 * delinked as associated cgroup object is going away. That also means that
1243 * no new IO will come in this group. So get rid of this group as soon as
1244 * any pending IO in the group is finished.
1245 *
1246 * This function is called under rcu_read_lock(). key is the rcu protected
1247 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1248 * read lock.
1249 *
1250 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1251 * it should not be NULL as even if elevator was exiting, cgroup deltion
1252 * path got to it first.
1253 */
1254static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1255{
1256	unsigned long  flags;
1257	struct cfq_data *cfqd = key;
1258
1259	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1260	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1261	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1262}
1263
1264#else /* GROUP_IOSCHED */
1265static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1266{
1267	return &cfqd->root_group;
1268}
1269
1270static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1271{
1272	return cfqg;
1273}
1274
1275static inline void
1276cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1277	cfqq->cfqg = cfqg;
1278}
1279
1280static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1281static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1282
1283#endif /* GROUP_IOSCHED */
1284
1285/*
1286 * The cfqd->service_trees holds all pending cfq_queue's that have
1287 * requests waiting to be processed. It is sorted in the order that
1288 * we will service the queues.
1289 */
1290static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1291				 bool add_front)
1292{
1293	struct rb_node **p, *parent;
1294	struct cfq_queue *__cfqq;
1295	unsigned long rb_key;
1296	struct cfq_rb_root *service_tree;
1297	int left;
1298	int new_cfqq = 1;
1299
1300	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1301						cfqq_type(cfqq));
1302	if (cfq_class_idle(cfqq)) {
1303		rb_key = CFQ_IDLE_DELAY;
1304		parent = rb_last(&service_tree->rb);
1305		if (parent && parent != &cfqq->rb_node) {
1306			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1307			rb_key += __cfqq->rb_key;
1308		} else
1309			rb_key += jiffies;
1310	} else if (!add_front) {
1311		/*
1312		 * Get our rb key offset. Subtract any residual slice
1313		 * value carried from last service. A negative resid
1314		 * count indicates slice overrun, and this should position
1315		 * the next service time further away in the tree.
1316		 */
1317		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1318		rb_key -= cfqq->slice_resid;
1319		cfqq->slice_resid = 0;
1320	} else {
1321		rb_key = -HZ;
1322		__cfqq = cfq_rb_first(service_tree);
1323		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1324	}
1325
1326	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1327		new_cfqq = 0;
1328		/*
1329		 * same position, nothing more to do
1330		 */
1331		if (rb_key == cfqq->rb_key &&
1332		    cfqq->service_tree == service_tree)
1333			return;
1334
1335		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1336		cfqq->service_tree = NULL;
1337	}
1338
1339	left = 1;
1340	parent = NULL;
1341	cfqq->service_tree = service_tree;
1342	p = &service_tree->rb.rb_node;
1343	while (*p) {
1344		struct rb_node **n;
1345
1346		parent = *p;
1347		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1348
1349		/*
1350		 * sort by key, that represents service time.
1351		 */
1352		if (time_before(rb_key, __cfqq->rb_key))
1353			n = &(*p)->rb_left;
1354		else {
1355			n = &(*p)->rb_right;
1356			left = 0;
1357		}
1358
1359		p = n;
1360	}
1361
1362	if (left)
1363		service_tree->left = &cfqq->rb_node;
1364
1365	cfqq->rb_key = rb_key;
1366	rb_link_node(&cfqq->rb_node, parent, p);
1367	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1368	service_tree->count++;
1369	if (add_front || !new_cfqq)
1370		return;
1371	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1372}
1373
1374static struct cfq_queue *
1375cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1376		     sector_t sector, struct rb_node **ret_parent,
1377		     struct rb_node ***rb_link)
1378{
1379	struct rb_node **p, *parent;
1380	struct cfq_queue *cfqq = NULL;
1381
1382	parent = NULL;
1383	p = &root->rb_node;
1384	while (*p) {
1385		struct rb_node **n;
1386
1387		parent = *p;
1388		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1389
1390		/*
1391		 * Sort strictly based on sector.  Smallest to the left,
1392		 * largest to the right.
1393		 */
1394		if (sector > blk_rq_pos(cfqq->next_rq))
1395			n = &(*p)->rb_right;
1396		else if (sector < blk_rq_pos(cfqq->next_rq))
1397			n = &(*p)->rb_left;
1398		else
1399			break;
1400		p = n;
1401		cfqq = NULL;
1402	}
1403
1404	*ret_parent = parent;
1405	if (rb_link)
1406		*rb_link = p;
1407	return cfqq;
1408}
1409
1410static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1411{
1412	struct rb_node **p, *parent;
1413	struct cfq_queue *__cfqq;
1414
1415	if (cfqq->p_root) {
1416		rb_erase(&cfqq->p_node, cfqq->p_root);
1417		cfqq->p_root = NULL;
1418	}
1419
1420	if (cfq_class_idle(cfqq))
1421		return;
1422	if (!cfqq->next_rq)
1423		return;
1424
1425	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1426	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1427				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1428	if (!__cfqq) {
1429		rb_link_node(&cfqq->p_node, parent, p);
1430		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1431	} else
1432		cfqq->p_root = NULL;
1433}
1434
1435/*
1436 * Update cfqq's position in the service tree.
1437 */
1438static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1439{
1440	/*
1441	 * Resorting requires the cfqq to be on the RR list already.
1442	 */
1443	if (cfq_cfqq_on_rr(cfqq)) {
1444		cfq_service_tree_add(cfqd, cfqq, 0);
1445		cfq_prio_tree_add(cfqd, cfqq);
1446	}
1447}
1448
1449/*
1450 * add to busy list of queues for service, trying to be fair in ordering
1451 * the pending list according to last request service
1452 */
1453static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1454{
1455	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1456	BUG_ON(cfq_cfqq_on_rr(cfqq));
1457	cfq_mark_cfqq_on_rr(cfqq);
1458	cfqd->busy_queues++;
1459	if (cfq_cfqq_sync(cfqq))
1460		cfqd->busy_sync_queues++;
1461
1462	cfq_resort_rr_list(cfqd, cfqq);
1463}
1464
1465/*
1466 * Called when the cfqq no longer has requests pending, remove it from
1467 * the service tree.
1468 */
1469static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1470{
1471	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1472	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1473	cfq_clear_cfqq_on_rr(cfqq);
1474
1475	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1476		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1477		cfqq->service_tree = NULL;
1478	}
1479	if (cfqq->p_root) {
1480		rb_erase(&cfqq->p_node, cfqq->p_root);
1481		cfqq->p_root = NULL;
1482	}
1483
1484	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1485	BUG_ON(!cfqd->busy_queues);
1486	cfqd->busy_queues--;
1487	if (cfq_cfqq_sync(cfqq))
1488		cfqd->busy_sync_queues--;
1489}
1490
1491/*
1492 * rb tree support functions
1493 */
1494static void cfq_del_rq_rb(struct request *rq)
1495{
1496	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497	const int sync = rq_is_sync(rq);
1498
1499	BUG_ON(!cfqq->queued[sync]);
1500	cfqq->queued[sync]--;
1501
1502	elv_rb_del(&cfqq->sort_list, rq);
1503
1504	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1505		/*
1506		 * Queue will be deleted from service tree when we actually
1507		 * expire it later. Right now just remove it from prio tree
1508		 * as it is empty.
1509		 */
1510		if (cfqq->p_root) {
1511			rb_erase(&cfqq->p_node, cfqq->p_root);
1512			cfqq->p_root = NULL;
1513		}
1514	}
1515}
1516
1517static void cfq_add_rq_rb(struct request *rq)
1518{
1519	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1520	struct cfq_data *cfqd = cfqq->cfqd;
1521	struct request *prev;
1522
1523	cfqq->queued[rq_is_sync(rq)]++;
1524
1525	elv_rb_add(&cfqq->sort_list, rq);
1526
1527	if (!cfq_cfqq_on_rr(cfqq))
1528		cfq_add_cfqq_rr(cfqd, cfqq);
1529
1530	/*
1531	 * check if this request is a better next-serve candidate
1532	 */
1533	prev = cfqq->next_rq;
1534	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1535
1536	/*
1537	 * adjust priority tree position, if ->next_rq changes
1538	 */
1539	if (prev != cfqq->next_rq)
1540		cfq_prio_tree_add(cfqd, cfqq);
1541
1542	BUG_ON(!cfqq->next_rq);
1543}
1544
1545static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1546{
1547	elv_rb_del(&cfqq->sort_list, rq);
1548	cfqq->queued[rq_is_sync(rq)]--;
1549	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1550					rq_data_dir(rq), rq_is_sync(rq));
1551	cfq_add_rq_rb(rq);
1552	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1553			&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1554			rq_is_sync(rq));
1555}
1556
1557static struct request *
1558cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1559{
1560	struct task_struct *tsk = current;
1561	struct cfq_io_context *cic;
1562	struct cfq_queue *cfqq;
1563
1564	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1565	if (!cic)
1566		return NULL;
1567
1568	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1569	if (cfqq) {
1570		sector_t sector = bio->bi_sector + bio_sectors(bio);
1571
1572		return elv_rb_find(&cfqq->sort_list, sector);
1573	}
1574
1575	return NULL;
1576}
1577
1578static void cfq_activate_request(struct request_queue *q, struct request *rq)
1579{
1580	struct cfq_data *cfqd = q->elevator->elevator_data;
1581
1582	cfqd->rq_in_driver++;
1583	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1584						cfqd->rq_in_driver);
1585
1586	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1587}
1588
1589static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1590{
1591	struct cfq_data *cfqd = q->elevator->elevator_data;
1592
1593	WARN_ON(!cfqd->rq_in_driver);
1594	cfqd->rq_in_driver--;
1595	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1596						cfqd->rq_in_driver);
1597}
1598
1599static void cfq_remove_request(struct request *rq)
1600{
1601	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1602
1603	if (cfqq->next_rq == rq)
1604		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1605
1606	list_del_init(&rq->queuelist);
1607	cfq_del_rq_rb(rq);
1608
1609	cfqq->cfqd->rq_queued--;
1610	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1611					rq_data_dir(rq), rq_is_sync(rq));
1612	if (rq->cmd_flags & REQ_PRIO) {
1613		WARN_ON(!cfqq->prio_pending);
1614		cfqq->prio_pending--;
1615	}
1616}
1617
1618static int cfq_merge(struct request_queue *q, struct request **req,
1619		     struct bio *bio)
1620{
1621	struct cfq_data *cfqd = q->elevator->elevator_data;
1622	struct request *__rq;
1623
1624	__rq = cfq_find_rq_fmerge(cfqd, bio);
1625	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1626		*req = __rq;
1627		return ELEVATOR_FRONT_MERGE;
1628	}
1629
1630	return ELEVATOR_NO_MERGE;
1631}
1632
1633static void cfq_merged_request(struct request_queue *q, struct request *req,
1634			       int type)
1635{
1636	if (type == ELEVATOR_FRONT_MERGE) {
1637		struct cfq_queue *cfqq = RQ_CFQQ(req);
1638
1639		cfq_reposition_rq_rb(cfqq, req);
1640	}
1641}
1642
1643static void cfq_bio_merged(struct request_queue *q, struct request *req,
1644				struct bio *bio)
1645{
1646	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1647					bio_data_dir(bio), cfq_bio_sync(bio));
1648}
1649
1650static void
1651cfq_merged_requests(struct request_queue *q, struct request *rq,
1652		    struct request *next)
1653{
1654	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1655	/*
1656	 * reposition in fifo if next is older than rq
1657	 */
1658	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1659	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1660		list_move(&rq->queuelist, &next->queuelist);
1661		rq_set_fifo_time(rq, rq_fifo_time(next));
1662	}
1663
1664	if (cfqq->next_rq == next)
1665		cfqq->next_rq = rq;
1666	cfq_remove_request(next);
1667	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1668					rq_data_dir(next), rq_is_sync(next));
1669}
1670
1671static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1672			   struct bio *bio)
1673{
1674	struct cfq_data *cfqd = q->elevator->elevator_data;
1675	struct cfq_io_context *cic;
1676	struct cfq_queue *cfqq;
1677
1678	/*
1679	 * Disallow merge of a sync bio into an async request.
1680	 */
1681	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1682		return false;
1683
1684	/*
1685	 * Lookup the cfqq that this bio will be queued with. Allow
1686	 * merge only if rq is queued there.
1687	 */
1688	cic = cfq_cic_lookup(cfqd, current->io_context);
1689	if (!cic)
1690		return false;
1691
1692	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1693	return cfqq == RQ_CFQQ(rq);
1694}
1695
1696static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1697{
1698	del_timer(&cfqd->idle_slice_timer);
1699	cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1700}
1701
1702static void __cfq_set_active_queue(struct cfq_data *cfqd,
1703				   struct cfq_queue *cfqq)
1704{
1705	if (cfqq) {
1706		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1707				cfqd->serving_prio, cfqd->serving_type);
1708		cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1709		cfqq->slice_start = 0;
1710		cfqq->dispatch_start = jiffies;
1711		cfqq->allocated_slice = 0;
1712		cfqq->slice_end = 0;
1713		cfqq->slice_dispatch = 0;
1714		cfqq->nr_sectors = 0;
1715
1716		cfq_clear_cfqq_wait_request(cfqq);
1717		cfq_clear_cfqq_must_dispatch(cfqq);
1718		cfq_clear_cfqq_must_alloc_slice(cfqq);
1719		cfq_clear_cfqq_fifo_expire(cfqq);
1720		cfq_mark_cfqq_slice_new(cfqq);
1721
1722		cfq_del_timer(cfqd, cfqq);
1723	}
1724
1725	cfqd->active_queue = cfqq;
1726}
1727
1728/*
1729 * current cfqq expired its slice (or was too idle), select new one
1730 */
1731static void
1732__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1733		    bool timed_out)
1734{
1735	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1736
1737	if (cfq_cfqq_wait_request(cfqq))
1738		cfq_del_timer(cfqd, cfqq);
1739
1740	cfq_clear_cfqq_wait_request(cfqq);
1741	cfq_clear_cfqq_wait_busy(cfqq);
1742
1743	/*
1744	 * If this cfqq is shared between multiple processes, check to
1745	 * make sure that those processes are still issuing I/Os within
1746	 * the mean seek distance.  If not, it may be time to break the
1747	 * queues apart again.
1748	 */
1749	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1750		cfq_mark_cfqq_split_coop(cfqq);
1751
1752	/*
1753	 * store what was left of this slice, if the queue idled/timed out
1754	 */
1755	if (timed_out) {
1756		if (cfq_cfqq_slice_new(cfqq))
1757			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1758		else
1759			cfqq->slice_resid = cfqq->slice_end - jiffies;
1760		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1761	}
1762
1763	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1764
1765	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1766		cfq_del_cfqq_rr(cfqd, cfqq);
1767
1768	cfq_resort_rr_list(cfqd, cfqq);
1769
1770	if (cfqq == cfqd->active_queue)
1771		cfqd->active_queue = NULL;
1772
1773	if (cfqd->active_cic) {
1774		put_io_context(cfqd->active_cic->ioc);
1775		cfqd->active_cic = NULL;
1776	}
1777}
1778
1779static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1780{
1781	struct cfq_queue *cfqq = cfqd->active_queue;
1782
1783	if (cfqq)
1784		__cfq_slice_expired(cfqd, cfqq, timed_out);
1785}
1786
1787/*
1788 * Get next queue for service. Unless we have a queue preemption,
1789 * we'll simply select the first cfqq in the service tree.
1790 */
1791static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1792{
1793	struct cfq_rb_root *service_tree =
1794		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1795					cfqd->serving_type);
1796
1797	if (!cfqd->rq_queued)
1798		return NULL;
1799
1800	/* There is nothing to dispatch */
1801	if (!service_tree)
1802		return NULL;
1803	if (RB_EMPTY_ROOT(&service_tree->rb))
1804		return NULL;
1805	return cfq_rb_first(service_tree);
1806}
1807
1808static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1809{
1810	struct cfq_group *cfqg;
1811	struct cfq_queue *cfqq;
1812	int i, j;
1813	struct cfq_rb_root *st;
1814
1815	if (!cfqd->rq_queued)
1816		return NULL;
1817
1818	cfqg = cfq_get_next_cfqg(cfqd);
1819	if (!cfqg)
1820		return NULL;
1821
1822	for_each_cfqg_st(cfqg, i, j, st)
1823		if ((cfqq = cfq_rb_first(st)) != NULL)
1824			return cfqq;
1825	return NULL;
1826}
1827
1828/*
1829 * Get and set a new active queue for service.
1830 */
1831static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1832					      struct cfq_queue *cfqq)
1833{
1834	if (!cfqq)
1835		cfqq = cfq_get_next_queue(cfqd);
1836
1837	__cfq_set_active_queue(cfqd, cfqq);
1838	return cfqq;
1839}
1840
1841static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1842					  struct request *rq)
1843{
1844	if (blk_rq_pos(rq) >= cfqd->last_position)
1845		return blk_rq_pos(rq) - cfqd->last_position;
1846	else
1847		return cfqd->last_position - blk_rq_pos(rq);
1848}
1849
1850static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1851			       struct request *rq)
1852{
1853	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1854}
1855
1856static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1857				    struct cfq_queue *cur_cfqq)
1858{
1859	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1860	struct rb_node *parent, *node;
1861	struct cfq_queue *__cfqq;
1862	sector_t sector = cfqd->last_position;
1863
1864	if (RB_EMPTY_ROOT(root))
1865		return NULL;
1866
1867	/*
1868	 * First, if we find a request starting at the end of the last
1869	 * request, choose it.
1870	 */
1871	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1872	if (__cfqq)
1873		return __cfqq;
1874
1875	/*
1876	 * If the exact sector wasn't found, the parent of the NULL leaf
1877	 * will contain the closest sector.
1878	 */
1879	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1880	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1881		return __cfqq;
1882
1883	if (blk_rq_pos(__cfqq->next_rq) < sector)
1884		node = rb_next(&__cfqq->p_node);
1885	else
1886		node = rb_prev(&__cfqq->p_node);
1887	if (!node)
1888		return NULL;
1889
1890	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1891	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1892		return __cfqq;
1893
1894	return NULL;
1895}
1896
1897/*
1898 * cfqd - obvious
1899 * cur_cfqq - passed in so that we don't decide that the current queue is
1900 * 	      closely cooperating with itself.
1901 *
1902 * So, basically we're assuming that that cur_cfqq has dispatched at least
1903 * one request, and that cfqd->last_position reflects a position on the disk
1904 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1905 * assumption.
1906 */
1907static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1908					      struct cfq_queue *cur_cfqq)
1909{
1910	struct cfq_queue *cfqq;
1911
1912	if (cfq_class_idle(cur_cfqq))
1913		return NULL;
1914	if (!cfq_cfqq_sync(cur_cfqq))
1915		return NULL;
1916	if (CFQQ_SEEKY(cur_cfqq))
1917		return NULL;
1918
1919	/*
1920	 * Don't search priority tree if it's the only queue in the group.
1921	 */
1922	if (cur_cfqq->cfqg->nr_cfqq == 1)
1923		return NULL;
1924
1925	/*
1926	 * We should notice if some of the queues are cooperating, eg
1927	 * working closely on the same area of the disk. In that case,
1928	 * we can group them together and don't waste time idling.
1929	 */
1930	cfqq = cfqq_close(cfqd, cur_cfqq);
1931	if (!cfqq)
1932		return NULL;
1933
1934	/* If new queue belongs to different cfq_group, don't choose it */
1935	if (cur_cfqq->cfqg != cfqq->cfqg)
1936		return NULL;
1937
1938	/*
1939	 * It only makes sense to merge sync queues.
1940	 */
1941	if (!cfq_cfqq_sync(cfqq))
1942		return NULL;
1943	if (CFQQ_SEEKY(cfqq))
1944		return NULL;
1945
1946	/*
1947	 * Do not merge queues of different priority classes
1948	 */
1949	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1950		return NULL;
1951
1952	return cfqq;
1953}
1954
1955/*
1956 * Determine whether we should enforce idle window for this queue.
1957 */
1958
1959static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1960{
1961	enum wl_prio_t prio = cfqq_prio(cfqq);
1962	struct cfq_rb_root *service_tree = cfqq->service_tree;
1963
1964	BUG_ON(!service_tree);
1965	BUG_ON(!service_tree->count);
1966
1967	if (!cfqd->cfq_slice_idle)
1968		return false;
1969
1970	/* We never do for idle class queues. */
1971	if (prio == IDLE_WORKLOAD)
1972		return false;
1973
1974	/* We do for queues that were marked with idle window flag. */
1975	if (cfq_cfqq_idle_window(cfqq) &&
1976	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1977		return true;
1978
1979	/*
1980	 * Otherwise, we do only if they are the last ones
1981	 * in their service tree.
1982	 */
1983	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1984	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1985		return true;
1986	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1987			service_tree->count);
1988	return false;
1989}
1990
1991static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1992{
1993	struct cfq_queue *cfqq = cfqd->active_queue;
1994	struct cfq_io_context *cic;
1995	unsigned long sl, group_idle = 0;
1996
1997	/*
1998	 * SSD device without seek penalty, disable idling. But only do so
1999	 * for devices that support queuing, otherwise we still have a problem
2000	 * with sync vs async workloads.
2001	 */
2002	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2003		return;
2004
2005	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2006	WARN_ON(cfq_cfqq_slice_new(cfqq));
2007
2008	/*
2009	 * idle is disabled, either manually or by past process history
2010	 */
2011	if (!cfq_should_idle(cfqd, cfqq)) {
2012		/* no queue idling. Check for group idling */
2013		if (cfqd->cfq_group_idle)
2014			group_idle = cfqd->cfq_group_idle;
2015		else
2016			return;
2017	}
2018
2019	/*
2020	 * still active requests from this queue, don't idle
2021	 */
2022	if (cfqq->dispatched)
2023		return;
2024
2025	/*
2026	 * task has exited, don't wait
2027	 */
2028	cic = cfqd->active_cic;
2029	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2030		return;
2031
2032	/*
2033	 * If our average think time is larger than the remaining time
2034	 * slice, then don't idle. This avoids overrunning the allotted
2035	 * time slice.
2036	 */
2037	if (sample_valid(cic->ttime.ttime_samples) &&
2038	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2039		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2040			     cic->ttime.ttime_mean);
2041		return;
2042	}
2043
2044	/* There are other queues in the group, don't do group idle */
2045	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2046		return;
2047
2048	cfq_mark_cfqq_wait_request(cfqq);
2049
2050	if (group_idle)
2051		sl = cfqd->cfq_group_idle;
2052	else
2053		sl = cfqd->cfq_slice_idle;
2054
2055	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2056	cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2057	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2058			group_idle ? 1 : 0);
2059}
2060
2061/*
2062 * Move request from internal lists to the request queue dispatch list.
2063 */
2064static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2065{
2066	struct cfq_data *cfqd = q->elevator->elevator_data;
2067	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2068
2069	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2070
2071	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2072	cfq_remove_request(rq);
2073	cfqq->dispatched++;
2074	(RQ_CFQG(rq))->dispatched++;
2075	elv_dispatch_sort(q, rq);
2076
2077	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2078	cfqq->nr_sectors += blk_rq_sectors(rq);
2079	cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2080					rq_data_dir(rq), rq_is_sync(rq));
2081}
2082
2083/*
2084 * return expired entry, or NULL to just start from scratch in rbtree
2085 */
2086static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2087{
2088	struct request *rq = NULL;
2089
2090	if (cfq_cfqq_fifo_expire(cfqq))
2091		return NULL;
2092
2093	cfq_mark_cfqq_fifo_expire(cfqq);
2094
2095	if (list_empty(&cfqq->fifo))
2096		return NULL;
2097
2098	rq = rq_entry_fifo(cfqq->fifo.next);
2099	if (time_before(jiffies, rq_fifo_time(rq)))
2100		rq = NULL;
2101
2102	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2103	return rq;
2104}
2105
2106static inline int
2107cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2108{
2109	const int base_rq = cfqd->cfq_slice_async_rq;
2110
2111	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2112
2113	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2114}
2115
2116/*
2117 * Must be called with the queue_lock held.
2118 */
2119static int cfqq_process_refs(struct cfq_queue *cfqq)
2120{
2121	int process_refs, io_refs;
2122
2123	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2124	process_refs = cfqq->ref - io_refs;
2125	BUG_ON(process_refs < 0);
2126	return process_refs;
2127}
2128
2129static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2130{
2131	int process_refs, new_process_refs;
2132	struct cfq_queue *__cfqq;
2133
2134	/*
2135	 * If there are no process references on the new_cfqq, then it is
2136	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2137	 * chain may have dropped their last reference (not just their
2138	 * last process reference).
2139	 */
2140	if (!cfqq_process_refs(new_cfqq))
2141		return;
2142
2143	/* Avoid a circular list and skip interim queue merges */
2144	while ((__cfqq = new_cfqq->new_cfqq)) {
2145		if (__cfqq == cfqq)
2146			return;
2147		new_cfqq = __cfqq;
2148	}
2149
2150	process_refs = cfqq_process_refs(cfqq);
2151	new_process_refs = cfqq_process_refs(new_cfqq);
2152	/*
2153	 * If the process for the cfqq has gone away, there is no
2154	 * sense in merging the queues.
2155	 */
2156	if (process_refs == 0 || new_process_refs == 0)
2157		return;
2158
2159	/*
2160	 * Merge in the direction of the lesser amount of work.
2161	 */
2162	if (new_process_refs >= process_refs) {
2163		cfqq->new_cfqq = new_cfqq;
2164		new_cfqq->ref += process_refs;
2165	} else {
2166		new_cfqq->new_cfqq = cfqq;
2167		cfqq->ref += new_process_refs;
2168	}
2169}
2170
2171static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2172				struct cfq_group *cfqg, enum wl_prio_t prio)
2173{
2174	struct cfq_queue *queue;
2175	int i;
2176	bool key_valid = false;
2177	unsigned long lowest_key = 0;
2178	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2179
2180	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2181		/* select the one with lowest rb_key */
2182		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2183		if (queue &&
2184		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2185			lowest_key = queue->rb_key;
2186			cur_best = i;
2187			key_valid = true;
2188		}
2189	}
2190
2191	return cur_best;
2192}
2193
2194static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2195{
2196	unsigned slice;
2197	unsigned count;
2198	struct cfq_rb_root *st;
2199	unsigned group_slice;
2200	enum wl_prio_t original_prio = cfqd->serving_prio;
2201
2202	/* Choose next priority. RT > BE > IDLE */
2203	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2204		cfqd->serving_prio = RT_WORKLOAD;
2205	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2206		cfqd->serving_prio = BE_WORKLOAD;
2207	else {
2208		cfqd->serving_prio = IDLE_WORKLOAD;
2209		cfqd->workload_expires = jiffies + 1;
2210		return;
2211	}
2212
2213	if (original_prio != cfqd->serving_prio)
2214		goto new_workload;
2215
2216	/*
2217	 * For RT and BE, we have to choose also the type
2218	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2219	 * expiration time
2220	 */
2221	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2222	count = st->count;
2223
2224	/*
2225	 * check workload expiration, and that we still have other queues ready
2226	 */
2227	if (count && !time_after(jiffies, cfqd->workload_expires))
2228		return;
2229
2230new_workload:
2231	/* otherwise select new workload type */
2232	cfqd->serving_type =
2233		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2234	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2235	count = st->count;
2236
2237	/*
2238	 * the workload slice is computed as a fraction of target latency
2239	 * proportional to the number of queues in that workload, over
2240	 * all the queues in the same priority class
2241	 */
2242	group_slice = cfq_group_slice(cfqd, cfqg);
2243
2244	slice = group_slice * count /
2245		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2246		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2247
2248	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2249		unsigned int tmp;
2250
2251		/*
2252		 * Async queues are currently system wide. Just taking
2253		 * proportion of queues with-in same group will lead to higher
2254		 * async ratio system wide as generally root group is going
2255		 * to have higher weight. A more accurate thing would be to
2256		 * calculate system wide asnc/sync ratio.
2257		 */
2258		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2259		tmp = tmp/cfqd->busy_queues;
2260		slice = min_t(unsigned, slice, tmp);
2261
2262		/* async workload slice is scaled down according to
2263		 * the sync/async slice ratio. */
2264		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2265	} else
2266		/* sync workload slice is at least 2 * cfq_slice_idle */
2267		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2268
2269	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2270	cfq_log(cfqd, "workload slice:%d", slice);
2271	cfqd->workload_expires = jiffies + slice;
2272}
2273
2274static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2275{
2276	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2277	struct cfq_group *cfqg;
2278
2279	if (RB_EMPTY_ROOT(&st->rb))
2280		return NULL;
2281	cfqg = cfq_rb_first_group(st);
2282	update_min_vdisktime(st);
2283	return cfqg;
2284}
2285
2286static void cfq_choose_cfqg(struct cfq_data *cfqd)
2287{
2288	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2289
2290	cfqd->serving_group = cfqg;
2291
2292	/* Restore the workload type data */
2293	if (cfqg->saved_workload_slice) {
2294		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2295		cfqd->serving_type = cfqg->saved_workload;
2296		cfqd->serving_prio = cfqg->saved_serving_prio;
2297	} else
2298		cfqd->workload_expires = jiffies - 1;
2299
2300	choose_service_tree(cfqd, cfqg);
2301}
2302
2303/*
2304 * Select a queue for service. If we have a current active queue,
2305 * check whether to continue servicing it, or retrieve and set a new one.
2306 */
2307static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2308{
2309	struct cfq_queue *cfqq, *new_cfqq = NULL;
2310
2311	cfqq = cfqd->active_queue;
2312	if (!cfqq)
2313		goto new_queue;
2314
2315	if (!cfqd->rq_queued)
2316		return NULL;
2317
2318	/*
2319	 * We were waiting for group to get backlogged. Expire the queue
2320	 */
2321	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2322		goto expire;
2323
2324	/*
2325	 * The active queue has run out of time, expire it and select new.
2326	 */
2327	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2328		/*
2329		 * If slice had not expired at the completion of last request
2330		 * we might not have turned on wait_busy flag. Don't expire
2331		 * the queue yet. Allow the group to get backlogged.
2332		 *
2333		 * The very fact that we have used the slice, that means we
2334		 * have been idling all along on this queue and it should be
2335		 * ok to wait for this request to complete.
2336		 */
2337		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2338		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2339			cfqq = NULL;
2340			goto keep_queue;
2341		} else
2342			goto check_group_idle;
2343	}
2344
2345	/*
2346	 * The active queue has requests and isn't expired, allow it to
2347	 * dispatch.
2348	 */
2349	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2350		goto keep_queue;
2351
2352	/*
2353	 * If another queue has a request waiting within our mean seek
2354	 * distance, let it run.  The expire code will check for close
2355	 * cooperators and put the close queue at the front of the service
2356	 * tree.  If possible, merge the expiring queue with the new cfqq.
2357	 */
2358	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2359	if (new_cfqq) {
2360		if (!cfqq->new_cfqq)
2361			cfq_setup_merge(cfqq, new_cfqq);
2362		goto expire;
2363	}
2364
2365	/*
2366	 * No requests pending. If the active queue still has requests in
2367	 * flight or is idling for a new request, allow either of these
2368	 * conditions to happen (or time out) before selecting a new queue.
2369	 */
2370	if (timer_pending(&cfqd->idle_slice_timer)) {
2371		cfqq = NULL;
2372		goto keep_queue;
2373	}
2374
2375	/*
2376	 * This is a deep seek queue, but the device is much faster than
2377	 * the queue can deliver, don't idle
2378	 **/
2379	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2380	    (cfq_cfqq_slice_new(cfqq) ||
2381	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2382		cfq_clear_cfqq_deep(cfqq);
2383		cfq_clear_cfqq_idle_window(cfqq);
2384	}
2385
2386	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2387		cfqq = NULL;
2388		goto keep_queue;
2389	}
2390
2391	/*
2392	 * If group idle is enabled and there are requests dispatched from
2393	 * this group, wait for requests to complete.
2394	 */
2395check_group_idle:
2396	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2397	    cfqq->cfqg->dispatched &&
2398	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2399		cfqq = NULL;
2400		goto keep_queue;
2401	}
2402
2403expire:
2404	cfq_slice_expired(cfqd, 0);
2405new_queue:
2406	/*
2407	 * Current queue expired. Check if we have to switch to a new
2408	 * service tree
2409	 */
2410	if (!new_cfqq)
2411		cfq_choose_cfqg(cfqd);
2412
2413	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2414keep_queue:
2415	return cfqq;
2416}
2417
2418static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2419{
2420	int dispatched = 0;
2421
2422	while (cfqq->next_rq) {
2423		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2424		dispatched++;
2425	}
2426
2427	BUG_ON(!list_empty(&cfqq->fifo));
2428
2429	/* By default cfqq is not expired if it is empty. Do it explicitly */
2430	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2431	return dispatched;
2432}
2433
2434/*
2435 * Drain our current requests. Used for barriers and when switching
2436 * io schedulers on-the-fly.
2437 */
2438static int cfq_forced_dispatch(struct cfq_data *cfqd)
2439{
2440	struct cfq_queue *cfqq;
2441	int dispatched = 0;
2442
2443	/* Expire the timeslice of the current active queue first */
2444	cfq_slice_expired(cfqd, 0);
2445	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2446		__cfq_set_active_queue(cfqd, cfqq);
2447		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2448	}
2449
2450	BUG_ON(cfqd->busy_queues);
2451
2452	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2453	return dispatched;
2454}
2455
2456static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2457	struct cfq_queue *cfqq)
2458{
2459	/* the queue hasn't finished any request, can't estimate */
2460	if (cfq_cfqq_slice_new(cfqq))
2461		return true;
2462	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2463		cfqq->slice_end))
2464		return true;
2465
2466	return false;
2467}
2468
2469static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2470{
2471	unsigned int max_dispatch;
2472
2473	/*
2474	 * Drain async requests before we start sync IO
2475	 */
2476	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2477		return false;
2478
2479	/*
2480	 * If this is an async queue and we have sync IO in flight, let it wait
2481	 */
2482	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2483		return false;
2484
2485	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2486	if (cfq_class_idle(cfqq))
2487		max_dispatch = 1;
2488
2489	/*
2490	 * Does this cfqq already have too much IO in flight?
2491	 */
2492	if (cfqq->dispatched >= max_dispatch) {
2493		bool promote_sync = false;
2494		/*
2495		 * idle queue must always only have a single IO in flight
2496		 */
2497		if (cfq_class_idle(cfqq))
2498			return false;
2499
2500		/*
2501		 * If there is only one sync queue
2502		 * we can ignore async queue here and give the sync
2503		 * queue no dispatch limit. The reason is a sync queue can
2504		 * preempt async queue, limiting the sync queue doesn't make
2505		 * sense. This is useful for aiostress test.
2506		 */
2507		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2508			promote_sync = true;
2509
2510		/*
2511		 * We have other queues, don't allow more IO from this one
2512		 */
2513		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2514				!promote_sync)
2515			return false;
2516
2517		/*
2518		 * Sole queue user, no limit
2519		 */
2520		if (cfqd->busy_queues == 1 || promote_sync)
2521			max_dispatch = -1;
2522		else
2523			/*
2524			 * Normally we start throttling cfqq when cfq_quantum/2
2525			 * requests have been dispatched. But we can drive
2526			 * deeper queue depths at the beginning of slice
2527			 * subjected to upper limit of cfq_quantum.
2528			 * */
2529			max_dispatch = cfqd->cfq_quantum;
2530	}
2531
2532	/*
2533	 * Async queues must wait a bit before being allowed dispatch.
2534	 * We also ramp up the dispatch depth gradually for async IO,
2535	 * based on the last sync IO we serviced
2536	 */
2537	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2538		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2539		unsigned int depth;
2540
2541		depth = last_sync / cfqd->cfq_slice[1];
2542		if (!depth && !cfqq->dispatched)
2543			depth = 1;
2544		if (depth < max_dispatch)
2545			max_dispatch = depth;
2546	}
2547
2548	/*
2549	 * If we're below the current max, allow a dispatch
2550	 */
2551	return cfqq->dispatched < max_dispatch;
2552}
2553
2554/*
2555 * Dispatch a request from cfqq, moving them to the request queue
2556 * dispatch list.
2557 */
2558static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2559{
2560	struct request *rq;
2561
2562	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2563
2564	if (!cfq_may_dispatch(cfqd, cfqq))
2565		return false;
2566
2567	/*
2568	 * follow expired path, else get first next available
2569	 */
2570	rq = cfq_check_fifo(cfqq);
2571	if (!rq)
2572		rq = cfqq->next_rq;
2573
2574	/*
2575	 * insert request into driver dispatch list
2576	 */
2577	cfq_dispatch_insert(cfqd->queue, rq);
2578
2579	if (!cfqd->active_cic) {
2580		struct cfq_io_context *cic = RQ_CIC(rq);
2581
2582		atomic_long_inc(&cic->ioc->refcount);
2583		cfqd->active_cic = cic;
2584	}
2585
2586	return true;
2587}
2588
2589/*
2590 * Find the cfqq that we need to service and move a request from that to the
2591 * dispatch list
2592 */
2593static int cfq_dispatch_requests(struct request_queue *q, int force)
2594{
2595	struct cfq_data *cfqd = q->elevator->elevator_data;
2596	struct cfq_queue *cfqq;
2597
2598	if (!cfqd->busy_queues)
2599		return 0;
2600
2601	if (unlikely(force))
2602		return cfq_forced_dispatch(cfqd);
2603
2604	cfqq = cfq_select_queue(cfqd);
2605	if (!cfqq)
2606		return 0;
2607
2608	/*
2609	 * Dispatch a request from this cfqq, if it is allowed
2610	 */
2611	if (!cfq_dispatch_request(cfqd, cfqq))
2612		return 0;
2613
2614	cfqq->slice_dispatch++;
2615	cfq_clear_cfqq_must_dispatch(cfqq);
2616
2617	/*
2618	 * expire an async queue immediately if it has used up its slice. idle
2619	 * queue always expire after 1 dispatch round.
2620	 */
2621	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2622	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2623	    cfq_class_idle(cfqq))) {
2624		cfqq->slice_end = jiffies + 1;
2625		cfq_slice_expired(cfqd, 0);
2626	}
2627
2628	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2629	return 1;
2630}
2631
2632/*
2633 * task holds one reference to the queue, dropped when task exits. each rq
2634 * in-flight on this queue also holds a reference, dropped when rq is freed.
2635 *
2636 * Each cfq queue took a reference on the parent group. Drop it now.
2637 * queue lock must be held here.
2638 */
2639static void cfq_put_queue(struct cfq_queue *cfqq)
2640{
2641	struct cfq_data *cfqd = cfqq->cfqd;
2642	struct cfq_group *cfqg;
2643
2644	BUG_ON(cfqq->ref <= 0);
2645
2646	cfqq->ref--;
2647	if (cfqq->ref)
2648		return;
2649
2650	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2651	BUG_ON(rb_first(&cfqq->sort_list));
2652	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2653	cfqg = cfqq->cfqg;
2654
2655	if (unlikely(cfqd->active_queue == cfqq)) {
2656		__cfq_slice_expired(cfqd, cfqq, 0);
2657		cfq_schedule_dispatch(cfqd);
2658	}
2659
2660	BUG_ON(cfq_cfqq_on_rr(cfqq));
2661	kmem_cache_free(cfq_pool, cfqq);
2662	cfq_put_cfqg(cfqg);
2663}
2664
2665/*
2666 * Call func for each cic attached to this ioc.
2667 */
2668static void
2669call_for_each_cic(struct io_context *ioc,
2670		  void (*func)(struct io_context *, struct cfq_io_context *))
2671{
2672	struct cfq_io_context *cic;
2673	struct hlist_node *n;
2674
2675	rcu_read_lock();
2676
2677	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2678		func(ioc, cic);
2679
2680	rcu_read_unlock();
2681}
2682
2683static void cfq_cic_free_rcu(struct rcu_head *head)
2684{
2685	struct cfq_io_context *cic;
2686
2687	cic = container_of(head, struct cfq_io_context, rcu_head);
2688
2689	kmem_cache_free(cfq_ioc_pool, cic);
2690	elv_ioc_count_dec(cfq_ioc_count);
2691
2692	if (ioc_gone) {
2693		/*
2694		 * CFQ scheduler is exiting, grab exit lock and check
2695		 * the pending io context count. If it hits zero,
2696		 * complete ioc_gone and set it back to NULL
2697		 */
2698		spin_lock(&ioc_gone_lock);
2699		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2700			complete(ioc_gone);
2701			ioc_gone = NULL;
2702		}
2703		spin_unlock(&ioc_gone_lock);
2704	}
2705}
2706
2707static void cfq_cic_free(struct cfq_io_context *cic)
2708{
2709	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2710}
2711
2712static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2713{
2714	unsigned long flags;
2715	unsigned long dead_key = (unsigned long) cic->key;
2716
2717	BUG_ON(!(dead_key & CIC_DEAD_KEY));
2718
2719	spin_lock_irqsave(&ioc->lock, flags);
2720	radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2721	hlist_del_rcu(&cic->cic_list);
2722	spin_unlock_irqrestore(&ioc->lock, flags);
2723
2724	cfq_cic_free(cic);
2725}
2726
2727/*
2728 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2729 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2730 * and ->trim() which is called with the task lock held
2731 */
2732static void cfq_free_io_context(struct io_context *ioc)
2733{
2734	/*
2735	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2736	 * so no more cic's are allowed to be linked into this ioc.  So it
2737	 * should be ok to iterate over the known list, we will see all cic's
2738	 * since no new ones are added.
2739	 */
2740	call_for_each_cic(ioc, cic_free_func);
2741}
2742
2743static void cfq_put_cooperator(struct cfq_queue *cfqq)
2744{
2745	struct cfq_queue *__cfqq, *next;
2746
2747	/*
2748	 * If this queue was scheduled to merge with another queue, be
2749	 * sure to drop the reference taken on that queue (and others in
2750	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2751	 */
2752	__cfqq = cfqq->new_cfqq;
2753	while (__cfqq) {
2754		if (__cfqq == cfqq) {
2755			WARN(1, "cfqq->new_cfqq loop detected\n");
2756			break;
2757		}
2758		next = __cfqq->new_cfqq;
2759		cfq_put_queue(__cfqq);
2760		__cfqq = next;
2761	}
2762}
2763
2764static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2765{
2766	if (unlikely(cfqq == cfqd->active_queue)) {
2767		__cfq_slice_expired(cfqd, cfqq, 0);
2768		cfq_schedule_dispatch(cfqd);
2769	}
2770
2771	cfq_put_cooperator(cfqq);
2772
2773	cfq_put_queue(cfqq);
2774}
2775
2776static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2777					 struct cfq_io_context *cic)
2778{
2779	struct io_context *ioc = cic->ioc;
2780
2781	list_del_init(&cic->queue_list);
2782
2783	/*
2784	 * Make sure dead mark is seen for dead queues
2785	 */
2786	smp_wmb();
2787	cic->key = cfqd_dead_key(cfqd);
2788
2789	rcu_read_lock();
2790	if (rcu_dereference(ioc->ioc_data) == cic) {
2791		rcu_read_unlock();
2792		spin_lock(&ioc->lock);
2793		rcu_assign_pointer(ioc->ioc_data, NULL);
2794		spin_unlock(&ioc->lock);
2795	} else
2796		rcu_read_unlock();
2797
2798	if (cic->cfqq[BLK_RW_ASYNC]) {
2799		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2800		cic->cfqq[BLK_RW_ASYNC] = NULL;
2801	}
2802
2803	if (cic->cfqq[BLK_RW_SYNC]) {
2804		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2805		cic->cfqq[BLK_RW_SYNC] = NULL;
2806	}
2807}
2808
2809static void cfq_exit_single_io_context(struct io_context *ioc,
2810				       struct cfq_io_context *cic)
2811{
2812	struct cfq_data *cfqd = cic_to_cfqd(cic);
2813
2814	if (cfqd) {
2815		struct request_queue *q = cfqd->queue;
2816		unsigned long flags;
2817
2818		spin_lock_irqsave(q->queue_lock, flags);
2819
2820		/*
2821		 * Ensure we get a fresh copy of the ->key to prevent
2822		 * race between exiting task and queue
2823		 */
2824		smp_read_barrier_depends();
2825		if (cic->key == cfqd)
2826			__cfq_exit_single_io_context(cfqd, cic);
2827
2828		spin_unlock_irqrestore(q->queue_lock, flags);
2829	}
2830}
2831
2832/*
2833 * The process that ioc belongs to has exited, we need to clean up
2834 * and put the internal structures we have that belongs to that process.
2835 */
2836static void cfq_exit_io_context(struct io_context *ioc)
2837{
2838	call_for_each_cic(ioc, cfq_exit_single_io_context);
2839}
2840
2841static struct cfq_io_context *
2842cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2843{
2844	struct cfq_io_context *cic;
2845
2846	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2847							cfqd->queue->node);
2848	if (cic) {
2849		cic->ttime.last_end_request = jiffies;
2850		INIT_LIST_HEAD(&cic->queue_list);
2851		INIT_HLIST_NODE(&cic->cic_list);
2852		cic->dtor = cfq_free_io_context;
2853		cic->exit = cfq_exit_io_context;
2854		elv_ioc_count_inc(cfq_ioc_count);
2855	}
2856
2857	return cic;
2858}
2859
2860static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2861{
2862	struct task_struct *tsk = current;
2863	int ioprio_class;
2864
2865	if (!cfq_cfqq_prio_changed(cfqq))
2866		return;
2867
2868	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2869	switch (ioprio_class) {
2870	default:
2871		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2872	case IOPRIO_CLASS_NONE:
2873		/*
2874		 * no prio set, inherit CPU scheduling settings
2875		 */
2876		cfqq->ioprio = task_nice_ioprio(tsk);
2877		cfqq->ioprio_class = task_nice_ioclass(tsk);
2878		break;
2879	case IOPRIO_CLASS_RT:
2880		cfqq->ioprio = task_ioprio(ioc);
2881		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2882		break;
2883	case IOPRIO_CLASS_BE:
2884		cfqq->ioprio = task_ioprio(ioc);
2885		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2886		break;
2887	case IOPRIO_CLASS_IDLE:
2888		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2889		cfqq->ioprio = 7;
2890		cfq_clear_cfqq_idle_window(cfqq);
2891		break;
2892	}
2893
2894	/*
2895	 * keep track of original prio settings in case we have to temporarily
2896	 * elevate the priority of this queue
2897	 */
2898	cfqq->org_ioprio = cfqq->ioprio;
2899	cfq_clear_cfqq_prio_changed(cfqq);
2900}
2901
2902static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2903{
2904	struct cfq_data *cfqd = cic_to_cfqd(cic);
2905	struct cfq_queue *cfqq;
2906	unsigned long flags;
2907
2908	if (unlikely(!cfqd))
2909		return;
2910
2911	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2912
2913	cfqq = cic->cfqq[BLK_RW_ASYNC];
2914	if (cfqq) {
2915		struct cfq_queue *new_cfqq;
2916		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2917						GFP_ATOMIC);
2918		if (new_cfqq) {
2919			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2920			cfq_put_queue(cfqq);
2921		}
2922	}
2923
2924	cfqq = cic->cfqq[BLK_RW_SYNC];
2925	if (cfqq)
2926		cfq_mark_cfqq_prio_changed(cfqq);
2927
2928	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2929}
2930
2931static void cfq_ioc_set_ioprio(struct io_context *ioc)
2932{
2933	call_for_each_cic(ioc, changed_ioprio);
2934	ioc->ioprio_changed = 0;
2935}
2936
2937static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2938			  pid_t pid, bool is_sync)
2939{
2940	RB_CLEAR_NODE(&cfqq->rb_node);
2941	RB_CLEAR_NODE(&cfqq->p_node);
2942	INIT_LIST_HEAD(&cfqq->fifo);
2943
2944	cfqq->ref = 0;
2945	cfqq->cfqd = cfqd;
2946
2947	cfq_mark_cfqq_prio_changed(cfqq);
2948
2949	if (is_sync) {
2950		if (!cfq_class_idle(cfqq))
2951			cfq_mark_cfqq_idle_window(cfqq);
2952		cfq_mark_cfqq_sync(cfqq);
2953	}
2954	cfqq->pid = pid;
2955}
2956
2957#ifdef CONFIG_CFQ_GROUP_IOSCHED
2958static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2959{
2960	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2961	struct cfq_data *cfqd = cic_to_cfqd(cic);
2962	unsigned long flags;
2963	struct request_queue *q;
2964
2965	if (unlikely(!cfqd))
2966		return;
2967
2968	q = cfqd->queue;
2969
2970	spin_lock_irqsave(q->queue_lock, flags);
2971
2972	if (sync_cfqq) {
2973		/*
2974		 * Drop reference to sync queue. A new sync queue will be
2975		 * assigned in new group upon arrival of a fresh request.
2976		 */
2977		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2978		cic_set_cfqq(cic, NULL, 1);
2979		cfq_put_queue(sync_cfqq);
2980	}
2981
2982	spin_unlock_irqrestore(q->queue_lock, flags);
2983}
2984
2985static void cfq_ioc_set_cgroup(struct io_context *ioc)
2986{
2987	call_for_each_cic(ioc, changed_cgroup);
2988	ioc->cgroup_changed = 0;
2989}
2990#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2991
2992static struct cfq_queue *
2993cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2994		     struct io_context *ioc, gfp_t gfp_mask)
2995{
2996	struct cfq_queue *cfqq, *new_cfqq = NULL;
2997	struct cfq_io_context *cic;
2998	struct cfq_group *cfqg;
2999
3000retry:
3001	cfqg = cfq_get_cfqg(cfqd);
3002	cic = cfq_cic_lookup(cfqd, ioc);
3003	/* cic always exists here */
3004	cfqq = cic_to_cfqq(cic, is_sync);
3005
3006	/*
3007	 * Always try a new alloc if we fell back to the OOM cfqq
3008	 * originally, since it should just be a temporary situation.
3009	 */
3010	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3011		cfqq = NULL;
3012		if (new_cfqq) {
3013			cfqq = new_cfqq;
3014			new_cfqq = NULL;
3015		} else if (gfp_mask & __GFP_WAIT) {
3016			spin_unlock_irq(cfqd->queue->queue_lock);
3017			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3018					gfp_mask | __GFP_ZERO,
3019					cfqd->queue->node);
3020			spin_lock_irq(cfqd->queue->queue_lock);
3021			if (new_cfqq)
3022				goto retry;
3023		} else {
3024			cfqq = kmem_cache_alloc_node(cfq_pool,
3025					gfp_mask | __GFP_ZERO,
3026					cfqd->queue->node);
3027		}
3028
3029		if (cfqq) {
3030			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3031			cfq_init_prio_data(cfqq, ioc);
3032			cfq_link_cfqq_cfqg(cfqq, cfqg);
3033			cfq_log_cfqq(cfqd, cfqq, "alloced");
3034		} else
3035			cfqq = &cfqd->oom_cfqq;
3036	}
3037
3038	if (new_cfqq)
3039		kmem_cache_free(cfq_pool, new_cfqq);
3040
3041	return cfqq;
3042}
3043
3044static struct cfq_queue **
3045cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3046{
3047	switch (ioprio_class) {
3048	case IOPRIO_CLASS_RT:
3049		return &cfqd->async_cfqq[0][ioprio];
3050	case IOPRIO_CLASS_BE:
3051		return &cfqd->async_cfqq[1][ioprio];
3052	case IOPRIO_CLASS_IDLE:
3053		return &cfqd->async_idle_cfqq;
3054	default:
3055		BUG();
3056	}
3057}
3058
3059static struct cfq_queue *
3060cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3061	      gfp_t gfp_mask)
3062{
3063	const int ioprio = task_ioprio(ioc);
3064	const int ioprio_class = task_ioprio_class(ioc);
3065	struct cfq_queue **async_cfqq = NULL;
3066	struct cfq_queue *cfqq = NULL;
3067
3068	if (!is_sync) {
3069		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3070		cfqq = *async_cfqq;
3071	}
3072
3073	if (!cfqq)
3074		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3075
3076	/*
3077	 * pin the queue now that it's allocated, scheduler exit will prune it
3078	 */
3079	if (!is_sync && !(*async_cfqq)) {
3080		cfqq->ref++;
3081		*async_cfqq = cfqq;
3082	}
3083
3084	cfqq->ref++;
3085	return cfqq;
3086}
3087
3088/*
3089 * We drop cfq io contexts lazily, so we may find a dead one.
3090 */
3091static void
3092cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3093		  struct cfq_io_context *cic)
3094{
3095	unsigned long flags;
3096
3097	WARN_ON(!list_empty(&cic->queue_list));
3098	BUG_ON(cic->key != cfqd_dead_key(cfqd));
3099
3100	spin_lock_irqsave(&ioc->lock, flags);
3101
3102	BUG_ON(rcu_dereference_check(ioc->ioc_data,
3103		lockdep_is_held(&ioc->lock)) == cic);
3104
3105	radix_tree_delete(&ioc->radix_root, cfqd->queue->id);
3106	hlist_del_rcu(&cic->cic_list);
3107	spin_unlock_irqrestore(&ioc->lock, flags);
3108
3109	cfq_cic_free(cic);
3110}
3111
3112static struct cfq_io_context *
3113cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3114{
3115	struct cfq_io_context *cic;
3116	unsigned long flags;
3117
3118	if (unlikely(!ioc))
3119		return NULL;
3120
3121	rcu_read_lock();
3122
3123	/*
3124	 * we maintain a last-hit cache, to avoid browsing over the tree
3125	 */
3126	cic = rcu_dereference(ioc->ioc_data);
3127	if (cic && cic->key == cfqd) {
3128		rcu_read_unlock();
3129		return cic;
3130	}
3131
3132	do {
3133		cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
3134		rcu_read_unlock();
3135		if (!cic)
3136			break;
3137		if (unlikely(cic->key != cfqd)) {
3138			cfq_drop_dead_cic(cfqd, ioc, cic);
3139			rcu_read_lock();
3140			continue;
3141		}
3142
3143		spin_lock_irqsave(&ioc->lock, flags);
3144		rcu_assign_pointer(ioc->ioc_data, cic);
3145		spin_unlock_irqrestore(&ioc->lock, flags);
3146		break;
3147	} while (1);
3148
3149	return cic;
3150}
3151
3152/*
3153 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3154 * the process specific cfq io context when entered from the block layer.
3155 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3156 */
3157static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3158			struct cfq_io_context *cic, gfp_t gfp_mask)
3159{
3160	unsigned long flags;
3161	int ret;
3162
3163	ret = radix_tree_preload(gfp_mask);
3164	if (!ret) {
3165		cic->ioc = ioc;
3166		cic->key = cfqd;
3167
3168		spin_lock_irqsave(&ioc->lock, flags);
3169		ret = radix_tree_insert(&ioc->radix_root, cfqd->queue->id, cic);
3170		if (!ret)
3171			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3172		spin_unlock_irqrestore(&ioc->lock, flags);
3173
3174		radix_tree_preload_end();
3175
3176		if (!ret) {
3177			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3178			list_add(&cic->queue_list, &cfqd->cic_list);
3179			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3180		}
3181	}
3182
3183	if (ret)
3184		printk(KERN_ERR "cfq: cic link failed!\n");
3185
3186	return ret;
3187}
3188
3189/*
3190 * Setup general io context and cfq io context. There can be several cfq
3191 * io contexts per general io context, if this process is doing io to more
3192 * than one device managed by cfq.
3193 */
3194static struct cfq_io_context *
3195cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3196{
3197	struct io_context *ioc = NULL;
3198	struct cfq_io_context *cic = NULL;
3199
3200	might_sleep_if(gfp_mask & __GFP_WAIT);
3201
3202	ioc = current_io_context(gfp_mask, cfqd->queue->node);
3203	if (!ioc)
3204		goto err;
3205
3206	cic = cfq_cic_lookup(cfqd, ioc);
3207	if (cic)
3208		goto out;
3209
3210	cic = cfq_alloc_io_context(cfqd, gfp_mask);
3211	if (cic == NULL)
3212		goto err;
3213
3214	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3215		goto err;
3216out:
3217	get_io_context(ioc);
3218
3219	if (unlikely(ioc->ioprio_changed))
3220		cfq_ioc_set_ioprio(ioc);
3221
3222#ifdef CONFIG_CFQ_GROUP_IOSCHED
3223	if (unlikely(ioc->cgroup_changed))
3224		cfq_ioc_set_cgroup(ioc);
3225#endif
3226	return cic;
3227err:
3228	if (cic)
3229		cfq_cic_free(cic);
3230	return NULL;
3231}
3232
3233static void
3234__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3235{
3236	unsigned long elapsed = jiffies - ttime->last_end_request;
3237	elapsed = min(elapsed, 2UL * slice_idle);
3238
3239	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3240	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3241	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3242}
3243
3244static void
3245cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3246	struct cfq_io_context *cic)
3247{
3248	if (cfq_cfqq_sync(cfqq)) {
3249		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3250		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3251			cfqd->cfq_slice_idle);
3252	}
3253#ifdef CONFIG_CFQ_GROUP_IOSCHED
3254	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3255#endif
3256}
3257
3258static void
3259cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3260		       struct request *rq)
3261{
3262	sector_t sdist = 0;
3263	sector_t n_sec = blk_rq_sectors(rq);
3264	if (cfqq->last_request_pos) {
3265		if (cfqq->last_request_pos < blk_rq_pos(rq))
3266			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3267		else
3268			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3269	}
3270
3271	cfqq->seek_history <<= 1;
3272	if (blk_queue_nonrot(cfqd->queue))
3273		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3274	else
3275		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3276}
3277
3278/*
3279 * Disable idle window if the process thinks too long or seeks so much that
3280 * it doesn't matter
3281 */
3282static void
3283cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3284		       struct cfq_io_context *cic)
3285{
3286	int old_idle, enable_idle;
3287
3288	/*
3289	 * Don't idle for async or idle io prio class
3290	 */
3291	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3292		return;
3293
3294	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3295
3296	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3297		cfq_mark_cfqq_deep(cfqq);
3298
3299	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3300		enable_idle = 0;
3301	else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3302	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3303		enable_idle = 0;
3304	else if (sample_valid(cic->ttime.ttime_samples)) {
3305		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3306			enable_idle = 0;
3307		else
3308			enable_idle = 1;
3309	}
3310
3311	if (old_idle != enable_idle) {
3312		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3313		if (enable_idle)
3314			cfq_mark_cfqq_idle_window(cfqq);
3315		else
3316			cfq_clear_cfqq_idle_window(cfqq);
3317	}
3318}
3319
3320/*
3321 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3322 * no or if we aren't sure, a 1 will cause a preempt.
3323 */
3324static bool
3325cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3326		   struct request *rq)
3327{
3328	struct cfq_queue *cfqq;
3329
3330	cfqq = cfqd->active_queue;
3331	if (!cfqq)
3332		return false;
3333
3334	if (cfq_class_idle(new_cfqq))
3335		return false;
3336
3337	if (cfq_class_idle(cfqq))
3338		return true;
3339
3340	/*
3341	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3342	 */
3343	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3344		return false;
3345
3346	/*
3347	 * if the new request is sync, but the currently running queue is
3348	 * not, let the sync request have priority.
3349	 */
3350	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3351		return true;
3352
3353	if (new_cfqq->cfqg != cfqq->cfqg)
3354		return false;
3355
3356	if (cfq_slice_used(cfqq))
3357		return true;
3358
3359	/* Allow preemption only if we are idling on sync-noidle tree */
3360	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3361	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3362	    new_cfqq->service_tree->count == 2 &&
3363	    RB_EMPTY_ROOT(&cfqq->sort_list))
3364		return true;
3365
3366	/*
3367	 * So both queues are sync. Let the new request get disk time if
3368	 * it's a metadata request and the current queue is doing regular IO.
3369	 */
3370	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3371		return true;
3372
3373	/*
3374	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3375	 */
3376	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3377		return true;
3378
3379	/* An idle queue should not be idle now for some reason */
3380	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3381		return true;
3382
3383	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3384		return false;
3385
3386	/*
3387	 * if this request is as-good as one we would expect from the
3388	 * current cfqq, let it preempt
3389	 */
3390	if (cfq_rq_close(cfqd, cfqq, rq))
3391		return true;
3392
3393	return false;
3394}
3395
3396/*
3397 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3398 * let it have half of its nominal slice.
3399 */
3400static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3401{
3402	struct cfq_queue *old_cfqq = cfqd->active_queue;
3403
3404	cfq_log_cfqq(cfqd, cfqq, "preempt");
3405	cfq_slice_expired(cfqd, 1);
3406
3407	/*
3408	 * workload type is changed, don't save slice, otherwise preempt
3409	 * doesn't happen
3410	 */
3411	if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3412		cfqq->cfqg->saved_workload_slice = 0;
3413
3414	/*
3415	 * Put the new queue at the front of the of the current list,
3416	 * so we know that it will be selected next.
3417	 */
3418	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3419
3420	cfq_service_tree_add(cfqd, cfqq, 1);
3421
3422	cfqq->slice_end = 0;
3423	cfq_mark_cfqq_slice_new(cfqq);
3424}
3425
3426/*
3427 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3428 * something we should do about it
3429 */
3430static void
3431cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3432		struct request *rq)
3433{
3434	struct cfq_io_context *cic = RQ_CIC(rq);
3435
3436	cfqd->rq_queued++;
3437	if (rq->cmd_flags & REQ_PRIO)
3438		cfqq->prio_pending++;
3439
3440	cfq_update_io_thinktime(cfqd, cfqq, cic);
3441	cfq_update_io_seektime(cfqd, cfqq, rq);
3442	cfq_update_idle_window(cfqd, cfqq, cic);
3443
3444	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3445
3446	if (cfqq == cfqd->active_queue) {
3447		/*
3448		 * Remember that we saw a request from this process, but
3449		 * don't start queuing just yet. Otherwise we risk seeing lots
3450		 * of tiny requests, because we disrupt the normal plugging
3451		 * and merging. If the request is already larger than a single
3452		 * page, let it rip immediately. For that case we assume that
3453		 * merging is already done. Ditto for a busy system that
3454		 * has other work pending, don't risk delaying until the
3455		 * idle timer unplug to continue working.
3456		 */
3457		if (cfq_cfqq_wait_request(cfqq)) {
3458			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3459			    cfqd->busy_queues > 1) {
3460				cfq_del_timer(cfqd, cfqq);
3461				cfq_clear_cfqq_wait_request(cfqq);
3462				__blk_run_queue(cfqd->queue);
3463			} else {
3464				cfq_blkiocg_update_idle_time_stats(
3465						&cfqq->cfqg->blkg);
3466				cfq_mark_cfqq_must_dispatch(cfqq);
3467			}
3468		}
3469	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3470		/*
3471		 * not the active queue - expire current slice if it is
3472		 * idle and has expired it's mean thinktime or this new queue
3473		 * has some old slice time left and is of higher priority or
3474		 * this new queue is RT and the current one is BE
3475		 */
3476		cfq_preempt_queue(cfqd, cfqq);
3477		__blk_run_queue(cfqd->queue);
3478	}
3479}
3480
3481static void cfq_insert_request(struct request_queue *q, struct request *rq)
3482{
3483	struct cfq_data *cfqd = q->elevator->elevator_data;
3484	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3485
3486	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3487	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3488
3489	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3490	list_add_tail(&rq->queuelist, &cfqq->fifo);
3491	cfq_add_rq_rb(rq);
3492	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3493			&cfqd->serving_group->blkg, rq_data_dir(rq),
3494			rq_is_sync(rq));
3495	cfq_rq_enqueued(cfqd, cfqq, rq);
3496}
3497
3498/*
3499 * Update hw_tag based on peak queue depth over 50 samples under
3500 * sufficient load.
3501 */
3502static void cfq_update_hw_tag(struct cfq_data *cfqd)
3503{
3504	struct cfq_queue *cfqq = cfqd->active_queue;
3505
3506	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3507		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3508
3509	if (cfqd->hw_tag == 1)
3510		return;
3511
3512	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3513	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3514		return;
3515
3516	/*
3517	 * If active queue hasn't enough requests and can idle, cfq might not
3518	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3519	 * case
3520	 */
3521	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3522	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3523	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3524		return;
3525
3526	if (cfqd->hw_tag_samples++ < 50)
3527		return;
3528
3529	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3530		cfqd->hw_tag = 1;
3531	else
3532		cfqd->hw_tag = 0;
3533}
3534
3535static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3536{
3537	struct cfq_io_context *cic = cfqd->active_cic;
3538
3539	/* If the queue already has requests, don't wait */
3540	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3541		return false;
3542
3543	/* If there are other queues in the group, don't wait */
3544	if (cfqq->cfqg->nr_cfqq > 1)
3545		return false;
3546
3547	/* the only queue in the group, but think time is big */
3548	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3549		return false;
3550
3551	if (cfq_slice_used(cfqq))
3552		return true;
3553
3554	/* if slice left is less than think time, wait busy */
3555	if (cic && sample_valid(cic->ttime.ttime_samples)
3556	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3557		return true;
3558
3559	/*
3560	 * If think times is less than a jiffy than ttime_mean=0 and above
3561	 * will not be true. It might happen that slice has not expired yet
3562	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3563	 * case where think time is less than a jiffy, mark the queue wait
3564	 * busy if only 1 jiffy is left in the slice.
3565	 */
3566	if (cfqq->slice_end - jiffies == 1)
3567		return true;
3568
3569	return false;
3570}
3571
3572static void cfq_completed_request(struct request_queue *q, struct request *rq)
3573{
3574	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3575	struct cfq_data *cfqd = cfqq->cfqd;
3576	const int sync = rq_is_sync(rq);
3577	unsigned long now;
3578
3579	now = jiffies;
3580	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3581		     !!(rq->cmd_flags & REQ_NOIDLE));
3582
3583	cfq_update_hw_tag(cfqd);
3584
3585	WARN_ON(!cfqd->rq_in_driver);
3586	WARN_ON(!cfqq->dispatched);
3587	cfqd->rq_in_driver--;
3588	cfqq->dispatched--;
3589	(RQ_CFQG(rq))->dispatched--;
3590	cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3591			rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3592			rq_data_dir(rq), rq_is_sync(rq));
3593
3594	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3595
3596	if (sync) {
3597		struct cfq_rb_root *service_tree;
3598
3599		RQ_CIC(rq)->ttime.last_end_request = now;
3600
3601		if (cfq_cfqq_on_rr(cfqq))
3602			service_tree = cfqq->service_tree;
3603		else
3604			service_tree = service_tree_for(cfqq->cfqg,
3605				cfqq_prio(cfqq), cfqq_type(cfqq));
3606		service_tree->ttime.last_end_request = now;
3607		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3608			cfqd->last_delayed_sync = now;
3609	}
3610
3611#ifdef CONFIG_CFQ_GROUP_IOSCHED
3612	cfqq->cfqg->ttime.last_end_request = now;
3613#endif
3614
3615	/*
3616	 * If this is the active queue, check if it needs to be expired,
3617	 * or if we want to idle in case it has no pending requests.
3618	 */
3619	if (cfqd->active_queue == cfqq) {
3620		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3621
3622		if (cfq_cfqq_slice_new(cfqq)) {
3623			cfq_set_prio_slice(cfqd, cfqq);
3624			cfq_clear_cfqq_slice_new(cfqq);
3625		}
3626
3627		/*
3628		 * Should we wait for next request to come in before we expire
3629		 * the queue.
3630		 */
3631		if (cfq_should_wait_busy(cfqd, cfqq)) {
3632			unsigned long extend_sl = cfqd->cfq_slice_idle;
3633			if (!cfqd->cfq_slice_idle)
3634				extend_sl = cfqd->cfq_group_idle;
3635			cfqq->slice_end = jiffies + extend_sl;
3636			cfq_mark_cfqq_wait_busy(cfqq);
3637			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3638		}
3639
3640		/*
3641		 * Idling is not enabled on:
3642		 * - expired queues
3643		 * - idle-priority queues
3644		 * - async queues
3645		 * - queues with still some requests queued
3646		 * - when there is a close cooperator
3647		 */
3648		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3649			cfq_slice_expired(cfqd, 1);
3650		else if (sync && cfqq_empty &&
3651			 !cfq_close_cooperator(cfqd, cfqq)) {
3652			cfq_arm_slice_timer(cfqd);
3653		}
3654	}
3655
3656	if (!cfqd->rq_in_driver)
3657		cfq_schedule_dispatch(cfqd);
3658}
3659
3660static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3661{
3662	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3663		cfq_mark_cfqq_must_alloc_slice(cfqq);
3664		return ELV_MQUEUE_MUST;
3665	}
3666
3667	return ELV_MQUEUE_MAY;
3668}
3669
3670static int cfq_may_queue(struct request_queue *q, int rw)
3671{
3672	struct cfq_data *cfqd = q->elevator->elevator_data;
3673	struct task_struct *tsk = current;
3674	struct cfq_io_context *cic;
3675	struct cfq_queue *cfqq;
3676
3677	/*
3678	 * don't force setup of a queue from here, as a call to may_queue
3679	 * does not necessarily imply that a request actually will be queued.
3680	 * so just lookup a possibly existing queue, or return 'may queue'
3681	 * if that fails
3682	 */
3683	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3684	if (!cic)
3685		return ELV_MQUEUE_MAY;
3686
3687	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3688	if (cfqq) {
3689		cfq_init_prio_data(cfqq, cic->ioc);
3690
3691		return __cfq_may_queue(cfqq);
3692	}
3693
3694	return ELV_MQUEUE_MAY;
3695}
3696
3697/*
3698 * queue lock held here
3699 */
3700static void cfq_put_request(struct request *rq)
3701{
3702	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3703
3704	if (cfqq) {
3705		const int rw = rq_data_dir(rq);
3706
3707		BUG_ON(!cfqq->allocated[rw]);
3708		cfqq->allocated[rw]--;
3709
3710		put_io_context(RQ_CIC(rq)->ioc);
3711
3712		rq->elevator_private[0] = NULL;
3713		rq->elevator_private[1] = NULL;
3714
3715		/* Put down rq reference on cfqg */
3716		cfq_put_cfqg(RQ_CFQG(rq));
3717		rq->elevator_private[2] = NULL;
3718
3719		cfq_put_queue(cfqq);
3720	}
3721}
3722
3723static struct cfq_queue *
3724cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3725		struct cfq_queue *cfqq)
3726{
3727	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3728	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3729	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3730	cfq_put_queue(cfqq);
3731	return cic_to_cfqq(cic, 1);
3732}
3733
3734/*
3735 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3736 * was the last process referring to said cfqq.
3737 */
3738static struct cfq_queue *
3739split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3740{
3741	if (cfqq_process_refs(cfqq) == 1) {
3742		cfqq->pid = current->pid;
3743		cfq_clear_cfqq_coop(cfqq);
3744		cfq_clear_cfqq_split_coop(cfqq);
3745		return cfqq;
3746	}
3747
3748	cic_set_cfqq(cic, NULL, 1);
3749
3750	cfq_put_cooperator(cfqq);
3751
3752	cfq_put_queue(cfqq);
3753	return NULL;
3754}
3755/*
3756 * Allocate cfq data structures associated with this request.
3757 */
3758static int
3759cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3760{
3761	struct cfq_data *cfqd = q->elevator->elevator_data;
3762	struct cfq_io_context *cic;
3763	const int rw = rq_data_dir(rq);
3764	const bool is_sync = rq_is_sync(rq);
3765	struct cfq_queue *cfqq;
3766	unsigned long flags;
3767
3768	might_sleep_if(gfp_mask & __GFP_WAIT);
3769
3770	cic = cfq_get_io_context(cfqd, gfp_mask);
3771
3772	spin_lock_irqsave(q->queue_lock, flags);
3773
3774	if (!cic)
3775		goto queue_fail;
3776
3777new_queue:
3778	cfqq = cic_to_cfqq(cic, is_sync);
3779	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3780		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3781		cic_set_cfqq(cic, cfqq, is_sync);
3782	} else {
3783		/*
3784		 * If the queue was seeky for too long, break it apart.
3785		 */
3786		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3787			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3788			cfqq = split_cfqq(cic, cfqq);
3789			if (!cfqq)
3790				goto new_queue;
3791		}
3792
3793		/*
3794		 * Check to see if this queue is scheduled to merge with
3795		 * another, closely cooperating queue.  The merging of
3796		 * queues happens here as it must be done in process context.
3797		 * The reference on new_cfqq was taken in merge_cfqqs.
3798		 */
3799		if (cfqq->new_cfqq)
3800			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3801	}
3802
3803	cfqq->allocated[rw]++;
3804
3805	cfqq->ref++;
3806	rq->elevator_private[0] = cic;
3807	rq->elevator_private[1] = cfqq;
3808	rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3809	spin_unlock_irqrestore(q->queue_lock, flags);
3810	return 0;
3811
3812queue_fail:
3813	cfq_schedule_dispatch(cfqd);
3814	spin_unlock_irqrestore(q->queue_lock, flags);
3815	cfq_log(cfqd, "set_request fail");
3816	return 1;
3817}
3818
3819static void cfq_kick_queue(struct work_struct *work)
3820{
3821	struct cfq_data *cfqd =
3822		container_of(work, struct cfq_data, unplug_work);
3823	struct request_queue *q = cfqd->queue;
3824
3825	spin_lock_irq(q->queue_lock);
3826	__blk_run_queue(cfqd->queue);
3827	spin_unlock_irq(q->queue_lock);
3828}
3829
3830/*
3831 * Timer running if the active_queue is currently idling inside its time slice
3832 */
3833static void cfq_idle_slice_timer(unsigned long data)
3834{
3835	struct cfq_data *cfqd = (struct cfq_data *) data;
3836	struct cfq_queue *cfqq;
3837	unsigned long flags;
3838	int timed_out = 1;
3839
3840	cfq_log(cfqd, "idle timer fired");
3841
3842	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3843
3844	cfqq = cfqd->active_queue;
3845	if (cfqq) {
3846		timed_out = 0;
3847
3848		/*
3849		 * We saw a request before the queue expired, let it through
3850		 */
3851		if (cfq_cfqq_must_dispatch(cfqq))
3852			goto out_kick;
3853
3854		/*
3855		 * expired
3856		 */
3857		if (cfq_slice_used(cfqq))
3858			goto expire;
3859
3860		/*
3861		 * only expire and reinvoke request handler, if there are
3862		 * other queues with pending requests
3863		 */
3864		if (!cfqd->busy_queues)
3865			goto out_cont;
3866
3867		/*
3868		 * not expired and it has a request pending, let it dispatch
3869		 */
3870		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3871			goto out_kick;
3872
3873		/*
3874		 * Queue depth flag is reset only when the idle didn't succeed
3875		 */
3876		cfq_clear_cfqq_deep(cfqq);
3877	}
3878expire:
3879	cfq_slice_expired(cfqd, timed_out);
3880out_kick:
3881	cfq_schedule_dispatch(cfqd);
3882out_cont:
3883	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3884}
3885
3886static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3887{
3888	del_timer_sync(&cfqd->idle_slice_timer);
3889	cancel_work_sync(&cfqd->unplug_work);
3890}
3891
3892static void cfq_put_async_queues(struct cfq_data *cfqd)
3893{
3894	int i;
3895
3896	for (i = 0; i < IOPRIO_BE_NR; i++) {
3897		if (cfqd->async_cfqq[0][i])
3898			cfq_put_queue(cfqd->async_cfqq[0][i]);
3899		if (cfqd->async_cfqq[1][i])
3900			cfq_put_queue(cfqd->async_cfqq[1][i]);
3901	}
3902
3903	if (cfqd->async_idle_cfqq)
3904		cfq_put_queue(cfqd->async_idle_cfqq);
3905}
3906
3907static void cfq_exit_queue(struct elevator_queue *e)
3908{
3909	struct cfq_data *cfqd = e->elevator_data;
3910	struct request_queue *q = cfqd->queue;
3911	bool wait = false;
3912
3913	cfq_shutdown_timer_wq(cfqd);
3914
3915	spin_lock_irq(q->queue_lock);
3916
3917	if (cfqd->active_queue)
3918		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3919
3920	while (!list_empty(&cfqd->cic_list)) {
3921		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3922							struct cfq_io_context,
3923							queue_list);
3924
3925		__cfq_exit_single_io_context(cfqd, cic);
3926	}
3927
3928	cfq_put_async_queues(cfqd);
3929	cfq_release_cfq_groups(cfqd);
3930
3931	/*
3932	 * If there are groups which we could not unlink from blkcg list,
3933	 * wait for a rcu period for them to be freed.
3934	 */
3935	if (cfqd->nr_blkcg_linked_grps)
3936		wait = true;
3937
3938	spin_unlock_irq(q->queue_lock);
3939
3940	cfq_shutdown_timer_wq(cfqd);
3941
3942	/*
3943	 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3944	 * Do this wait only if there are other unlinked groups out
3945	 * there. This can happen if cgroup deletion path claimed the
3946	 * responsibility of cleaning up a group before queue cleanup code
3947	 * get to the group.
3948	 *
3949	 * Do not call synchronize_rcu() unconditionally as there are drivers
3950	 * which create/delete request queue hundreds of times during scan/boot
3951	 * and synchronize_rcu() can take significant time and slow down boot.
3952	 */
3953	if (wait)
3954		synchronize_rcu();
3955
3956#ifdef CONFIG_CFQ_GROUP_IOSCHED
3957	/* Free up per cpu stats for root group */
3958	free_percpu(cfqd->root_group.blkg.stats_cpu);
3959#endif
3960	kfree(cfqd);
3961}
3962
3963static void *cfq_init_queue(struct request_queue *q)
3964{
3965	struct cfq_data *cfqd;
3966	int i, j;
3967	struct cfq_group *cfqg;
3968	struct cfq_rb_root *st;
3969
3970	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3971	if (!cfqd)
3972		return NULL;
3973
3974	/* Init root service tree */
3975	cfqd->grp_service_tree = CFQ_RB_ROOT;
3976
3977	/* Init root group */
3978	cfqg = &cfqd->root_group;
3979	for_each_cfqg_st(cfqg, i, j, st)
3980		*st = CFQ_RB_ROOT;
3981	RB_CLEAR_NODE(&cfqg->rb_node);
3982
3983	/* Give preference to root group over other groups */
3984	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3985
3986#ifdef CONFIG_CFQ_GROUP_IOSCHED
3987	/*
3988	 * Set root group reference to 2. One reference will be dropped when
3989	 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3990	 * Other reference will remain there as we don't want to delete this
3991	 * group as it is statically allocated and gets destroyed when
3992	 * throtl_data goes away.
3993	 */
3994	cfqg->ref = 2;
3995
3996	if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3997		kfree(cfqg);
3998		kfree(cfqd);
3999		return NULL;
4000	}
4001
4002	rcu_read_lock();
4003
4004	cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4005					(void *)cfqd, 0);
4006	rcu_read_unlock();
4007	cfqd->nr_blkcg_linked_grps++;
4008
4009	/* Add group on cfqd->cfqg_list */
4010	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4011#endif
4012	/*
4013	 * Not strictly needed (since RB_ROOT just clears the node and we
4014	 * zeroed cfqd on alloc), but better be safe in case someone decides
4015	 * to add magic to the rb code
4016	 */
4017	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4018		cfqd->prio_trees[i] = RB_ROOT;
4019
4020	/*
4021	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4022	 * Grab a permanent reference to it, so that the normal code flow
4023	 * will not attempt to free it.
4024	 */
4025	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4026	cfqd->oom_cfqq.ref++;
4027	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4028
4029	INIT_LIST_HEAD(&cfqd->cic_list);
4030
4031	cfqd->queue = q;
4032
4033	init_timer(&cfqd->idle_slice_timer);
4034	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4035	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4036
4037	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4038
4039	cfqd->cfq_quantum = cfq_quantum;
4040	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4041	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4042	cfqd->cfq_back_max = cfq_back_max;
4043	cfqd->cfq_back_penalty = cfq_back_penalty;
4044	cfqd->cfq_slice[0] = cfq_slice_async;
4045	cfqd->cfq_slice[1] = cfq_slice_sync;
4046	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4047	cfqd->cfq_slice_idle = cfq_slice_idle;
4048	cfqd->cfq_group_idle = cfq_group_idle;
4049	cfqd->cfq_latency = 1;
4050	cfqd->hw_tag = -1;
4051	/*
4052	 * we optimistically start assuming sync ops weren't delayed in last
4053	 * second, in order to have larger depth for async operations.
4054	 */
4055	cfqd->last_delayed_sync = jiffies - HZ;
4056	return cfqd;
4057}
4058
4059static void cfq_slab_kill(void)
4060{
4061	/*
4062	 * Caller already ensured that pending RCU callbacks are completed,
4063	 * so we should have no busy allocations at this point.
4064	 */
4065	if (cfq_pool)
4066		kmem_cache_destroy(cfq_pool);
4067	if (cfq_ioc_pool)
4068		kmem_cache_destroy(cfq_ioc_pool);
4069}
4070
4071static int __init cfq_slab_setup(void)
4072{
4073	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4074	if (!cfq_pool)
4075		goto fail;
4076
4077	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4078	if (!cfq_ioc_pool)
4079		goto fail;
4080
4081	return 0;
4082fail:
4083	cfq_slab_kill();
4084	return -ENOMEM;
4085}
4086
4087/*
4088 * sysfs parts below -->
4089 */
4090static ssize_t
4091cfq_var_show(unsigned int var, char *page)
4092{
4093	return sprintf(page, "%d\n", var);
4094}
4095
4096static ssize_t
4097cfq_var_store(unsigned int *var, const char *page, size_t count)
4098{
4099	char *p = (char *) page;
4100
4101	*var = simple_strtoul(p, &p, 10);
4102	return count;
4103}
4104
4105#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4106static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4107{									\
4108	struct cfq_data *cfqd = e->elevator_data;			\
4109	unsigned int __data = __VAR;					\
4110	if (__CONV)							\
4111		__data = jiffies_to_msecs(__data);			\
4112	return cfq_var_show(__data, (page));				\
4113}
4114SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4115SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4116SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4117SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4118SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4119SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4120SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4121SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4122SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4123SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4124SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4125#undef SHOW_FUNCTION
4126
4127#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4128static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4129{									\
4130	struct cfq_data *cfqd = e->elevator_data;			\
4131	unsigned int __data;						\
4132	int ret = cfq_var_store(&__data, (page), count);		\
4133	if (__data < (MIN))						\
4134		__data = (MIN);						\
4135	else if (__data > (MAX))					\
4136		__data = (MAX);						\
4137	if (__CONV)							\
4138		*(__PTR) = msecs_to_jiffies(__data);			\
4139	else								\
4140		*(__PTR) = __data;					\
4141	return ret;							\
4142}
4143STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4144STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4145		UINT_MAX, 1);
4146STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4147		UINT_MAX, 1);
4148STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4149STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4150		UINT_MAX, 0);
4151STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4152STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4153STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4154STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4155STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4156		UINT_MAX, 0);
4157STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4158#undef STORE_FUNCTION
4159
4160#define CFQ_ATTR(name) \
4161	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4162
4163static struct elv_fs_entry cfq_attrs[] = {
4164	CFQ_ATTR(quantum),
4165	CFQ_ATTR(fifo_expire_sync),
4166	CFQ_ATTR(fifo_expire_async),
4167	CFQ_ATTR(back_seek_max),
4168	CFQ_ATTR(back_seek_penalty),
4169	CFQ_ATTR(slice_sync),
4170	CFQ_ATTR(slice_async),
4171	CFQ_ATTR(slice_async_rq),
4172	CFQ_ATTR(slice_idle),
4173	CFQ_ATTR(group_idle),
4174	CFQ_ATTR(low_latency),
4175	__ATTR_NULL
4176};
4177
4178static struct elevator_type iosched_cfq = {
4179	.ops = {
4180		.elevator_merge_fn = 		cfq_merge,
4181		.elevator_merged_fn =		cfq_merged_request,
4182		.elevator_merge_req_fn =	cfq_merged_requests,
4183		.elevator_allow_merge_fn =	cfq_allow_merge,
4184		.elevator_bio_merged_fn =	cfq_bio_merged,
4185		.elevator_dispatch_fn =		cfq_dispatch_requests,
4186		.elevator_add_req_fn =		cfq_insert_request,
4187		.elevator_activate_req_fn =	cfq_activate_request,
4188		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4189		.elevator_completed_req_fn =	cfq_completed_request,
4190		.elevator_former_req_fn =	elv_rb_former_request,
4191		.elevator_latter_req_fn =	elv_rb_latter_request,
4192		.elevator_set_req_fn =		cfq_set_request,
4193		.elevator_put_req_fn =		cfq_put_request,
4194		.elevator_may_queue_fn =	cfq_may_queue,
4195		.elevator_init_fn =		cfq_init_queue,
4196		.elevator_exit_fn =		cfq_exit_queue,
4197		.trim =				cfq_free_io_context,
4198	},
4199	.elevator_attrs =	cfq_attrs,
4200	.elevator_name =	"cfq",
4201	.elevator_owner =	THIS_MODULE,
4202};
4203
4204#ifdef CONFIG_CFQ_GROUP_IOSCHED
4205static struct blkio_policy_type blkio_policy_cfq = {
4206	.ops = {
4207		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
4208		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
4209	},
4210	.plid = BLKIO_POLICY_PROP,
4211};
4212#else
4213static struct blkio_policy_type blkio_policy_cfq;
4214#endif
4215
4216static int __init cfq_init(void)
4217{
4218	/*
4219	 * could be 0 on HZ < 1000 setups
4220	 */
4221	if (!cfq_slice_async)
4222		cfq_slice_async = 1;
4223	if (!cfq_slice_idle)
4224		cfq_slice_idle = 1;
4225
4226#ifdef CONFIG_CFQ_GROUP_IOSCHED
4227	if (!cfq_group_idle)
4228		cfq_group_idle = 1;
4229#else
4230		cfq_group_idle = 0;
4231#endif
4232	if (cfq_slab_setup())
4233		return -ENOMEM;
4234
4235	elv_register(&iosched_cfq);
4236	blkio_policy_register(&blkio_policy_cfq);
4237
4238	return 0;
4239}
4240
4241static void __exit cfq_exit(void)
4242{
4243	DECLARE_COMPLETION_ONSTACK(all_gone);
4244	blkio_policy_unregister(&blkio_policy_cfq);
4245	elv_unregister(&iosched_cfq);
4246	ioc_gone = &all_gone;
4247	/* ioc_gone's update must be visible before reading ioc_count */
4248	smp_wmb();
4249
4250	/*
4251	 * this also protects us from entering cfq_slab_kill() with
4252	 * pending RCU callbacks
4253	 */
4254	if (elv_ioc_count_read(cfq_ioc_count))
4255		wait_for_completion(&all_gone);
4256	cfq_slab_kill();
4257}
4258
4259module_init(cfq_init);
4260module_exit(cfq_exit);
4261
4262MODULE_AUTHOR("Jens Axboe");
4263MODULE_LICENSE("GPL");
4264MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4265