cfq-iosched.c revision 72e06c255181537d0b3e1f657a9ed81655d745b1
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "cfq.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY		(HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT		(2)
47
48#define CFQ_SLICE_SCALE		(5)
49#define CFQ_HW_QUEUE_MIN	(5)
50#define CFQ_SERVICE_SHIFT       12
51
52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples)	((samples) > 80)
68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71	unsigned long last_end_request;
72
73	unsigned long ttime_total;
74	unsigned long ttime_samples;
75	unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	unsigned total_weight;
89	u64 min_vdisktime;
90	struct cfq_ttime ttime;
91};
92#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
93			.ttime = {.last_end_request = jiffies,},}
94
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99	/* reference count */
100	int ref;
101	/* various state flags, see below */
102	unsigned int flags;
103	/* parent cfq_data */
104	struct cfq_data *cfqd;
105	/* service_tree member */
106	struct rb_node rb_node;
107	/* service_tree key */
108	unsigned long rb_key;
109	/* prio tree member */
110	struct rb_node p_node;
111	/* prio tree root we belong to, if any */
112	struct rb_root *p_root;
113	/* sorted list of pending requests */
114	struct rb_root sort_list;
115	/* if fifo isn't expired, next request to serve */
116	struct request *next_rq;
117	/* requests queued in sort_list */
118	int queued[2];
119	/* currently allocated requests */
120	int allocated[2];
121	/* fifo list of requests in sort_list */
122	struct list_head fifo;
123
124	/* time when queue got scheduled in to dispatch first request. */
125	unsigned long dispatch_start;
126	unsigned int allocated_slice;
127	unsigned int slice_dispatch;
128	/* time when first request from queue completed and slice started. */
129	unsigned long slice_start;
130	unsigned long slice_end;
131	long slice_resid;
132
133	/* pending priority requests */
134	int prio_pending;
135	/* number of requests that are on the dispatch list or inside driver */
136	int dispatched;
137
138	/* io prio of this group */
139	unsigned short ioprio, org_ioprio;
140	unsigned short ioprio_class;
141
142	pid_t pid;
143
144	u32 seek_history;
145	sector_t last_request_pos;
146
147	struct cfq_rb_root *service_tree;
148	struct cfq_queue *new_cfqq;
149	struct cfq_group *cfqg;
150	/* Number of sectors dispatched from queue in single dispatch round */
151	unsigned long nr_sectors;
152};
153
154/*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
159	BE_WORKLOAD = 0,
160	RT_WORKLOAD = 1,
161	IDLE_WORKLOAD = 2,
162	CFQ_PRIO_NR,
163};
164
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169	ASYNC_WORKLOAD = 0,
170	SYNC_NOIDLE_WORKLOAD = 1,
171	SYNC_WORKLOAD = 2
172};
173
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
176	/* group service_tree member */
177	struct rb_node rb_node;
178
179	/* group service_tree key */
180	u64 vdisktime;
181	unsigned int weight;
182	unsigned int new_weight;
183	bool needs_update;
184
185	/* number of cfqq currently on this group */
186	int nr_cfqq;
187
188	/*
189	 * Per group busy queues average. Useful for workload slice calc. We
190	 * create the array for each prio class but at run time it is used
191	 * only for RT and BE class and slot for IDLE class remains unused.
192	 * This is primarily done to avoid confusion and a gcc warning.
193	 */
194	unsigned int busy_queues_avg[CFQ_PRIO_NR];
195	/*
196	 * rr lists of queues with requests. We maintain service trees for
197	 * RT and BE classes. These trees are subdivided in subclasses
198	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199	 * class there is no subclassification and all the cfq queues go on
200	 * a single tree service_tree_idle.
201	 * Counts are embedded in the cfq_rb_root
202	 */
203	struct cfq_rb_root service_trees[2][3];
204	struct cfq_rb_root service_tree_idle;
205
206	unsigned long saved_workload_slice;
207	enum wl_type_t saved_workload;
208	enum wl_prio_t saved_serving_prio;
209	struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211	struct hlist_node cfqd_node;
212	int ref;
213#endif
214	/* number of requests that are on the dispatch list or inside driver */
215	int dispatched;
216	struct cfq_ttime ttime;
217};
218
219struct cfq_io_cq {
220	struct io_cq		icq;		/* must be the first member */
221	struct cfq_queue	*cfqq[2];
222	struct cfq_ttime	ttime;
223};
224
225/*
226 * Per block device queue structure
227 */
228struct cfq_data {
229	struct request_queue *queue;
230	/* Root service tree for cfq_groups */
231	struct cfq_rb_root grp_service_tree;
232	struct cfq_group root_group;
233
234	/*
235	 * The priority currently being served
236	 */
237	enum wl_prio_t serving_prio;
238	enum wl_type_t serving_type;
239	unsigned long workload_expires;
240	struct cfq_group *serving_group;
241
242	/*
243	 * Each priority tree is sorted by next_request position.  These
244	 * trees are used when determining if two or more queues are
245	 * interleaving requests (see cfq_close_cooperator).
246	 */
247	struct rb_root prio_trees[CFQ_PRIO_LISTS];
248
249	unsigned int busy_queues;
250	unsigned int busy_sync_queues;
251
252	int rq_in_driver;
253	int rq_in_flight[2];
254
255	/*
256	 * queue-depth detection
257	 */
258	int rq_queued;
259	int hw_tag;
260	/*
261	 * hw_tag can be
262	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
264	 *  0 => no NCQ
265	 */
266	int hw_tag_est_depth;
267	unsigned int hw_tag_samples;
268
269	/*
270	 * idle window management
271	 */
272	struct timer_list idle_slice_timer;
273	struct work_struct unplug_work;
274
275	struct cfq_queue *active_queue;
276	struct cfq_io_cq *active_cic;
277
278	/*
279	 * async queue for each priority case
280	 */
281	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
282	struct cfq_queue *async_idle_cfqq;
283
284	sector_t last_position;
285
286	/*
287	 * tunables, see top of file
288	 */
289	unsigned int cfq_quantum;
290	unsigned int cfq_fifo_expire[2];
291	unsigned int cfq_back_penalty;
292	unsigned int cfq_back_max;
293	unsigned int cfq_slice[2];
294	unsigned int cfq_slice_async_rq;
295	unsigned int cfq_slice_idle;
296	unsigned int cfq_group_idle;
297	unsigned int cfq_latency;
298
299	/*
300	 * Fallback dummy cfqq for extreme OOM conditions
301	 */
302	struct cfq_queue oom_cfqq;
303
304	unsigned long last_delayed_sync;
305
306	/* List of cfq groups being managed on this device*/
307	struct hlist_head cfqg_list;
308
309	/* Number of groups which are on blkcg->blkg_list */
310	unsigned int nr_blkcg_linked_grps;
311};
312
313static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
314
315static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
316					    enum wl_prio_t prio,
317					    enum wl_type_t type)
318{
319	if (!cfqg)
320		return NULL;
321
322	if (prio == IDLE_WORKLOAD)
323		return &cfqg->service_tree_idle;
324
325	return &cfqg->service_trees[prio][type];
326}
327
328enum cfqq_state_flags {
329	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
330	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
331	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
332	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
333	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
334	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
335	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
336	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
337	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
338	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
339	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
340	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
341	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
342};
343
344#define CFQ_CFQQ_FNS(name)						\
345static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
346{									\
347	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
348}									\
349static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
350{									\
351	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
352}									\
353static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
354{									\
355	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
356}
357
358CFQ_CFQQ_FNS(on_rr);
359CFQ_CFQQ_FNS(wait_request);
360CFQ_CFQQ_FNS(must_dispatch);
361CFQ_CFQQ_FNS(must_alloc_slice);
362CFQ_CFQQ_FNS(fifo_expire);
363CFQ_CFQQ_FNS(idle_window);
364CFQ_CFQQ_FNS(prio_changed);
365CFQ_CFQQ_FNS(slice_new);
366CFQ_CFQQ_FNS(sync);
367CFQ_CFQQ_FNS(coop);
368CFQ_CFQQ_FNS(split_coop);
369CFQ_CFQQ_FNS(deep);
370CFQ_CFQQ_FNS(wait_busy);
371#undef CFQ_CFQQ_FNS
372
373#ifdef CONFIG_CFQ_GROUP_IOSCHED
374#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
375	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
376			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
377			blkg_path(&(cfqq)->cfqg->blkg), ##args)
378
379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
380	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
381				blkg_path(&(cfqg)->blkg), ##args)       \
382
383#else
384#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
385	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
386#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
387#endif
388#define cfq_log(cfqd, fmt, args...)	\
389	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
390
391/* Traverses through cfq group service trees */
392#define for_each_cfqg_st(cfqg, i, j, st) \
393	for (i = 0; i <= IDLE_WORKLOAD; i++) \
394		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
395			: &cfqg->service_tree_idle; \
396			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
397			(i == IDLE_WORKLOAD && j == 0); \
398			j++, st = i < IDLE_WORKLOAD ? \
399			&cfqg->service_trees[i][j]: NULL) \
400
401static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
402	struct cfq_ttime *ttime, bool group_idle)
403{
404	unsigned long slice;
405	if (!sample_valid(ttime->ttime_samples))
406		return false;
407	if (group_idle)
408		slice = cfqd->cfq_group_idle;
409	else
410		slice = cfqd->cfq_slice_idle;
411	return ttime->ttime_mean > slice;
412}
413
414static inline bool iops_mode(struct cfq_data *cfqd)
415{
416	/*
417	 * If we are not idling on queues and it is a NCQ drive, parallel
418	 * execution of requests is on and measuring time is not possible
419	 * in most of the cases until and unless we drive shallower queue
420	 * depths and that becomes a performance bottleneck. In such cases
421	 * switch to start providing fairness in terms of number of IOs.
422	 */
423	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
424		return true;
425	else
426		return false;
427}
428
429static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
430{
431	if (cfq_class_idle(cfqq))
432		return IDLE_WORKLOAD;
433	if (cfq_class_rt(cfqq))
434		return RT_WORKLOAD;
435	return BE_WORKLOAD;
436}
437
438
439static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
440{
441	if (!cfq_cfqq_sync(cfqq))
442		return ASYNC_WORKLOAD;
443	if (!cfq_cfqq_idle_window(cfqq))
444		return SYNC_NOIDLE_WORKLOAD;
445	return SYNC_WORKLOAD;
446}
447
448static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
449					struct cfq_data *cfqd,
450					struct cfq_group *cfqg)
451{
452	if (wl == IDLE_WORKLOAD)
453		return cfqg->service_tree_idle.count;
454
455	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
456		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
457		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
458}
459
460static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
461					struct cfq_group *cfqg)
462{
463	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
464		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
465}
466
467static void cfq_dispatch_insert(struct request_queue *, struct request *);
468static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
469				       struct io_context *, gfp_t);
470
471static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
472{
473	/* cic->icq is the first member, %NULL will convert to %NULL */
474	return container_of(icq, struct cfq_io_cq, icq);
475}
476
477static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
478					       struct io_context *ioc)
479{
480	if (ioc)
481		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
482	return NULL;
483}
484
485static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
486{
487	return cic->cfqq[is_sync];
488}
489
490static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
491				bool is_sync)
492{
493	cic->cfqq[is_sync] = cfqq;
494}
495
496static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
497{
498	return cic->icq.q->elevator->elevator_data;
499}
500
501/*
502 * We regard a request as SYNC, if it's either a read or has the SYNC bit
503 * set (in which case it could also be direct WRITE).
504 */
505static inline bool cfq_bio_sync(struct bio *bio)
506{
507	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
508}
509
510/*
511 * scheduler run of queue, if there are requests pending and no one in the
512 * driver that will restart queueing
513 */
514static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
515{
516	if (cfqd->busy_queues) {
517		cfq_log(cfqd, "schedule dispatch");
518		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
519	}
520}
521
522/*
523 * Scale schedule slice based on io priority. Use the sync time slice only
524 * if a queue is marked sync and has sync io queued. A sync queue with async
525 * io only, should not get full sync slice length.
526 */
527static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
528				 unsigned short prio)
529{
530	const int base_slice = cfqd->cfq_slice[sync];
531
532	WARN_ON(prio >= IOPRIO_BE_NR);
533
534	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
535}
536
537static inline int
538cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539{
540	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
541}
542
543static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
544{
545	u64 d = delta << CFQ_SERVICE_SHIFT;
546
547	d = d * BLKIO_WEIGHT_DEFAULT;
548	do_div(d, cfqg->weight);
549	return d;
550}
551
552static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
553{
554	s64 delta = (s64)(vdisktime - min_vdisktime);
555	if (delta > 0)
556		min_vdisktime = vdisktime;
557
558	return min_vdisktime;
559}
560
561static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
562{
563	s64 delta = (s64)(vdisktime - min_vdisktime);
564	if (delta < 0)
565		min_vdisktime = vdisktime;
566
567	return min_vdisktime;
568}
569
570static void update_min_vdisktime(struct cfq_rb_root *st)
571{
572	struct cfq_group *cfqg;
573
574	if (st->left) {
575		cfqg = rb_entry_cfqg(st->left);
576		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
577						  cfqg->vdisktime);
578	}
579}
580
581/*
582 * get averaged number of queues of RT/BE priority.
583 * average is updated, with a formula that gives more weight to higher numbers,
584 * to quickly follows sudden increases and decrease slowly
585 */
586
587static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
588					struct cfq_group *cfqg, bool rt)
589{
590	unsigned min_q, max_q;
591	unsigned mult  = cfq_hist_divisor - 1;
592	unsigned round = cfq_hist_divisor / 2;
593	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
594
595	min_q = min(cfqg->busy_queues_avg[rt], busy);
596	max_q = max(cfqg->busy_queues_avg[rt], busy);
597	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
598		cfq_hist_divisor;
599	return cfqg->busy_queues_avg[rt];
600}
601
602static inline unsigned
603cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
604{
605	struct cfq_rb_root *st = &cfqd->grp_service_tree;
606
607	return cfq_target_latency * cfqg->weight / st->total_weight;
608}
609
610static inline unsigned
611cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
612{
613	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
614	if (cfqd->cfq_latency) {
615		/*
616		 * interested queues (we consider only the ones with the same
617		 * priority class in the cfq group)
618		 */
619		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
620						cfq_class_rt(cfqq));
621		unsigned sync_slice = cfqd->cfq_slice[1];
622		unsigned expect_latency = sync_slice * iq;
623		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
624
625		if (expect_latency > group_slice) {
626			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
627			/* scale low_slice according to IO priority
628			 * and sync vs async */
629			unsigned low_slice =
630				min(slice, base_low_slice * slice / sync_slice);
631			/* the adapted slice value is scaled to fit all iqs
632			 * into the target latency */
633			slice = max(slice * group_slice / expect_latency,
634				    low_slice);
635		}
636	}
637	return slice;
638}
639
640static inline void
641cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
642{
643	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
644
645	cfqq->slice_start = jiffies;
646	cfqq->slice_end = jiffies + slice;
647	cfqq->allocated_slice = slice;
648	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
649}
650
651/*
652 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
653 * isn't valid until the first request from the dispatch is activated
654 * and the slice time set.
655 */
656static inline bool cfq_slice_used(struct cfq_queue *cfqq)
657{
658	if (cfq_cfqq_slice_new(cfqq))
659		return false;
660	if (time_before(jiffies, cfqq->slice_end))
661		return false;
662
663	return true;
664}
665
666/*
667 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
668 * We choose the request that is closest to the head right now. Distance
669 * behind the head is penalized and only allowed to a certain extent.
670 */
671static struct request *
672cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
673{
674	sector_t s1, s2, d1 = 0, d2 = 0;
675	unsigned long back_max;
676#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
677#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
678	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
679
680	if (rq1 == NULL || rq1 == rq2)
681		return rq2;
682	if (rq2 == NULL)
683		return rq1;
684
685	if (rq_is_sync(rq1) != rq_is_sync(rq2))
686		return rq_is_sync(rq1) ? rq1 : rq2;
687
688	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
689		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
690
691	s1 = blk_rq_pos(rq1);
692	s2 = blk_rq_pos(rq2);
693
694	/*
695	 * by definition, 1KiB is 2 sectors
696	 */
697	back_max = cfqd->cfq_back_max * 2;
698
699	/*
700	 * Strict one way elevator _except_ in the case where we allow
701	 * short backward seeks which are biased as twice the cost of a
702	 * similar forward seek.
703	 */
704	if (s1 >= last)
705		d1 = s1 - last;
706	else if (s1 + back_max >= last)
707		d1 = (last - s1) * cfqd->cfq_back_penalty;
708	else
709		wrap |= CFQ_RQ1_WRAP;
710
711	if (s2 >= last)
712		d2 = s2 - last;
713	else if (s2 + back_max >= last)
714		d2 = (last - s2) * cfqd->cfq_back_penalty;
715	else
716		wrap |= CFQ_RQ2_WRAP;
717
718	/* Found required data */
719
720	/*
721	 * By doing switch() on the bit mask "wrap" we avoid having to
722	 * check two variables for all permutations: --> faster!
723	 */
724	switch (wrap) {
725	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
726		if (d1 < d2)
727			return rq1;
728		else if (d2 < d1)
729			return rq2;
730		else {
731			if (s1 >= s2)
732				return rq1;
733			else
734				return rq2;
735		}
736
737	case CFQ_RQ2_WRAP:
738		return rq1;
739	case CFQ_RQ1_WRAP:
740		return rq2;
741	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
742	default:
743		/*
744		 * Since both rqs are wrapped,
745		 * start with the one that's further behind head
746		 * (--> only *one* back seek required),
747		 * since back seek takes more time than forward.
748		 */
749		if (s1 <= s2)
750			return rq1;
751		else
752			return rq2;
753	}
754}
755
756/*
757 * The below is leftmost cache rbtree addon
758 */
759static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
760{
761	/* Service tree is empty */
762	if (!root->count)
763		return NULL;
764
765	if (!root->left)
766		root->left = rb_first(&root->rb);
767
768	if (root->left)
769		return rb_entry(root->left, struct cfq_queue, rb_node);
770
771	return NULL;
772}
773
774static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
775{
776	if (!root->left)
777		root->left = rb_first(&root->rb);
778
779	if (root->left)
780		return rb_entry_cfqg(root->left);
781
782	return NULL;
783}
784
785static void rb_erase_init(struct rb_node *n, struct rb_root *root)
786{
787	rb_erase(n, root);
788	RB_CLEAR_NODE(n);
789}
790
791static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
792{
793	if (root->left == n)
794		root->left = NULL;
795	rb_erase_init(n, &root->rb);
796	--root->count;
797}
798
799/*
800 * would be nice to take fifo expire time into account as well
801 */
802static struct request *
803cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
804		  struct request *last)
805{
806	struct rb_node *rbnext = rb_next(&last->rb_node);
807	struct rb_node *rbprev = rb_prev(&last->rb_node);
808	struct request *next = NULL, *prev = NULL;
809
810	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
811
812	if (rbprev)
813		prev = rb_entry_rq(rbprev);
814
815	if (rbnext)
816		next = rb_entry_rq(rbnext);
817	else {
818		rbnext = rb_first(&cfqq->sort_list);
819		if (rbnext && rbnext != &last->rb_node)
820			next = rb_entry_rq(rbnext);
821	}
822
823	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
824}
825
826static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
827				      struct cfq_queue *cfqq)
828{
829	/*
830	 * just an approximation, should be ok.
831	 */
832	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
833		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
834}
835
836static inline s64
837cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
838{
839	return cfqg->vdisktime - st->min_vdisktime;
840}
841
842static void
843__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
844{
845	struct rb_node **node = &st->rb.rb_node;
846	struct rb_node *parent = NULL;
847	struct cfq_group *__cfqg;
848	s64 key = cfqg_key(st, cfqg);
849	int left = 1;
850
851	while (*node != NULL) {
852		parent = *node;
853		__cfqg = rb_entry_cfqg(parent);
854
855		if (key < cfqg_key(st, __cfqg))
856			node = &parent->rb_left;
857		else {
858			node = &parent->rb_right;
859			left = 0;
860		}
861	}
862
863	if (left)
864		st->left = &cfqg->rb_node;
865
866	rb_link_node(&cfqg->rb_node, parent, node);
867	rb_insert_color(&cfqg->rb_node, &st->rb);
868}
869
870static void
871cfq_update_group_weight(struct cfq_group *cfqg)
872{
873	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
874	if (cfqg->needs_update) {
875		cfqg->weight = cfqg->new_weight;
876		cfqg->needs_update = false;
877	}
878}
879
880static void
881cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
882{
883	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
884
885	cfq_update_group_weight(cfqg);
886	__cfq_group_service_tree_add(st, cfqg);
887	st->total_weight += cfqg->weight;
888}
889
890static void
891cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
892{
893	struct cfq_rb_root *st = &cfqd->grp_service_tree;
894	struct cfq_group *__cfqg;
895	struct rb_node *n;
896
897	cfqg->nr_cfqq++;
898	if (!RB_EMPTY_NODE(&cfqg->rb_node))
899		return;
900
901	/*
902	 * Currently put the group at the end. Later implement something
903	 * so that groups get lesser vtime based on their weights, so that
904	 * if group does not loose all if it was not continuously backlogged.
905	 */
906	n = rb_last(&st->rb);
907	if (n) {
908		__cfqg = rb_entry_cfqg(n);
909		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
910	} else
911		cfqg->vdisktime = st->min_vdisktime;
912	cfq_group_service_tree_add(st, cfqg);
913}
914
915static void
916cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
917{
918	st->total_weight -= cfqg->weight;
919	if (!RB_EMPTY_NODE(&cfqg->rb_node))
920		cfq_rb_erase(&cfqg->rb_node, st);
921}
922
923static void
924cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
925{
926	struct cfq_rb_root *st = &cfqd->grp_service_tree;
927
928	BUG_ON(cfqg->nr_cfqq < 1);
929	cfqg->nr_cfqq--;
930
931	/* If there are other cfq queues under this group, don't delete it */
932	if (cfqg->nr_cfqq)
933		return;
934
935	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
936	cfq_group_service_tree_del(st, cfqg);
937	cfqg->saved_workload_slice = 0;
938	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
939}
940
941static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
942						unsigned int *unaccounted_time)
943{
944	unsigned int slice_used;
945
946	/*
947	 * Queue got expired before even a single request completed or
948	 * got expired immediately after first request completion.
949	 */
950	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
951		/*
952		 * Also charge the seek time incurred to the group, otherwise
953		 * if there are mutiple queues in the group, each can dispatch
954		 * a single request on seeky media and cause lots of seek time
955		 * and group will never know it.
956		 */
957		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
958					1);
959	} else {
960		slice_used = jiffies - cfqq->slice_start;
961		if (slice_used > cfqq->allocated_slice) {
962			*unaccounted_time = slice_used - cfqq->allocated_slice;
963			slice_used = cfqq->allocated_slice;
964		}
965		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
966			*unaccounted_time += cfqq->slice_start -
967					cfqq->dispatch_start;
968	}
969
970	return slice_used;
971}
972
973static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
974				struct cfq_queue *cfqq)
975{
976	struct cfq_rb_root *st = &cfqd->grp_service_tree;
977	unsigned int used_sl, charge, unaccounted_sl = 0;
978	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
979			- cfqg->service_tree_idle.count;
980
981	BUG_ON(nr_sync < 0);
982	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
983
984	if (iops_mode(cfqd))
985		charge = cfqq->slice_dispatch;
986	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
987		charge = cfqq->allocated_slice;
988
989	/* Can't update vdisktime while group is on service tree */
990	cfq_group_service_tree_del(st, cfqg);
991	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
992	/* If a new weight was requested, update now, off tree */
993	cfq_group_service_tree_add(st, cfqg);
994
995	/* This group is being expired. Save the context */
996	if (time_after(cfqd->workload_expires, jiffies)) {
997		cfqg->saved_workload_slice = cfqd->workload_expires
998						- jiffies;
999		cfqg->saved_workload = cfqd->serving_type;
1000		cfqg->saved_serving_prio = cfqd->serving_prio;
1001	} else
1002		cfqg->saved_workload_slice = 0;
1003
1004	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1005					st->min_vdisktime);
1006	cfq_log_cfqq(cfqq->cfqd, cfqq,
1007		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1008		     used_sl, cfqq->slice_dispatch, charge,
1009		     iops_mode(cfqd), cfqq->nr_sectors);
1010	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1011					  unaccounted_sl);
1012	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1013}
1014
1015#ifdef CONFIG_CFQ_GROUP_IOSCHED
1016static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1017{
1018	if (blkg)
1019		return container_of(blkg, struct cfq_group, blkg);
1020	return NULL;
1021}
1022
1023static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1024					  unsigned int weight)
1025{
1026	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1027	cfqg->new_weight = weight;
1028	cfqg->needs_update = true;
1029}
1030
1031static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1032			struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1033{
1034	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1035	unsigned int major, minor;
1036
1037	/*
1038	 * Add group onto cgroup list. It might happen that bdi->dev is
1039	 * not initialized yet. Initialize this new group without major
1040	 * and minor info and this info will be filled in once a new thread
1041	 * comes for IO.
1042	 */
1043	if (bdi->dev) {
1044		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1045		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1046					(void *)cfqd, MKDEV(major, minor));
1047	} else
1048		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1049					(void *)cfqd, 0);
1050
1051	cfqd->nr_blkcg_linked_grps++;
1052	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1053
1054	/* Add group on cfqd list */
1055	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1056}
1057
1058/*
1059 * Should be called from sleepable context. No request queue lock as per
1060 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1061 * from sleepable context.
1062 */
1063static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1064{
1065	struct cfq_group *cfqg = NULL;
1066	int i, j, ret;
1067	struct cfq_rb_root *st;
1068
1069	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1070	if (!cfqg)
1071		return NULL;
1072
1073	for_each_cfqg_st(cfqg, i, j, st)
1074		*st = CFQ_RB_ROOT;
1075	RB_CLEAR_NODE(&cfqg->rb_node);
1076
1077	cfqg->ttime.last_end_request = jiffies;
1078
1079	/*
1080	 * Take the initial reference that will be released on destroy
1081	 * This can be thought of a joint reference by cgroup and
1082	 * elevator which will be dropped by either elevator exit
1083	 * or cgroup deletion path depending on who is exiting first.
1084	 */
1085	cfqg->ref = 1;
1086
1087	ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1088	if (ret) {
1089		kfree(cfqg);
1090		return NULL;
1091	}
1092
1093	return cfqg;
1094}
1095
1096static struct cfq_group *
1097cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1098{
1099	struct cfq_group *cfqg = NULL;
1100	void *key = cfqd;
1101	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1102	unsigned int major, minor;
1103
1104	/*
1105	 * This is the common case when there are no blkio cgroups.
1106	 * Avoid lookup in this case
1107	 */
1108	if (blkcg == &blkio_root_cgroup)
1109		cfqg = &cfqd->root_group;
1110	else
1111		cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1112
1113	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1114		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1115		cfqg->blkg.dev = MKDEV(major, minor);
1116	}
1117
1118	return cfqg;
1119}
1120
1121/*
1122 * Search for the cfq group current task belongs to. request_queue lock must
1123 * be held.
1124 */
1125static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1126{
1127	struct blkio_cgroup *blkcg;
1128	struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1129	struct request_queue *q = cfqd->queue;
1130
1131	rcu_read_lock();
1132	blkcg = task_blkio_cgroup(current);
1133	cfqg = cfq_find_cfqg(cfqd, blkcg);
1134	if (cfqg) {
1135		rcu_read_unlock();
1136		return cfqg;
1137	}
1138
1139	/*
1140	 * Need to allocate a group. Allocation of group also needs allocation
1141	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1142	 * we need to drop rcu lock and queue_lock before we call alloc.
1143	 *
1144	 * Not taking any queue reference here and assuming that queue is
1145	 * around by the time we return. CFQ queue allocation code does
1146	 * the same. It might be racy though.
1147	 */
1148
1149	rcu_read_unlock();
1150	spin_unlock_irq(q->queue_lock);
1151
1152	cfqg = cfq_alloc_cfqg(cfqd);
1153
1154	spin_lock_irq(q->queue_lock);
1155
1156	rcu_read_lock();
1157	blkcg = task_blkio_cgroup(current);
1158
1159	/*
1160	 * If some other thread already allocated the group while we were
1161	 * not holding queue lock, free up the group
1162	 */
1163	__cfqg = cfq_find_cfqg(cfqd, blkcg);
1164
1165	if (__cfqg) {
1166		kfree(cfqg);
1167		rcu_read_unlock();
1168		return __cfqg;
1169	}
1170
1171	if (!cfqg)
1172		cfqg = &cfqd->root_group;
1173
1174	cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1175	rcu_read_unlock();
1176	return cfqg;
1177}
1178
1179static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1180{
1181	cfqg->ref++;
1182	return cfqg;
1183}
1184
1185static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1186{
1187	/* Currently, all async queues are mapped to root group */
1188	if (!cfq_cfqq_sync(cfqq))
1189		cfqg = &cfqq->cfqd->root_group;
1190
1191	cfqq->cfqg = cfqg;
1192	/* cfqq reference on cfqg */
1193	cfqq->cfqg->ref++;
1194}
1195
1196static void cfq_put_cfqg(struct cfq_group *cfqg)
1197{
1198	struct cfq_rb_root *st;
1199	int i, j;
1200
1201	BUG_ON(cfqg->ref <= 0);
1202	cfqg->ref--;
1203	if (cfqg->ref)
1204		return;
1205	for_each_cfqg_st(cfqg, i, j, st)
1206		BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1207	free_percpu(cfqg->blkg.stats_cpu);
1208	kfree(cfqg);
1209}
1210
1211static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1212{
1213	/* Something wrong if we are trying to remove same group twice */
1214	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1215
1216	hlist_del_init(&cfqg->cfqd_node);
1217
1218	BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1219	cfqd->nr_blkcg_linked_grps--;
1220
1221	/*
1222	 * Put the reference taken at the time of creation so that when all
1223	 * queues are gone, group can be destroyed.
1224	 */
1225	cfq_put_cfqg(cfqg);
1226}
1227
1228static bool cfq_release_cfq_groups(struct cfq_data *cfqd)
1229{
1230	struct hlist_node *pos, *n;
1231	struct cfq_group *cfqg;
1232	bool empty = true;
1233
1234	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1235		/*
1236		 * If cgroup removal path got to blk_group first and removed
1237		 * it from cgroup list, then it will take care of destroying
1238		 * cfqg also.
1239		 */
1240		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1241			cfq_destroy_cfqg(cfqd, cfqg);
1242		else
1243			empty = false;
1244	}
1245	return empty;
1246}
1247
1248/*
1249 * Blk cgroup controller notification saying that blkio_group object is being
1250 * delinked as associated cgroup object is going away. That also means that
1251 * no new IO will come in this group. So get rid of this group as soon as
1252 * any pending IO in the group is finished.
1253 *
1254 * This function is called under rcu_read_lock(). key is the rcu protected
1255 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1256 * read lock.
1257 *
1258 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1259 * it should not be NULL as even if elevator was exiting, cgroup deltion
1260 * path got to it first.
1261 */
1262static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1263{
1264	unsigned long  flags;
1265	struct cfq_data *cfqd = key;
1266
1267	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1268	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1269	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1270}
1271
1272static struct elevator_type iosched_cfq;
1273
1274static bool cfq_clear_queue(struct request_queue *q)
1275{
1276	lockdep_assert_held(q->queue_lock);
1277
1278	/* shoot down blkgs iff the current elevator is cfq */
1279	if (!q->elevator || q->elevator->type != &iosched_cfq)
1280		return true;
1281
1282	return cfq_release_cfq_groups(q->elevator->elevator_data);
1283}
1284
1285#else /* GROUP_IOSCHED */
1286static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1287{
1288	return &cfqd->root_group;
1289}
1290
1291static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1292{
1293	return cfqg;
1294}
1295
1296static inline void
1297cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1298	cfqq->cfqg = cfqg;
1299}
1300
1301static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1302static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1303
1304#endif /* GROUP_IOSCHED */
1305
1306/*
1307 * The cfqd->service_trees holds all pending cfq_queue's that have
1308 * requests waiting to be processed. It is sorted in the order that
1309 * we will service the queues.
1310 */
1311static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1312				 bool add_front)
1313{
1314	struct rb_node **p, *parent;
1315	struct cfq_queue *__cfqq;
1316	unsigned long rb_key;
1317	struct cfq_rb_root *service_tree;
1318	int left;
1319	int new_cfqq = 1;
1320
1321	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1322						cfqq_type(cfqq));
1323	if (cfq_class_idle(cfqq)) {
1324		rb_key = CFQ_IDLE_DELAY;
1325		parent = rb_last(&service_tree->rb);
1326		if (parent && parent != &cfqq->rb_node) {
1327			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1328			rb_key += __cfqq->rb_key;
1329		} else
1330			rb_key += jiffies;
1331	} else if (!add_front) {
1332		/*
1333		 * Get our rb key offset. Subtract any residual slice
1334		 * value carried from last service. A negative resid
1335		 * count indicates slice overrun, and this should position
1336		 * the next service time further away in the tree.
1337		 */
1338		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1339		rb_key -= cfqq->slice_resid;
1340		cfqq->slice_resid = 0;
1341	} else {
1342		rb_key = -HZ;
1343		__cfqq = cfq_rb_first(service_tree);
1344		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1345	}
1346
1347	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1348		new_cfqq = 0;
1349		/*
1350		 * same position, nothing more to do
1351		 */
1352		if (rb_key == cfqq->rb_key &&
1353		    cfqq->service_tree == service_tree)
1354			return;
1355
1356		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1357		cfqq->service_tree = NULL;
1358	}
1359
1360	left = 1;
1361	parent = NULL;
1362	cfqq->service_tree = service_tree;
1363	p = &service_tree->rb.rb_node;
1364	while (*p) {
1365		struct rb_node **n;
1366
1367		parent = *p;
1368		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1369
1370		/*
1371		 * sort by key, that represents service time.
1372		 */
1373		if (time_before(rb_key, __cfqq->rb_key))
1374			n = &(*p)->rb_left;
1375		else {
1376			n = &(*p)->rb_right;
1377			left = 0;
1378		}
1379
1380		p = n;
1381	}
1382
1383	if (left)
1384		service_tree->left = &cfqq->rb_node;
1385
1386	cfqq->rb_key = rb_key;
1387	rb_link_node(&cfqq->rb_node, parent, p);
1388	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1389	service_tree->count++;
1390	if (add_front || !new_cfqq)
1391		return;
1392	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1393}
1394
1395static struct cfq_queue *
1396cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1397		     sector_t sector, struct rb_node **ret_parent,
1398		     struct rb_node ***rb_link)
1399{
1400	struct rb_node **p, *parent;
1401	struct cfq_queue *cfqq = NULL;
1402
1403	parent = NULL;
1404	p = &root->rb_node;
1405	while (*p) {
1406		struct rb_node **n;
1407
1408		parent = *p;
1409		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1410
1411		/*
1412		 * Sort strictly based on sector.  Smallest to the left,
1413		 * largest to the right.
1414		 */
1415		if (sector > blk_rq_pos(cfqq->next_rq))
1416			n = &(*p)->rb_right;
1417		else if (sector < blk_rq_pos(cfqq->next_rq))
1418			n = &(*p)->rb_left;
1419		else
1420			break;
1421		p = n;
1422		cfqq = NULL;
1423	}
1424
1425	*ret_parent = parent;
1426	if (rb_link)
1427		*rb_link = p;
1428	return cfqq;
1429}
1430
1431static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1432{
1433	struct rb_node **p, *parent;
1434	struct cfq_queue *__cfqq;
1435
1436	if (cfqq->p_root) {
1437		rb_erase(&cfqq->p_node, cfqq->p_root);
1438		cfqq->p_root = NULL;
1439	}
1440
1441	if (cfq_class_idle(cfqq))
1442		return;
1443	if (!cfqq->next_rq)
1444		return;
1445
1446	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1447	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1448				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1449	if (!__cfqq) {
1450		rb_link_node(&cfqq->p_node, parent, p);
1451		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1452	} else
1453		cfqq->p_root = NULL;
1454}
1455
1456/*
1457 * Update cfqq's position in the service tree.
1458 */
1459static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1460{
1461	/*
1462	 * Resorting requires the cfqq to be on the RR list already.
1463	 */
1464	if (cfq_cfqq_on_rr(cfqq)) {
1465		cfq_service_tree_add(cfqd, cfqq, 0);
1466		cfq_prio_tree_add(cfqd, cfqq);
1467	}
1468}
1469
1470/*
1471 * add to busy list of queues for service, trying to be fair in ordering
1472 * the pending list according to last request service
1473 */
1474static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1475{
1476	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1477	BUG_ON(cfq_cfqq_on_rr(cfqq));
1478	cfq_mark_cfqq_on_rr(cfqq);
1479	cfqd->busy_queues++;
1480	if (cfq_cfqq_sync(cfqq))
1481		cfqd->busy_sync_queues++;
1482
1483	cfq_resort_rr_list(cfqd, cfqq);
1484}
1485
1486/*
1487 * Called when the cfqq no longer has requests pending, remove it from
1488 * the service tree.
1489 */
1490static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1491{
1492	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1493	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1494	cfq_clear_cfqq_on_rr(cfqq);
1495
1496	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1497		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1498		cfqq->service_tree = NULL;
1499	}
1500	if (cfqq->p_root) {
1501		rb_erase(&cfqq->p_node, cfqq->p_root);
1502		cfqq->p_root = NULL;
1503	}
1504
1505	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1506	BUG_ON(!cfqd->busy_queues);
1507	cfqd->busy_queues--;
1508	if (cfq_cfqq_sync(cfqq))
1509		cfqd->busy_sync_queues--;
1510}
1511
1512/*
1513 * rb tree support functions
1514 */
1515static void cfq_del_rq_rb(struct request *rq)
1516{
1517	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1518	const int sync = rq_is_sync(rq);
1519
1520	BUG_ON(!cfqq->queued[sync]);
1521	cfqq->queued[sync]--;
1522
1523	elv_rb_del(&cfqq->sort_list, rq);
1524
1525	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1526		/*
1527		 * Queue will be deleted from service tree when we actually
1528		 * expire it later. Right now just remove it from prio tree
1529		 * as it is empty.
1530		 */
1531		if (cfqq->p_root) {
1532			rb_erase(&cfqq->p_node, cfqq->p_root);
1533			cfqq->p_root = NULL;
1534		}
1535	}
1536}
1537
1538static void cfq_add_rq_rb(struct request *rq)
1539{
1540	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1541	struct cfq_data *cfqd = cfqq->cfqd;
1542	struct request *prev;
1543
1544	cfqq->queued[rq_is_sync(rq)]++;
1545
1546	elv_rb_add(&cfqq->sort_list, rq);
1547
1548	if (!cfq_cfqq_on_rr(cfqq))
1549		cfq_add_cfqq_rr(cfqd, cfqq);
1550
1551	/*
1552	 * check if this request is a better next-serve candidate
1553	 */
1554	prev = cfqq->next_rq;
1555	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1556
1557	/*
1558	 * adjust priority tree position, if ->next_rq changes
1559	 */
1560	if (prev != cfqq->next_rq)
1561		cfq_prio_tree_add(cfqd, cfqq);
1562
1563	BUG_ON(!cfqq->next_rq);
1564}
1565
1566static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1567{
1568	elv_rb_del(&cfqq->sort_list, rq);
1569	cfqq->queued[rq_is_sync(rq)]--;
1570	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1571					rq_data_dir(rq), rq_is_sync(rq));
1572	cfq_add_rq_rb(rq);
1573	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1574			&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1575			rq_is_sync(rq));
1576}
1577
1578static struct request *
1579cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1580{
1581	struct task_struct *tsk = current;
1582	struct cfq_io_cq *cic;
1583	struct cfq_queue *cfqq;
1584
1585	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1586	if (!cic)
1587		return NULL;
1588
1589	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1590	if (cfqq) {
1591		sector_t sector = bio->bi_sector + bio_sectors(bio);
1592
1593		return elv_rb_find(&cfqq->sort_list, sector);
1594	}
1595
1596	return NULL;
1597}
1598
1599static void cfq_activate_request(struct request_queue *q, struct request *rq)
1600{
1601	struct cfq_data *cfqd = q->elevator->elevator_data;
1602
1603	cfqd->rq_in_driver++;
1604	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1605						cfqd->rq_in_driver);
1606
1607	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1608}
1609
1610static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1611{
1612	struct cfq_data *cfqd = q->elevator->elevator_data;
1613
1614	WARN_ON(!cfqd->rq_in_driver);
1615	cfqd->rq_in_driver--;
1616	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1617						cfqd->rq_in_driver);
1618}
1619
1620static void cfq_remove_request(struct request *rq)
1621{
1622	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1623
1624	if (cfqq->next_rq == rq)
1625		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1626
1627	list_del_init(&rq->queuelist);
1628	cfq_del_rq_rb(rq);
1629
1630	cfqq->cfqd->rq_queued--;
1631	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1632					rq_data_dir(rq), rq_is_sync(rq));
1633	if (rq->cmd_flags & REQ_PRIO) {
1634		WARN_ON(!cfqq->prio_pending);
1635		cfqq->prio_pending--;
1636	}
1637}
1638
1639static int cfq_merge(struct request_queue *q, struct request **req,
1640		     struct bio *bio)
1641{
1642	struct cfq_data *cfqd = q->elevator->elevator_data;
1643	struct request *__rq;
1644
1645	__rq = cfq_find_rq_fmerge(cfqd, bio);
1646	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1647		*req = __rq;
1648		return ELEVATOR_FRONT_MERGE;
1649	}
1650
1651	return ELEVATOR_NO_MERGE;
1652}
1653
1654static void cfq_merged_request(struct request_queue *q, struct request *req,
1655			       int type)
1656{
1657	if (type == ELEVATOR_FRONT_MERGE) {
1658		struct cfq_queue *cfqq = RQ_CFQQ(req);
1659
1660		cfq_reposition_rq_rb(cfqq, req);
1661	}
1662}
1663
1664static void cfq_bio_merged(struct request_queue *q, struct request *req,
1665				struct bio *bio)
1666{
1667	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1668					bio_data_dir(bio), cfq_bio_sync(bio));
1669}
1670
1671static void
1672cfq_merged_requests(struct request_queue *q, struct request *rq,
1673		    struct request *next)
1674{
1675	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1676	struct cfq_data *cfqd = q->elevator->elevator_data;
1677
1678	/*
1679	 * reposition in fifo if next is older than rq
1680	 */
1681	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1682	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1683		list_move(&rq->queuelist, &next->queuelist);
1684		rq_set_fifo_time(rq, rq_fifo_time(next));
1685	}
1686
1687	if (cfqq->next_rq == next)
1688		cfqq->next_rq = rq;
1689	cfq_remove_request(next);
1690	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1691					rq_data_dir(next), rq_is_sync(next));
1692
1693	cfqq = RQ_CFQQ(next);
1694	/*
1695	 * all requests of this queue are merged to other queues, delete it
1696	 * from the service tree. If it's the active_queue,
1697	 * cfq_dispatch_requests() will choose to expire it or do idle
1698	 */
1699	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1700	    cfqq != cfqd->active_queue)
1701		cfq_del_cfqq_rr(cfqd, cfqq);
1702}
1703
1704static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1705			   struct bio *bio)
1706{
1707	struct cfq_data *cfqd = q->elevator->elevator_data;
1708	struct cfq_io_cq *cic;
1709	struct cfq_queue *cfqq;
1710
1711	/*
1712	 * Disallow merge of a sync bio into an async request.
1713	 */
1714	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1715		return false;
1716
1717	/*
1718	 * Lookup the cfqq that this bio will be queued with and allow
1719	 * merge only if rq is queued there.
1720	 */
1721	cic = cfq_cic_lookup(cfqd, current->io_context);
1722	if (!cic)
1723		return false;
1724
1725	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1726	return cfqq == RQ_CFQQ(rq);
1727}
1728
1729static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1730{
1731	del_timer(&cfqd->idle_slice_timer);
1732	cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1733}
1734
1735static void __cfq_set_active_queue(struct cfq_data *cfqd,
1736				   struct cfq_queue *cfqq)
1737{
1738	if (cfqq) {
1739		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1740				cfqd->serving_prio, cfqd->serving_type);
1741		cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1742		cfqq->slice_start = 0;
1743		cfqq->dispatch_start = jiffies;
1744		cfqq->allocated_slice = 0;
1745		cfqq->slice_end = 0;
1746		cfqq->slice_dispatch = 0;
1747		cfqq->nr_sectors = 0;
1748
1749		cfq_clear_cfqq_wait_request(cfqq);
1750		cfq_clear_cfqq_must_dispatch(cfqq);
1751		cfq_clear_cfqq_must_alloc_slice(cfqq);
1752		cfq_clear_cfqq_fifo_expire(cfqq);
1753		cfq_mark_cfqq_slice_new(cfqq);
1754
1755		cfq_del_timer(cfqd, cfqq);
1756	}
1757
1758	cfqd->active_queue = cfqq;
1759}
1760
1761/*
1762 * current cfqq expired its slice (or was too idle), select new one
1763 */
1764static void
1765__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1766		    bool timed_out)
1767{
1768	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1769
1770	if (cfq_cfqq_wait_request(cfqq))
1771		cfq_del_timer(cfqd, cfqq);
1772
1773	cfq_clear_cfqq_wait_request(cfqq);
1774	cfq_clear_cfqq_wait_busy(cfqq);
1775
1776	/*
1777	 * If this cfqq is shared between multiple processes, check to
1778	 * make sure that those processes are still issuing I/Os within
1779	 * the mean seek distance.  If not, it may be time to break the
1780	 * queues apart again.
1781	 */
1782	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1783		cfq_mark_cfqq_split_coop(cfqq);
1784
1785	/*
1786	 * store what was left of this slice, if the queue idled/timed out
1787	 */
1788	if (timed_out) {
1789		if (cfq_cfqq_slice_new(cfqq))
1790			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1791		else
1792			cfqq->slice_resid = cfqq->slice_end - jiffies;
1793		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1794	}
1795
1796	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1797
1798	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1799		cfq_del_cfqq_rr(cfqd, cfqq);
1800
1801	cfq_resort_rr_list(cfqd, cfqq);
1802
1803	if (cfqq == cfqd->active_queue)
1804		cfqd->active_queue = NULL;
1805
1806	if (cfqd->active_cic) {
1807		put_io_context(cfqd->active_cic->icq.ioc);
1808		cfqd->active_cic = NULL;
1809	}
1810}
1811
1812static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1813{
1814	struct cfq_queue *cfqq = cfqd->active_queue;
1815
1816	if (cfqq)
1817		__cfq_slice_expired(cfqd, cfqq, timed_out);
1818}
1819
1820/*
1821 * Get next queue for service. Unless we have a queue preemption,
1822 * we'll simply select the first cfqq in the service tree.
1823 */
1824static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1825{
1826	struct cfq_rb_root *service_tree =
1827		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1828					cfqd->serving_type);
1829
1830	if (!cfqd->rq_queued)
1831		return NULL;
1832
1833	/* There is nothing to dispatch */
1834	if (!service_tree)
1835		return NULL;
1836	if (RB_EMPTY_ROOT(&service_tree->rb))
1837		return NULL;
1838	return cfq_rb_first(service_tree);
1839}
1840
1841static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1842{
1843	struct cfq_group *cfqg;
1844	struct cfq_queue *cfqq;
1845	int i, j;
1846	struct cfq_rb_root *st;
1847
1848	if (!cfqd->rq_queued)
1849		return NULL;
1850
1851	cfqg = cfq_get_next_cfqg(cfqd);
1852	if (!cfqg)
1853		return NULL;
1854
1855	for_each_cfqg_st(cfqg, i, j, st)
1856		if ((cfqq = cfq_rb_first(st)) != NULL)
1857			return cfqq;
1858	return NULL;
1859}
1860
1861/*
1862 * Get and set a new active queue for service.
1863 */
1864static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1865					      struct cfq_queue *cfqq)
1866{
1867	if (!cfqq)
1868		cfqq = cfq_get_next_queue(cfqd);
1869
1870	__cfq_set_active_queue(cfqd, cfqq);
1871	return cfqq;
1872}
1873
1874static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1875					  struct request *rq)
1876{
1877	if (blk_rq_pos(rq) >= cfqd->last_position)
1878		return blk_rq_pos(rq) - cfqd->last_position;
1879	else
1880		return cfqd->last_position - blk_rq_pos(rq);
1881}
1882
1883static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1884			       struct request *rq)
1885{
1886	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1887}
1888
1889static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1890				    struct cfq_queue *cur_cfqq)
1891{
1892	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1893	struct rb_node *parent, *node;
1894	struct cfq_queue *__cfqq;
1895	sector_t sector = cfqd->last_position;
1896
1897	if (RB_EMPTY_ROOT(root))
1898		return NULL;
1899
1900	/*
1901	 * First, if we find a request starting at the end of the last
1902	 * request, choose it.
1903	 */
1904	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1905	if (__cfqq)
1906		return __cfqq;
1907
1908	/*
1909	 * If the exact sector wasn't found, the parent of the NULL leaf
1910	 * will contain the closest sector.
1911	 */
1912	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1913	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1914		return __cfqq;
1915
1916	if (blk_rq_pos(__cfqq->next_rq) < sector)
1917		node = rb_next(&__cfqq->p_node);
1918	else
1919		node = rb_prev(&__cfqq->p_node);
1920	if (!node)
1921		return NULL;
1922
1923	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1924	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1925		return __cfqq;
1926
1927	return NULL;
1928}
1929
1930/*
1931 * cfqd - obvious
1932 * cur_cfqq - passed in so that we don't decide that the current queue is
1933 * 	      closely cooperating with itself.
1934 *
1935 * So, basically we're assuming that that cur_cfqq has dispatched at least
1936 * one request, and that cfqd->last_position reflects a position on the disk
1937 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1938 * assumption.
1939 */
1940static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1941					      struct cfq_queue *cur_cfqq)
1942{
1943	struct cfq_queue *cfqq;
1944
1945	if (cfq_class_idle(cur_cfqq))
1946		return NULL;
1947	if (!cfq_cfqq_sync(cur_cfqq))
1948		return NULL;
1949	if (CFQQ_SEEKY(cur_cfqq))
1950		return NULL;
1951
1952	/*
1953	 * Don't search priority tree if it's the only queue in the group.
1954	 */
1955	if (cur_cfqq->cfqg->nr_cfqq == 1)
1956		return NULL;
1957
1958	/*
1959	 * We should notice if some of the queues are cooperating, eg
1960	 * working closely on the same area of the disk. In that case,
1961	 * we can group them together and don't waste time idling.
1962	 */
1963	cfqq = cfqq_close(cfqd, cur_cfqq);
1964	if (!cfqq)
1965		return NULL;
1966
1967	/* If new queue belongs to different cfq_group, don't choose it */
1968	if (cur_cfqq->cfqg != cfqq->cfqg)
1969		return NULL;
1970
1971	/*
1972	 * It only makes sense to merge sync queues.
1973	 */
1974	if (!cfq_cfqq_sync(cfqq))
1975		return NULL;
1976	if (CFQQ_SEEKY(cfqq))
1977		return NULL;
1978
1979	/*
1980	 * Do not merge queues of different priority classes
1981	 */
1982	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1983		return NULL;
1984
1985	return cfqq;
1986}
1987
1988/*
1989 * Determine whether we should enforce idle window for this queue.
1990 */
1991
1992static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1993{
1994	enum wl_prio_t prio = cfqq_prio(cfqq);
1995	struct cfq_rb_root *service_tree = cfqq->service_tree;
1996
1997	BUG_ON(!service_tree);
1998	BUG_ON(!service_tree->count);
1999
2000	if (!cfqd->cfq_slice_idle)
2001		return false;
2002
2003	/* We never do for idle class queues. */
2004	if (prio == IDLE_WORKLOAD)
2005		return false;
2006
2007	/* We do for queues that were marked with idle window flag. */
2008	if (cfq_cfqq_idle_window(cfqq) &&
2009	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2010		return true;
2011
2012	/*
2013	 * Otherwise, we do only if they are the last ones
2014	 * in their service tree.
2015	 */
2016	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
2017	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
2018		return true;
2019	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
2020			service_tree->count);
2021	return false;
2022}
2023
2024static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2025{
2026	struct cfq_queue *cfqq = cfqd->active_queue;
2027	struct cfq_io_cq *cic;
2028	unsigned long sl, group_idle = 0;
2029
2030	/*
2031	 * SSD device without seek penalty, disable idling. But only do so
2032	 * for devices that support queuing, otherwise we still have a problem
2033	 * with sync vs async workloads.
2034	 */
2035	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2036		return;
2037
2038	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2039	WARN_ON(cfq_cfqq_slice_new(cfqq));
2040
2041	/*
2042	 * idle is disabled, either manually or by past process history
2043	 */
2044	if (!cfq_should_idle(cfqd, cfqq)) {
2045		/* no queue idling. Check for group idling */
2046		if (cfqd->cfq_group_idle)
2047			group_idle = cfqd->cfq_group_idle;
2048		else
2049			return;
2050	}
2051
2052	/*
2053	 * still active requests from this queue, don't idle
2054	 */
2055	if (cfqq->dispatched)
2056		return;
2057
2058	/*
2059	 * task has exited, don't wait
2060	 */
2061	cic = cfqd->active_cic;
2062	if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2063		return;
2064
2065	/*
2066	 * If our average think time is larger than the remaining time
2067	 * slice, then don't idle. This avoids overrunning the allotted
2068	 * time slice.
2069	 */
2070	if (sample_valid(cic->ttime.ttime_samples) &&
2071	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2072		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2073			     cic->ttime.ttime_mean);
2074		return;
2075	}
2076
2077	/* There are other queues in the group, don't do group idle */
2078	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2079		return;
2080
2081	cfq_mark_cfqq_wait_request(cfqq);
2082
2083	if (group_idle)
2084		sl = cfqd->cfq_group_idle;
2085	else
2086		sl = cfqd->cfq_slice_idle;
2087
2088	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2089	cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2090	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2091			group_idle ? 1 : 0);
2092}
2093
2094/*
2095 * Move request from internal lists to the request queue dispatch list.
2096 */
2097static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2098{
2099	struct cfq_data *cfqd = q->elevator->elevator_data;
2100	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2101
2102	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2103
2104	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2105	cfq_remove_request(rq);
2106	cfqq->dispatched++;
2107	(RQ_CFQG(rq))->dispatched++;
2108	elv_dispatch_sort(q, rq);
2109
2110	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2111	cfqq->nr_sectors += blk_rq_sectors(rq);
2112	cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2113					rq_data_dir(rq), rq_is_sync(rq));
2114}
2115
2116/*
2117 * return expired entry, or NULL to just start from scratch in rbtree
2118 */
2119static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2120{
2121	struct request *rq = NULL;
2122
2123	if (cfq_cfqq_fifo_expire(cfqq))
2124		return NULL;
2125
2126	cfq_mark_cfqq_fifo_expire(cfqq);
2127
2128	if (list_empty(&cfqq->fifo))
2129		return NULL;
2130
2131	rq = rq_entry_fifo(cfqq->fifo.next);
2132	if (time_before(jiffies, rq_fifo_time(rq)))
2133		rq = NULL;
2134
2135	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2136	return rq;
2137}
2138
2139static inline int
2140cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2141{
2142	const int base_rq = cfqd->cfq_slice_async_rq;
2143
2144	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2145
2146	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2147}
2148
2149/*
2150 * Must be called with the queue_lock held.
2151 */
2152static int cfqq_process_refs(struct cfq_queue *cfqq)
2153{
2154	int process_refs, io_refs;
2155
2156	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2157	process_refs = cfqq->ref - io_refs;
2158	BUG_ON(process_refs < 0);
2159	return process_refs;
2160}
2161
2162static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2163{
2164	int process_refs, new_process_refs;
2165	struct cfq_queue *__cfqq;
2166
2167	/*
2168	 * If there are no process references on the new_cfqq, then it is
2169	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2170	 * chain may have dropped their last reference (not just their
2171	 * last process reference).
2172	 */
2173	if (!cfqq_process_refs(new_cfqq))
2174		return;
2175
2176	/* Avoid a circular list and skip interim queue merges */
2177	while ((__cfqq = new_cfqq->new_cfqq)) {
2178		if (__cfqq == cfqq)
2179			return;
2180		new_cfqq = __cfqq;
2181	}
2182
2183	process_refs = cfqq_process_refs(cfqq);
2184	new_process_refs = cfqq_process_refs(new_cfqq);
2185	/*
2186	 * If the process for the cfqq has gone away, there is no
2187	 * sense in merging the queues.
2188	 */
2189	if (process_refs == 0 || new_process_refs == 0)
2190		return;
2191
2192	/*
2193	 * Merge in the direction of the lesser amount of work.
2194	 */
2195	if (new_process_refs >= process_refs) {
2196		cfqq->new_cfqq = new_cfqq;
2197		new_cfqq->ref += process_refs;
2198	} else {
2199		new_cfqq->new_cfqq = cfqq;
2200		cfqq->ref += new_process_refs;
2201	}
2202}
2203
2204static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2205				struct cfq_group *cfqg, enum wl_prio_t prio)
2206{
2207	struct cfq_queue *queue;
2208	int i;
2209	bool key_valid = false;
2210	unsigned long lowest_key = 0;
2211	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2212
2213	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2214		/* select the one with lowest rb_key */
2215		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2216		if (queue &&
2217		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2218			lowest_key = queue->rb_key;
2219			cur_best = i;
2220			key_valid = true;
2221		}
2222	}
2223
2224	return cur_best;
2225}
2226
2227static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2228{
2229	unsigned slice;
2230	unsigned count;
2231	struct cfq_rb_root *st;
2232	unsigned group_slice;
2233	enum wl_prio_t original_prio = cfqd->serving_prio;
2234
2235	/* Choose next priority. RT > BE > IDLE */
2236	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2237		cfqd->serving_prio = RT_WORKLOAD;
2238	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2239		cfqd->serving_prio = BE_WORKLOAD;
2240	else {
2241		cfqd->serving_prio = IDLE_WORKLOAD;
2242		cfqd->workload_expires = jiffies + 1;
2243		return;
2244	}
2245
2246	if (original_prio != cfqd->serving_prio)
2247		goto new_workload;
2248
2249	/*
2250	 * For RT and BE, we have to choose also the type
2251	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2252	 * expiration time
2253	 */
2254	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2255	count = st->count;
2256
2257	/*
2258	 * check workload expiration, and that we still have other queues ready
2259	 */
2260	if (count && !time_after(jiffies, cfqd->workload_expires))
2261		return;
2262
2263new_workload:
2264	/* otherwise select new workload type */
2265	cfqd->serving_type =
2266		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2267	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2268	count = st->count;
2269
2270	/*
2271	 * the workload slice is computed as a fraction of target latency
2272	 * proportional to the number of queues in that workload, over
2273	 * all the queues in the same priority class
2274	 */
2275	group_slice = cfq_group_slice(cfqd, cfqg);
2276
2277	slice = group_slice * count /
2278		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2279		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2280
2281	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2282		unsigned int tmp;
2283
2284		/*
2285		 * Async queues are currently system wide. Just taking
2286		 * proportion of queues with-in same group will lead to higher
2287		 * async ratio system wide as generally root group is going
2288		 * to have higher weight. A more accurate thing would be to
2289		 * calculate system wide asnc/sync ratio.
2290		 */
2291		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2292		tmp = tmp/cfqd->busy_queues;
2293		slice = min_t(unsigned, slice, tmp);
2294
2295		/* async workload slice is scaled down according to
2296		 * the sync/async slice ratio. */
2297		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2298	} else
2299		/* sync workload slice is at least 2 * cfq_slice_idle */
2300		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2301
2302	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2303	cfq_log(cfqd, "workload slice:%d", slice);
2304	cfqd->workload_expires = jiffies + slice;
2305}
2306
2307static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2308{
2309	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2310	struct cfq_group *cfqg;
2311
2312	if (RB_EMPTY_ROOT(&st->rb))
2313		return NULL;
2314	cfqg = cfq_rb_first_group(st);
2315	update_min_vdisktime(st);
2316	return cfqg;
2317}
2318
2319static void cfq_choose_cfqg(struct cfq_data *cfqd)
2320{
2321	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2322
2323	cfqd->serving_group = cfqg;
2324
2325	/* Restore the workload type data */
2326	if (cfqg->saved_workload_slice) {
2327		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2328		cfqd->serving_type = cfqg->saved_workload;
2329		cfqd->serving_prio = cfqg->saved_serving_prio;
2330	} else
2331		cfqd->workload_expires = jiffies - 1;
2332
2333	choose_service_tree(cfqd, cfqg);
2334}
2335
2336/*
2337 * Select a queue for service. If we have a current active queue,
2338 * check whether to continue servicing it, or retrieve and set a new one.
2339 */
2340static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2341{
2342	struct cfq_queue *cfqq, *new_cfqq = NULL;
2343
2344	cfqq = cfqd->active_queue;
2345	if (!cfqq)
2346		goto new_queue;
2347
2348	if (!cfqd->rq_queued)
2349		return NULL;
2350
2351	/*
2352	 * We were waiting for group to get backlogged. Expire the queue
2353	 */
2354	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2355		goto expire;
2356
2357	/*
2358	 * The active queue has run out of time, expire it and select new.
2359	 */
2360	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2361		/*
2362		 * If slice had not expired at the completion of last request
2363		 * we might not have turned on wait_busy flag. Don't expire
2364		 * the queue yet. Allow the group to get backlogged.
2365		 *
2366		 * The very fact that we have used the slice, that means we
2367		 * have been idling all along on this queue and it should be
2368		 * ok to wait for this request to complete.
2369		 */
2370		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2371		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2372			cfqq = NULL;
2373			goto keep_queue;
2374		} else
2375			goto check_group_idle;
2376	}
2377
2378	/*
2379	 * The active queue has requests and isn't expired, allow it to
2380	 * dispatch.
2381	 */
2382	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2383		goto keep_queue;
2384
2385	/*
2386	 * If another queue has a request waiting within our mean seek
2387	 * distance, let it run.  The expire code will check for close
2388	 * cooperators and put the close queue at the front of the service
2389	 * tree.  If possible, merge the expiring queue with the new cfqq.
2390	 */
2391	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2392	if (new_cfqq) {
2393		if (!cfqq->new_cfqq)
2394			cfq_setup_merge(cfqq, new_cfqq);
2395		goto expire;
2396	}
2397
2398	/*
2399	 * No requests pending. If the active queue still has requests in
2400	 * flight or is idling for a new request, allow either of these
2401	 * conditions to happen (or time out) before selecting a new queue.
2402	 */
2403	if (timer_pending(&cfqd->idle_slice_timer)) {
2404		cfqq = NULL;
2405		goto keep_queue;
2406	}
2407
2408	/*
2409	 * This is a deep seek queue, but the device is much faster than
2410	 * the queue can deliver, don't idle
2411	 **/
2412	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2413	    (cfq_cfqq_slice_new(cfqq) ||
2414	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2415		cfq_clear_cfqq_deep(cfqq);
2416		cfq_clear_cfqq_idle_window(cfqq);
2417	}
2418
2419	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2420		cfqq = NULL;
2421		goto keep_queue;
2422	}
2423
2424	/*
2425	 * If group idle is enabled and there are requests dispatched from
2426	 * this group, wait for requests to complete.
2427	 */
2428check_group_idle:
2429	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2430	    cfqq->cfqg->dispatched &&
2431	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2432		cfqq = NULL;
2433		goto keep_queue;
2434	}
2435
2436expire:
2437	cfq_slice_expired(cfqd, 0);
2438new_queue:
2439	/*
2440	 * Current queue expired. Check if we have to switch to a new
2441	 * service tree
2442	 */
2443	if (!new_cfqq)
2444		cfq_choose_cfqg(cfqd);
2445
2446	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2447keep_queue:
2448	return cfqq;
2449}
2450
2451static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2452{
2453	int dispatched = 0;
2454
2455	while (cfqq->next_rq) {
2456		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2457		dispatched++;
2458	}
2459
2460	BUG_ON(!list_empty(&cfqq->fifo));
2461
2462	/* By default cfqq is not expired if it is empty. Do it explicitly */
2463	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2464	return dispatched;
2465}
2466
2467/*
2468 * Drain our current requests. Used for barriers and when switching
2469 * io schedulers on-the-fly.
2470 */
2471static int cfq_forced_dispatch(struct cfq_data *cfqd)
2472{
2473	struct cfq_queue *cfqq;
2474	int dispatched = 0;
2475
2476	/* Expire the timeslice of the current active queue first */
2477	cfq_slice_expired(cfqd, 0);
2478	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2479		__cfq_set_active_queue(cfqd, cfqq);
2480		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2481	}
2482
2483	BUG_ON(cfqd->busy_queues);
2484
2485	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2486	return dispatched;
2487}
2488
2489static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2490	struct cfq_queue *cfqq)
2491{
2492	/* the queue hasn't finished any request, can't estimate */
2493	if (cfq_cfqq_slice_new(cfqq))
2494		return true;
2495	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2496		cfqq->slice_end))
2497		return true;
2498
2499	return false;
2500}
2501
2502static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2503{
2504	unsigned int max_dispatch;
2505
2506	/*
2507	 * Drain async requests before we start sync IO
2508	 */
2509	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2510		return false;
2511
2512	/*
2513	 * If this is an async queue and we have sync IO in flight, let it wait
2514	 */
2515	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2516		return false;
2517
2518	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2519	if (cfq_class_idle(cfqq))
2520		max_dispatch = 1;
2521
2522	/*
2523	 * Does this cfqq already have too much IO in flight?
2524	 */
2525	if (cfqq->dispatched >= max_dispatch) {
2526		bool promote_sync = false;
2527		/*
2528		 * idle queue must always only have a single IO in flight
2529		 */
2530		if (cfq_class_idle(cfqq))
2531			return false;
2532
2533		/*
2534		 * If there is only one sync queue
2535		 * we can ignore async queue here and give the sync
2536		 * queue no dispatch limit. The reason is a sync queue can
2537		 * preempt async queue, limiting the sync queue doesn't make
2538		 * sense. This is useful for aiostress test.
2539		 */
2540		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2541			promote_sync = true;
2542
2543		/*
2544		 * We have other queues, don't allow more IO from this one
2545		 */
2546		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2547				!promote_sync)
2548			return false;
2549
2550		/*
2551		 * Sole queue user, no limit
2552		 */
2553		if (cfqd->busy_queues == 1 || promote_sync)
2554			max_dispatch = -1;
2555		else
2556			/*
2557			 * Normally we start throttling cfqq when cfq_quantum/2
2558			 * requests have been dispatched. But we can drive
2559			 * deeper queue depths at the beginning of slice
2560			 * subjected to upper limit of cfq_quantum.
2561			 * */
2562			max_dispatch = cfqd->cfq_quantum;
2563	}
2564
2565	/*
2566	 * Async queues must wait a bit before being allowed dispatch.
2567	 * We also ramp up the dispatch depth gradually for async IO,
2568	 * based on the last sync IO we serviced
2569	 */
2570	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2571		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2572		unsigned int depth;
2573
2574		depth = last_sync / cfqd->cfq_slice[1];
2575		if (!depth && !cfqq->dispatched)
2576			depth = 1;
2577		if (depth < max_dispatch)
2578			max_dispatch = depth;
2579	}
2580
2581	/*
2582	 * If we're below the current max, allow a dispatch
2583	 */
2584	return cfqq->dispatched < max_dispatch;
2585}
2586
2587/*
2588 * Dispatch a request from cfqq, moving them to the request queue
2589 * dispatch list.
2590 */
2591static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2592{
2593	struct request *rq;
2594
2595	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2596
2597	if (!cfq_may_dispatch(cfqd, cfqq))
2598		return false;
2599
2600	/*
2601	 * follow expired path, else get first next available
2602	 */
2603	rq = cfq_check_fifo(cfqq);
2604	if (!rq)
2605		rq = cfqq->next_rq;
2606
2607	/*
2608	 * insert request into driver dispatch list
2609	 */
2610	cfq_dispatch_insert(cfqd->queue, rq);
2611
2612	if (!cfqd->active_cic) {
2613		struct cfq_io_cq *cic = RQ_CIC(rq);
2614
2615		atomic_long_inc(&cic->icq.ioc->refcount);
2616		cfqd->active_cic = cic;
2617	}
2618
2619	return true;
2620}
2621
2622/*
2623 * Find the cfqq that we need to service and move a request from that to the
2624 * dispatch list
2625 */
2626static int cfq_dispatch_requests(struct request_queue *q, int force)
2627{
2628	struct cfq_data *cfqd = q->elevator->elevator_data;
2629	struct cfq_queue *cfqq;
2630
2631	if (!cfqd->busy_queues)
2632		return 0;
2633
2634	if (unlikely(force))
2635		return cfq_forced_dispatch(cfqd);
2636
2637	cfqq = cfq_select_queue(cfqd);
2638	if (!cfqq)
2639		return 0;
2640
2641	/*
2642	 * Dispatch a request from this cfqq, if it is allowed
2643	 */
2644	if (!cfq_dispatch_request(cfqd, cfqq))
2645		return 0;
2646
2647	cfqq->slice_dispatch++;
2648	cfq_clear_cfqq_must_dispatch(cfqq);
2649
2650	/*
2651	 * expire an async queue immediately if it has used up its slice. idle
2652	 * queue always expire after 1 dispatch round.
2653	 */
2654	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2655	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2656	    cfq_class_idle(cfqq))) {
2657		cfqq->slice_end = jiffies + 1;
2658		cfq_slice_expired(cfqd, 0);
2659	}
2660
2661	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2662	return 1;
2663}
2664
2665/*
2666 * task holds one reference to the queue, dropped when task exits. each rq
2667 * in-flight on this queue also holds a reference, dropped when rq is freed.
2668 *
2669 * Each cfq queue took a reference on the parent group. Drop it now.
2670 * queue lock must be held here.
2671 */
2672static void cfq_put_queue(struct cfq_queue *cfqq)
2673{
2674	struct cfq_data *cfqd = cfqq->cfqd;
2675	struct cfq_group *cfqg;
2676
2677	BUG_ON(cfqq->ref <= 0);
2678
2679	cfqq->ref--;
2680	if (cfqq->ref)
2681		return;
2682
2683	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2684	BUG_ON(rb_first(&cfqq->sort_list));
2685	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2686	cfqg = cfqq->cfqg;
2687
2688	if (unlikely(cfqd->active_queue == cfqq)) {
2689		__cfq_slice_expired(cfqd, cfqq, 0);
2690		cfq_schedule_dispatch(cfqd);
2691	}
2692
2693	BUG_ON(cfq_cfqq_on_rr(cfqq));
2694	kmem_cache_free(cfq_pool, cfqq);
2695	cfq_put_cfqg(cfqg);
2696}
2697
2698static void cfq_put_cooperator(struct cfq_queue *cfqq)
2699{
2700	struct cfq_queue *__cfqq, *next;
2701
2702	/*
2703	 * If this queue was scheduled to merge with another queue, be
2704	 * sure to drop the reference taken on that queue (and others in
2705	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2706	 */
2707	__cfqq = cfqq->new_cfqq;
2708	while (__cfqq) {
2709		if (__cfqq == cfqq) {
2710			WARN(1, "cfqq->new_cfqq loop detected\n");
2711			break;
2712		}
2713		next = __cfqq->new_cfqq;
2714		cfq_put_queue(__cfqq);
2715		__cfqq = next;
2716	}
2717}
2718
2719static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2720{
2721	if (unlikely(cfqq == cfqd->active_queue)) {
2722		__cfq_slice_expired(cfqd, cfqq, 0);
2723		cfq_schedule_dispatch(cfqd);
2724	}
2725
2726	cfq_put_cooperator(cfqq);
2727
2728	cfq_put_queue(cfqq);
2729}
2730
2731static void cfq_init_icq(struct io_cq *icq)
2732{
2733	struct cfq_io_cq *cic = icq_to_cic(icq);
2734
2735	cic->ttime.last_end_request = jiffies;
2736}
2737
2738static void cfq_exit_icq(struct io_cq *icq)
2739{
2740	struct cfq_io_cq *cic = icq_to_cic(icq);
2741	struct cfq_data *cfqd = cic_to_cfqd(cic);
2742
2743	if (cic->cfqq[BLK_RW_ASYNC]) {
2744		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2745		cic->cfqq[BLK_RW_ASYNC] = NULL;
2746	}
2747
2748	if (cic->cfqq[BLK_RW_SYNC]) {
2749		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2750		cic->cfqq[BLK_RW_SYNC] = NULL;
2751	}
2752}
2753
2754static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2755{
2756	struct task_struct *tsk = current;
2757	int ioprio_class;
2758
2759	if (!cfq_cfqq_prio_changed(cfqq))
2760		return;
2761
2762	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2763	switch (ioprio_class) {
2764	default:
2765		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2766	case IOPRIO_CLASS_NONE:
2767		/*
2768		 * no prio set, inherit CPU scheduling settings
2769		 */
2770		cfqq->ioprio = task_nice_ioprio(tsk);
2771		cfqq->ioprio_class = task_nice_ioclass(tsk);
2772		break;
2773	case IOPRIO_CLASS_RT:
2774		cfqq->ioprio = task_ioprio(ioc);
2775		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2776		break;
2777	case IOPRIO_CLASS_BE:
2778		cfqq->ioprio = task_ioprio(ioc);
2779		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2780		break;
2781	case IOPRIO_CLASS_IDLE:
2782		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2783		cfqq->ioprio = 7;
2784		cfq_clear_cfqq_idle_window(cfqq);
2785		break;
2786	}
2787
2788	/*
2789	 * keep track of original prio settings in case we have to temporarily
2790	 * elevate the priority of this queue
2791	 */
2792	cfqq->org_ioprio = cfqq->ioprio;
2793	cfq_clear_cfqq_prio_changed(cfqq);
2794}
2795
2796static void changed_ioprio(struct cfq_io_cq *cic)
2797{
2798	struct cfq_data *cfqd = cic_to_cfqd(cic);
2799	struct cfq_queue *cfqq;
2800
2801	if (unlikely(!cfqd))
2802		return;
2803
2804	cfqq = cic->cfqq[BLK_RW_ASYNC];
2805	if (cfqq) {
2806		struct cfq_queue *new_cfqq;
2807		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2808						GFP_ATOMIC);
2809		if (new_cfqq) {
2810			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2811			cfq_put_queue(cfqq);
2812		}
2813	}
2814
2815	cfqq = cic->cfqq[BLK_RW_SYNC];
2816	if (cfqq)
2817		cfq_mark_cfqq_prio_changed(cfqq);
2818}
2819
2820static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2821			  pid_t pid, bool is_sync)
2822{
2823	RB_CLEAR_NODE(&cfqq->rb_node);
2824	RB_CLEAR_NODE(&cfqq->p_node);
2825	INIT_LIST_HEAD(&cfqq->fifo);
2826
2827	cfqq->ref = 0;
2828	cfqq->cfqd = cfqd;
2829
2830	cfq_mark_cfqq_prio_changed(cfqq);
2831
2832	if (is_sync) {
2833		if (!cfq_class_idle(cfqq))
2834			cfq_mark_cfqq_idle_window(cfqq);
2835		cfq_mark_cfqq_sync(cfqq);
2836	}
2837	cfqq->pid = pid;
2838}
2839
2840#ifdef CONFIG_CFQ_GROUP_IOSCHED
2841static void changed_cgroup(struct cfq_io_cq *cic)
2842{
2843	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2844	struct cfq_data *cfqd = cic_to_cfqd(cic);
2845	struct request_queue *q;
2846
2847	if (unlikely(!cfqd))
2848		return;
2849
2850	q = cfqd->queue;
2851
2852	if (sync_cfqq) {
2853		/*
2854		 * Drop reference to sync queue. A new sync queue will be
2855		 * assigned in new group upon arrival of a fresh request.
2856		 */
2857		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2858		cic_set_cfqq(cic, NULL, 1);
2859		cfq_put_queue(sync_cfqq);
2860	}
2861}
2862#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2863
2864static struct cfq_queue *
2865cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2866		     struct io_context *ioc, gfp_t gfp_mask)
2867{
2868	struct cfq_queue *cfqq, *new_cfqq = NULL;
2869	struct cfq_io_cq *cic;
2870	struct cfq_group *cfqg;
2871
2872retry:
2873	cfqg = cfq_get_cfqg(cfqd);
2874	cic = cfq_cic_lookup(cfqd, ioc);
2875	/* cic always exists here */
2876	cfqq = cic_to_cfqq(cic, is_sync);
2877
2878	/*
2879	 * Always try a new alloc if we fell back to the OOM cfqq
2880	 * originally, since it should just be a temporary situation.
2881	 */
2882	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2883		cfqq = NULL;
2884		if (new_cfqq) {
2885			cfqq = new_cfqq;
2886			new_cfqq = NULL;
2887		} else if (gfp_mask & __GFP_WAIT) {
2888			spin_unlock_irq(cfqd->queue->queue_lock);
2889			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2890					gfp_mask | __GFP_ZERO,
2891					cfqd->queue->node);
2892			spin_lock_irq(cfqd->queue->queue_lock);
2893			if (new_cfqq)
2894				goto retry;
2895		} else {
2896			cfqq = kmem_cache_alloc_node(cfq_pool,
2897					gfp_mask | __GFP_ZERO,
2898					cfqd->queue->node);
2899		}
2900
2901		if (cfqq) {
2902			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2903			cfq_init_prio_data(cfqq, ioc);
2904			cfq_link_cfqq_cfqg(cfqq, cfqg);
2905			cfq_log_cfqq(cfqd, cfqq, "alloced");
2906		} else
2907			cfqq = &cfqd->oom_cfqq;
2908	}
2909
2910	if (new_cfqq)
2911		kmem_cache_free(cfq_pool, new_cfqq);
2912
2913	return cfqq;
2914}
2915
2916static struct cfq_queue **
2917cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2918{
2919	switch (ioprio_class) {
2920	case IOPRIO_CLASS_RT:
2921		return &cfqd->async_cfqq[0][ioprio];
2922	case IOPRIO_CLASS_BE:
2923		return &cfqd->async_cfqq[1][ioprio];
2924	case IOPRIO_CLASS_IDLE:
2925		return &cfqd->async_idle_cfqq;
2926	default:
2927		BUG();
2928	}
2929}
2930
2931static struct cfq_queue *
2932cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2933	      gfp_t gfp_mask)
2934{
2935	const int ioprio = task_ioprio(ioc);
2936	const int ioprio_class = task_ioprio_class(ioc);
2937	struct cfq_queue **async_cfqq = NULL;
2938	struct cfq_queue *cfqq = NULL;
2939
2940	if (!is_sync) {
2941		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2942		cfqq = *async_cfqq;
2943	}
2944
2945	if (!cfqq)
2946		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2947
2948	/*
2949	 * pin the queue now that it's allocated, scheduler exit will prune it
2950	 */
2951	if (!is_sync && !(*async_cfqq)) {
2952		cfqq->ref++;
2953		*async_cfqq = cfqq;
2954	}
2955
2956	cfqq->ref++;
2957	return cfqq;
2958}
2959
2960static void
2961__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2962{
2963	unsigned long elapsed = jiffies - ttime->last_end_request;
2964	elapsed = min(elapsed, 2UL * slice_idle);
2965
2966	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2967	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2968	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2969}
2970
2971static void
2972cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2973			struct cfq_io_cq *cic)
2974{
2975	if (cfq_cfqq_sync(cfqq)) {
2976		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2977		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2978			cfqd->cfq_slice_idle);
2979	}
2980#ifdef CONFIG_CFQ_GROUP_IOSCHED
2981	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2982#endif
2983}
2984
2985static void
2986cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2987		       struct request *rq)
2988{
2989	sector_t sdist = 0;
2990	sector_t n_sec = blk_rq_sectors(rq);
2991	if (cfqq->last_request_pos) {
2992		if (cfqq->last_request_pos < blk_rq_pos(rq))
2993			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2994		else
2995			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2996	}
2997
2998	cfqq->seek_history <<= 1;
2999	if (blk_queue_nonrot(cfqd->queue))
3000		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3001	else
3002		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3003}
3004
3005/*
3006 * Disable idle window if the process thinks too long or seeks so much that
3007 * it doesn't matter
3008 */
3009static void
3010cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3011		       struct cfq_io_cq *cic)
3012{
3013	int old_idle, enable_idle;
3014
3015	/*
3016	 * Don't idle for async or idle io prio class
3017	 */
3018	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3019		return;
3020
3021	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3022
3023	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3024		cfq_mark_cfqq_deep(cfqq);
3025
3026	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3027		enable_idle = 0;
3028	else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
3029		 !cfqd->cfq_slice_idle ||
3030		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3031		enable_idle = 0;
3032	else if (sample_valid(cic->ttime.ttime_samples)) {
3033		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3034			enable_idle = 0;
3035		else
3036			enable_idle = 1;
3037	}
3038
3039	if (old_idle != enable_idle) {
3040		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3041		if (enable_idle)
3042			cfq_mark_cfqq_idle_window(cfqq);
3043		else
3044			cfq_clear_cfqq_idle_window(cfqq);
3045	}
3046}
3047
3048/*
3049 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3050 * no or if we aren't sure, a 1 will cause a preempt.
3051 */
3052static bool
3053cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3054		   struct request *rq)
3055{
3056	struct cfq_queue *cfqq;
3057
3058	cfqq = cfqd->active_queue;
3059	if (!cfqq)
3060		return false;
3061
3062	if (cfq_class_idle(new_cfqq))
3063		return false;
3064
3065	if (cfq_class_idle(cfqq))
3066		return true;
3067
3068	/*
3069	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3070	 */
3071	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3072		return false;
3073
3074	/*
3075	 * if the new request is sync, but the currently running queue is
3076	 * not, let the sync request have priority.
3077	 */
3078	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3079		return true;
3080
3081	if (new_cfqq->cfqg != cfqq->cfqg)
3082		return false;
3083
3084	if (cfq_slice_used(cfqq))
3085		return true;
3086
3087	/* Allow preemption only if we are idling on sync-noidle tree */
3088	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3089	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3090	    new_cfqq->service_tree->count == 2 &&
3091	    RB_EMPTY_ROOT(&cfqq->sort_list))
3092		return true;
3093
3094	/*
3095	 * So both queues are sync. Let the new request get disk time if
3096	 * it's a metadata request and the current queue is doing regular IO.
3097	 */
3098	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3099		return true;
3100
3101	/*
3102	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3103	 */
3104	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3105		return true;
3106
3107	/* An idle queue should not be idle now for some reason */
3108	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3109		return true;
3110
3111	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3112		return false;
3113
3114	/*
3115	 * if this request is as-good as one we would expect from the
3116	 * current cfqq, let it preempt
3117	 */
3118	if (cfq_rq_close(cfqd, cfqq, rq))
3119		return true;
3120
3121	return false;
3122}
3123
3124/*
3125 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3126 * let it have half of its nominal slice.
3127 */
3128static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3129{
3130	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3131
3132	cfq_log_cfqq(cfqd, cfqq, "preempt");
3133	cfq_slice_expired(cfqd, 1);
3134
3135	/*
3136	 * workload type is changed, don't save slice, otherwise preempt
3137	 * doesn't happen
3138	 */
3139	if (old_type != cfqq_type(cfqq))
3140		cfqq->cfqg->saved_workload_slice = 0;
3141
3142	/*
3143	 * Put the new queue at the front of the of the current list,
3144	 * so we know that it will be selected next.
3145	 */
3146	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3147
3148	cfq_service_tree_add(cfqd, cfqq, 1);
3149
3150	cfqq->slice_end = 0;
3151	cfq_mark_cfqq_slice_new(cfqq);
3152}
3153
3154/*
3155 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3156 * something we should do about it
3157 */
3158static void
3159cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3160		struct request *rq)
3161{
3162	struct cfq_io_cq *cic = RQ_CIC(rq);
3163
3164	cfqd->rq_queued++;
3165	if (rq->cmd_flags & REQ_PRIO)
3166		cfqq->prio_pending++;
3167
3168	cfq_update_io_thinktime(cfqd, cfqq, cic);
3169	cfq_update_io_seektime(cfqd, cfqq, rq);
3170	cfq_update_idle_window(cfqd, cfqq, cic);
3171
3172	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3173
3174	if (cfqq == cfqd->active_queue) {
3175		/*
3176		 * Remember that we saw a request from this process, but
3177		 * don't start queuing just yet. Otherwise we risk seeing lots
3178		 * of tiny requests, because we disrupt the normal plugging
3179		 * and merging. If the request is already larger than a single
3180		 * page, let it rip immediately. For that case we assume that
3181		 * merging is already done. Ditto for a busy system that
3182		 * has other work pending, don't risk delaying until the
3183		 * idle timer unplug to continue working.
3184		 */
3185		if (cfq_cfqq_wait_request(cfqq)) {
3186			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3187			    cfqd->busy_queues > 1) {
3188				cfq_del_timer(cfqd, cfqq);
3189				cfq_clear_cfqq_wait_request(cfqq);
3190				__blk_run_queue(cfqd->queue);
3191			} else {
3192				cfq_blkiocg_update_idle_time_stats(
3193						&cfqq->cfqg->blkg);
3194				cfq_mark_cfqq_must_dispatch(cfqq);
3195			}
3196		}
3197	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3198		/*
3199		 * not the active queue - expire current slice if it is
3200		 * idle and has expired it's mean thinktime or this new queue
3201		 * has some old slice time left and is of higher priority or
3202		 * this new queue is RT and the current one is BE
3203		 */
3204		cfq_preempt_queue(cfqd, cfqq);
3205		__blk_run_queue(cfqd->queue);
3206	}
3207}
3208
3209static void cfq_insert_request(struct request_queue *q, struct request *rq)
3210{
3211	struct cfq_data *cfqd = q->elevator->elevator_data;
3212	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3213
3214	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3215	cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3216
3217	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3218	list_add_tail(&rq->queuelist, &cfqq->fifo);
3219	cfq_add_rq_rb(rq);
3220	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3221			&cfqd->serving_group->blkg, rq_data_dir(rq),
3222			rq_is_sync(rq));
3223	cfq_rq_enqueued(cfqd, cfqq, rq);
3224}
3225
3226/*
3227 * Update hw_tag based on peak queue depth over 50 samples under
3228 * sufficient load.
3229 */
3230static void cfq_update_hw_tag(struct cfq_data *cfqd)
3231{
3232	struct cfq_queue *cfqq = cfqd->active_queue;
3233
3234	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3235		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3236
3237	if (cfqd->hw_tag == 1)
3238		return;
3239
3240	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3241	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3242		return;
3243
3244	/*
3245	 * If active queue hasn't enough requests and can idle, cfq might not
3246	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3247	 * case
3248	 */
3249	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3250	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3251	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3252		return;
3253
3254	if (cfqd->hw_tag_samples++ < 50)
3255		return;
3256
3257	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3258		cfqd->hw_tag = 1;
3259	else
3260		cfqd->hw_tag = 0;
3261}
3262
3263static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3264{
3265	struct cfq_io_cq *cic = cfqd->active_cic;
3266
3267	/* If the queue already has requests, don't wait */
3268	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3269		return false;
3270
3271	/* If there are other queues in the group, don't wait */
3272	if (cfqq->cfqg->nr_cfqq > 1)
3273		return false;
3274
3275	/* the only queue in the group, but think time is big */
3276	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3277		return false;
3278
3279	if (cfq_slice_used(cfqq))
3280		return true;
3281
3282	/* if slice left is less than think time, wait busy */
3283	if (cic && sample_valid(cic->ttime.ttime_samples)
3284	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3285		return true;
3286
3287	/*
3288	 * If think times is less than a jiffy than ttime_mean=0 and above
3289	 * will not be true. It might happen that slice has not expired yet
3290	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3291	 * case where think time is less than a jiffy, mark the queue wait
3292	 * busy if only 1 jiffy is left in the slice.
3293	 */
3294	if (cfqq->slice_end - jiffies == 1)
3295		return true;
3296
3297	return false;
3298}
3299
3300static void cfq_completed_request(struct request_queue *q, struct request *rq)
3301{
3302	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3303	struct cfq_data *cfqd = cfqq->cfqd;
3304	const int sync = rq_is_sync(rq);
3305	unsigned long now;
3306
3307	now = jiffies;
3308	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3309		     !!(rq->cmd_flags & REQ_NOIDLE));
3310
3311	cfq_update_hw_tag(cfqd);
3312
3313	WARN_ON(!cfqd->rq_in_driver);
3314	WARN_ON(!cfqq->dispatched);
3315	cfqd->rq_in_driver--;
3316	cfqq->dispatched--;
3317	(RQ_CFQG(rq))->dispatched--;
3318	cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3319			rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3320			rq_data_dir(rq), rq_is_sync(rq));
3321
3322	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3323
3324	if (sync) {
3325		struct cfq_rb_root *service_tree;
3326
3327		RQ_CIC(rq)->ttime.last_end_request = now;
3328
3329		if (cfq_cfqq_on_rr(cfqq))
3330			service_tree = cfqq->service_tree;
3331		else
3332			service_tree = service_tree_for(cfqq->cfqg,
3333				cfqq_prio(cfqq), cfqq_type(cfqq));
3334		service_tree->ttime.last_end_request = now;
3335		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3336			cfqd->last_delayed_sync = now;
3337	}
3338
3339#ifdef CONFIG_CFQ_GROUP_IOSCHED
3340	cfqq->cfqg->ttime.last_end_request = now;
3341#endif
3342
3343	/*
3344	 * If this is the active queue, check if it needs to be expired,
3345	 * or if we want to idle in case it has no pending requests.
3346	 */
3347	if (cfqd->active_queue == cfqq) {
3348		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3349
3350		if (cfq_cfqq_slice_new(cfqq)) {
3351			cfq_set_prio_slice(cfqd, cfqq);
3352			cfq_clear_cfqq_slice_new(cfqq);
3353		}
3354
3355		/*
3356		 * Should we wait for next request to come in before we expire
3357		 * the queue.
3358		 */
3359		if (cfq_should_wait_busy(cfqd, cfqq)) {
3360			unsigned long extend_sl = cfqd->cfq_slice_idle;
3361			if (!cfqd->cfq_slice_idle)
3362				extend_sl = cfqd->cfq_group_idle;
3363			cfqq->slice_end = jiffies + extend_sl;
3364			cfq_mark_cfqq_wait_busy(cfqq);
3365			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3366		}
3367
3368		/*
3369		 * Idling is not enabled on:
3370		 * - expired queues
3371		 * - idle-priority queues
3372		 * - async queues
3373		 * - queues with still some requests queued
3374		 * - when there is a close cooperator
3375		 */
3376		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3377			cfq_slice_expired(cfqd, 1);
3378		else if (sync && cfqq_empty &&
3379			 !cfq_close_cooperator(cfqd, cfqq)) {
3380			cfq_arm_slice_timer(cfqd);
3381		}
3382	}
3383
3384	if (!cfqd->rq_in_driver)
3385		cfq_schedule_dispatch(cfqd);
3386}
3387
3388static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3389{
3390	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3391		cfq_mark_cfqq_must_alloc_slice(cfqq);
3392		return ELV_MQUEUE_MUST;
3393	}
3394
3395	return ELV_MQUEUE_MAY;
3396}
3397
3398static int cfq_may_queue(struct request_queue *q, int rw)
3399{
3400	struct cfq_data *cfqd = q->elevator->elevator_data;
3401	struct task_struct *tsk = current;
3402	struct cfq_io_cq *cic;
3403	struct cfq_queue *cfqq;
3404
3405	/*
3406	 * don't force setup of a queue from here, as a call to may_queue
3407	 * does not necessarily imply that a request actually will be queued.
3408	 * so just lookup a possibly existing queue, or return 'may queue'
3409	 * if that fails
3410	 */
3411	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3412	if (!cic)
3413		return ELV_MQUEUE_MAY;
3414
3415	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3416	if (cfqq) {
3417		cfq_init_prio_data(cfqq, cic->icq.ioc);
3418
3419		return __cfq_may_queue(cfqq);
3420	}
3421
3422	return ELV_MQUEUE_MAY;
3423}
3424
3425/*
3426 * queue lock held here
3427 */
3428static void cfq_put_request(struct request *rq)
3429{
3430	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3431
3432	if (cfqq) {
3433		const int rw = rq_data_dir(rq);
3434
3435		BUG_ON(!cfqq->allocated[rw]);
3436		cfqq->allocated[rw]--;
3437
3438		/* Put down rq reference on cfqg */
3439		cfq_put_cfqg(RQ_CFQG(rq));
3440		rq->elv.priv[0] = NULL;
3441		rq->elv.priv[1] = NULL;
3442
3443		cfq_put_queue(cfqq);
3444	}
3445}
3446
3447static struct cfq_queue *
3448cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3449		struct cfq_queue *cfqq)
3450{
3451	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3452	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3453	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3454	cfq_put_queue(cfqq);
3455	return cic_to_cfqq(cic, 1);
3456}
3457
3458/*
3459 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3460 * was the last process referring to said cfqq.
3461 */
3462static struct cfq_queue *
3463split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3464{
3465	if (cfqq_process_refs(cfqq) == 1) {
3466		cfqq->pid = current->pid;
3467		cfq_clear_cfqq_coop(cfqq);
3468		cfq_clear_cfqq_split_coop(cfqq);
3469		return cfqq;
3470	}
3471
3472	cic_set_cfqq(cic, NULL, 1);
3473
3474	cfq_put_cooperator(cfqq);
3475
3476	cfq_put_queue(cfqq);
3477	return NULL;
3478}
3479/*
3480 * Allocate cfq data structures associated with this request.
3481 */
3482static int
3483cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3484{
3485	struct cfq_data *cfqd = q->elevator->elevator_data;
3486	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3487	const int rw = rq_data_dir(rq);
3488	const bool is_sync = rq_is_sync(rq);
3489	struct cfq_queue *cfqq;
3490	unsigned int changed;
3491
3492	might_sleep_if(gfp_mask & __GFP_WAIT);
3493
3494	spin_lock_irq(q->queue_lock);
3495
3496	/* handle changed notifications */
3497	changed = icq_get_changed(&cic->icq);
3498	if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3499		changed_ioprio(cic);
3500#ifdef CONFIG_CFQ_GROUP_IOSCHED
3501	if (unlikely(changed & ICQ_CGROUP_CHANGED))
3502		changed_cgroup(cic);
3503#endif
3504
3505new_queue:
3506	cfqq = cic_to_cfqq(cic, is_sync);
3507	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3508		cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3509		cic_set_cfqq(cic, cfqq, is_sync);
3510	} else {
3511		/*
3512		 * If the queue was seeky for too long, break it apart.
3513		 */
3514		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3515			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3516			cfqq = split_cfqq(cic, cfqq);
3517			if (!cfqq)
3518				goto new_queue;
3519		}
3520
3521		/*
3522		 * Check to see if this queue is scheduled to merge with
3523		 * another, closely cooperating queue.  The merging of
3524		 * queues happens here as it must be done in process context.
3525		 * The reference on new_cfqq was taken in merge_cfqqs.
3526		 */
3527		if (cfqq->new_cfqq)
3528			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3529	}
3530
3531	cfqq->allocated[rw]++;
3532
3533	cfqq->ref++;
3534	rq->elv.priv[0] = cfqq;
3535	rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3536	spin_unlock_irq(q->queue_lock);
3537	return 0;
3538}
3539
3540static void cfq_kick_queue(struct work_struct *work)
3541{
3542	struct cfq_data *cfqd =
3543		container_of(work, struct cfq_data, unplug_work);
3544	struct request_queue *q = cfqd->queue;
3545
3546	spin_lock_irq(q->queue_lock);
3547	__blk_run_queue(cfqd->queue);
3548	spin_unlock_irq(q->queue_lock);
3549}
3550
3551/*
3552 * Timer running if the active_queue is currently idling inside its time slice
3553 */
3554static void cfq_idle_slice_timer(unsigned long data)
3555{
3556	struct cfq_data *cfqd = (struct cfq_data *) data;
3557	struct cfq_queue *cfqq;
3558	unsigned long flags;
3559	int timed_out = 1;
3560
3561	cfq_log(cfqd, "idle timer fired");
3562
3563	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3564
3565	cfqq = cfqd->active_queue;
3566	if (cfqq) {
3567		timed_out = 0;
3568
3569		/*
3570		 * We saw a request before the queue expired, let it through
3571		 */
3572		if (cfq_cfqq_must_dispatch(cfqq))
3573			goto out_kick;
3574
3575		/*
3576		 * expired
3577		 */
3578		if (cfq_slice_used(cfqq))
3579			goto expire;
3580
3581		/*
3582		 * only expire and reinvoke request handler, if there are
3583		 * other queues with pending requests
3584		 */
3585		if (!cfqd->busy_queues)
3586			goto out_cont;
3587
3588		/*
3589		 * not expired and it has a request pending, let it dispatch
3590		 */
3591		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3592			goto out_kick;
3593
3594		/*
3595		 * Queue depth flag is reset only when the idle didn't succeed
3596		 */
3597		cfq_clear_cfqq_deep(cfqq);
3598	}
3599expire:
3600	cfq_slice_expired(cfqd, timed_out);
3601out_kick:
3602	cfq_schedule_dispatch(cfqd);
3603out_cont:
3604	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3605}
3606
3607static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3608{
3609	del_timer_sync(&cfqd->idle_slice_timer);
3610	cancel_work_sync(&cfqd->unplug_work);
3611}
3612
3613static void cfq_put_async_queues(struct cfq_data *cfqd)
3614{
3615	int i;
3616
3617	for (i = 0; i < IOPRIO_BE_NR; i++) {
3618		if (cfqd->async_cfqq[0][i])
3619			cfq_put_queue(cfqd->async_cfqq[0][i]);
3620		if (cfqd->async_cfqq[1][i])
3621			cfq_put_queue(cfqd->async_cfqq[1][i]);
3622	}
3623
3624	if (cfqd->async_idle_cfqq)
3625		cfq_put_queue(cfqd->async_idle_cfqq);
3626}
3627
3628static void cfq_exit_queue(struct elevator_queue *e)
3629{
3630	struct cfq_data *cfqd = e->elevator_data;
3631	struct request_queue *q = cfqd->queue;
3632	bool wait = false;
3633
3634	cfq_shutdown_timer_wq(cfqd);
3635
3636	spin_lock_irq(q->queue_lock);
3637
3638	if (cfqd->active_queue)
3639		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3640
3641	cfq_put_async_queues(cfqd);
3642	cfq_release_cfq_groups(cfqd);
3643
3644	/*
3645	 * If there are groups which we could not unlink from blkcg list,
3646	 * wait for a rcu period for them to be freed.
3647	 */
3648	if (cfqd->nr_blkcg_linked_grps)
3649		wait = true;
3650
3651	spin_unlock_irq(q->queue_lock);
3652
3653	cfq_shutdown_timer_wq(cfqd);
3654
3655	/*
3656	 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3657	 * Do this wait only if there are other unlinked groups out
3658	 * there. This can happen if cgroup deletion path claimed the
3659	 * responsibility of cleaning up a group before queue cleanup code
3660	 * get to the group.
3661	 *
3662	 * Do not call synchronize_rcu() unconditionally as there are drivers
3663	 * which create/delete request queue hundreds of times during scan/boot
3664	 * and synchronize_rcu() can take significant time and slow down boot.
3665	 */
3666	if (wait)
3667		synchronize_rcu();
3668
3669#ifdef CONFIG_CFQ_GROUP_IOSCHED
3670	/* Free up per cpu stats for root group */
3671	free_percpu(cfqd->root_group.blkg.stats_cpu);
3672#endif
3673	kfree(cfqd);
3674}
3675
3676static int cfq_init_queue(struct request_queue *q)
3677{
3678	struct cfq_data *cfqd;
3679	int i, j;
3680	struct cfq_group *cfqg;
3681	struct cfq_rb_root *st;
3682
3683	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3684	if (!cfqd)
3685		return -ENOMEM;
3686
3687	/* Init root service tree */
3688	cfqd->grp_service_tree = CFQ_RB_ROOT;
3689
3690	/* Init root group */
3691	cfqg = &cfqd->root_group;
3692	for_each_cfqg_st(cfqg, i, j, st)
3693		*st = CFQ_RB_ROOT;
3694	RB_CLEAR_NODE(&cfqg->rb_node);
3695
3696	/* Give preference to root group over other groups */
3697	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3698
3699#ifdef CONFIG_CFQ_GROUP_IOSCHED
3700	/*
3701	 * Set root group reference to 2. One reference will be dropped when
3702	 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3703	 * Other reference will remain there as we don't want to delete this
3704	 * group as it is statically allocated and gets destroyed when
3705	 * throtl_data goes away.
3706	 */
3707	cfqg->ref = 2;
3708
3709	if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3710		kfree(cfqg);
3711		kfree(cfqd);
3712		return -ENOMEM;
3713	}
3714
3715	rcu_read_lock();
3716
3717	cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3718					(void *)cfqd, 0);
3719	rcu_read_unlock();
3720	cfqd->nr_blkcg_linked_grps++;
3721
3722	/* Add group on cfqd->cfqg_list */
3723	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
3724#endif
3725	/*
3726	 * Not strictly needed (since RB_ROOT just clears the node and we
3727	 * zeroed cfqd on alloc), but better be safe in case someone decides
3728	 * to add magic to the rb code
3729	 */
3730	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3731		cfqd->prio_trees[i] = RB_ROOT;
3732
3733	/*
3734	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3735	 * Grab a permanent reference to it, so that the normal code flow
3736	 * will not attempt to free it.
3737	 */
3738	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3739	cfqd->oom_cfqq.ref++;
3740	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3741
3742	cfqd->queue = q;
3743	q->elevator->elevator_data = cfqd;
3744
3745	init_timer(&cfqd->idle_slice_timer);
3746	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3747	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3748
3749	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3750
3751	cfqd->cfq_quantum = cfq_quantum;
3752	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3753	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3754	cfqd->cfq_back_max = cfq_back_max;
3755	cfqd->cfq_back_penalty = cfq_back_penalty;
3756	cfqd->cfq_slice[0] = cfq_slice_async;
3757	cfqd->cfq_slice[1] = cfq_slice_sync;
3758	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3759	cfqd->cfq_slice_idle = cfq_slice_idle;
3760	cfqd->cfq_group_idle = cfq_group_idle;
3761	cfqd->cfq_latency = 1;
3762	cfqd->hw_tag = -1;
3763	/*
3764	 * we optimistically start assuming sync ops weren't delayed in last
3765	 * second, in order to have larger depth for async operations.
3766	 */
3767	cfqd->last_delayed_sync = jiffies - HZ;
3768	return 0;
3769}
3770
3771/*
3772 * sysfs parts below -->
3773 */
3774static ssize_t
3775cfq_var_show(unsigned int var, char *page)
3776{
3777	return sprintf(page, "%d\n", var);
3778}
3779
3780static ssize_t
3781cfq_var_store(unsigned int *var, const char *page, size_t count)
3782{
3783	char *p = (char *) page;
3784
3785	*var = simple_strtoul(p, &p, 10);
3786	return count;
3787}
3788
3789#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3790static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3791{									\
3792	struct cfq_data *cfqd = e->elevator_data;			\
3793	unsigned int __data = __VAR;					\
3794	if (__CONV)							\
3795		__data = jiffies_to_msecs(__data);			\
3796	return cfq_var_show(__data, (page));				\
3797}
3798SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3799SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3800SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3801SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3802SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3803SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3804SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3805SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3806SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3807SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3808SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3809#undef SHOW_FUNCTION
3810
3811#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3812static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3813{									\
3814	struct cfq_data *cfqd = e->elevator_data;			\
3815	unsigned int __data;						\
3816	int ret = cfq_var_store(&__data, (page), count);		\
3817	if (__data < (MIN))						\
3818		__data = (MIN);						\
3819	else if (__data > (MAX))					\
3820		__data = (MAX);						\
3821	if (__CONV)							\
3822		*(__PTR) = msecs_to_jiffies(__data);			\
3823	else								\
3824		*(__PTR) = __data;					\
3825	return ret;							\
3826}
3827STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3828STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3829		UINT_MAX, 1);
3830STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3831		UINT_MAX, 1);
3832STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3833STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3834		UINT_MAX, 0);
3835STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3836STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3837STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3838STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3839STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3840		UINT_MAX, 0);
3841STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3842#undef STORE_FUNCTION
3843
3844#define CFQ_ATTR(name) \
3845	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3846
3847static struct elv_fs_entry cfq_attrs[] = {
3848	CFQ_ATTR(quantum),
3849	CFQ_ATTR(fifo_expire_sync),
3850	CFQ_ATTR(fifo_expire_async),
3851	CFQ_ATTR(back_seek_max),
3852	CFQ_ATTR(back_seek_penalty),
3853	CFQ_ATTR(slice_sync),
3854	CFQ_ATTR(slice_async),
3855	CFQ_ATTR(slice_async_rq),
3856	CFQ_ATTR(slice_idle),
3857	CFQ_ATTR(group_idle),
3858	CFQ_ATTR(low_latency),
3859	__ATTR_NULL
3860};
3861
3862static struct elevator_type iosched_cfq = {
3863	.ops = {
3864		.elevator_merge_fn = 		cfq_merge,
3865		.elevator_merged_fn =		cfq_merged_request,
3866		.elevator_merge_req_fn =	cfq_merged_requests,
3867		.elevator_allow_merge_fn =	cfq_allow_merge,
3868		.elevator_bio_merged_fn =	cfq_bio_merged,
3869		.elevator_dispatch_fn =		cfq_dispatch_requests,
3870		.elevator_add_req_fn =		cfq_insert_request,
3871		.elevator_activate_req_fn =	cfq_activate_request,
3872		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3873		.elevator_completed_req_fn =	cfq_completed_request,
3874		.elevator_former_req_fn =	elv_rb_former_request,
3875		.elevator_latter_req_fn =	elv_rb_latter_request,
3876		.elevator_init_icq_fn =		cfq_init_icq,
3877		.elevator_exit_icq_fn =		cfq_exit_icq,
3878		.elevator_set_req_fn =		cfq_set_request,
3879		.elevator_put_req_fn =		cfq_put_request,
3880		.elevator_may_queue_fn =	cfq_may_queue,
3881		.elevator_init_fn =		cfq_init_queue,
3882		.elevator_exit_fn =		cfq_exit_queue,
3883	},
3884	.icq_size	=	sizeof(struct cfq_io_cq),
3885	.icq_align	=	__alignof__(struct cfq_io_cq),
3886	.elevator_attrs =	cfq_attrs,
3887	.elevator_name	=	"cfq",
3888	.elevator_owner =	THIS_MODULE,
3889};
3890
3891#ifdef CONFIG_CFQ_GROUP_IOSCHED
3892static struct blkio_policy_type blkio_policy_cfq = {
3893	.ops = {
3894		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
3895		.blkio_clear_queue_fn = cfq_clear_queue,
3896		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
3897	},
3898	.plid = BLKIO_POLICY_PROP,
3899};
3900#endif
3901
3902static int __init cfq_init(void)
3903{
3904	int ret;
3905
3906	/*
3907	 * could be 0 on HZ < 1000 setups
3908	 */
3909	if (!cfq_slice_async)
3910		cfq_slice_async = 1;
3911	if (!cfq_slice_idle)
3912		cfq_slice_idle = 1;
3913
3914#ifdef CONFIG_CFQ_GROUP_IOSCHED
3915	if (!cfq_group_idle)
3916		cfq_group_idle = 1;
3917#else
3918		cfq_group_idle = 0;
3919#endif
3920	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3921	if (!cfq_pool)
3922		return -ENOMEM;
3923
3924	ret = elv_register(&iosched_cfq);
3925	if (ret) {
3926		kmem_cache_destroy(cfq_pool);
3927		return ret;
3928	}
3929
3930#ifdef CONFIG_CFQ_GROUP_IOSCHED
3931	blkio_policy_register(&blkio_policy_cfq);
3932#endif
3933	return 0;
3934}
3935
3936static void __exit cfq_exit(void)
3937{
3938#ifdef CONFIG_CFQ_GROUP_IOSCHED
3939	blkio_policy_unregister(&blkio_policy_cfq);
3940#endif
3941	elv_unregister(&iosched_cfq);
3942	kmem_cache_destroy(cfq_pool);
3943}
3944
3945module_init(cfq_init);
3946module_exit(cfq_exit);
3947
3948MODULE_AUTHOR("Jens Axboe");
3949MODULE_LICENSE("GPL");
3950MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3951