cfq-iosched.c revision 73e9ffdd0cc8159f876d5e29ecf2d9c1bfca544f
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16#include "blk-cgroup.h"
17
18/*
19 * tunables
20 */
21/* max queue in one round of service */
22static const int cfq_quantum = 8;
23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
28static const int cfq_slice_sync = HZ / 10;
29static int cfq_slice_async = HZ / 25;
30static const int cfq_slice_async_rq = 2;
31static int cfq_slice_idle = HZ / 125;
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
34
35/*
36 * offset from end of service tree
37 */
38#define CFQ_IDLE_DELAY		(HZ / 5)
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT		(2)
44
45#define CFQ_SLICE_SCALE		(5)
46#define CFQ_HW_QUEUE_MIN	(5)
47#define CFQ_SERVICE_SHIFT       12
48
49#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
50#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
51#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
52
53#define RQ_CIC(rq)		\
54	((struct cfq_io_context *) (rq)->elevator_private)
55#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
56
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
59
60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61static struct completion *ioc_gone;
62static DEFINE_SPINLOCK(ioc_gone_lock);
63
64#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
65#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68#define sample_valid(samples)	((samples) > 80)
69#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
70
71/*
72 * Most of our rbtree usage is for sorting with min extraction, so
73 * if we cache the leftmost node we don't have to walk down the tree
74 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
75 * move this into the elevator for the rq sorting as well.
76 */
77struct cfq_rb_root {
78	struct rb_root rb;
79	struct rb_node *left;
80	unsigned count;
81	unsigned total_weight;
82	u64 min_vdisktime;
83	struct rb_node *active;
84};
85#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
86			.count = 0, .min_vdisktime = 0, }
87
88/*
89 * Per process-grouping structure
90 */
91struct cfq_queue {
92	/* reference count */
93	atomic_t ref;
94	/* various state flags, see below */
95	unsigned int flags;
96	/* parent cfq_data */
97	struct cfq_data *cfqd;
98	/* service_tree member */
99	struct rb_node rb_node;
100	/* service_tree key */
101	unsigned long rb_key;
102	/* prio tree member */
103	struct rb_node p_node;
104	/* prio tree root we belong to, if any */
105	struct rb_root *p_root;
106	/* sorted list of pending requests */
107	struct rb_root sort_list;
108	/* if fifo isn't expired, next request to serve */
109	struct request *next_rq;
110	/* requests queued in sort_list */
111	int queued[2];
112	/* currently allocated requests */
113	int allocated[2];
114	/* fifo list of requests in sort_list */
115	struct list_head fifo;
116
117	/* time when queue got scheduled in to dispatch first request. */
118	unsigned long dispatch_start;
119	unsigned int allocated_slice;
120	unsigned int slice_dispatch;
121	/* time when first request from queue completed and slice started. */
122	unsigned long slice_start;
123	unsigned long slice_end;
124	long slice_resid;
125
126	/* pending metadata requests */
127	int meta_pending;
128	/* number of requests that are on the dispatch list or inside driver */
129	int dispatched;
130
131	/* io prio of this group */
132	unsigned short ioprio, org_ioprio;
133	unsigned short ioprio_class, org_ioprio_class;
134
135	pid_t pid;
136
137	u32 seek_history;
138	sector_t last_request_pos;
139
140	struct cfq_rb_root *service_tree;
141	struct cfq_queue *new_cfqq;
142	struct cfq_group *cfqg;
143	struct cfq_group *orig_cfqg;
144	/* Sectors dispatched in current dispatch round */
145	unsigned long nr_sectors;
146};
147
148/*
149 * First index in the service_trees.
150 * IDLE is handled separately, so it has negative index
151 */
152enum wl_prio_t {
153	BE_WORKLOAD = 0,
154	RT_WORKLOAD = 1,
155	IDLE_WORKLOAD = 2,
156};
157
158/*
159 * Second index in the service_trees.
160 */
161enum wl_type_t {
162	ASYNC_WORKLOAD = 0,
163	SYNC_NOIDLE_WORKLOAD = 1,
164	SYNC_WORKLOAD = 2
165};
166
167/* This is per cgroup per device grouping structure */
168struct cfq_group {
169	/* group service_tree member */
170	struct rb_node rb_node;
171
172	/* group service_tree key */
173	u64 vdisktime;
174	unsigned int weight;
175	bool on_st;
176
177	/* number of cfqq currently on this group */
178	int nr_cfqq;
179
180	/* Per group busy queus average. Useful for workload slice calc. */
181	unsigned int busy_queues_avg[2];
182	/*
183	 * rr lists of queues with requests, onle rr for each priority class.
184	 * Counts are embedded in the cfq_rb_root
185	 */
186	struct cfq_rb_root service_trees[2][3];
187	struct cfq_rb_root service_tree_idle;
188
189	unsigned long saved_workload_slice;
190	enum wl_type_t saved_workload;
191	enum wl_prio_t saved_serving_prio;
192	struct blkio_group blkg;
193#ifdef CONFIG_CFQ_GROUP_IOSCHED
194	struct hlist_node cfqd_node;
195	atomic_t ref;
196#endif
197};
198
199/*
200 * Per block device queue structure
201 */
202struct cfq_data {
203	struct request_queue *queue;
204	/* Root service tree for cfq_groups */
205	struct cfq_rb_root grp_service_tree;
206	struct cfq_group root_group;
207
208	/*
209	 * The priority currently being served
210	 */
211	enum wl_prio_t serving_prio;
212	enum wl_type_t serving_type;
213	unsigned long workload_expires;
214	struct cfq_group *serving_group;
215	bool noidle_tree_requires_idle;
216
217	/*
218	 * Each priority tree is sorted by next_request position.  These
219	 * trees are used when determining if two or more queues are
220	 * interleaving requests (see cfq_close_cooperator).
221	 */
222	struct rb_root prio_trees[CFQ_PRIO_LISTS];
223
224	unsigned int busy_queues;
225
226	int rq_in_driver;
227	int rq_in_flight[2];
228
229	/*
230	 * queue-depth detection
231	 */
232	int rq_queued;
233	int hw_tag;
234	/*
235	 * hw_tag can be
236	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
237	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
238	 *  0 => no NCQ
239	 */
240	int hw_tag_est_depth;
241	unsigned int hw_tag_samples;
242
243	/*
244	 * idle window management
245	 */
246	struct timer_list idle_slice_timer;
247	struct work_struct unplug_work;
248
249	struct cfq_queue *active_queue;
250	struct cfq_io_context *active_cic;
251
252	/*
253	 * async queue for each priority case
254	 */
255	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
256	struct cfq_queue *async_idle_cfqq;
257
258	sector_t last_position;
259
260	/*
261	 * tunables, see top of file
262	 */
263	unsigned int cfq_quantum;
264	unsigned int cfq_fifo_expire[2];
265	unsigned int cfq_back_penalty;
266	unsigned int cfq_back_max;
267	unsigned int cfq_slice[2];
268	unsigned int cfq_slice_async_rq;
269	unsigned int cfq_slice_idle;
270	unsigned int cfq_latency;
271	unsigned int cfq_group_isolation;
272
273	struct list_head cic_list;
274
275	/*
276	 * Fallback dummy cfqq for extreme OOM conditions
277	 */
278	struct cfq_queue oom_cfqq;
279
280	unsigned long last_delayed_sync;
281
282	/* List of cfq groups being managed on this device*/
283	struct hlist_head cfqg_list;
284	struct rcu_head rcu;
285};
286
287static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
288
289static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
290					    enum wl_prio_t prio,
291					    enum wl_type_t type)
292{
293	if (!cfqg)
294		return NULL;
295
296	if (prio == IDLE_WORKLOAD)
297		return &cfqg->service_tree_idle;
298
299	return &cfqg->service_trees[prio][type];
300}
301
302enum cfqq_state_flags {
303	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
304	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
305	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
306	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
307	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
308	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
309	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
310	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
311	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
312	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
313	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
314	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
315	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
316};
317
318#define CFQ_CFQQ_FNS(name)						\
319static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
320{									\
321	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
322}									\
323static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
324{									\
325	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
326}									\
327static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
328{									\
329	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
330}
331
332CFQ_CFQQ_FNS(on_rr);
333CFQ_CFQQ_FNS(wait_request);
334CFQ_CFQQ_FNS(must_dispatch);
335CFQ_CFQQ_FNS(must_alloc_slice);
336CFQ_CFQQ_FNS(fifo_expire);
337CFQ_CFQQ_FNS(idle_window);
338CFQ_CFQQ_FNS(prio_changed);
339CFQ_CFQQ_FNS(slice_new);
340CFQ_CFQQ_FNS(sync);
341CFQ_CFQQ_FNS(coop);
342CFQ_CFQQ_FNS(split_coop);
343CFQ_CFQQ_FNS(deep);
344CFQ_CFQQ_FNS(wait_busy);
345#undef CFQ_CFQQ_FNS
346
347#ifdef CONFIG_DEBUG_CFQ_IOSCHED
348#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
349	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
350			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
351			blkg_path(&(cfqq)->cfqg->blkg), ##args);
352
353#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
354	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
355				blkg_path(&(cfqg)->blkg), ##args);      \
356
357#else
358#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
359	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
360#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
361#endif
362#define cfq_log(cfqd, fmt, args...)	\
363	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
364
365/* Traverses through cfq group service trees */
366#define for_each_cfqg_st(cfqg, i, j, st) \
367	for (i = 0; i <= IDLE_WORKLOAD; i++) \
368		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
369			: &cfqg->service_tree_idle; \
370			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
371			(i == IDLE_WORKLOAD && j == 0); \
372			j++, st = i < IDLE_WORKLOAD ? \
373			&cfqg->service_trees[i][j]: NULL) \
374
375
376static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
377{
378	if (cfq_class_idle(cfqq))
379		return IDLE_WORKLOAD;
380	if (cfq_class_rt(cfqq))
381		return RT_WORKLOAD;
382	return BE_WORKLOAD;
383}
384
385
386static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
387{
388	if (!cfq_cfqq_sync(cfqq))
389		return ASYNC_WORKLOAD;
390	if (!cfq_cfqq_idle_window(cfqq))
391		return SYNC_NOIDLE_WORKLOAD;
392	return SYNC_WORKLOAD;
393}
394
395static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
396					struct cfq_data *cfqd,
397					struct cfq_group *cfqg)
398{
399	if (wl == IDLE_WORKLOAD)
400		return cfqg->service_tree_idle.count;
401
402	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
403		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
404		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
405}
406
407static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
408					struct cfq_group *cfqg)
409{
410	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
411		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
412}
413
414static void cfq_dispatch_insert(struct request_queue *, struct request *);
415static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
416				       struct io_context *, gfp_t);
417static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
418						struct io_context *);
419
420static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
421					    bool is_sync)
422{
423	return cic->cfqq[is_sync];
424}
425
426static inline void cic_set_cfqq(struct cfq_io_context *cic,
427				struct cfq_queue *cfqq, bool is_sync)
428{
429	cic->cfqq[is_sync] = cfqq;
430}
431
432/*
433 * We regard a request as SYNC, if it's either a read or has the SYNC bit
434 * set (in which case it could also be direct WRITE).
435 */
436static inline bool cfq_bio_sync(struct bio *bio)
437{
438	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
439}
440
441/*
442 * scheduler run of queue, if there are requests pending and no one in the
443 * driver that will restart queueing
444 */
445static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
446{
447	if (cfqd->busy_queues) {
448		cfq_log(cfqd, "schedule dispatch");
449		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
450	}
451}
452
453static int cfq_queue_empty(struct request_queue *q)
454{
455	struct cfq_data *cfqd = q->elevator->elevator_data;
456
457	return !cfqd->rq_queued;
458}
459
460/*
461 * Scale schedule slice based on io priority. Use the sync time slice only
462 * if a queue is marked sync and has sync io queued. A sync queue with async
463 * io only, should not get full sync slice length.
464 */
465static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
466				 unsigned short prio)
467{
468	const int base_slice = cfqd->cfq_slice[sync];
469
470	WARN_ON(prio >= IOPRIO_BE_NR);
471
472	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
473}
474
475static inline int
476cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
477{
478	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
479}
480
481static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
482{
483	u64 d = delta << CFQ_SERVICE_SHIFT;
484
485	d = d * BLKIO_WEIGHT_DEFAULT;
486	do_div(d, cfqg->weight);
487	return d;
488}
489
490static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
491{
492	s64 delta = (s64)(vdisktime - min_vdisktime);
493	if (delta > 0)
494		min_vdisktime = vdisktime;
495
496	return min_vdisktime;
497}
498
499static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
500{
501	s64 delta = (s64)(vdisktime - min_vdisktime);
502	if (delta < 0)
503		min_vdisktime = vdisktime;
504
505	return min_vdisktime;
506}
507
508static void update_min_vdisktime(struct cfq_rb_root *st)
509{
510	u64 vdisktime = st->min_vdisktime;
511	struct cfq_group *cfqg;
512
513	if (st->active) {
514		cfqg = rb_entry_cfqg(st->active);
515		vdisktime = cfqg->vdisktime;
516	}
517
518	if (st->left) {
519		cfqg = rb_entry_cfqg(st->left);
520		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
521	}
522
523	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
524}
525
526/*
527 * get averaged number of queues of RT/BE priority.
528 * average is updated, with a formula that gives more weight to higher numbers,
529 * to quickly follows sudden increases and decrease slowly
530 */
531
532static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
533					struct cfq_group *cfqg, bool rt)
534{
535	unsigned min_q, max_q;
536	unsigned mult  = cfq_hist_divisor - 1;
537	unsigned round = cfq_hist_divisor / 2;
538	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
539
540	min_q = min(cfqg->busy_queues_avg[rt], busy);
541	max_q = max(cfqg->busy_queues_avg[rt], busy);
542	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
543		cfq_hist_divisor;
544	return cfqg->busy_queues_avg[rt];
545}
546
547static inline unsigned
548cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
549{
550	struct cfq_rb_root *st = &cfqd->grp_service_tree;
551
552	return cfq_target_latency * cfqg->weight / st->total_weight;
553}
554
555static inline void
556cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
557{
558	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
559	if (cfqd->cfq_latency) {
560		/*
561		 * interested queues (we consider only the ones with the same
562		 * priority class in the cfq group)
563		 */
564		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
565						cfq_class_rt(cfqq));
566		unsigned sync_slice = cfqd->cfq_slice[1];
567		unsigned expect_latency = sync_slice * iq;
568		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
569
570		if (expect_latency > group_slice) {
571			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
572			/* scale low_slice according to IO priority
573			 * and sync vs async */
574			unsigned low_slice =
575				min(slice, base_low_slice * slice / sync_slice);
576			/* the adapted slice value is scaled to fit all iqs
577			 * into the target latency */
578			slice = max(slice * group_slice / expect_latency,
579				    low_slice);
580		}
581	}
582	cfqq->slice_start = jiffies;
583	cfqq->slice_end = jiffies + slice;
584	cfqq->allocated_slice = slice;
585	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
586}
587
588/*
589 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
590 * isn't valid until the first request from the dispatch is activated
591 * and the slice time set.
592 */
593static inline bool cfq_slice_used(struct cfq_queue *cfqq)
594{
595	if (cfq_cfqq_slice_new(cfqq))
596		return 0;
597	if (time_before(jiffies, cfqq->slice_end))
598		return 0;
599
600	return 1;
601}
602
603/*
604 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
605 * We choose the request that is closest to the head right now. Distance
606 * behind the head is penalized and only allowed to a certain extent.
607 */
608static struct request *
609cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
610{
611	sector_t s1, s2, d1 = 0, d2 = 0;
612	unsigned long back_max;
613#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
614#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
615	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
616
617	if (rq1 == NULL || rq1 == rq2)
618		return rq2;
619	if (rq2 == NULL)
620		return rq1;
621
622	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
623		return rq1;
624	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
625		return rq2;
626	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
627		return rq1;
628	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
629		return rq2;
630
631	s1 = blk_rq_pos(rq1);
632	s2 = blk_rq_pos(rq2);
633
634	/*
635	 * by definition, 1KiB is 2 sectors
636	 */
637	back_max = cfqd->cfq_back_max * 2;
638
639	/*
640	 * Strict one way elevator _except_ in the case where we allow
641	 * short backward seeks which are biased as twice the cost of a
642	 * similar forward seek.
643	 */
644	if (s1 >= last)
645		d1 = s1 - last;
646	else if (s1 + back_max >= last)
647		d1 = (last - s1) * cfqd->cfq_back_penalty;
648	else
649		wrap |= CFQ_RQ1_WRAP;
650
651	if (s2 >= last)
652		d2 = s2 - last;
653	else if (s2 + back_max >= last)
654		d2 = (last - s2) * cfqd->cfq_back_penalty;
655	else
656		wrap |= CFQ_RQ2_WRAP;
657
658	/* Found required data */
659
660	/*
661	 * By doing switch() on the bit mask "wrap" we avoid having to
662	 * check two variables for all permutations: --> faster!
663	 */
664	switch (wrap) {
665	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
666		if (d1 < d2)
667			return rq1;
668		else if (d2 < d1)
669			return rq2;
670		else {
671			if (s1 >= s2)
672				return rq1;
673			else
674				return rq2;
675		}
676
677	case CFQ_RQ2_WRAP:
678		return rq1;
679	case CFQ_RQ1_WRAP:
680		return rq2;
681	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
682	default:
683		/*
684		 * Since both rqs are wrapped,
685		 * start with the one that's further behind head
686		 * (--> only *one* back seek required),
687		 * since back seek takes more time than forward.
688		 */
689		if (s1 <= s2)
690			return rq1;
691		else
692			return rq2;
693	}
694}
695
696/*
697 * The below is leftmost cache rbtree addon
698 */
699static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
700{
701	/* Service tree is empty */
702	if (!root->count)
703		return NULL;
704
705	if (!root->left)
706		root->left = rb_first(&root->rb);
707
708	if (root->left)
709		return rb_entry(root->left, struct cfq_queue, rb_node);
710
711	return NULL;
712}
713
714static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
715{
716	if (!root->left)
717		root->left = rb_first(&root->rb);
718
719	if (root->left)
720		return rb_entry_cfqg(root->left);
721
722	return NULL;
723}
724
725static void rb_erase_init(struct rb_node *n, struct rb_root *root)
726{
727	rb_erase(n, root);
728	RB_CLEAR_NODE(n);
729}
730
731static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
732{
733	if (root->left == n)
734		root->left = NULL;
735	rb_erase_init(n, &root->rb);
736	--root->count;
737}
738
739/*
740 * would be nice to take fifo expire time into account as well
741 */
742static struct request *
743cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
744		  struct request *last)
745{
746	struct rb_node *rbnext = rb_next(&last->rb_node);
747	struct rb_node *rbprev = rb_prev(&last->rb_node);
748	struct request *next = NULL, *prev = NULL;
749
750	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
751
752	if (rbprev)
753		prev = rb_entry_rq(rbprev);
754
755	if (rbnext)
756		next = rb_entry_rq(rbnext);
757	else {
758		rbnext = rb_first(&cfqq->sort_list);
759		if (rbnext && rbnext != &last->rb_node)
760			next = rb_entry_rq(rbnext);
761	}
762
763	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
764}
765
766static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
767				      struct cfq_queue *cfqq)
768{
769	/*
770	 * just an approximation, should be ok.
771	 */
772	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
773		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
774}
775
776static inline s64
777cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
778{
779	return cfqg->vdisktime - st->min_vdisktime;
780}
781
782static void
783__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
784{
785	struct rb_node **node = &st->rb.rb_node;
786	struct rb_node *parent = NULL;
787	struct cfq_group *__cfqg;
788	s64 key = cfqg_key(st, cfqg);
789	int left = 1;
790
791	while (*node != NULL) {
792		parent = *node;
793		__cfqg = rb_entry_cfqg(parent);
794
795		if (key < cfqg_key(st, __cfqg))
796			node = &parent->rb_left;
797		else {
798			node = &parent->rb_right;
799			left = 0;
800		}
801	}
802
803	if (left)
804		st->left = &cfqg->rb_node;
805
806	rb_link_node(&cfqg->rb_node, parent, node);
807	rb_insert_color(&cfqg->rb_node, &st->rb);
808}
809
810static void
811cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
812{
813	struct cfq_rb_root *st = &cfqd->grp_service_tree;
814	struct cfq_group *__cfqg;
815	struct rb_node *n;
816
817	cfqg->nr_cfqq++;
818	if (cfqg->on_st)
819		return;
820
821	/*
822	 * Currently put the group at the end. Later implement something
823	 * so that groups get lesser vtime based on their weights, so that
824	 * if group does not loose all if it was not continously backlogged.
825	 */
826	n = rb_last(&st->rb);
827	if (n) {
828		__cfqg = rb_entry_cfqg(n);
829		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
830	} else
831		cfqg->vdisktime = st->min_vdisktime;
832
833	__cfq_group_service_tree_add(st, cfqg);
834	cfqg->on_st = true;
835	st->total_weight += cfqg->weight;
836}
837
838static void
839cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
840{
841	struct cfq_rb_root *st = &cfqd->grp_service_tree;
842
843	if (st->active == &cfqg->rb_node)
844		st->active = NULL;
845
846	BUG_ON(cfqg->nr_cfqq < 1);
847	cfqg->nr_cfqq--;
848
849	/* If there are other cfq queues under this group, don't delete it */
850	if (cfqg->nr_cfqq)
851		return;
852
853	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
854	cfqg->on_st = false;
855	st->total_weight -= cfqg->weight;
856	if (!RB_EMPTY_NODE(&cfqg->rb_node))
857		cfq_rb_erase(&cfqg->rb_node, st);
858	cfqg->saved_workload_slice = 0;
859	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
860}
861
862static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
863{
864	unsigned int slice_used;
865
866	/*
867	 * Queue got expired before even a single request completed or
868	 * got expired immediately after first request completion.
869	 */
870	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
871		/*
872		 * Also charge the seek time incurred to the group, otherwise
873		 * if there are mutiple queues in the group, each can dispatch
874		 * a single request on seeky media and cause lots of seek time
875		 * and group will never know it.
876		 */
877		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
878					1);
879	} else {
880		slice_used = jiffies - cfqq->slice_start;
881		if (slice_used > cfqq->allocated_slice)
882			slice_used = cfqq->allocated_slice;
883	}
884
885	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
886				cfqq->nr_sectors);
887	return slice_used;
888}
889
890static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
891				struct cfq_queue *cfqq)
892{
893	struct cfq_rb_root *st = &cfqd->grp_service_tree;
894	unsigned int used_sl, charge_sl;
895	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
896			- cfqg->service_tree_idle.count;
897
898	BUG_ON(nr_sync < 0);
899	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
900
901	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
902		charge_sl = cfqq->allocated_slice;
903
904	/* Can't update vdisktime while group is on service tree */
905	cfq_rb_erase(&cfqg->rb_node, st);
906	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
907	__cfq_group_service_tree_add(st, cfqg);
908
909	/* This group is being expired. Save the context */
910	if (time_after(cfqd->workload_expires, jiffies)) {
911		cfqg->saved_workload_slice = cfqd->workload_expires
912						- jiffies;
913		cfqg->saved_workload = cfqd->serving_type;
914		cfqg->saved_serving_prio = cfqd->serving_prio;
915	} else
916		cfqg->saved_workload_slice = 0;
917
918	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
919					st->min_vdisktime);
920	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
921						cfqq->nr_sectors);
922}
923
924#ifdef CONFIG_CFQ_GROUP_IOSCHED
925static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
926{
927	if (blkg)
928		return container_of(blkg, struct cfq_group, blkg);
929	return NULL;
930}
931
932void
933cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
934{
935	cfqg_of_blkg(blkg)->weight = weight;
936}
937
938static struct cfq_group *
939cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
940{
941	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
942	struct cfq_group *cfqg = NULL;
943	void *key = cfqd;
944	int i, j;
945	struct cfq_rb_root *st;
946	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
947	unsigned int major, minor;
948
949	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
950	if (cfqg || !create)
951		goto done;
952
953	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
954	if (!cfqg)
955		goto done;
956
957	cfqg->weight = blkcg->weight;
958	for_each_cfqg_st(cfqg, i, j, st)
959		*st = CFQ_RB_ROOT;
960	RB_CLEAR_NODE(&cfqg->rb_node);
961
962	/*
963	 * Take the initial reference that will be released on destroy
964	 * This can be thought of a joint reference by cgroup and
965	 * elevator which will be dropped by either elevator exit
966	 * or cgroup deletion path depending on who is exiting first.
967	 */
968	atomic_set(&cfqg->ref, 1);
969
970	/* Add group onto cgroup list */
971	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
972	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
973					MKDEV(major, minor));
974
975	/* Add group on cfqd list */
976	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
977
978done:
979	return cfqg;
980}
981
982/*
983 * Search for the cfq group current task belongs to. If create = 1, then also
984 * create the cfq group if it does not exist. request_queue lock must be held.
985 */
986static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
987{
988	struct cgroup *cgroup;
989	struct cfq_group *cfqg = NULL;
990
991	rcu_read_lock();
992	cgroup = task_cgroup(current, blkio_subsys_id);
993	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
994	if (!cfqg && create)
995		cfqg = &cfqd->root_group;
996	rcu_read_unlock();
997	return cfqg;
998}
999
1000static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1001{
1002	/* Currently, all async queues are mapped to root group */
1003	if (!cfq_cfqq_sync(cfqq))
1004		cfqg = &cfqq->cfqd->root_group;
1005
1006	cfqq->cfqg = cfqg;
1007	/* cfqq reference on cfqg */
1008	atomic_inc(&cfqq->cfqg->ref);
1009}
1010
1011static void cfq_put_cfqg(struct cfq_group *cfqg)
1012{
1013	struct cfq_rb_root *st;
1014	int i, j;
1015
1016	BUG_ON(atomic_read(&cfqg->ref) <= 0);
1017	if (!atomic_dec_and_test(&cfqg->ref))
1018		return;
1019	for_each_cfqg_st(cfqg, i, j, st)
1020		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1021	kfree(cfqg);
1022}
1023
1024static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1025{
1026	/* Something wrong if we are trying to remove same group twice */
1027	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1028
1029	hlist_del_init(&cfqg->cfqd_node);
1030
1031	/*
1032	 * Put the reference taken at the time of creation so that when all
1033	 * queues are gone, group can be destroyed.
1034	 */
1035	cfq_put_cfqg(cfqg);
1036}
1037
1038static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1039{
1040	struct hlist_node *pos, *n;
1041	struct cfq_group *cfqg;
1042
1043	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1044		/*
1045		 * If cgroup removal path got to blk_group first and removed
1046		 * it from cgroup list, then it will take care of destroying
1047		 * cfqg also.
1048		 */
1049		if (!blkiocg_del_blkio_group(&cfqg->blkg))
1050			cfq_destroy_cfqg(cfqd, cfqg);
1051	}
1052}
1053
1054/*
1055 * Blk cgroup controller notification saying that blkio_group object is being
1056 * delinked as associated cgroup object is going away. That also means that
1057 * no new IO will come in this group. So get rid of this group as soon as
1058 * any pending IO in the group is finished.
1059 *
1060 * This function is called under rcu_read_lock(). key is the rcu protected
1061 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1062 * read lock.
1063 *
1064 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1065 * it should not be NULL as even if elevator was exiting, cgroup deltion
1066 * path got to it first.
1067 */
1068void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1069{
1070	unsigned long  flags;
1071	struct cfq_data *cfqd = key;
1072
1073	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1074	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1075	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1076}
1077
1078#else /* GROUP_IOSCHED */
1079static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1080{
1081	return &cfqd->root_group;
1082}
1083static inline void
1084cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1085	cfqq->cfqg = cfqg;
1086}
1087
1088static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1089static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1090
1091#endif /* GROUP_IOSCHED */
1092
1093/*
1094 * The cfqd->service_trees holds all pending cfq_queue's that have
1095 * requests waiting to be processed. It is sorted in the order that
1096 * we will service the queues.
1097 */
1098static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1099				 bool add_front)
1100{
1101	struct rb_node **p, *parent;
1102	struct cfq_queue *__cfqq;
1103	unsigned long rb_key;
1104	struct cfq_rb_root *service_tree;
1105	int left;
1106	int new_cfqq = 1;
1107	int group_changed = 0;
1108
1109#ifdef CONFIG_CFQ_GROUP_IOSCHED
1110	if (!cfqd->cfq_group_isolation
1111	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1112	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1113		/* Move this cfq to root group */
1114		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1115		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1116			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1117		cfqq->orig_cfqg = cfqq->cfqg;
1118		cfqq->cfqg = &cfqd->root_group;
1119		atomic_inc(&cfqd->root_group.ref);
1120		group_changed = 1;
1121	} else if (!cfqd->cfq_group_isolation
1122		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1123		/* cfqq is sequential now needs to go to its original group */
1124		BUG_ON(cfqq->cfqg != &cfqd->root_group);
1125		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1126			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1127		cfq_put_cfqg(cfqq->cfqg);
1128		cfqq->cfqg = cfqq->orig_cfqg;
1129		cfqq->orig_cfqg = NULL;
1130		group_changed = 1;
1131		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1132	}
1133#endif
1134
1135	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1136						cfqq_type(cfqq));
1137	if (cfq_class_idle(cfqq)) {
1138		rb_key = CFQ_IDLE_DELAY;
1139		parent = rb_last(&service_tree->rb);
1140		if (parent && parent != &cfqq->rb_node) {
1141			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1142			rb_key += __cfqq->rb_key;
1143		} else
1144			rb_key += jiffies;
1145	} else if (!add_front) {
1146		/*
1147		 * Get our rb key offset. Subtract any residual slice
1148		 * value carried from last service. A negative resid
1149		 * count indicates slice overrun, and this should position
1150		 * the next service time further away in the tree.
1151		 */
1152		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1153		rb_key -= cfqq->slice_resid;
1154		cfqq->slice_resid = 0;
1155	} else {
1156		rb_key = -HZ;
1157		__cfqq = cfq_rb_first(service_tree);
1158		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1159	}
1160
1161	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1162		new_cfqq = 0;
1163		/*
1164		 * same position, nothing more to do
1165		 */
1166		if (rb_key == cfqq->rb_key &&
1167		    cfqq->service_tree == service_tree)
1168			return;
1169
1170		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1171		cfqq->service_tree = NULL;
1172	}
1173
1174	left = 1;
1175	parent = NULL;
1176	cfqq->service_tree = service_tree;
1177	p = &service_tree->rb.rb_node;
1178	while (*p) {
1179		struct rb_node **n;
1180
1181		parent = *p;
1182		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1183
1184		/*
1185		 * sort by key, that represents service time.
1186		 */
1187		if (time_before(rb_key, __cfqq->rb_key))
1188			n = &(*p)->rb_left;
1189		else {
1190			n = &(*p)->rb_right;
1191			left = 0;
1192		}
1193
1194		p = n;
1195	}
1196
1197	if (left)
1198		service_tree->left = &cfqq->rb_node;
1199
1200	cfqq->rb_key = rb_key;
1201	rb_link_node(&cfqq->rb_node, parent, p);
1202	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1203	service_tree->count++;
1204	if ((add_front || !new_cfqq) && !group_changed)
1205		return;
1206	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1207}
1208
1209static struct cfq_queue *
1210cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1211		     sector_t sector, struct rb_node **ret_parent,
1212		     struct rb_node ***rb_link)
1213{
1214	struct rb_node **p, *parent;
1215	struct cfq_queue *cfqq = NULL;
1216
1217	parent = NULL;
1218	p = &root->rb_node;
1219	while (*p) {
1220		struct rb_node **n;
1221
1222		parent = *p;
1223		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1224
1225		/*
1226		 * Sort strictly based on sector.  Smallest to the left,
1227		 * largest to the right.
1228		 */
1229		if (sector > blk_rq_pos(cfqq->next_rq))
1230			n = &(*p)->rb_right;
1231		else if (sector < blk_rq_pos(cfqq->next_rq))
1232			n = &(*p)->rb_left;
1233		else
1234			break;
1235		p = n;
1236		cfqq = NULL;
1237	}
1238
1239	*ret_parent = parent;
1240	if (rb_link)
1241		*rb_link = p;
1242	return cfqq;
1243}
1244
1245static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1246{
1247	struct rb_node **p, *parent;
1248	struct cfq_queue *__cfqq;
1249
1250	if (cfqq->p_root) {
1251		rb_erase(&cfqq->p_node, cfqq->p_root);
1252		cfqq->p_root = NULL;
1253	}
1254
1255	if (cfq_class_idle(cfqq))
1256		return;
1257	if (!cfqq->next_rq)
1258		return;
1259
1260	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1261	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1262				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1263	if (!__cfqq) {
1264		rb_link_node(&cfqq->p_node, parent, p);
1265		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1266	} else
1267		cfqq->p_root = NULL;
1268}
1269
1270/*
1271 * Update cfqq's position in the service tree.
1272 */
1273static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1274{
1275	/*
1276	 * Resorting requires the cfqq to be on the RR list already.
1277	 */
1278	if (cfq_cfqq_on_rr(cfqq)) {
1279		cfq_service_tree_add(cfqd, cfqq, 0);
1280		cfq_prio_tree_add(cfqd, cfqq);
1281	}
1282}
1283
1284/*
1285 * add to busy list of queues for service, trying to be fair in ordering
1286 * the pending list according to last request service
1287 */
1288static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1289{
1290	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1291	BUG_ON(cfq_cfqq_on_rr(cfqq));
1292	cfq_mark_cfqq_on_rr(cfqq);
1293	cfqd->busy_queues++;
1294
1295	cfq_resort_rr_list(cfqd, cfqq);
1296}
1297
1298/*
1299 * Called when the cfqq no longer has requests pending, remove it from
1300 * the service tree.
1301 */
1302static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1303{
1304	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1305	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1306	cfq_clear_cfqq_on_rr(cfqq);
1307
1308	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1309		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1310		cfqq->service_tree = NULL;
1311	}
1312	if (cfqq->p_root) {
1313		rb_erase(&cfqq->p_node, cfqq->p_root);
1314		cfqq->p_root = NULL;
1315	}
1316
1317	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1318	BUG_ON(!cfqd->busy_queues);
1319	cfqd->busy_queues--;
1320}
1321
1322/*
1323 * rb tree support functions
1324 */
1325static void cfq_del_rq_rb(struct request *rq)
1326{
1327	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1328	const int sync = rq_is_sync(rq);
1329
1330	BUG_ON(!cfqq->queued[sync]);
1331	cfqq->queued[sync]--;
1332
1333	elv_rb_del(&cfqq->sort_list, rq);
1334
1335	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1336		/*
1337		 * Queue will be deleted from service tree when we actually
1338		 * expire it later. Right now just remove it from prio tree
1339		 * as it is empty.
1340		 */
1341		if (cfqq->p_root) {
1342			rb_erase(&cfqq->p_node, cfqq->p_root);
1343			cfqq->p_root = NULL;
1344		}
1345	}
1346}
1347
1348static void cfq_add_rq_rb(struct request *rq)
1349{
1350	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1351	struct cfq_data *cfqd = cfqq->cfqd;
1352	struct request *__alias, *prev;
1353
1354	cfqq->queued[rq_is_sync(rq)]++;
1355
1356	/*
1357	 * looks a little odd, but the first insert might return an alias.
1358	 * if that happens, put the alias on the dispatch list
1359	 */
1360	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1361		cfq_dispatch_insert(cfqd->queue, __alias);
1362
1363	if (!cfq_cfqq_on_rr(cfqq))
1364		cfq_add_cfqq_rr(cfqd, cfqq);
1365
1366	/*
1367	 * check if this request is a better next-serve candidate
1368	 */
1369	prev = cfqq->next_rq;
1370	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1371
1372	/*
1373	 * adjust priority tree position, if ->next_rq changes
1374	 */
1375	if (prev != cfqq->next_rq)
1376		cfq_prio_tree_add(cfqd, cfqq);
1377
1378	BUG_ON(!cfqq->next_rq);
1379}
1380
1381static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1382{
1383	elv_rb_del(&cfqq->sort_list, rq);
1384	cfqq->queued[rq_is_sync(rq)]--;
1385	cfq_add_rq_rb(rq);
1386}
1387
1388static struct request *
1389cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1390{
1391	struct task_struct *tsk = current;
1392	struct cfq_io_context *cic;
1393	struct cfq_queue *cfqq;
1394
1395	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1396	if (!cic)
1397		return NULL;
1398
1399	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1400	if (cfqq) {
1401		sector_t sector = bio->bi_sector + bio_sectors(bio);
1402
1403		return elv_rb_find(&cfqq->sort_list, sector);
1404	}
1405
1406	return NULL;
1407}
1408
1409static void cfq_activate_request(struct request_queue *q, struct request *rq)
1410{
1411	struct cfq_data *cfqd = q->elevator->elevator_data;
1412
1413	cfqd->rq_in_driver++;
1414	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1415						cfqd->rq_in_driver);
1416
1417	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1418}
1419
1420static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1421{
1422	struct cfq_data *cfqd = q->elevator->elevator_data;
1423
1424	WARN_ON(!cfqd->rq_in_driver);
1425	cfqd->rq_in_driver--;
1426	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1427						cfqd->rq_in_driver);
1428}
1429
1430static void cfq_remove_request(struct request *rq)
1431{
1432	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1433
1434	if (cfqq->next_rq == rq)
1435		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1436
1437	list_del_init(&rq->queuelist);
1438	cfq_del_rq_rb(rq);
1439
1440	cfqq->cfqd->rq_queued--;
1441	if (rq_is_meta(rq)) {
1442		WARN_ON(!cfqq->meta_pending);
1443		cfqq->meta_pending--;
1444	}
1445}
1446
1447static int cfq_merge(struct request_queue *q, struct request **req,
1448		     struct bio *bio)
1449{
1450	struct cfq_data *cfqd = q->elevator->elevator_data;
1451	struct request *__rq;
1452
1453	__rq = cfq_find_rq_fmerge(cfqd, bio);
1454	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1455		*req = __rq;
1456		return ELEVATOR_FRONT_MERGE;
1457	}
1458
1459	return ELEVATOR_NO_MERGE;
1460}
1461
1462static void cfq_merged_request(struct request_queue *q, struct request *req,
1463			       int type)
1464{
1465	if (type == ELEVATOR_FRONT_MERGE) {
1466		struct cfq_queue *cfqq = RQ_CFQQ(req);
1467
1468		cfq_reposition_rq_rb(cfqq, req);
1469	}
1470}
1471
1472static void
1473cfq_merged_requests(struct request_queue *q, struct request *rq,
1474		    struct request *next)
1475{
1476	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1477	/*
1478	 * reposition in fifo if next is older than rq
1479	 */
1480	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1481	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1482		list_move(&rq->queuelist, &next->queuelist);
1483		rq_set_fifo_time(rq, rq_fifo_time(next));
1484	}
1485
1486	if (cfqq->next_rq == next)
1487		cfqq->next_rq = rq;
1488	cfq_remove_request(next);
1489}
1490
1491static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1492			   struct bio *bio)
1493{
1494	struct cfq_data *cfqd = q->elevator->elevator_data;
1495	struct cfq_io_context *cic;
1496	struct cfq_queue *cfqq;
1497
1498	/*
1499	 * Disallow merge of a sync bio into an async request.
1500	 */
1501	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1502		return false;
1503
1504	/*
1505	 * Lookup the cfqq that this bio will be queued with. Allow
1506	 * merge only if rq is queued there.
1507	 */
1508	cic = cfq_cic_lookup(cfqd, current->io_context);
1509	if (!cic)
1510		return false;
1511
1512	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1513	return cfqq == RQ_CFQQ(rq);
1514}
1515
1516static void __cfq_set_active_queue(struct cfq_data *cfqd,
1517				   struct cfq_queue *cfqq)
1518{
1519	if (cfqq) {
1520		cfq_log_cfqq(cfqd, cfqq, "set_active");
1521		cfqq->slice_start = 0;
1522		cfqq->dispatch_start = jiffies;
1523		cfqq->allocated_slice = 0;
1524		cfqq->slice_end = 0;
1525		cfqq->slice_dispatch = 0;
1526		cfqq->nr_sectors = 0;
1527
1528		cfq_clear_cfqq_wait_request(cfqq);
1529		cfq_clear_cfqq_must_dispatch(cfqq);
1530		cfq_clear_cfqq_must_alloc_slice(cfqq);
1531		cfq_clear_cfqq_fifo_expire(cfqq);
1532		cfq_mark_cfqq_slice_new(cfqq);
1533
1534		del_timer(&cfqd->idle_slice_timer);
1535	}
1536
1537	cfqd->active_queue = cfqq;
1538}
1539
1540/*
1541 * current cfqq expired its slice (or was too idle), select new one
1542 */
1543static void
1544__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1545		    bool timed_out)
1546{
1547	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1548
1549	if (cfq_cfqq_wait_request(cfqq))
1550		del_timer(&cfqd->idle_slice_timer);
1551
1552	cfq_clear_cfqq_wait_request(cfqq);
1553	cfq_clear_cfqq_wait_busy(cfqq);
1554
1555	/*
1556	 * If this cfqq is shared between multiple processes, check to
1557	 * make sure that those processes are still issuing I/Os within
1558	 * the mean seek distance.  If not, it may be time to break the
1559	 * queues apart again.
1560	 */
1561	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1562		cfq_mark_cfqq_split_coop(cfqq);
1563
1564	/*
1565	 * store what was left of this slice, if the queue idled/timed out
1566	 */
1567	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1568		cfqq->slice_resid = cfqq->slice_end - jiffies;
1569		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1570	}
1571
1572	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1573
1574	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1575		cfq_del_cfqq_rr(cfqd, cfqq);
1576
1577	cfq_resort_rr_list(cfqd, cfqq);
1578
1579	if (cfqq == cfqd->active_queue)
1580		cfqd->active_queue = NULL;
1581
1582	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1583		cfqd->grp_service_tree.active = NULL;
1584
1585	if (cfqd->active_cic) {
1586		put_io_context(cfqd->active_cic->ioc);
1587		cfqd->active_cic = NULL;
1588	}
1589}
1590
1591static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1592{
1593	struct cfq_queue *cfqq = cfqd->active_queue;
1594
1595	if (cfqq)
1596		__cfq_slice_expired(cfqd, cfqq, timed_out);
1597}
1598
1599/*
1600 * Get next queue for service. Unless we have a queue preemption,
1601 * we'll simply select the first cfqq in the service tree.
1602 */
1603static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1604{
1605	struct cfq_rb_root *service_tree =
1606		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1607					cfqd->serving_type);
1608
1609	if (!cfqd->rq_queued)
1610		return NULL;
1611
1612	/* There is nothing to dispatch */
1613	if (!service_tree)
1614		return NULL;
1615	if (RB_EMPTY_ROOT(&service_tree->rb))
1616		return NULL;
1617	return cfq_rb_first(service_tree);
1618}
1619
1620static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1621{
1622	struct cfq_group *cfqg;
1623	struct cfq_queue *cfqq;
1624	int i, j;
1625	struct cfq_rb_root *st;
1626
1627	if (!cfqd->rq_queued)
1628		return NULL;
1629
1630	cfqg = cfq_get_next_cfqg(cfqd);
1631	if (!cfqg)
1632		return NULL;
1633
1634	for_each_cfqg_st(cfqg, i, j, st)
1635		if ((cfqq = cfq_rb_first(st)) != NULL)
1636			return cfqq;
1637	return NULL;
1638}
1639
1640/*
1641 * Get and set a new active queue for service.
1642 */
1643static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1644					      struct cfq_queue *cfqq)
1645{
1646	if (!cfqq)
1647		cfqq = cfq_get_next_queue(cfqd);
1648
1649	__cfq_set_active_queue(cfqd, cfqq);
1650	return cfqq;
1651}
1652
1653static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1654					  struct request *rq)
1655{
1656	if (blk_rq_pos(rq) >= cfqd->last_position)
1657		return blk_rq_pos(rq) - cfqd->last_position;
1658	else
1659		return cfqd->last_position - blk_rq_pos(rq);
1660}
1661
1662static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1663			       struct request *rq, bool for_preempt)
1664{
1665	return cfq_dist_from_last(cfqd, rq) <= CFQQ_SEEK_THR;
1666}
1667
1668static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1669				    struct cfq_queue *cur_cfqq)
1670{
1671	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1672	struct rb_node *parent, *node;
1673	struct cfq_queue *__cfqq;
1674	sector_t sector = cfqd->last_position;
1675
1676	if (RB_EMPTY_ROOT(root))
1677		return NULL;
1678
1679	/*
1680	 * First, if we find a request starting at the end of the last
1681	 * request, choose it.
1682	 */
1683	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1684	if (__cfqq)
1685		return __cfqq;
1686
1687	/*
1688	 * If the exact sector wasn't found, the parent of the NULL leaf
1689	 * will contain the closest sector.
1690	 */
1691	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1692	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1693		return __cfqq;
1694
1695	if (blk_rq_pos(__cfqq->next_rq) < sector)
1696		node = rb_next(&__cfqq->p_node);
1697	else
1698		node = rb_prev(&__cfqq->p_node);
1699	if (!node)
1700		return NULL;
1701
1702	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1703	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq, false))
1704		return __cfqq;
1705
1706	return NULL;
1707}
1708
1709/*
1710 * cfqd - obvious
1711 * cur_cfqq - passed in so that we don't decide that the current queue is
1712 * 	      closely cooperating with itself.
1713 *
1714 * So, basically we're assuming that that cur_cfqq has dispatched at least
1715 * one request, and that cfqd->last_position reflects a position on the disk
1716 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1717 * assumption.
1718 */
1719static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1720					      struct cfq_queue *cur_cfqq)
1721{
1722	struct cfq_queue *cfqq;
1723
1724	if (!cfq_cfqq_sync(cur_cfqq))
1725		return NULL;
1726	if (CFQQ_SEEKY(cur_cfqq))
1727		return NULL;
1728
1729	/*
1730	 * Don't search priority tree if it's the only queue in the group.
1731	 */
1732	if (cur_cfqq->cfqg->nr_cfqq == 1)
1733		return NULL;
1734
1735	/*
1736	 * We should notice if some of the queues are cooperating, eg
1737	 * working closely on the same area of the disk. In that case,
1738	 * we can group them together and don't waste time idling.
1739	 */
1740	cfqq = cfqq_close(cfqd, cur_cfqq);
1741	if (!cfqq)
1742		return NULL;
1743
1744	/* If new queue belongs to different cfq_group, don't choose it */
1745	if (cur_cfqq->cfqg != cfqq->cfqg)
1746		return NULL;
1747
1748	/*
1749	 * It only makes sense to merge sync queues.
1750	 */
1751	if (!cfq_cfqq_sync(cfqq))
1752		return NULL;
1753	if (CFQQ_SEEKY(cfqq))
1754		return NULL;
1755
1756	/*
1757	 * Do not merge queues of different priority classes
1758	 */
1759	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1760		return NULL;
1761
1762	return cfqq;
1763}
1764
1765/*
1766 * Determine whether we should enforce idle window for this queue.
1767 */
1768
1769static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1770{
1771	enum wl_prio_t prio = cfqq_prio(cfqq);
1772	struct cfq_rb_root *service_tree = cfqq->service_tree;
1773
1774	BUG_ON(!service_tree);
1775	BUG_ON(!service_tree->count);
1776
1777	/* We never do for idle class queues. */
1778	if (prio == IDLE_WORKLOAD)
1779		return false;
1780
1781	/* We do for queues that were marked with idle window flag. */
1782	if (cfq_cfqq_idle_window(cfqq) &&
1783	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1784		return true;
1785
1786	/*
1787	 * Otherwise, we do only if they are the last ones
1788	 * in their service tree.
1789	 */
1790	return service_tree->count == 1 && cfq_cfqq_sync(cfqq);
1791}
1792
1793static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1794{
1795	struct cfq_queue *cfqq = cfqd->active_queue;
1796	struct cfq_io_context *cic;
1797	unsigned long sl;
1798
1799	/*
1800	 * SSD device without seek penalty, disable idling. But only do so
1801	 * for devices that support queuing, otherwise we still have a problem
1802	 * with sync vs async workloads.
1803	 */
1804	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1805		return;
1806
1807	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1808	WARN_ON(cfq_cfqq_slice_new(cfqq));
1809
1810	/*
1811	 * idle is disabled, either manually or by past process history
1812	 */
1813	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1814		return;
1815
1816	/*
1817	 * still active requests from this queue, don't idle
1818	 */
1819	if (cfqq->dispatched)
1820		return;
1821
1822	/*
1823	 * task has exited, don't wait
1824	 */
1825	cic = cfqd->active_cic;
1826	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1827		return;
1828
1829	/*
1830	 * If our average think time is larger than the remaining time
1831	 * slice, then don't idle. This avoids overrunning the allotted
1832	 * time slice.
1833	 */
1834	if (sample_valid(cic->ttime_samples) &&
1835	    (cfqq->slice_end - jiffies < cic->ttime_mean))
1836		return;
1837
1838	cfq_mark_cfqq_wait_request(cfqq);
1839
1840	sl = cfqd->cfq_slice_idle;
1841
1842	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1843	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1844}
1845
1846/*
1847 * Move request from internal lists to the request queue dispatch list.
1848 */
1849static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1850{
1851	struct cfq_data *cfqd = q->elevator->elevator_data;
1852	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1853
1854	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1855
1856	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1857	cfq_remove_request(rq);
1858	cfqq->dispatched++;
1859	elv_dispatch_sort(q, rq);
1860
1861	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1862	cfqq->nr_sectors += blk_rq_sectors(rq);
1863}
1864
1865/*
1866 * return expired entry, or NULL to just start from scratch in rbtree
1867 */
1868static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1869{
1870	struct request *rq = NULL;
1871
1872	if (cfq_cfqq_fifo_expire(cfqq))
1873		return NULL;
1874
1875	cfq_mark_cfqq_fifo_expire(cfqq);
1876
1877	if (list_empty(&cfqq->fifo))
1878		return NULL;
1879
1880	rq = rq_entry_fifo(cfqq->fifo.next);
1881	if (time_before(jiffies, rq_fifo_time(rq)))
1882		rq = NULL;
1883
1884	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1885	return rq;
1886}
1887
1888static inline int
1889cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1890{
1891	const int base_rq = cfqd->cfq_slice_async_rq;
1892
1893	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1894
1895	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1896}
1897
1898/*
1899 * Must be called with the queue_lock held.
1900 */
1901static int cfqq_process_refs(struct cfq_queue *cfqq)
1902{
1903	int process_refs, io_refs;
1904
1905	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1906	process_refs = atomic_read(&cfqq->ref) - io_refs;
1907	BUG_ON(process_refs < 0);
1908	return process_refs;
1909}
1910
1911static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1912{
1913	int process_refs, new_process_refs;
1914	struct cfq_queue *__cfqq;
1915
1916	/* Avoid a circular list and skip interim queue merges */
1917	while ((__cfqq = new_cfqq->new_cfqq)) {
1918		if (__cfqq == cfqq)
1919			return;
1920		new_cfqq = __cfqq;
1921	}
1922
1923	process_refs = cfqq_process_refs(cfqq);
1924	/*
1925	 * If the process for the cfqq has gone away, there is no
1926	 * sense in merging the queues.
1927	 */
1928	if (process_refs == 0)
1929		return;
1930
1931	/*
1932	 * Merge in the direction of the lesser amount of work.
1933	 */
1934	new_process_refs = cfqq_process_refs(new_cfqq);
1935	if (new_process_refs >= process_refs) {
1936		cfqq->new_cfqq = new_cfqq;
1937		atomic_add(process_refs, &new_cfqq->ref);
1938	} else {
1939		new_cfqq->new_cfqq = cfqq;
1940		atomic_add(new_process_refs, &cfqq->ref);
1941	}
1942}
1943
1944static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1945				struct cfq_group *cfqg, enum wl_prio_t prio)
1946{
1947	struct cfq_queue *queue;
1948	int i;
1949	bool key_valid = false;
1950	unsigned long lowest_key = 0;
1951	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1952
1953	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1954		/* select the one with lowest rb_key */
1955		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1956		if (queue &&
1957		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
1958			lowest_key = queue->rb_key;
1959			cur_best = i;
1960			key_valid = true;
1961		}
1962	}
1963
1964	return cur_best;
1965}
1966
1967static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1968{
1969	unsigned slice;
1970	unsigned count;
1971	struct cfq_rb_root *st;
1972	unsigned group_slice;
1973
1974	if (!cfqg) {
1975		cfqd->serving_prio = IDLE_WORKLOAD;
1976		cfqd->workload_expires = jiffies + 1;
1977		return;
1978	}
1979
1980	/* Choose next priority. RT > BE > IDLE */
1981	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1982		cfqd->serving_prio = RT_WORKLOAD;
1983	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1984		cfqd->serving_prio = BE_WORKLOAD;
1985	else {
1986		cfqd->serving_prio = IDLE_WORKLOAD;
1987		cfqd->workload_expires = jiffies + 1;
1988		return;
1989	}
1990
1991	/*
1992	 * For RT and BE, we have to choose also the type
1993	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1994	 * expiration time
1995	 */
1996	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
1997	count = st->count;
1998
1999	/*
2000	 * check workload expiration, and that we still have other queues ready
2001	 */
2002	if (count && !time_after(jiffies, cfqd->workload_expires))
2003		return;
2004
2005	/* otherwise select new workload type */
2006	cfqd->serving_type =
2007		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2008	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2009	count = st->count;
2010
2011	/*
2012	 * the workload slice is computed as a fraction of target latency
2013	 * proportional to the number of queues in that workload, over
2014	 * all the queues in the same priority class
2015	 */
2016	group_slice = cfq_group_slice(cfqd, cfqg);
2017
2018	slice = group_slice * count /
2019		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2020		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2021
2022	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2023		unsigned int tmp;
2024
2025		/*
2026		 * Async queues are currently system wide. Just taking
2027		 * proportion of queues with-in same group will lead to higher
2028		 * async ratio system wide as generally root group is going
2029		 * to have higher weight. A more accurate thing would be to
2030		 * calculate system wide asnc/sync ratio.
2031		 */
2032		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2033		tmp = tmp/cfqd->busy_queues;
2034		slice = min_t(unsigned, slice, tmp);
2035
2036		/* async workload slice is scaled down according to
2037		 * the sync/async slice ratio. */
2038		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2039	} else
2040		/* sync workload slice is at least 2 * cfq_slice_idle */
2041		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2042
2043	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2044	cfqd->workload_expires = jiffies + slice;
2045	cfqd->noidle_tree_requires_idle = false;
2046}
2047
2048static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2049{
2050	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2051	struct cfq_group *cfqg;
2052
2053	if (RB_EMPTY_ROOT(&st->rb))
2054		return NULL;
2055	cfqg = cfq_rb_first_group(st);
2056	st->active = &cfqg->rb_node;
2057	update_min_vdisktime(st);
2058	return cfqg;
2059}
2060
2061static void cfq_choose_cfqg(struct cfq_data *cfqd)
2062{
2063	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2064
2065	cfqd->serving_group = cfqg;
2066
2067	/* Restore the workload type data */
2068	if (cfqg->saved_workload_slice) {
2069		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2070		cfqd->serving_type = cfqg->saved_workload;
2071		cfqd->serving_prio = cfqg->saved_serving_prio;
2072	} else
2073		cfqd->workload_expires = jiffies - 1;
2074
2075	choose_service_tree(cfqd, cfqg);
2076}
2077
2078/*
2079 * Select a queue for service. If we have a current active queue,
2080 * check whether to continue servicing it, or retrieve and set a new one.
2081 */
2082static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2083{
2084	struct cfq_queue *cfqq, *new_cfqq = NULL;
2085
2086	cfqq = cfqd->active_queue;
2087	if (!cfqq)
2088		goto new_queue;
2089
2090	if (!cfqd->rq_queued)
2091		return NULL;
2092
2093	/*
2094	 * We were waiting for group to get backlogged. Expire the queue
2095	 */
2096	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2097		goto expire;
2098
2099	/*
2100	 * The active queue has run out of time, expire it and select new.
2101	 */
2102	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2103		/*
2104		 * If slice had not expired at the completion of last request
2105		 * we might not have turned on wait_busy flag. Don't expire
2106		 * the queue yet. Allow the group to get backlogged.
2107		 *
2108		 * The very fact that we have used the slice, that means we
2109		 * have been idling all along on this queue and it should be
2110		 * ok to wait for this request to complete.
2111		 */
2112		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2113		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2114			cfqq = NULL;
2115			goto keep_queue;
2116		} else
2117			goto expire;
2118	}
2119
2120	/*
2121	 * The active queue has requests and isn't expired, allow it to
2122	 * dispatch.
2123	 */
2124	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2125		goto keep_queue;
2126
2127	/*
2128	 * If another queue has a request waiting within our mean seek
2129	 * distance, let it run.  The expire code will check for close
2130	 * cooperators and put the close queue at the front of the service
2131	 * tree.  If possible, merge the expiring queue with the new cfqq.
2132	 */
2133	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2134	if (new_cfqq) {
2135		if (!cfqq->new_cfqq)
2136			cfq_setup_merge(cfqq, new_cfqq);
2137		goto expire;
2138	}
2139
2140	/*
2141	 * No requests pending. If the active queue still has requests in
2142	 * flight or is idling for a new request, allow either of these
2143	 * conditions to happen (or time out) before selecting a new queue.
2144	 */
2145	if (timer_pending(&cfqd->idle_slice_timer) ||
2146	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2147		cfqq = NULL;
2148		goto keep_queue;
2149	}
2150
2151expire:
2152	cfq_slice_expired(cfqd, 0);
2153new_queue:
2154	/*
2155	 * Current queue expired. Check if we have to switch to a new
2156	 * service tree
2157	 */
2158	if (!new_cfqq)
2159		cfq_choose_cfqg(cfqd);
2160
2161	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2162keep_queue:
2163	return cfqq;
2164}
2165
2166static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2167{
2168	int dispatched = 0;
2169
2170	while (cfqq->next_rq) {
2171		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2172		dispatched++;
2173	}
2174
2175	BUG_ON(!list_empty(&cfqq->fifo));
2176
2177	/* By default cfqq is not expired if it is empty. Do it explicitly */
2178	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2179	return dispatched;
2180}
2181
2182/*
2183 * Drain our current requests. Used for barriers and when switching
2184 * io schedulers on-the-fly.
2185 */
2186static int cfq_forced_dispatch(struct cfq_data *cfqd)
2187{
2188	struct cfq_queue *cfqq;
2189	int dispatched = 0;
2190
2191	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2192		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2193
2194	cfq_slice_expired(cfqd, 0);
2195	BUG_ON(cfqd->busy_queues);
2196
2197	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2198	return dispatched;
2199}
2200
2201static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2202	struct cfq_queue *cfqq)
2203{
2204	/* the queue hasn't finished any request, can't estimate */
2205	if (cfq_cfqq_slice_new(cfqq))
2206		return 1;
2207	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2208		cfqq->slice_end))
2209		return 1;
2210
2211	return 0;
2212}
2213
2214static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2215{
2216	unsigned int max_dispatch;
2217
2218	/*
2219	 * Drain async requests before we start sync IO
2220	 */
2221	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2222		return false;
2223
2224	/*
2225	 * If this is an async queue and we have sync IO in flight, let it wait
2226	 */
2227	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2228		return false;
2229
2230	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2231	if (cfq_class_idle(cfqq))
2232		max_dispatch = 1;
2233
2234	/*
2235	 * Does this cfqq already have too much IO in flight?
2236	 */
2237	if (cfqq->dispatched >= max_dispatch) {
2238		/*
2239		 * idle queue must always only have a single IO in flight
2240		 */
2241		if (cfq_class_idle(cfqq))
2242			return false;
2243
2244		/*
2245		 * We have other queues, don't allow more IO from this one
2246		 */
2247		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2248			return false;
2249
2250		/*
2251		 * Sole queue user, no limit
2252		 */
2253		if (cfqd->busy_queues == 1)
2254			max_dispatch = -1;
2255		else
2256			/*
2257			 * Normally we start throttling cfqq when cfq_quantum/2
2258			 * requests have been dispatched. But we can drive
2259			 * deeper queue depths at the beginning of slice
2260			 * subjected to upper limit of cfq_quantum.
2261			 * */
2262			max_dispatch = cfqd->cfq_quantum;
2263	}
2264
2265	/*
2266	 * Async queues must wait a bit before being allowed dispatch.
2267	 * We also ramp up the dispatch depth gradually for async IO,
2268	 * based on the last sync IO we serviced
2269	 */
2270	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2271		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2272		unsigned int depth;
2273
2274		depth = last_sync / cfqd->cfq_slice[1];
2275		if (!depth && !cfqq->dispatched)
2276			depth = 1;
2277		if (depth < max_dispatch)
2278			max_dispatch = depth;
2279	}
2280
2281	/*
2282	 * If we're below the current max, allow a dispatch
2283	 */
2284	return cfqq->dispatched < max_dispatch;
2285}
2286
2287/*
2288 * Dispatch a request from cfqq, moving them to the request queue
2289 * dispatch list.
2290 */
2291static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2292{
2293	struct request *rq;
2294
2295	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2296
2297	if (!cfq_may_dispatch(cfqd, cfqq))
2298		return false;
2299
2300	/*
2301	 * follow expired path, else get first next available
2302	 */
2303	rq = cfq_check_fifo(cfqq);
2304	if (!rq)
2305		rq = cfqq->next_rq;
2306
2307	/*
2308	 * insert request into driver dispatch list
2309	 */
2310	cfq_dispatch_insert(cfqd->queue, rq);
2311
2312	if (!cfqd->active_cic) {
2313		struct cfq_io_context *cic = RQ_CIC(rq);
2314
2315		atomic_long_inc(&cic->ioc->refcount);
2316		cfqd->active_cic = cic;
2317	}
2318
2319	return true;
2320}
2321
2322/*
2323 * Find the cfqq that we need to service and move a request from that to the
2324 * dispatch list
2325 */
2326static int cfq_dispatch_requests(struct request_queue *q, int force)
2327{
2328	struct cfq_data *cfqd = q->elevator->elevator_data;
2329	struct cfq_queue *cfqq;
2330
2331	if (!cfqd->busy_queues)
2332		return 0;
2333
2334	if (unlikely(force))
2335		return cfq_forced_dispatch(cfqd);
2336
2337	cfqq = cfq_select_queue(cfqd);
2338	if (!cfqq)
2339		return 0;
2340
2341	/*
2342	 * Dispatch a request from this cfqq, if it is allowed
2343	 */
2344	if (!cfq_dispatch_request(cfqd, cfqq))
2345		return 0;
2346
2347	cfqq->slice_dispatch++;
2348	cfq_clear_cfqq_must_dispatch(cfqq);
2349
2350	/*
2351	 * expire an async queue immediately if it has used up its slice. idle
2352	 * queue always expire after 1 dispatch round.
2353	 */
2354	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2355	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2356	    cfq_class_idle(cfqq))) {
2357		cfqq->slice_end = jiffies + 1;
2358		cfq_slice_expired(cfqd, 0);
2359	}
2360
2361	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2362	return 1;
2363}
2364
2365/*
2366 * task holds one reference to the queue, dropped when task exits. each rq
2367 * in-flight on this queue also holds a reference, dropped when rq is freed.
2368 *
2369 * Each cfq queue took a reference on the parent group. Drop it now.
2370 * queue lock must be held here.
2371 */
2372static void cfq_put_queue(struct cfq_queue *cfqq)
2373{
2374	struct cfq_data *cfqd = cfqq->cfqd;
2375	struct cfq_group *cfqg, *orig_cfqg;
2376
2377	BUG_ON(atomic_read(&cfqq->ref) <= 0);
2378
2379	if (!atomic_dec_and_test(&cfqq->ref))
2380		return;
2381
2382	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2383	BUG_ON(rb_first(&cfqq->sort_list));
2384	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2385	cfqg = cfqq->cfqg;
2386	orig_cfqg = cfqq->orig_cfqg;
2387
2388	if (unlikely(cfqd->active_queue == cfqq)) {
2389		__cfq_slice_expired(cfqd, cfqq, 0);
2390		cfq_schedule_dispatch(cfqd);
2391	}
2392
2393	BUG_ON(cfq_cfqq_on_rr(cfqq));
2394	kmem_cache_free(cfq_pool, cfqq);
2395	cfq_put_cfqg(cfqg);
2396	if (orig_cfqg)
2397		cfq_put_cfqg(orig_cfqg);
2398}
2399
2400/*
2401 * Must always be called with the rcu_read_lock() held
2402 */
2403static void
2404__call_for_each_cic(struct io_context *ioc,
2405		    void (*func)(struct io_context *, struct cfq_io_context *))
2406{
2407	struct cfq_io_context *cic;
2408	struct hlist_node *n;
2409
2410	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2411		func(ioc, cic);
2412}
2413
2414/*
2415 * Call func for each cic attached to this ioc.
2416 */
2417static void
2418call_for_each_cic(struct io_context *ioc,
2419		  void (*func)(struct io_context *, struct cfq_io_context *))
2420{
2421	rcu_read_lock();
2422	__call_for_each_cic(ioc, func);
2423	rcu_read_unlock();
2424}
2425
2426static void cfq_cic_free_rcu(struct rcu_head *head)
2427{
2428	struct cfq_io_context *cic;
2429
2430	cic = container_of(head, struct cfq_io_context, rcu_head);
2431
2432	kmem_cache_free(cfq_ioc_pool, cic);
2433	elv_ioc_count_dec(cfq_ioc_count);
2434
2435	if (ioc_gone) {
2436		/*
2437		 * CFQ scheduler is exiting, grab exit lock and check
2438		 * the pending io context count. If it hits zero,
2439		 * complete ioc_gone and set it back to NULL
2440		 */
2441		spin_lock(&ioc_gone_lock);
2442		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2443			complete(ioc_gone);
2444			ioc_gone = NULL;
2445		}
2446		spin_unlock(&ioc_gone_lock);
2447	}
2448}
2449
2450static void cfq_cic_free(struct cfq_io_context *cic)
2451{
2452	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2453}
2454
2455static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2456{
2457	unsigned long flags;
2458
2459	BUG_ON(!cic->dead_key);
2460
2461	spin_lock_irqsave(&ioc->lock, flags);
2462	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2463	hlist_del_rcu(&cic->cic_list);
2464	spin_unlock_irqrestore(&ioc->lock, flags);
2465
2466	cfq_cic_free(cic);
2467}
2468
2469/*
2470 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2471 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2472 * and ->trim() which is called with the task lock held
2473 */
2474static void cfq_free_io_context(struct io_context *ioc)
2475{
2476	/*
2477	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2478	 * so no more cic's are allowed to be linked into this ioc.  So it
2479	 * should be ok to iterate over the known list, we will see all cic's
2480	 * since no new ones are added.
2481	 */
2482	__call_for_each_cic(ioc, cic_free_func);
2483}
2484
2485static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2486{
2487	struct cfq_queue *__cfqq, *next;
2488
2489	if (unlikely(cfqq == cfqd->active_queue)) {
2490		__cfq_slice_expired(cfqd, cfqq, 0);
2491		cfq_schedule_dispatch(cfqd);
2492	}
2493
2494	/*
2495	 * If this queue was scheduled to merge with another queue, be
2496	 * sure to drop the reference taken on that queue (and others in
2497	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2498	 */
2499	__cfqq = cfqq->new_cfqq;
2500	while (__cfqq) {
2501		if (__cfqq == cfqq) {
2502			WARN(1, "cfqq->new_cfqq loop detected\n");
2503			break;
2504		}
2505		next = __cfqq->new_cfqq;
2506		cfq_put_queue(__cfqq);
2507		__cfqq = next;
2508	}
2509
2510	cfq_put_queue(cfqq);
2511}
2512
2513static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2514					 struct cfq_io_context *cic)
2515{
2516	struct io_context *ioc = cic->ioc;
2517
2518	list_del_init(&cic->queue_list);
2519
2520	/*
2521	 * Make sure key == NULL is seen for dead queues
2522	 */
2523	smp_wmb();
2524	cic->dead_key = (unsigned long) cic->key;
2525	cic->key = NULL;
2526
2527	if (ioc->ioc_data == cic)
2528		rcu_assign_pointer(ioc->ioc_data, NULL);
2529
2530	if (cic->cfqq[BLK_RW_ASYNC]) {
2531		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2532		cic->cfqq[BLK_RW_ASYNC] = NULL;
2533	}
2534
2535	if (cic->cfqq[BLK_RW_SYNC]) {
2536		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2537		cic->cfqq[BLK_RW_SYNC] = NULL;
2538	}
2539}
2540
2541static void cfq_exit_single_io_context(struct io_context *ioc,
2542				       struct cfq_io_context *cic)
2543{
2544	struct cfq_data *cfqd = cic->key;
2545
2546	if (cfqd) {
2547		struct request_queue *q = cfqd->queue;
2548		unsigned long flags;
2549
2550		spin_lock_irqsave(q->queue_lock, flags);
2551
2552		/*
2553		 * Ensure we get a fresh copy of the ->key to prevent
2554		 * race between exiting task and queue
2555		 */
2556		smp_read_barrier_depends();
2557		if (cic->key)
2558			__cfq_exit_single_io_context(cfqd, cic);
2559
2560		spin_unlock_irqrestore(q->queue_lock, flags);
2561	}
2562}
2563
2564/*
2565 * The process that ioc belongs to has exited, we need to clean up
2566 * and put the internal structures we have that belongs to that process.
2567 */
2568static void cfq_exit_io_context(struct io_context *ioc)
2569{
2570	call_for_each_cic(ioc, cfq_exit_single_io_context);
2571}
2572
2573static struct cfq_io_context *
2574cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2575{
2576	struct cfq_io_context *cic;
2577
2578	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2579							cfqd->queue->node);
2580	if (cic) {
2581		cic->last_end_request = jiffies;
2582		INIT_LIST_HEAD(&cic->queue_list);
2583		INIT_HLIST_NODE(&cic->cic_list);
2584		cic->dtor = cfq_free_io_context;
2585		cic->exit = cfq_exit_io_context;
2586		elv_ioc_count_inc(cfq_ioc_count);
2587	}
2588
2589	return cic;
2590}
2591
2592static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2593{
2594	struct task_struct *tsk = current;
2595	int ioprio_class;
2596
2597	if (!cfq_cfqq_prio_changed(cfqq))
2598		return;
2599
2600	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2601	switch (ioprio_class) {
2602	default:
2603		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2604	case IOPRIO_CLASS_NONE:
2605		/*
2606		 * no prio set, inherit CPU scheduling settings
2607		 */
2608		cfqq->ioprio = task_nice_ioprio(tsk);
2609		cfqq->ioprio_class = task_nice_ioclass(tsk);
2610		break;
2611	case IOPRIO_CLASS_RT:
2612		cfqq->ioprio = task_ioprio(ioc);
2613		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2614		break;
2615	case IOPRIO_CLASS_BE:
2616		cfqq->ioprio = task_ioprio(ioc);
2617		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2618		break;
2619	case IOPRIO_CLASS_IDLE:
2620		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2621		cfqq->ioprio = 7;
2622		cfq_clear_cfqq_idle_window(cfqq);
2623		break;
2624	}
2625
2626	/*
2627	 * keep track of original prio settings in case we have to temporarily
2628	 * elevate the priority of this queue
2629	 */
2630	cfqq->org_ioprio = cfqq->ioprio;
2631	cfqq->org_ioprio_class = cfqq->ioprio_class;
2632	cfq_clear_cfqq_prio_changed(cfqq);
2633}
2634
2635static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2636{
2637	struct cfq_data *cfqd = cic->key;
2638	struct cfq_queue *cfqq;
2639	unsigned long flags;
2640
2641	if (unlikely(!cfqd))
2642		return;
2643
2644	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2645
2646	cfqq = cic->cfqq[BLK_RW_ASYNC];
2647	if (cfqq) {
2648		struct cfq_queue *new_cfqq;
2649		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2650						GFP_ATOMIC);
2651		if (new_cfqq) {
2652			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2653			cfq_put_queue(cfqq);
2654		}
2655	}
2656
2657	cfqq = cic->cfqq[BLK_RW_SYNC];
2658	if (cfqq)
2659		cfq_mark_cfqq_prio_changed(cfqq);
2660
2661	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2662}
2663
2664static void cfq_ioc_set_ioprio(struct io_context *ioc)
2665{
2666	call_for_each_cic(ioc, changed_ioprio);
2667	ioc->ioprio_changed = 0;
2668}
2669
2670static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2671			  pid_t pid, bool is_sync)
2672{
2673	RB_CLEAR_NODE(&cfqq->rb_node);
2674	RB_CLEAR_NODE(&cfqq->p_node);
2675	INIT_LIST_HEAD(&cfqq->fifo);
2676
2677	atomic_set(&cfqq->ref, 0);
2678	cfqq->cfqd = cfqd;
2679
2680	cfq_mark_cfqq_prio_changed(cfqq);
2681
2682	if (is_sync) {
2683		if (!cfq_class_idle(cfqq))
2684			cfq_mark_cfqq_idle_window(cfqq);
2685		cfq_mark_cfqq_sync(cfqq);
2686	}
2687	cfqq->pid = pid;
2688}
2689
2690#ifdef CONFIG_CFQ_GROUP_IOSCHED
2691static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2692{
2693	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2694	struct cfq_data *cfqd = cic->key;
2695	unsigned long flags;
2696	struct request_queue *q;
2697
2698	if (unlikely(!cfqd))
2699		return;
2700
2701	q = cfqd->queue;
2702
2703	spin_lock_irqsave(q->queue_lock, flags);
2704
2705	if (sync_cfqq) {
2706		/*
2707		 * Drop reference to sync queue. A new sync queue will be
2708		 * assigned in new group upon arrival of a fresh request.
2709		 */
2710		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2711		cic_set_cfqq(cic, NULL, 1);
2712		cfq_put_queue(sync_cfqq);
2713	}
2714
2715	spin_unlock_irqrestore(q->queue_lock, flags);
2716}
2717
2718static void cfq_ioc_set_cgroup(struct io_context *ioc)
2719{
2720	call_for_each_cic(ioc, changed_cgroup);
2721	ioc->cgroup_changed = 0;
2722}
2723#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2724
2725static struct cfq_queue *
2726cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2727		     struct io_context *ioc, gfp_t gfp_mask)
2728{
2729	struct cfq_queue *cfqq, *new_cfqq = NULL;
2730	struct cfq_io_context *cic;
2731	struct cfq_group *cfqg;
2732
2733retry:
2734	cfqg = cfq_get_cfqg(cfqd, 1);
2735	cic = cfq_cic_lookup(cfqd, ioc);
2736	/* cic always exists here */
2737	cfqq = cic_to_cfqq(cic, is_sync);
2738
2739	/*
2740	 * Always try a new alloc if we fell back to the OOM cfqq
2741	 * originally, since it should just be a temporary situation.
2742	 */
2743	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2744		cfqq = NULL;
2745		if (new_cfqq) {
2746			cfqq = new_cfqq;
2747			new_cfqq = NULL;
2748		} else if (gfp_mask & __GFP_WAIT) {
2749			spin_unlock_irq(cfqd->queue->queue_lock);
2750			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2751					gfp_mask | __GFP_ZERO,
2752					cfqd->queue->node);
2753			spin_lock_irq(cfqd->queue->queue_lock);
2754			if (new_cfqq)
2755				goto retry;
2756		} else {
2757			cfqq = kmem_cache_alloc_node(cfq_pool,
2758					gfp_mask | __GFP_ZERO,
2759					cfqd->queue->node);
2760		}
2761
2762		if (cfqq) {
2763			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2764			cfq_init_prio_data(cfqq, ioc);
2765			cfq_link_cfqq_cfqg(cfqq, cfqg);
2766			cfq_log_cfqq(cfqd, cfqq, "alloced");
2767		} else
2768			cfqq = &cfqd->oom_cfqq;
2769	}
2770
2771	if (new_cfqq)
2772		kmem_cache_free(cfq_pool, new_cfqq);
2773
2774	return cfqq;
2775}
2776
2777static struct cfq_queue **
2778cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2779{
2780	switch (ioprio_class) {
2781	case IOPRIO_CLASS_RT:
2782		return &cfqd->async_cfqq[0][ioprio];
2783	case IOPRIO_CLASS_BE:
2784		return &cfqd->async_cfqq[1][ioprio];
2785	case IOPRIO_CLASS_IDLE:
2786		return &cfqd->async_idle_cfqq;
2787	default:
2788		BUG();
2789	}
2790}
2791
2792static struct cfq_queue *
2793cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2794	      gfp_t gfp_mask)
2795{
2796	const int ioprio = task_ioprio(ioc);
2797	const int ioprio_class = task_ioprio_class(ioc);
2798	struct cfq_queue **async_cfqq = NULL;
2799	struct cfq_queue *cfqq = NULL;
2800
2801	if (!is_sync) {
2802		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2803		cfqq = *async_cfqq;
2804	}
2805
2806	if (!cfqq)
2807		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2808
2809	/*
2810	 * pin the queue now that it's allocated, scheduler exit will prune it
2811	 */
2812	if (!is_sync && !(*async_cfqq)) {
2813		atomic_inc(&cfqq->ref);
2814		*async_cfqq = cfqq;
2815	}
2816
2817	atomic_inc(&cfqq->ref);
2818	return cfqq;
2819}
2820
2821/*
2822 * We drop cfq io contexts lazily, so we may find a dead one.
2823 */
2824static void
2825cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2826		  struct cfq_io_context *cic)
2827{
2828	unsigned long flags;
2829
2830	WARN_ON(!list_empty(&cic->queue_list));
2831
2832	spin_lock_irqsave(&ioc->lock, flags);
2833
2834	BUG_ON(ioc->ioc_data == cic);
2835
2836	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2837	hlist_del_rcu(&cic->cic_list);
2838	spin_unlock_irqrestore(&ioc->lock, flags);
2839
2840	cfq_cic_free(cic);
2841}
2842
2843static struct cfq_io_context *
2844cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2845{
2846	struct cfq_io_context *cic;
2847	unsigned long flags;
2848	void *k;
2849
2850	if (unlikely(!ioc))
2851		return NULL;
2852
2853	rcu_read_lock();
2854
2855	/*
2856	 * we maintain a last-hit cache, to avoid browsing over the tree
2857	 */
2858	cic = rcu_dereference(ioc->ioc_data);
2859	if (cic && cic->key == cfqd) {
2860		rcu_read_unlock();
2861		return cic;
2862	}
2863
2864	do {
2865		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2866		rcu_read_unlock();
2867		if (!cic)
2868			break;
2869		/* ->key must be copied to avoid race with cfq_exit_queue() */
2870		k = cic->key;
2871		if (unlikely(!k)) {
2872			cfq_drop_dead_cic(cfqd, ioc, cic);
2873			rcu_read_lock();
2874			continue;
2875		}
2876
2877		spin_lock_irqsave(&ioc->lock, flags);
2878		rcu_assign_pointer(ioc->ioc_data, cic);
2879		spin_unlock_irqrestore(&ioc->lock, flags);
2880		break;
2881	} while (1);
2882
2883	return cic;
2884}
2885
2886/*
2887 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2888 * the process specific cfq io context when entered from the block layer.
2889 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2890 */
2891static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2892			struct cfq_io_context *cic, gfp_t gfp_mask)
2893{
2894	unsigned long flags;
2895	int ret;
2896
2897	ret = radix_tree_preload(gfp_mask);
2898	if (!ret) {
2899		cic->ioc = ioc;
2900		cic->key = cfqd;
2901
2902		spin_lock_irqsave(&ioc->lock, flags);
2903		ret = radix_tree_insert(&ioc->radix_root,
2904						(unsigned long) cfqd, cic);
2905		if (!ret)
2906			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2907		spin_unlock_irqrestore(&ioc->lock, flags);
2908
2909		radix_tree_preload_end();
2910
2911		if (!ret) {
2912			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2913			list_add(&cic->queue_list, &cfqd->cic_list);
2914			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2915		}
2916	}
2917
2918	if (ret)
2919		printk(KERN_ERR "cfq: cic link failed!\n");
2920
2921	return ret;
2922}
2923
2924/*
2925 * Setup general io context and cfq io context. There can be several cfq
2926 * io contexts per general io context, if this process is doing io to more
2927 * than one device managed by cfq.
2928 */
2929static struct cfq_io_context *
2930cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2931{
2932	struct io_context *ioc = NULL;
2933	struct cfq_io_context *cic;
2934
2935	might_sleep_if(gfp_mask & __GFP_WAIT);
2936
2937	ioc = get_io_context(gfp_mask, cfqd->queue->node);
2938	if (!ioc)
2939		return NULL;
2940
2941	cic = cfq_cic_lookup(cfqd, ioc);
2942	if (cic)
2943		goto out;
2944
2945	cic = cfq_alloc_io_context(cfqd, gfp_mask);
2946	if (cic == NULL)
2947		goto err;
2948
2949	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2950		goto err_free;
2951
2952out:
2953	smp_read_barrier_depends();
2954	if (unlikely(ioc->ioprio_changed))
2955		cfq_ioc_set_ioprio(ioc);
2956
2957#ifdef CONFIG_CFQ_GROUP_IOSCHED
2958	if (unlikely(ioc->cgroup_changed))
2959		cfq_ioc_set_cgroup(ioc);
2960#endif
2961	return cic;
2962err_free:
2963	cfq_cic_free(cic);
2964err:
2965	put_io_context(ioc);
2966	return NULL;
2967}
2968
2969static void
2970cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2971{
2972	unsigned long elapsed = jiffies - cic->last_end_request;
2973	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2974
2975	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2976	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2977	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2978}
2979
2980static void
2981cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2982		       struct request *rq)
2983{
2984	sector_t sdist = 0;
2985	sector_t n_sec = blk_rq_sectors(rq);
2986	if (cfqq->last_request_pos) {
2987		if (cfqq->last_request_pos < blk_rq_pos(rq))
2988			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2989		else
2990			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2991	}
2992
2993	cfqq->seek_history <<= 1;
2994	if (blk_queue_nonrot(cfqd->queue))
2995		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2996	else
2997		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2998}
2999
3000/*
3001 * Disable idle window if the process thinks too long or seeks so much that
3002 * it doesn't matter
3003 */
3004static void
3005cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3006		       struct cfq_io_context *cic)
3007{
3008	int old_idle, enable_idle;
3009
3010	/*
3011	 * Don't idle for async or idle io prio class
3012	 */
3013	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3014		return;
3015
3016	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3017
3018	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3019		cfq_mark_cfqq_deep(cfqq);
3020
3021	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3022	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3023		enable_idle = 0;
3024	else if (sample_valid(cic->ttime_samples)) {
3025		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3026			enable_idle = 0;
3027		else
3028			enable_idle = 1;
3029	}
3030
3031	if (old_idle != enable_idle) {
3032		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3033		if (enable_idle)
3034			cfq_mark_cfqq_idle_window(cfqq);
3035		else
3036			cfq_clear_cfqq_idle_window(cfqq);
3037	}
3038}
3039
3040/*
3041 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3042 * no or if we aren't sure, a 1 will cause a preempt.
3043 */
3044static bool
3045cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3046		   struct request *rq)
3047{
3048	struct cfq_queue *cfqq;
3049
3050	cfqq = cfqd->active_queue;
3051	if (!cfqq)
3052		return false;
3053
3054	if (cfq_class_idle(new_cfqq))
3055		return false;
3056
3057	if (cfq_class_idle(cfqq))
3058		return true;
3059
3060	/*
3061	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3062	 */
3063	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3064		return false;
3065
3066	/*
3067	 * if the new request is sync, but the currently running queue is
3068	 * not, let the sync request have priority.
3069	 */
3070	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3071		return true;
3072
3073	if (new_cfqq->cfqg != cfqq->cfqg)
3074		return false;
3075
3076	if (cfq_slice_used(cfqq))
3077		return true;
3078
3079	/* Allow preemption only if we are idling on sync-noidle tree */
3080	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3081	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3082	    new_cfqq->service_tree->count == 2 &&
3083	    RB_EMPTY_ROOT(&cfqq->sort_list))
3084		return true;
3085
3086	/*
3087	 * So both queues are sync. Let the new request get disk time if
3088	 * it's a metadata request and the current queue is doing regular IO.
3089	 */
3090	if (rq_is_meta(rq) && !cfqq->meta_pending)
3091		return true;
3092
3093	/*
3094	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3095	 */
3096	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3097		return true;
3098
3099	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3100		return false;
3101
3102	/*
3103	 * if this request is as-good as one we would expect from the
3104	 * current cfqq, let it preempt
3105	 */
3106	if (cfq_rq_close(cfqd, cfqq, rq, true))
3107		return true;
3108
3109	return false;
3110}
3111
3112/*
3113 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3114 * let it have half of its nominal slice.
3115 */
3116static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3117{
3118	cfq_log_cfqq(cfqd, cfqq, "preempt");
3119	cfq_slice_expired(cfqd, 1);
3120
3121	/*
3122	 * Put the new queue at the front of the of the current list,
3123	 * so we know that it will be selected next.
3124	 */
3125	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3126
3127	cfq_service_tree_add(cfqd, cfqq, 1);
3128
3129	cfqq->slice_end = 0;
3130	cfq_mark_cfqq_slice_new(cfqq);
3131}
3132
3133/*
3134 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3135 * something we should do about it
3136 */
3137static void
3138cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3139		struct request *rq)
3140{
3141	struct cfq_io_context *cic = RQ_CIC(rq);
3142
3143	cfqd->rq_queued++;
3144	if (rq_is_meta(rq))
3145		cfqq->meta_pending++;
3146
3147	cfq_update_io_thinktime(cfqd, cic);
3148	cfq_update_io_seektime(cfqd, cfqq, rq);
3149	cfq_update_idle_window(cfqd, cfqq, cic);
3150
3151	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3152
3153	if (cfqq == cfqd->active_queue) {
3154		/*
3155		 * Remember that we saw a request from this process, but
3156		 * don't start queuing just yet. Otherwise we risk seeing lots
3157		 * of tiny requests, because we disrupt the normal plugging
3158		 * and merging. If the request is already larger than a single
3159		 * page, let it rip immediately. For that case we assume that
3160		 * merging is already done. Ditto for a busy system that
3161		 * has other work pending, don't risk delaying until the
3162		 * idle timer unplug to continue working.
3163		 */
3164		if (cfq_cfqq_wait_request(cfqq)) {
3165			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3166			    cfqd->busy_queues > 1) {
3167				del_timer(&cfqd->idle_slice_timer);
3168				cfq_clear_cfqq_wait_request(cfqq);
3169				__blk_run_queue(cfqd->queue);
3170			} else
3171				cfq_mark_cfqq_must_dispatch(cfqq);
3172		}
3173	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3174		/*
3175		 * not the active queue - expire current slice if it is
3176		 * idle and has expired it's mean thinktime or this new queue
3177		 * has some old slice time left and is of higher priority or
3178		 * this new queue is RT and the current one is BE
3179		 */
3180		cfq_preempt_queue(cfqd, cfqq);
3181		__blk_run_queue(cfqd->queue);
3182	}
3183}
3184
3185static void cfq_insert_request(struct request_queue *q, struct request *rq)
3186{
3187	struct cfq_data *cfqd = q->elevator->elevator_data;
3188	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3189
3190	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3191	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3192
3193	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3194	list_add_tail(&rq->queuelist, &cfqq->fifo);
3195	cfq_add_rq_rb(rq);
3196
3197	cfq_rq_enqueued(cfqd, cfqq, rq);
3198}
3199
3200/*
3201 * Update hw_tag based on peak queue depth over 50 samples under
3202 * sufficient load.
3203 */
3204static void cfq_update_hw_tag(struct cfq_data *cfqd)
3205{
3206	struct cfq_queue *cfqq = cfqd->active_queue;
3207
3208	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3209		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3210
3211	if (cfqd->hw_tag == 1)
3212		return;
3213
3214	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3215	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3216		return;
3217
3218	/*
3219	 * If active queue hasn't enough requests and can idle, cfq might not
3220	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3221	 * case
3222	 */
3223	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3224	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3225	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3226		return;
3227
3228	if (cfqd->hw_tag_samples++ < 50)
3229		return;
3230
3231	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3232		cfqd->hw_tag = 1;
3233	else
3234		cfqd->hw_tag = 0;
3235}
3236
3237static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3238{
3239	struct cfq_io_context *cic = cfqd->active_cic;
3240
3241	/* If there are other queues in the group, don't wait */
3242	if (cfqq->cfqg->nr_cfqq > 1)
3243		return false;
3244
3245	if (cfq_slice_used(cfqq))
3246		return true;
3247
3248	/* if slice left is less than think time, wait busy */
3249	if (cic && sample_valid(cic->ttime_samples)
3250	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
3251		return true;
3252
3253	/*
3254	 * If think times is less than a jiffy than ttime_mean=0 and above
3255	 * will not be true. It might happen that slice has not expired yet
3256	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3257	 * case where think time is less than a jiffy, mark the queue wait
3258	 * busy if only 1 jiffy is left in the slice.
3259	 */
3260	if (cfqq->slice_end - jiffies == 1)
3261		return true;
3262
3263	return false;
3264}
3265
3266static void cfq_completed_request(struct request_queue *q, struct request *rq)
3267{
3268	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3269	struct cfq_data *cfqd = cfqq->cfqd;
3270	const int sync = rq_is_sync(rq);
3271	unsigned long now;
3272
3273	now = jiffies;
3274	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3275
3276	cfq_update_hw_tag(cfqd);
3277
3278	WARN_ON(!cfqd->rq_in_driver);
3279	WARN_ON(!cfqq->dispatched);
3280	cfqd->rq_in_driver--;
3281	cfqq->dispatched--;
3282
3283	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3284
3285	if (sync) {
3286		RQ_CIC(rq)->last_end_request = now;
3287		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3288			cfqd->last_delayed_sync = now;
3289	}
3290
3291	/*
3292	 * If this is the active queue, check if it needs to be expired,
3293	 * or if we want to idle in case it has no pending requests.
3294	 */
3295	if (cfqd->active_queue == cfqq) {
3296		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3297
3298		if (cfq_cfqq_slice_new(cfqq)) {
3299			cfq_set_prio_slice(cfqd, cfqq);
3300			cfq_clear_cfqq_slice_new(cfqq);
3301		}
3302
3303		/*
3304		 * Should we wait for next request to come in before we expire
3305		 * the queue.
3306		 */
3307		if (cfq_should_wait_busy(cfqd, cfqq)) {
3308			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3309			cfq_mark_cfqq_wait_busy(cfqq);
3310		}
3311
3312		/*
3313		 * Idling is not enabled on:
3314		 * - expired queues
3315		 * - idle-priority queues
3316		 * - async queues
3317		 * - queues with still some requests queued
3318		 * - when there is a close cooperator
3319		 */
3320		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3321			cfq_slice_expired(cfqd, 1);
3322		else if (sync && cfqq_empty &&
3323			 !cfq_close_cooperator(cfqd, cfqq)) {
3324			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3325			/*
3326			 * Idling is enabled for SYNC_WORKLOAD.
3327			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3328			 * only if we processed at least one !rq_noidle request
3329			 */
3330			if (cfqd->serving_type == SYNC_WORKLOAD
3331			    || cfqd->noidle_tree_requires_idle
3332			    || cfqq->cfqg->nr_cfqq == 1)
3333				cfq_arm_slice_timer(cfqd);
3334		}
3335	}
3336
3337	if (!cfqd->rq_in_driver)
3338		cfq_schedule_dispatch(cfqd);
3339}
3340
3341/*
3342 * we temporarily boost lower priority queues if they are holding fs exclusive
3343 * resources. they are boosted to normal prio (CLASS_BE/4)
3344 */
3345static void cfq_prio_boost(struct cfq_queue *cfqq)
3346{
3347	if (has_fs_excl()) {
3348		/*
3349		 * boost idle prio on transactions that would lock out other
3350		 * users of the filesystem
3351		 */
3352		if (cfq_class_idle(cfqq))
3353			cfqq->ioprio_class = IOPRIO_CLASS_BE;
3354		if (cfqq->ioprio > IOPRIO_NORM)
3355			cfqq->ioprio = IOPRIO_NORM;
3356	} else {
3357		/*
3358		 * unboost the queue (if needed)
3359		 */
3360		cfqq->ioprio_class = cfqq->org_ioprio_class;
3361		cfqq->ioprio = cfqq->org_ioprio;
3362	}
3363}
3364
3365static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3366{
3367	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3368		cfq_mark_cfqq_must_alloc_slice(cfqq);
3369		return ELV_MQUEUE_MUST;
3370	}
3371
3372	return ELV_MQUEUE_MAY;
3373}
3374
3375static int cfq_may_queue(struct request_queue *q, int rw)
3376{
3377	struct cfq_data *cfqd = q->elevator->elevator_data;
3378	struct task_struct *tsk = current;
3379	struct cfq_io_context *cic;
3380	struct cfq_queue *cfqq;
3381
3382	/*
3383	 * don't force setup of a queue from here, as a call to may_queue
3384	 * does not necessarily imply that a request actually will be queued.
3385	 * so just lookup a possibly existing queue, or return 'may queue'
3386	 * if that fails
3387	 */
3388	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3389	if (!cic)
3390		return ELV_MQUEUE_MAY;
3391
3392	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3393	if (cfqq) {
3394		cfq_init_prio_data(cfqq, cic->ioc);
3395		cfq_prio_boost(cfqq);
3396
3397		return __cfq_may_queue(cfqq);
3398	}
3399
3400	return ELV_MQUEUE_MAY;
3401}
3402
3403/*
3404 * queue lock held here
3405 */
3406static void cfq_put_request(struct request *rq)
3407{
3408	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3409
3410	if (cfqq) {
3411		const int rw = rq_data_dir(rq);
3412
3413		BUG_ON(!cfqq->allocated[rw]);
3414		cfqq->allocated[rw]--;
3415
3416		put_io_context(RQ_CIC(rq)->ioc);
3417
3418		rq->elevator_private = NULL;
3419		rq->elevator_private2 = NULL;
3420
3421		cfq_put_queue(cfqq);
3422	}
3423}
3424
3425static struct cfq_queue *
3426cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3427		struct cfq_queue *cfqq)
3428{
3429	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3430	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3431	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3432	cfq_put_queue(cfqq);
3433	return cic_to_cfqq(cic, 1);
3434}
3435
3436/*
3437 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3438 * was the last process referring to said cfqq.
3439 */
3440static struct cfq_queue *
3441split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3442{
3443	if (cfqq_process_refs(cfqq) == 1) {
3444		cfqq->pid = current->pid;
3445		cfq_clear_cfqq_coop(cfqq);
3446		cfq_clear_cfqq_split_coop(cfqq);
3447		return cfqq;
3448	}
3449
3450	cic_set_cfqq(cic, NULL, 1);
3451	cfq_put_queue(cfqq);
3452	return NULL;
3453}
3454/*
3455 * Allocate cfq data structures associated with this request.
3456 */
3457static int
3458cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3459{
3460	struct cfq_data *cfqd = q->elevator->elevator_data;
3461	struct cfq_io_context *cic;
3462	const int rw = rq_data_dir(rq);
3463	const bool is_sync = rq_is_sync(rq);
3464	struct cfq_queue *cfqq;
3465	unsigned long flags;
3466
3467	might_sleep_if(gfp_mask & __GFP_WAIT);
3468
3469	cic = cfq_get_io_context(cfqd, gfp_mask);
3470
3471	spin_lock_irqsave(q->queue_lock, flags);
3472
3473	if (!cic)
3474		goto queue_fail;
3475
3476new_queue:
3477	cfqq = cic_to_cfqq(cic, is_sync);
3478	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3479		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3480		cic_set_cfqq(cic, cfqq, is_sync);
3481	} else {
3482		/*
3483		 * If the queue was seeky for too long, break it apart.
3484		 */
3485		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3486			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3487			cfqq = split_cfqq(cic, cfqq);
3488			if (!cfqq)
3489				goto new_queue;
3490		}
3491
3492		/*
3493		 * Check to see if this queue is scheduled to merge with
3494		 * another, closely cooperating queue.  The merging of
3495		 * queues happens here as it must be done in process context.
3496		 * The reference on new_cfqq was taken in merge_cfqqs.
3497		 */
3498		if (cfqq->new_cfqq)
3499			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3500	}
3501
3502	cfqq->allocated[rw]++;
3503	atomic_inc(&cfqq->ref);
3504
3505	spin_unlock_irqrestore(q->queue_lock, flags);
3506
3507	rq->elevator_private = cic;
3508	rq->elevator_private2 = cfqq;
3509	return 0;
3510
3511queue_fail:
3512	if (cic)
3513		put_io_context(cic->ioc);
3514
3515	cfq_schedule_dispatch(cfqd);
3516	spin_unlock_irqrestore(q->queue_lock, flags);
3517	cfq_log(cfqd, "set_request fail");
3518	return 1;
3519}
3520
3521static void cfq_kick_queue(struct work_struct *work)
3522{
3523	struct cfq_data *cfqd =
3524		container_of(work, struct cfq_data, unplug_work);
3525	struct request_queue *q = cfqd->queue;
3526
3527	spin_lock_irq(q->queue_lock);
3528	__blk_run_queue(cfqd->queue);
3529	spin_unlock_irq(q->queue_lock);
3530}
3531
3532/*
3533 * Timer running if the active_queue is currently idling inside its time slice
3534 */
3535static void cfq_idle_slice_timer(unsigned long data)
3536{
3537	struct cfq_data *cfqd = (struct cfq_data *) data;
3538	struct cfq_queue *cfqq;
3539	unsigned long flags;
3540	int timed_out = 1;
3541
3542	cfq_log(cfqd, "idle timer fired");
3543
3544	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3545
3546	cfqq = cfqd->active_queue;
3547	if (cfqq) {
3548		timed_out = 0;
3549
3550		/*
3551		 * We saw a request before the queue expired, let it through
3552		 */
3553		if (cfq_cfqq_must_dispatch(cfqq))
3554			goto out_kick;
3555
3556		/*
3557		 * expired
3558		 */
3559		if (cfq_slice_used(cfqq))
3560			goto expire;
3561
3562		/*
3563		 * only expire and reinvoke request handler, if there are
3564		 * other queues with pending requests
3565		 */
3566		if (!cfqd->busy_queues)
3567			goto out_cont;
3568
3569		/*
3570		 * not expired and it has a request pending, let it dispatch
3571		 */
3572		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3573			goto out_kick;
3574
3575		/*
3576		 * Queue depth flag is reset only when the idle didn't succeed
3577		 */
3578		cfq_clear_cfqq_deep(cfqq);
3579	}
3580expire:
3581	cfq_slice_expired(cfqd, timed_out);
3582out_kick:
3583	cfq_schedule_dispatch(cfqd);
3584out_cont:
3585	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3586}
3587
3588static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3589{
3590	del_timer_sync(&cfqd->idle_slice_timer);
3591	cancel_work_sync(&cfqd->unplug_work);
3592}
3593
3594static void cfq_put_async_queues(struct cfq_data *cfqd)
3595{
3596	int i;
3597
3598	for (i = 0; i < IOPRIO_BE_NR; i++) {
3599		if (cfqd->async_cfqq[0][i])
3600			cfq_put_queue(cfqd->async_cfqq[0][i]);
3601		if (cfqd->async_cfqq[1][i])
3602			cfq_put_queue(cfqd->async_cfqq[1][i]);
3603	}
3604
3605	if (cfqd->async_idle_cfqq)
3606		cfq_put_queue(cfqd->async_idle_cfqq);
3607}
3608
3609static void cfq_cfqd_free(struct rcu_head *head)
3610{
3611	kfree(container_of(head, struct cfq_data, rcu));
3612}
3613
3614static void cfq_exit_queue(struct elevator_queue *e)
3615{
3616	struct cfq_data *cfqd = e->elevator_data;
3617	struct request_queue *q = cfqd->queue;
3618
3619	cfq_shutdown_timer_wq(cfqd);
3620
3621	spin_lock_irq(q->queue_lock);
3622
3623	if (cfqd->active_queue)
3624		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3625
3626	while (!list_empty(&cfqd->cic_list)) {
3627		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3628							struct cfq_io_context,
3629							queue_list);
3630
3631		__cfq_exit_single_io_context(cfqd, cic);
3632	}
3633
3634	cfq_put_async_queues(cfqd);
3635	cfq_release_cfq_groups(cfqd);
3636	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3637
3638	spin_unlock_irq(q->queue_lock);
3639
3640	cfq_shutdown_timer_wq(cfqd);
3641
3642	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3643	call_rcu(&cfqd->rcu, cfq_cfqd_free);
3644}
3645
3646static void *cfq_init_queue(struct request_queue *q)
3647{
3648	struct cfq_data *cfqd;
3649	int i, j;
3650	struct cfq_group *cfqg;
3651	struct cfq_rb_root *st;
3652
3653	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3654	if (!cfqd)
3655		return NULL;
3656
3657	/* Init root service tree */
3658	cfqd->grp_service_tree = CFQ_RB_ROOT;
3659
3660	/* Init root group */
3661	cfqg = &cfqd->root_group;
3662	for_each_cfqg_st(cfqg, i, j, st)
3663		*st = CFQ_RB_ROOT;
3664	RB_CLEAR_NODE(&cfqg->rb_node);
3665
3666	/* Give preference to root group over other groups */
3667	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3668
3669#ifdef CONFIG_CFQ_GROUP_IOSCHED
3670	/*
3671	 * Take a reference to root group which we never drop. This is just
3672	 * to make sure that cfq_put_cfqg() does not try to kfree root group
3673	 */
3674	atomic_set(&cfqg->ref, 1);
3675	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3676					0);
3677#endif
3678	/*
3679	 * Not strictly needed (since RB_ROOT just clears the node and we
3680	 * zeroed cfqd on alloc), but better be safe in case someone decides
3681	 * to add magic to the rb code
3682	 */
3683	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3684		cfqd->prio_trees[i] = RB_ROOT;
3685
3686	/*
3687	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3688	 * Grab a permanent reference to it, so that the normal code flow
3689	 * will not attempt to free it.
3690	 */
3691	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3692	atomic_inc(&cfqd->oom_cfqq.ref);
3693	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3694
3695	INIT_LIST_HEAD(&cfqd->cic_list);
3696
3697	cfqd->queue = q;
3698
3699	init_timer(&cfqd->idle_slice_timer);
3700	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3701	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3702
3703	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3704
3705	cfqd->cfq_quantum = cfq_quantum;
3706	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3707	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3708	cfqd->cfq_back_max = cfq_back_max;
3709	cfqd->cfq_back_penalty = cfq_back_penalty;
3710	cfqd->cfq_slice[0] = cfq_slice_async;
3711	cfqd->cfq_slice[1] = cfq_slice_sync;
3712	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3713	cfqd->cfq_slice_idle = cfq_slice_idle;
3714	cfqd->cfq_latency = 1;
3715	cfqd->cfq_group_isolation = 0;
3716	cfqd->hw_tag = -1;
3717	/*
3718	 * we optimistically start assuming sync ops weren't delayed in last
3719	 * second, in order to have larger depth for async operations.
3720	 */
3721	cfqd->last_delayed_sync = jiffies - HZ;
3722	INIT_RCU_HEAD(&cfqd->rcu);
3723	return cfqd;
3724}
3725
3726static void cfq_slab_kill(void)
3727{
3728	/*
3729	 * Caller already ensured that pending RCU callbacks are completed,
3730	 * so we should have no busy allocations at this point.
3731	 */
3732	if (cfq_pool)
3733		kmem_cache_destroy(cfq_pool);
3734	if (cfq_ioc_pool)
3735		kmem_cache_destroy(cfq_ioc_pool);
3736}
3737
3738static int __init cfq_slab_setup(void)
3739{
3740	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3741	if (!cfq_pool)
3742		goto fail;
3743
3744	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3745	if (!cfq_ioc_pool)
3746		goto fail;
3747
3748	return 0;
3749fail:
3750	cfq_slab_kill();
3751	return -ENOMEM;
3752}
3753
3754/*
3755 * sysfs parts below -->
3756 */
3757static ssize_t
3758cfq_var_show(unsigned int var, char *page)
3759{
3760	return sprintf(page, "%d\n", var);
3761}
3762
3763static ssize_t
3764cfq_var_store(unsigned int *var, const char *page, size_t count)
3765{
3766	char *p = (char *) page;
3767
3768	*var = simple_strtoul(p, &p, 10);
3769	return count;
3770}
3771
3772#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3773static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3774{									\
3775	struct cfq_data *cfqd = e->elevator_data;			\
3776	unsigned int __data = __VAR;					\
3777	if (__CONV)							\
3778		__data = jiffies_to_msecs(__data);			\
3779	return cfq_var_show(__data, (page));				\
3780}
3781SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3782SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3783SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3784SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3785SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3786SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3787SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3788SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3789SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3790SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3791SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3792#undef SHOW_FUNCTION
3793
3794#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3795static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3796{									\
3797	struct cfq_data *cfqd = e->elevator_data;			\
3798	unsigned int __data;						\
3799	int ret = cfq_var_store(&__data, (page), count);		\
3800	if (__data < (MIN))						\
3801		__data = (MIN);						\
3802	else if (__data > (MAX))					\
3803		__data = (MAX);						\
3804	if (__CONV)							\
3805		*(__PTR) = msecs_to_jiffies(__data);			\
3806	else								\
3807		*(__PTR) = __data;					\
3808	return ret;							\
3809}
3810STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3811STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3812		UINT_MAX, 1);
3813STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3814		UINT_MAX, 1);
3815STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3816STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3817		UINT_MAX, 0);
3818STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3819STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3820STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3821STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3822		UINT_MAX, 0);
3823STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3824STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3825#undef STORE_FUNCTION
3826
3827#define CFQ_ATTR(name) \
3828	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3829
3830static struct elv_fs_entry cfq_attrs[] = {
3831	CFQ_ATTR(quantum),
3832	CFQ_ATTR(fifo_expire_sync),
3833	CFQ_ATTR(fifo_expire_async),
3834	CFQ_ATTR(back_seek_max),
3835	CFQ_ATTR(back_seek_penalty),
3836	CFQ_ATTR(slice_sync),
3837	CFQ_ATTR(slice_async),
3838	CFQ_ATTR(slice_async_rq),
3839	CFQ_ATTR(slice_idle),
3840	CFQ_ATTR(low_latency),
3841	CFQ_ATTR(group_isolation),
3842	__ATTR_NULL
3843};
3844
3845static struct elevator_type iosched_cfq = {
3846	.ops = {
3847		.elevator_merge_fn = 		cfq_merge,
3848		.elevator_merged_fn =		cfq_merged_request,
3849		.elevator_merge_req_fn =	cfq_merged_requests,
3850		.elevator_allow_merge_fn =	cfq_allow_merge,
3851		.elevator_dispatch_fn =		cfq_dispatch_requests,
3852		.elevator_add_req_fn =		cfq_insert_request,
3853		.elevator_activate_req_fn =	cfq_activate_request,
3854		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3855		.elevator_queue_empty_fn =	cfq_queue_empty,
3856		.elevator_completed_req_fn =	cfq_completed_request,
3857		.elevator_former_req_fn =	elv_rb_former_request,
3858		.elevator_latter_req_fn =	elv_rb_latter_request,
3859		.elevator_set_req_fn =		cfq_set_request,
3860		.elevator_put_req_fn =		cfq_put_request,
3861		.elevator_may_queue_fn =	cfq_may_queue,
3862		.elevator_init_fn =		cfq_init_queue,
3863		.elevator_exit_fn =		cfq_exit_queue,
3864		.trim =				cfq_free_io_context,
3865	},
3866	.elevator_attrs =	cfq_attrs,
3867	.elevator_name =	"cfq",
3868	.elevator_owner =	THIS_MODULE,
3869};
3870
3871#ifdef CONFIG_CFQ_GROUP_IOSCHED
3872static struct blkio_policy_type blkio_policy_cfq = {
3873	.ops = {
3874		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
3875		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
3876	},
3877};
3878#else
3879static struct blkio_policy_type blkio_policy_cfq;
3880#endif
3881
3882static int __init cfq_init(void)
3883{
3884	/*
3885	 * could be 0 on HZ < 1000 setups
3886	 */
3887	if (!cfq_slice_async)
3888		cfq_slice_async = 1;
3889	if (!cfq_slice_idle)
3890		cfq_slice_idle = 1;
3891
3892	if (cfq_slab_setup())
3893		return -ENOMEM;
3894
3895	elv_register(&iosched_cfq);
3896	blkio_policy_register(&blkio_policy_cfq);
3897
3898	return 0;
3899}
3900
3901static void __exit cfq_exit(void)
3902{
3903	DECLARE_COMPLETION_ONSTACK(all_gone);
3904	blkio_policy_unregister(&blkio_policy_cfq);
3905	elv_unregister(&iosched_cfq);
3906	ioc_gone = &all_gone;
3907	/* ioc_gone's update must be visible before reading ioc_count */
3908	smp_wmb();
3909
3910	/*
3911	 * this also protects us from entering cfq_slab_kill() with
3912	 * pending RCU callbacks
3913	 */
3914	if (elv_ioc_count_read(cfq_ioc_count))
3915		wait_for_completion(&all_gone);
3916	cfq_slab_kill();
3917}
3918
3919module_init(cfq_init);
3920module_exit(cfq_exit);
3921
3922MODULE_AUTHOR("Jens Axboe");
3923MODULE_LICENSE("GPL");
3924MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3925