cfq-iosched.c revision 76280aff1c7e9ae761cac4b48591c43cd7d69159
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16
17/*
18 * tunables
19 */
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
27static const int cfq_slice_sync = HZ / 10;
28static int cfq_slice_async = HZ / 25;
29static const int cfq_slice_async_rq = 2;
30static int cfq_slice_idle = HZ / 125;
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
33
34/*
35 * offset from end of service tree
36 */
37#define CFQ_IDLE_DELAY		(HZ / 5)
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT		(2)
43
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT		(HZ)
49
50#define CFQ_SLICE_SCALE		(5)
51#define CFQ_HW_QUEUE_MIN	(5)
52
53#define RQ_CIC(rq)		\
54	((struct cfq_io_context *) (rq)->elevator_private)
55#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
56
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
59
60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61static struct completion *ioc_gone;
62static DEFINE_SPINLOCK(ioc_gone_lock);
63
64#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
65#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68#define sample_valid(samples)	((samples) > 80)
69
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77	struct rb_root rb;
78	struct rb_node *left;
79	unsigned count;
80};
81#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87	/* reference count */
88	atomic_t ref;
89	/* various state flags, see below */
90	unsigned int flags;
91	/* parent cfq_data */
92	struct cfq_data *cfqd;
93	/* service_tree member */
94	struct rb_node rb_node;
95	/* service_tree key */
96	unsigned long rb_key;
97	/* prio tree member */
98	struct rb_node p_node;
99	/* prio tree root we belong to, if any */
100	struct rb_root *p_root;
101	/* sorted list of pending requests */
102	struct rb_root sort_list;
103	/* if fifo isn't expired, next request to serve */
104	struct request *next_rq;
105	/* requests queued in sort_list */
106	int queued[2];
107	/* currently allocated requests */
108	int allocated[2];
109	/* fifo list of requests in sort_list */
110	struct list_head fifo;
111
112	unsigned long slice_end;
113	long slice_resid;
114	unsigned int slice_dispatch;
115
116	/* pending metadata requests */
117	int meta_pending;
118	/* number of requests that are on the dispatch list or inside driver */
119	int dispatched;
120
121	/* io prio of this group */
122	unsigned short ioprio, org_ioprio;
123	unsigned short ioprio_class, org_ioprio_class;
124
125	unsigned int seek_samples;
126	u64 seek_total;
127	sector_t seek_mean;
128	sector_t last_request_pos;
129	unsigned long seeky_start;
130
131	pid_t pid;
132
133	struct cfq_rb_root *service_tree;
134	struct cfq_queue *new_cfqq;
135};
136
137/*
138 * First index in the service_trees.
139 * IDLE is handled separately, so it has negative index
140 */
141enum wl_prio_t {
142	IDLE_WORKLOAD = -1,
143	BE_WORKLOAD = 0,
144	RT_WORKLOAD = 1
145};
146
147/*
148 * Second index in the service_trees.
149 */
150enum wl_type_t {
151	ASYNC_WORKLOAD = 0,
152	SYNC_NOIDLE_WORKLOAD = 1,
153	SYNC_WORKLOAD = 2
154};
155
156
157/*
158 * Per block device queue structure
159 */
160struct cfq_data {
161	struct request_queue *queue;
162
163	/*
164	 * rr lists of queues with requests, onle rr for each priority class.
165	 * Counts are embedded in the cfq_rb_root
166	 */
167	struct cfq_rb_root service_trees[2][3];
168	struct cfq_rb_root service_tree_idle;
169	/*
170	 * The priority currently being served
171	 */
172	enum wl_prio_t serving_prio;
173	enum wl_type_t serving_type;
174	unsigned long workload_expires;
175
176	/*
177	 * Each priority tree is sorted by next_request position.  These
178	 * trees are used when determining if two or more queues are
179	 * interleaving requests (see cfq_close_cooperator).
180	 */
181	struct rb_root prio_trees[CFQ_PRIO_LISTS];
182
183	unsigned int busy_queues;
184	unsigned int busy_queues_avg[2];
185
186	int rq_in_driver[2];
187	int sync_flight;
188
189	/*
190	 * queue-depth detection
191	 */
192	int rq_queued;
193	int hw_tag;
194	/*
195	 * hw_tag can be
196	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
197	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
198	 *  0 => no NCQ
199	 */
200	int hw_tag_est_depth;
201	unsigned int hw_tag_samples;
202
203	/*
204	 * idle window management
205	 */
206	struct timer_list idle_slice_timer;
207	struct work_struct unplug_work;
208
209	struct cfq_queue *active_queue;
210	struct cfq_io_context *active_cic;
211
212	/*
213	 * async queue for each priority case
214	 */
215	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
216	struct cfq_queue *async_idle_cfqq;
217
218	sector_t last_position;
219
220	/*
221	 * tunables, see top of file
222	 */
223	unsigned int cfq_quantum;
224	unsigned int cfq_fifo_expire[2];
225	unsigned int cfq_back_penalty;
226	unsigned int cfq_back_max;
227	unsigned int cfq_slice[2];
228	unsigned int cfq_slice_async_rq;
229	unsigned int cfq_slice_idle;
230	unsigned int cfq_latency;
231
232	struct list_head cic_list;
233
234	/*
235	 * Fallback dummy cfqq for extreme OOM conditions
236	 */
237	struct cfq_queue oom_cfqq;
238
239	unsigned long last_end_sync_rq;
240};
241
242static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
243					    enum wl_type_t type,
244					    struct cfq_data *cfqd)
245{
246	if (prio == IDLE_WORKLOAD)
247		return &cfqd->service_tree_idle;
248
249	return &cfqd->service_trees[prio][type];
250}
251
252enum cfqq_state_flags {
253	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
254	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
255	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
256	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
257	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
258	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
259	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
260	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
261	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
262	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
263	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
264};
265
266#define CFQ_CFQQ_FNS(name)						\
267static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
268{									\
269	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
270}									\
271static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
272{									\
273	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
274}									\
275static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
276{									\
277	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
278}
279
280CFQ_CFQQ_FNS(on_rr);
281CFQ_CFQQ_FNS(wait_request);
282CFQ_CFQQ_FNS(must_dispatch);
283CFQ_CFQQ_FNS(must_alloc_slice);
284CFQ_CFQQ_FNS(fifo_expire);
285CFQ_CFQQ_FNS(idle_window);
286CFQ_CFQQ_FNS(prio_changed);
287CFQ_CFQQ_FNS(slice_new);
288CFQ_CFQQ_FNS(sync);
289CFQ_CFQQ_FNS(coop);
290CFQ_CFQQ_FNS(deep);
291#undef CFQ_CFQQ_FNS
292
293#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
294	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
295#define cfq_log(cfqd, fmt, args...)	\
296	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
297
298static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
299{
300	if (cfq_class_idle(cfqq))
301		return IDLE_WORKLOAD;
302	if (cfq_class_rt(cfqq))
303		return RT_WORKLOAD;
304	return BE_WORKLOAD;
305}
306
307
308static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
309{
310	if (!cfq_cfqq_sync(cfqq))
311		return ASYNC_WORKLOAD;
312	if (!cfq_cfqq_idle_window(cfqq))
313		return SYNC_NOIDLE_WORKLOAD;
314	return SYNC_WORKLOAD;
315}
316
317static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
318{
319	if (wl == IDLE_WORKLOAD)
320		return cfqd->service_tree_idle.count;
321
322	return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
323		+ cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
324		+ cfqd->service_trees[wl][SYNC_WORKLOAD].count;
325}
326
327static void cfq_dispatch_insert(struct request_queue *, struct request *);
328static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
329				       struct io_context *, gfp_t);
330static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
331						struct io_context *);
332
333static inline int rq_in_driver(struct cfq_data *cfqd)
334{
335	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
336}
337
338static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
339					    bool is_sync)
340{
341	return cic->cfqq[is_sync];
342}
343
344static inline void cic_set_cfqq(struct cfq_io_context *cic,
345				struct cfq_queue *cfqq, bool is_sync)
346{
347	cic->cfqq[is_sync] = cfqq;
348}
349
350/*
351 * We regard a request as SYNC, if it's either a read or has the SYNC bit
352 * set (in which case it could also be direct WRITE).
353 */
354static inline bool cfq_bio_sync(struct bio *bio)
355{
356	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
357}
358
359/*
360 * scheduler run of queue, if there are requests pending and no one in the
361 * driver that will restart queueing
362 */
363static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
364{
365	if (cfqd->busy_queues) {
366		cfq_log(cfqd, "schedule dispatch");
367		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
368	}
369}
370
371static int cfq_queue_empty(struct request_queue *q)
372{
373	struct cfq_data *cfqd = q->elevator->elevator_data;
374
375	return !cfqd->busy_queues;
376}
377
378/*
379 * Scale schedule slice based on io priority. Use the sync time slice only
380 * if a queue is marked sync and has sync io queued. A sync queue with async
381 * io only, should not get full sync slice length.
382 */
383static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
384				 unsigned short prio)
385{
386	const int base_slice = cfqd->cfq_slice[sync];
387
388	WARN_ON(prio >= IOPRIO_BE_NR);
389
390	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
391}
392
393static inline int
394cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
395{
396	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
397}
398
399/*
400 * get averaged number of queues of RT/BE priority.
401 * average is updated, with a formula that gives more weight to higher numbers,
402 * to quickly follows sudden increases and decrease slowly
403 */
404
405static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
406{
407	unsigned min_q, max_q;
408	unsigned mult  = cfq_hist_divisor - 1;
409	unsigned round = cfq_hist_divisor / 2;
410	unsigned busy = cfq_busy_queues_wl(rt, cfqd);
411
412	min_q = min(cfqd->busy_queues_avg[rt], busy);
413	max_q = max(cfqd->busy_queues_avg[rt], busy);
414	cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
415		cfq_hist_divisor;
416	return cfqd->busy_queues_avg[rt];
417}
418
419static inline void
420cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
421{
422	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
423	if (cfqd->cfq_latency) {
424		/* interested queues (we consider only the ones with the same
425		 * priority class) */
426		unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
427		unsigned sync_slice = cfqd->cfq_slice[1];
428		unsigned expect_latency = sync_slice * iq;
429		if (expect_latency > cfq_target_latency) {
430			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
431			/* scale low_slice according to IO priority
432			 * and sync vs async */
433			unsigned low_slice =
434				min(slice, base_low_slice * slice / sync_slice);
435			/* the adapted slice value is scaled to fit all iqs
436			 * into the target latency */
437			slice = max(slice * cfq_target_latency / expect_latency,
438				    low_slice);
439		}
440	}
441	cfqq->slice_end = jiffies + slice;
442	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
443}
444
445/*
446 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
447 * isn't valid until the first request from the dispatch is activated
448 * and the slice time set.
449 */
450static inline bool cfq_slice_used(struct cfq_queue *cfqq)
451{
452	if (cfq_cfqq_slice_new(cfqq))
453		return 0;
454	if (time_before(jiffies, cfqq->slice_end))
455		return 0;
456
457	return 1;
458}
459
460/*
461 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
462 * We choose the request that is closest to the head right now. Distance
463 * behind the head is penalized and only allowed to a certain extent.
464 */
465static struct request *
466cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
467{
468	sector_t s1, s2, d1 = 0, d2 = 0;
469	unsigned long back_max;
470#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
471#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
472	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
473
474	if (rq1 == NULL || rq1 == rq2)
475		return rq2;
476	if (rq2 == NULL)
477		return rq1;
478
479	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
480		return rq1;
481	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
482		return rq2;
483	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
484		return rq1;
485	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
486		return rq2;
487
488	s1 = blk_rq_pos(rq1);
489	s2 = blk_rq_pos(rq2);
490
491	/*
492	 * by definition, 1KiB is 2 sectors
493	 */
494	back_max = cfqd->cfq_back_max * 2;
495
496	/*
497	 * Strict one way elevator _except_ in the case where we allow
498	 * short backward seeks which are biased as twice the cost of a
499	 * similar forward seek.
500	 */
501	if (s1 >= last)
502		d1 = s1 - last;
503	else if (s1 + back_max >= last)
504		d1 = (last - s1) * cfqd->cfq_back_penalty;
505	else
506		wrap |= CFQ_RQ1_WRAP;
507
508	if (s2 >= last)
509		d2 = s2 - last;
510	else if (s2 + back_max >= last)
511		d2 = (last - s2) * cfqd->cfq_back_penalty;
512	else
513		wrap |= CFQ_RQ2_WRAP;
514
515	/* Found required data */
516
517	/*
518	 * By doing switch() on the bit mask "wrap" we avoid having to
519	 * check two variables for all permutations: --> faster!
520	 */
521	switch (wrap) {
522	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
523		if (d1 < d2)
524			return rq1;
525		else if (d2 < d1)
526			return rq2;
527		else {
528			if (s1 >= s2)
529				return rq1;
530			else
531				return rq2;
532		}
533
534	case CFQ_RQ2_WRAP:
535		return rq1;
536	case CFQ_RQ1_WRAP:
537		return rq2;
538	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
539	default:
540		/*
541		 * Since both rqs are wrapped,
542		 * start with the one that's further behind head
543		 * (--> only *one* back seek required),
544		 * since back seek takes more time than forward.
545		 */
546		if (s1 <= s2)
547			return rq1;
548		else
549			return rq2;
550	}
551}
552
553/*
554 * The below is leftmost cache rbtree addon
555 */
556static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
557{
558	if (!root->left)
559		root->left = rb_first(&root->rb);
560
561	if (root->left)
562		return rb_entry(root->left, struct cfq_queue, rb_node);
563
564	return NULL;
565}
566
567static void rb_erase_init(struct rb_node *n, struct rb_root *root)
568{
569	rb_erase(n, root);
570	RB_CLEAR_NODE(n);
571}
572
573static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
574{
575	if (root->left == n)
576		root->left = NULL;
577	rb_erase_init(n, &root->rb);
578	--root->count;
579}
580
581/*
582 * would be nice to take fifo expire time into account as well
583 */
584static struct request *
585cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
586		  struct request *last)
587{
588	struct rb_node *rbnext = rb_next(&last->rb_node);
589	struct rb_node *rbprev = rb_prev(&last->rb_node);
590	struct request *next = NULL, *prev = NULL;
591
592	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
593
594	if (rbprev)
595		prev = rb_entry_rq(rbprev);
596
597	if (rbnext)
598		next = rb_entry_rq(rbnext);
599	else {
600		rbnext = rb_first(&cfqq->sort_list);
601		if (rbnext && rbnext != &last->rb_node)
602			next = rb_entry_rq(rbnext);
603	}
604
605	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
606}
607
608static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
609				      struct cfq_queue *cfqq)
610{
611	struct cfq_rb_root *service_tree;
612
613	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
614
615	/*
616	 * just an approximation, should be ok.
617	 */
618	return  service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
619		   cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
620}
621
622/*
623 * The cfqd->service_trees holds all pending cfq_queue's that have
624 * requests waiting to be processed. It is sorted in the order that
625 * we will service the queues.
626 */
627static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
628				 bool add_front)
629{
630	struct rb_node **p, *parent;
631	struct cfq_queue *__cfqq;
632	unsigned long rb_key;
633	struct cfq_rb_root *service_tree;
634	int left;
635
636	service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
637	if (cfq_class_idle(cfqq)) {
638		rb_key = CFQ_IDLE_DELAY;
639		parent = rb_last(&service_tree->rb);
640		if (parent && parent != &cfqq->rb_node) {
641			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
642			rb_key += __cfqq->rb_key;
643		} else
644			rb_key += jiffies;
645	} else if (!add_front) {
646		/*
647		 * Get our rb key offset. Subtract any residual slice
648		 * value carried from last service. A negative resid
649		 * count indicates slice overrun, and this should position
650		 * the next service time further away in the tree.
651		 */
652		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
653		rb_key -= cfqq->slice_resid;
654		cfqq->slice_resid = 0;
655	} else {
656		rb_key = -HZ;
657		__cfqq = cfq_rb_first(service_tree);
658		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
659	}
660
661	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
662		/*
663		 * same position, nothing more to do
664		 */
665		if (rb_key == cfqq->rb_key &&
666		    cfqq->service_tree == service_tree)
667			return;
668
669		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
670		cfqq->service_tree = NULL;
671	}
672
673	left = 1;
674	parent = NULL;
675	cfqq->service_tree = service_tree;
676	p = &service_tree->rb.rb_node;
677	while (*p) {
678		struct rb_node **n;
679
680		parent = *p;
681		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
682
683		/*
684		 * sort by key, that represents service time.
685		 */
686		if (time_before(rb_key, __cfqq->rb_key))
687			n = &(*p)->rb_left;
688		else {
689			n = &(*p)->rb_right;
690			left = 0;
691		}
692
693		p = n;
694	}
695
696	if (left)
697		service_tree->left = &cfqq->rb_node;
698
699	cfqq->rb_key = rb_key;
700	rb_link_node(&cfqq->rb_node, parent, p);
701	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
702	service_tree->count++;
703}
704
705static struct cfq_queue *
706cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
707		     sector_t sector, struct rb_node **ret_parent,
708		     struct rb_node ***rb_link)
709{
710	struct rb_node **p, *parent;
711	struct cfq_queue *cfqq = NULL;
712
713	parent = NULL;
714	p = &root->rb_node;
715	while (*p) {
716		struct rb_node **n;
717
718		parent = *p;
719		cfqq = rb_entry(parent, struct cfq_queue, p_node);
720
721		/*
722		 * Sort strictly based on sector.  Smallest to the left,
723		 * largest to the right.
724		 */
725		if (sector > blk_rq_pos(cfqq->next_rq))
726			n = &(*p)->rb_right;
727		else if (sector < blk_rq_pos(cfqq->next_rq))
728			n = &(*p)->rb_left;
729		else
730			break;
731		p = n;
732		cfqq = NULL;
733	}
734
735	*ret_parent = parent;
736	if (rb_link)
737		*rb_link = p;
738	return cfqq;
739}
740
741static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
742{
743	struct rb_node **p, *parent;
744	struct cfq_queue *__cfqq;
745
746	if (cfqq->p_root) {
747		rb_erase(&cfqq->p_node, cfqq->p_root);
748		cfqq->p_root = NULL;
749	}
750
751	if (cfq_class_idle(cfqq))
752		return;
753	if (!cfqq->next_rq)
754		return;
755
756	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
757	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
758				      blk_rq_pos(cfqq->next_rq), &parent, &p);
759	if (!__cfqq) {
760		rb_link_node(&cfqq->p_node, parent, p);
761		rb_insert_color(&cfqq->p_node, cfqq->p_root);
762	} else
763		cfqq->p_root = NULL;
764}
765
766/*
767 * Update cfqq's position in the service tree.
768 */
769static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
770{
771	/*
772	 * Resorting requires the cfqq to be on the RR list already.
773	 */
774	if (cfq_cfqq_on_rr(cfqq)) {
775		cfq_service_tree_add(cfqd, cfqq, 0);
776		cfq_prio_tree_add(cfqd, cfqq);
777	}
778}
779
780/*
781 * add to busy list of queues for service, trying to be fair in ordering
782 * the pending list according to last request service
783 */
784static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
785{
786	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
787	BUG_ON(cfq_cfqq_on_rr(cfqq));
788	cfq_mark_cfqq_on_rr(cfqq);
789	cfqd->busy_queues++;
790
791	cfq_resort_rr_list(cfqd, cfqq);
792}
793
794/*
795 * Called when the cfqq no longer has requests pending, remove it from
796 * the service tree.
797 */
798static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
799{
800	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
801	BUG_ON(!cfq_cfqq_on_rr(cfqq));
802	cfq_clear_cfqq_on_rr(cfqq);
803
804	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
805		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
806		cfqq->service_tree = NULL;
807	}
808	if (cfqq->p_root) {
809		rb_erase(&cfqq->p_node, cfqq->p_root);
810		cfqq->p_root = NULL;
811	}
812
813	BUG_ON(!cfqd->busy_queues);
814	cfqd->busy_queues--;
815}
816
817/*
818 * rb tree support functions
819 */
820static void cfq_del_rq_rb(struct request *rq)
821{
822	struct cfq_queue *cfqq = RQ_CFQQ(rq);
823	struct cfq_data *cfqd = cfqq->cfqd;
824	const int sync = rq_is_sync(rq);
825
826	BUG_ON(!cfqq->queued[sync]);
827	cfqq->queued[sync]--;
828
829	elv_rb_del(&cfqq->sort_list, rq);
830
831	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
832		cfq_del_cfqq_rr(cfqd, cfqq);
833}
834
835static void cfq_add_rq_rb(struct request *rq)
836{
837	struct cfq_queue *cfqq = RQ_CFQQ(rq);
838	struct cfq_data *cfqd = cfqq->cfqd;
839	struct request *__alias, *prev;
840
841	cfqq->queued[rq_is_sync(rq)]++;
842
843	/*
844	 * looks a little odd, but the first insert might return an alias.
845	 * if that happens, put the alias on the dispatch list
846	 */
847	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
848		cfq_dispatch_insert(cfqd->queue, __alias);
849
850	if (!cfq_cfqq_on_rr(cfqq))
851		cfq_add_cfqq_rr(cfqd, cfqq);
852
853	/*
854	 * check if this request is a better next-serve candidate
855	 */
856	prev = cfqq->next_rq;
857	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
858
859	/*
860	 * adjust priority tree position, if ->next_rq changes
861	 */
862	if (prev != cfqq->next_rq)
863		cfq_prio_tree_add(cfqd, cfqq);
864
865	BUG_ON(!cfqq->next_rq);
866}
867
868static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
869{
870	elv_rb_del(&cfqq->sort_list, rq);
871	cfqq->queued[rq_is_sync(rq)]--;
872	cfq_add_rq_rb(rq);
873}
874
875static struct request *
876cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
877{
878	struct task_struct *tsk = current;
879	struct cfq_io_context *cic;
880	struct cfq_queue *cfqq;
881
882	cic = cfq_cic_lookup(cfqd, tsk->io_context);
883	if (!cic)
884		return NULL;
885
886	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
887	if (cfqq) {
888		sector_t sector = bio->bi_sector + bio_sectors(bio);
889
890		return elv_rb_find(&cfqq->sort_list, sector);
891	}
892
893	return NULL;
894}
895
896static void cfq_activate_request(struct request_queue *q, struct request *rq)
897{
898	struct cfq_data *cfqd = q->elevator->elevator_data;
899
900	cfqd->rq_in_driver[rq_is_sync(rq)]++;
901	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
902						rq_in_driver(cfqd));
903
904	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
905}
906
907static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
908{
909	struct cfq_data *cfqd = q->elevator->elevator_data;
910	const int sync = rq_is_sync(rq);
911
912	WARN_ON(!cfqd->rq_in_driver[sync]);
913	cfqd->rq_in_driver[sync]--;
914	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
915						rq_in_driver(cfqd));
916}
917
918static void cfq_remove_request(struct request *rq)
919{
920	struct cfq_queue *cfqq = RQ_CFQQ(rq);
921
922	if (cfqq->next_rq == rq)
923		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
924
925	list_del_init(&rq->queuelist);
926	cfq_del_rq_rb(rq);
927
928	cfqq->cfqd->rq_queued--;
929	if (rq_is_meta(rq)) {
930		WARN_ON(!cfqq->meta_pending);
931		cfqq->meta_pending--;
932	}
933}
934
935static int cfq_merge(struct request_queue *q, struct request **req,
936		     struct bio *bio)
937{
938	struct cfq_data *cfqd = q->elevator->elevator_data;
939	struct request *__rq;
940
941	__rq = cfq_find_rq_fmerge(cfqd, bio);
942	if (__rq && elv_rq_merge_ok(__rq, bio)) {
943		*req = __rq;
944		return ELEVATOR_FRONT_MERGE;
945	}
946
947	return ELEVATOR_NO_MERGE;
948}
949
950static void cfq_merged_request(struct request_queue *q, struct request *req,
951			       int type)
952{
953	if (type == ELEVATOR_FRONT_MERGE) {
954		struct cfq_queue *cfqq = RQ_CFQQ(req);
955
956		cfq_reposition_rq_rb(cfqq, req);
957	}
958}
959
960static void
961cfq_merged_requests(struct request_queue *q, struct request *rq,
962		    struct request *next)
963{
964	struct cfq_queue *cfqq = RQ_CFQQ(rq);
965	/*
966	 * reposition in fifo if next is older than rq
967	 */
968	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
969	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
970		list_move(&rq->queuelist, &next->queuelist);
971		rq_set_fifo_time(rq, rq_fifo_time(next));
972	}
973
974	if (cfqq->next_rq == next)
975		cfqq->next_rq = rq;
976	cfq_remove_request(next);
977}
978
979static int cfq_allow_merge(struct request_queue *q, struct request *rq,
980			   struct bio *bio)
981{
982	struct cfq_data *cfqd = q->elevator->elevator_data;
983	struct cfq_io_context *cic;
984	struct cfq_queue *cfqq;
985
986	/*
987	 * Disallow merge of a sync bio into an async request.
988	 */
989	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
990		return false;
991
992	/*
993	 * Lookup the cfqq that this bio will be queued with. Allow
994	 * merge only if rq is queued there.
995	 */
996	cic = cfq_cic_lookup(cfqd, current->io_context);
997	if (!cic)
998		return false;
999
1000	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1001	return cfqq == RQ_CFQQ(rq);
1002}
1003
1004static void __cfq_set_active_queue(struct cfq_data *cfqd,
1005				   struct cfq_queue *cfqq)
1006{
1007	if (cfqq) {
1008		cfq_log_cfqq(cfqd, cfqq, "set_active");
1009		cfqq->slice_end = 0;
1010		cfqq->slice_dispatch = 0;
1011
1012		cfq_clear_cfqq_wait_request(cfqq);
1013		cfq_clear_cfqq_must_dispatch(cfqq);
1014		cfq_clear_cfqq_must_alloc_slice(cfqq);
1015		cfq_clear_cfqq_fifo_expire(cfqq);
1016		cfq_mark_cfqq_slice_new(cfqq);
1017
1018		del_timer(&cfqd->idle_slice_timer);
1019	}
1020
1021	cfqd->active_queue = cfqq;
1022}
1023
1024/*
1025 * current cfqq expired its slice (or was too idle), select new one
1026 */
1027static void
1028__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1029		    bool timed_out)
1030{
1031	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1032
1033	if (cfq_cfqq_wait_request(cfqq))
1034		del_timer(&cfqd->idle_slice_timer);
1035
1036	cfq_clear_cfqq_wait_request(cfqq);
1037
1038	/*
1039	 * store what was left of this slice, if the queue idled/timed out
1040	 */
1041	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1042		cfqq->slice_resid = cfqq->slice_end - jiffies;
1043		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1044	}
1045
1046	cfq_resort_rr_list(cfqd, cfqq);
1047
1048	if (cfqq == cfqd->active_queue)
1049		cfqd->active_queue = NULL;
1050
1051	if (cfqd->active_cic) {
1052		put_io_context(cfqd->active_cic->ioc);
1053		cfqd->active_cic = NULL;
1054	}
1055}
1056
1057static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1058{
1059	struct cfq_queue *cfqq = cfqd->active_queue;
1060
1061	if (cfqq)
1062		__cfq_slice_expired(cfqd, cfqq, timed_out);
1063}
1064
1065/*
1066 * Get next queue for service. Unless we have a queue preemption,
1067 * we'll simply select the first cfqq in the service tree.
1068 */
1069static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1070{
1071	struct cfq_rb_root *service_tree =
1072		service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
1073
1074	if (RB_EMPTY_ROOT(&service_tree->rb))
1075		return NULL;
1076	return cfq_rb_first(service_tree);
1077}
1078
1079/*
1080 * Get and set a new active queue for service.
1081 */
1082static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1083					      struct cfq_queue *cfqq)
1084{
1085	if (!cfqq)
1086		cfqq = cfq_get_next_queue(cfqd);
1087
1088	__cfq_set_active_queue(cfqd, cfqq);
1089	return cfqq;
1090}
1091
1092static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1093					  struct request *rq)
1094{
1095	if (blk_rq_pos(rq) >= cfqd->last_position)
1096		return blk_rq_pos(rq) - cfqd->last_position;
1097	else
1098		return cfqd->last_position - blk_rq_pos(rq);
1099}
1100
1101#define CFQQ_SEEK_THR		8 * 1024
1102#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1103
1104static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1105			       struct request *rq)
1106{
1107	sector_t sdist = cfqq->seek_mean;
1108
1109	if (!sample_valid(cfqq->seek_samples))
1110		sdist = CFQQ_SEEK_THR;
1111
1112	return cfq_dist_from_last(cfqd, rq) <= sdist;
1113}
1114
1115static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1116				    struct cfq_queue *cur_cfqq)
1117{
1118	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1119	struct rb_node *parent, *node;
1120	struct cfq_queue *__cfqq;
1121	sector_t sector = cfqd->last_position;
1122
1123	if (RB_EMPTY_ROOT(root))
1124		return NULL;
1125
1126	/*
1127	 * First, if we find a request starting at the end of the last
1128	 * request, choose it.
1129	 */
1130	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1131	if (__cfqq)
1132		return __cfqq;
1133
1134	/*
1135	 * If the exact sector wasn't found, the parent of the NULL leaf
1136	 * will contain the closest sector.
1137	 */
1138	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1139	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1140		return __cfqq;
1141
1142	if (blk_rq_pos(__cfqq->next_rq) < sector)
1143		node = rb_next(&__cfqq->p_node);
1144	else
1145		node = rb_prev(&__cfqq->p_node);
1146	if (!node)
1147		return NULL;
1148
1149	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1150	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1151		return __cfqq;
1152
1153	return NULL;
1154}
1155
1156/*
1157 * cfqd - obvious
1158 * cur_cfqq - passed in so that we don't decide that the current queue is
1159 * 	      closely cooperating with itself.
1160 *
1161 * So, basically we're assuming that that cur_cfqq has dispatched at least
1162 * one request, and that cfqd->last_position reflects a position on the disk
1163 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1164 * assumption.
1165 */
1166static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1167					      struct cfq_queue *cur_cfqq)
1168{
1169	struct cfq_queue *cfqq;
1170
1171	if (!cfq_cfqq_sync(cur_cfqq))
1172		return NULL;
1173	if (CFQQ_SEEKY(cur_cfqq))
1174		return NULL;
1175
1176	/*
1177	 * We should notice if some of the queues are cooperating, eg
1178	 * working closely on the same area of the disk. In that case,
1179	 * we can group them together and don't waste time idling.
1180	 */
1181	cfqq = cfqq_close(cfqd, cur_cfqq);
1182	if (!cfqq)
1183		return NULL;
1184
1185	/*
1186	 * It only makes sense to merge sync queues.
1187	 */
1188	if (!cfq_cfqq_sync(cfqq))
1189		return NULL;
1190	if (CFQQ_SEEKY(cfqq))
1191		return NULL;
1192
1193	/*
1194	 * Do not merge queues of different priority classes
1195	 */
1196	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1197		return NULL;
1198
1199	return cfqq;
1200}
1201
1202/*
1203 * Determine whether we should enforce idle window for this queue.
1204 */
1205
1206static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1207{
1208	enum wl_prio_t prio = cfqq_prio(cfqq);
1209	struct cfq_rb_root *service_tree = cfqq->service_tree;
1210
1211	/* We never do for idle class queues. */
1212	if (prio == IDLE_WORKLOAD)
1213		return false;
1214
1215	/* We do for queues that were marked with idle window flag. */
1216	if (cfq_cfqq_idle_window(cfqq))
1217		return true;
1218
1219	/*
1220	 * Otherwise, we do only if they are the last ones
1221	 * in their service tree.
1222	 */
1223	if (!service_tree)
1224		service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1225
1226	if (service_tree->count == 0)
1227		return true;
1228
1229	return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1230}
1231
1232static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1233{
1234	struct cfq_queue *cfqq = cfqd->active_queue;
1235	struct cfq_io_context *cic;
1236	unsigned long sl;
1237
1238	/*
1239	 * SSD device without seek penalty, disable idling. But only do so
1240	 * for devices that support queuing, otherwise we still have a problem
1241	 * with sync vs async workloads.
1242	 */
1243	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1244		return;
1245
1246	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1247	WARN_ON(cfq_cfqq_slice_new(cfqq));
1248
1249	/*
1250	 * idle is disabled, either manually or by past process history
1251	 */
1252	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1253		return;
1254
1255	/*
1256	 * still requests with the driver, don't idle
1257	 */
1258	if (rq_in_driver(cfqd))
1259		return;
1260
1261	/*
1262	 * task has exited, don't wait
1263	 */
1264	cic = cfqd->active_cic;
1265	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1266		return;
1267
1268	/*
1269	 * If our average think time is larger than the remaining time
1270	 * slice, then don't idle. This avoids overrunning the allotted
1271	 * time slice.
1272	 */
1273	if (sample_valid(cic->ttime_samples) &&
1274	    (cfqq->slice_end - jiffies < cic->ttime_mean))
1275		return;
1276
1277	cfq_mark_cfqq_wait_request(cfqq);
1278
1279	sl = cfqd->cfq_slice_idle;
1280
1281	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1282	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1283}
1284
1285/*
1286 * Move request from internal lists to the request queue dispatch list.
1287 */
1288static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1289{
1290	struct cfq_data *cfqd = q->elevator->elevator_data;
1291	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1292
1293	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1294
1295	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1296	cfq_remove_request(rq);
1297	cfqq->dispatched++;
1298	elv_dispatch_sort(q, rq);
1299
1300	if (cfq_cfqq_sync(cfqq))
1301		cfqd->sync_flight++;
1302}
1303
1304/*
1305 * return expired entry, or NULL to just start from scratch in rbtree
1306 */
1307static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1308{
1309	struct request *rq = NULL;
1310
1311	if (cfq_cfqq_fifo_expire(cfqq))
1312		return NULL;
1313
1314	cfq_mark_cfqq_fifo_expire(cfqq);
1315
1316	if (list_empty(&cfqq->fifo))
1317		return NULL;
1318
1319	rq = rq_entry_fifo(cfqq->fifo.next);
1320	if (time_before(jiffies, rq_fifo_time(rq)))
1321		rq = NULL;
1322
1323	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1324	return rq;
1325}
1326
1327static inline int
1328cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1329{
1330	const int base_rq = cfqd->cfq_slice_async_rq;
1331
1332	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1333
1334	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1335}
1336
1337/*
1338 * Must be called with the queue_lock held.
1339 */
1340static int cfqq_process_refs(struct cfq_queue *cfqq)
1341{
1342	int process_refs, io_refs;
1343
1344	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1345	process_refs = atomic_read(&cfqq->ref) - io_refs;
1346	BUG_ON(process_refs < 0);
1347	return process_refs;
1348}
1349
1350static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1351{
1352	int process_refs, new_process_refs;
1353	struct cfq_queue *__cfqq;
1354
1355	/* Avoid a circular list and skip interim queue merges */
1356	while ((__cfqq = new_cfqq->new_cfqq)) {
1357		if (__cfqq == cfqq)
1358			return;
1359		new_cfqq = __cfqq;
1360	}
1361
1362	process_refs = cfqq_process_refs(cfqq);
1363	/*
1364	 * If the process for the cfqq has gone away, there is no
1365	 * sense in merging the queues.
1366	 */
1367	if (process_refs == 0)
1368		return;
1369
1370	/*
1371	 * Merge in the direction of the lesser amount of work.
1372	 */
1373	new_process_refs = cfqq_process_refs(new_cfqq);
1374	if (new_process_refs >= process_refs) {
1375		cfqq->new_cfqq = new_cfqq;
1376		atomic_add(process_refs, &new_cfqq->ref);
1377	} else {
1378		new_cfqq->new_cfqq = cfqq;
1379		atomic_add(new_process_refs, &cfqq->ref);
1380	}
1381}
1382
1383static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1384				    bool prio_changed)
1385{
1386	struct cfq_queue *queue;
1387	int i;
1388	bool key_valid = false;
1389	unsigned long lowest_key = 0;
1390	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1391
1392	if (prio_changed) {
1393		/*
1394		 * When priorities switched, we prefer starting
1395		 * from SYNC_NOIDLE (first choice), or just SYNC
1396		 * over ASYNC
1397		 */
1398		if (service_tree_for(prio, cur_best, cfqd)->count)
1399			return cur_best;
1400		cur_best = SYNC_WORKLOAD;
1401		if (service_tree_for(prio, cur_best, cfqd)->count)
1402			return cur_best;
1403
1404		return ASYNC_WORKLOAD;
1405	}
1406
1407	for (i = 0; i < 3; ++i) {
1408		/* otherwise, select the one with lowest rb_key */
1409		queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1410		if (queue &&
1411		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
1412			lowest_key = queue->rb_key;
1413			cur_best = i;
1414			key_valid = true;
1415		}
1416	}
1417
1418	return cur_best;
1419}
1420
1421static void choose_service_tree(struct cfq_data *cfqd)
1422{
1423	enum wl_prio_t previous_prio = cfqd->serving_prio;
1424	bool prio_changed;
1425	unsigned slice;
1426	unsigned count;
1427
1428	/* Choose next priority. RT > BE > IDLE */
1429	if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1430		cfqd->serving_prio = RT_WORKLOAD;
1431	else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1432		cfqd->serving_prio = BE_WORKLOAD;
1433	else {
1434		cfqd->serving_prio = IDLE_WORKLOAD;
1435		cfqd->workload_expires = jiffies + 1;
1436		return;
1437	}
1438
1439	/*
1440	 * For RT and BE, we have to choose also the type
1441	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1442	 * expiration time
1443	 */
1444	prio_changed = (cfqd->serving_prio != previous_prio);
1445	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1446		->count;
1447
1448	/*
1449	 * If priority didn't change, check workload expiration,
1450	 * and that we still have other queues ready
1451	 */
1452	if (!prio_changed && count &&
1453	    !time_after(jiffies, cfqd->workload_expires))
1454		return;
1455
1456	/* otherwise select new workload type */
1457	cfqd->serving_type =
1458		cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1459	count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1460		->count;
1461
1462	/*
1463	 * the workload slice is computed as a fraction of target latency
1464	 * proportional to the number of queues in that workload, over
1465	 * all the queues in the same priority class
1466	 */
1467	slice = cfq_target_latency * count /
1468		max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1469		      cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1470
1471	if (cfqd->serving_type == ASYNC_WORKLOAD)
1472		/* async workload slice is scaled down according to
1473		 * the sync/async slice ratio. */
1474		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1475	else
1476		/* sync workload slice is at least 2 * cfq_slice_idle */
1477		slice = max(slice, 2 * cfqd->cfq_slice_idle);
1478
1479	slice = max_t(unsigned, slice, CFQ_MIN_TT);
1480	cfqd->workload_expires = jiffies + slice;
1481}
1482
1483/*
1484 * Select a queue for service. If we have a current active queue,
1485 * check whether to continue servicing it, or retrieve and set a new one.
1486 */
1487static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1488{
1489	struct cfq_queue *cfqq, *new_cfqq = NULL;
1490
1491	cfqq = cfqd->active_queue;
1492	if (!cfqq)
1493		goto new_queue;
1494
1495	/*
1496	 * The active queue has run out of time, expire it and select new.
1497	 */
1498	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1499		goto expire;
1500
1501	/*
1502	 * The active queue has requests and isn't expired, allow it to
1503	 * dispatch.
1504	 */
1505	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1506		goto keep_queue;
1507
1508	/*
1509	 * If another queue has a request waiting within our mean seek
1510	 * distance, let it run.  The expire code will check for close
1511	 * cooperators and put the close queue at the front of the service
1512	 * tree.  If possible, merge the expiring queue with the new cfqq.
1513	 */
1514	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1515	if (new_cfqq) {
1516		if (!cfqq->new_cfqq)
1517			cfq_setup_merge(cfqq, new_cfqq);
1518		goto expire;
1519	}
1520
1521	/*
1522	 * No requests pending. If the active queue still has requests in
1523	 * flight or is idling for a new request, allow either of these
1524	 * conditions to happen (or time out) before selecting a new queue.
1525	 */
1526	if (timer_pending(&cfqd->idle_slice_timer) ||
1527	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1528		cfqq = NULL;
1529		goto keep_queue;
1530	}
1531
1532expire:
1533	cfq_slice_expired(cfqd, 0);
1534new_queue:
1535	/*
1536	 * Current queue expired. Check if we have to switch to a new
1537	 * service tree
1538	 */
1539	if (!new_cfqq)
1540		choose_service_tree(cfqd);
1541
1542	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1543keep_queue:
1544	return cfqq;
1545}
1546
1547static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1548{
1549	int dispatched = 0;
1550
1551	while (cfqq->next_rq) {
1552		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1553		dispatched++;
1554	}
1555
1556	BUG_ON(!list_empty(&cfqq->fifo));
1557	return dispatched;
1558}
1559
1560/*
1561 * Drain our current requests. Used for barriers and when switching
1562 * io schedulers on-the-fly.
1563 */
1564static int cfq_forced_dispatch(struct cfq_data *cfqd)
1565{
1566	struct cfq_queue *cfqq;
1567	int dispatched = 0;
1568	int i, j;
1569	for (i = 0; i < 2; ++i)
1570		for (j = 0; j < 3; ++j)
1571			while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1572				!= NULL)
1573				dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1574
1575	while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1576		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1577
1578	cfq_slice_expired(cfqd, 0);
1579
1580	BUG_ON(cfqd->busy_queues);
1581
1582	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1583	return dispatched;
1584}
1585
1586static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1587{
1588	unsigned int max_dispatch;
1589
1590	/*
1591	 * Drain async requests before we start sync IO
1592	 */
1593	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1594		return false;
1595
1596	/*
1597	 * If this is an async queue and we have sync IO in flight, let it wait
1598	 */
1599	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1600		return false;
1601
1602	max_dispatch = cfqd->cfq_quantum;
1603	if (cfq_class_idle(cfqq))
1604		max_dispatch = 1;
1605
1606	/*
1607	 * Does this cfqq already have too much IO in flight?
1608	 */
1609	if (cfqq->dispatched >= max_dispatch) {
1610		/*
1611		 * idle queue must always only have a single IO in flight
1612		 */
1613		if (cfq_class_idle(cfqq))
1614			return false;
1615
1616		/*
1617		 * We have other queues, don't allow more IO from this one
1618		 */
1619		if (cfqd->busy_queues > 1)
1620			return false;
1621
1622		/*
1623		 * Sole queue user, allow bigger slice
1624		 */
1625		max_dispatch *= 4;
1626	}
1627
1628	/*
1629	 * Async queues must wait a bit before being allowed dispatch.
1630	 * We also ramp up the dispatch depth gradually for async IO,
1631	 * based on the last sync IO we serviced
1632	 */
1633	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1634		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1635		unsigned int depth;
1636
1637		depth = last_sync / cfqd->cfq_slice[1];
1638		if (!depth && !cfqq->dispatched)
1639			depth = 1;
1640		if (depth < max_dispatch)
1641			max_dispatch = depth;
1642	}
1643
1644	/*
1645	 * If we're below the current max, allow a dispatch
1646	 */
1647	return cfqq->dispatched < max_dispatch;
1648}
1649
1650/*
1651 * Dispatch a request from cfqq, moving them to the request queue
1652 * dispatch list.
1653 */
1654static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1655{
1656	struct request *rq;
1657
1658	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1659
1660	if (!cfq_may_dispatch(cfqd, cfqq))
1661		return false;
1662
1663	/*
1664	 * follow expired path, else get first next available
1665	 */
1666	rq = cfq_check_fifo(cfqq);
1667	if (!rq)
1668		rq = cfqq->next_rq;
1669
1670	/*
1671	 * insert request into driver dispatch list
1672	 */
1673	cfq_dispatch_insert(cfqd->queue, rq);
1674
1675	if (!cfqd->active_cic) {
1676		struct cfq_io_context *cic = RQ_CIC(rq);
1677
1678		atomic_long_inc(&cic->ioc->refcount);
1679		cfqd->active_cic = cic;
1680	}
1681
1682	return true;
1683}
1684
1685/*
1686 * Find the cfqq that we need to service and move a request from that to the
1687 * dispatch list
1688 */
1689static int cfq_dispatch_requests(struct request_queue *q, int force)
1690{
1691	struct cfq_data *cfqd = q->elevator->elevator_data;
1692	struct cfq_queue *cfqq;
1693
1694	if (!cfqd->busy_queues)
1695		return 0;
1696
1697	if (unlikely(force))
1698		return cfq_forced_dispatch(cfqd);
1699
1700	cfqq = cfq_select_queue(cfqd);
1701	if (!cfqq)
1702		return 0;
1703
1704	/*
1705	 * Dispatch a request from this cfqq, if it is allowed
1706	 */
1707	if (!cfq_dispatch_request(cfqd, cfqq))
1708		return 0;
1709
1710	cfqq->slice_dispatch++;
1711	cfq_clear_cfqq_must_dispatch(cfqq);
1712
1713	/*
1714	 * expire an async queue immediately if it has used up its slice. idle
1715	 * queue always expire after 1 dispatch round.
1716	 */
1717	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1718	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1719	    cfq_class_idle(cfqq))) {
1720		cfqq->slice_end = jiffies + 1;
1721		cfq_slice_expired(cfqd, 0);
1722	}
1723
1724	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1725	return 1;
1726}
1727
1728/*
1729 * task holds one reference to the queue, dropped when task exits. each rq
1730 * in-flight on this queue also holds a reference, dropped when rq is freed.
1731 *
1732 * queue lock must be held here.
1733 */
1734static void cfq_put_queue(struct cfq_queue *cfqq)
1735{
1736	struct cfq_data *cfqd = cfqq->cfqd;
1737
1738	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1739
1740	if (!atomic_dec_and_test(&cfqq->ref))
1741		return;
1742
1743	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1744	BUG_ON(rb_first(&cfqq->sort_list));
1745	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1746	BUG_ON(cfq_cfqq_on_rr(cfqq));
1747
1748	if (unlikely(cfqd->active_queue == cfqq)) {
1749		__cfq_slice_expired(cfqd, cfqq, 0);
1750		cfq_schedule_dispatch(cfqd);
1751	}
1752
1753	kmem_cache_free(cfq_pool, cfqq);
1754}
1755
1756/*
1757 * Must always be called with the rcu_read_lock() held
1758 */
1759static void
1760__call_for_each_cic(struct io_context *ioc,
1761		    void (*func)(struct io_context *, struct cfq_io_context *))
1762{
1763	struct cfq_io_context *cic;
1764	struct hlist_node *n;
1765
1766	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1767		func(ioc, cic);
1768}
1769
1770/*
1771 * Call func for each cic attached to this ioc.
1772 */
1773static void
1774call_for_each_cic(struct io_context *ioc,
1775		  void (*func)(struct io_context *, struct cfq_io_context *))
1776{
1777	rcu_read_lock();
1778	__call_for_each_cic(ioc, func);
1779	rcu_read_unlock();
1780}
1781
1782static void cfq_cic_free_rcu(struct rcu_head *head)
1783{
1784	struct cfq_io_context *cic;
1785
1786	cic = container_of(head, struct cfq_io_context, rcu_head);
1787
1788	kmem_cache_free(cfq_ioc_pool, cic);
1789	elv_ioc_count_dec(cfq_ioc_count);
1790
1791	if (ioc_gone) {
1792		/*
1793		 * CFQ scheduler is exiting, grab exit lock and check
1794		 * the pending io context count. If it hits zero,
1795		 * complete ioc_gone and set it back to NULL
1796		 */
1797		spin_lock(&ioc_gone_lock);
1798		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1799			complete(ioc_gone);
1800			ioc_gone = NULL;
1801		}
1802		spin_unlock(&ioc_gone_lock);
1803	}
1804}
1805
1806static void cfq_cic_free(struct cfq_io_context *cic)
1807{
1808	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1809}
1810
1811static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1812{
1813	unsigned long flags;
1814
1815	BUG_ON(!cic->dead_key);
1816
1817	spin_lock_irqsave(&ioc->lock, flags);
1818	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1819	hlist_del_rcu(&cic->cic_list);
1820	spin_unlock_irqrestore(&ioc->lock, flags);
1821
1822	cfq_cic_free(cic);
1823}
1824
1825/*
1826 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1827 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1828 * and ->trim() which is called with the task lock held
1829 */
1830static void cfq_free_io_context(struct io_context *ioc)
1831{
1832	/*
1833	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1834	 * so no more cic's are allowed to be linked into this ioc.  So it
1835	 * should be ok to iterate over the known list, we will see all cic's
1836	 * since no new ones are added.
1837	 */
1838	__call_for_each_cic(ioc, cic_free_func);
1839}
1840
1841static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1842{
1843	struct cfq_queue *__cfqq, *next;
1844
1845	if (unlikely(cfqq == cfqd->active_queue)) {
1846		__cfq_slice_expired(cfqd, cfqq, 0);
1847		cfq_schedule_dispatch(cfqd);
1848	}
1849
1850	/*
1851	 * If this queue was scheduled to merge with another queue, be
1852	 * sure to drop the reference taken on that queue (and others in
1853	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1854	 */
1855	__cfqq = cfqq->new_cfqq;
1856	while (__cfqq) {
1857		if (__cfqq == cfqq) {
1858			WARN(1, "cfqq->new_cfqq loop detected\n");
1859			break;
1860		}
1861		next = __cfqq->new_cfqq;
1862		cfq_put_queue(__cfqq);
1863		__cfqq = next;
1864	}
1865
1866	cfq_put_queue(cfqq);
1867}
1868
1869static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1870					 struct cfq_io_context *cic)
1871{
1872	struct io_context *ioc = cic->ioc;
1873
1874	list_del_init(&cic->queue_list);
1875
1876	/*
1877	 * Make sure key == NULL is seen for dead queues
1878	 */
1879	smp_wmb();
1880	cic->dead_key = (unsigned long) cic->key;
1881	cic->key = NULL;
1882
1883	if (ioc->ioc_data == cic)
1884		rcu_assign_pointer(ioc->ioc_data, NULL);
1885
1886	if (cic->cfqq[BLK_RW_ASYNC]) {
1887		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1888		cic->cfqq[BLK_RW_ASYNC] = NULL;
1889	}
1890
1891	if (cic->cfqq[BLK_RW_SYNC]) {
1892		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1893		cic->cfqq[BLK_RW_SYNC] = NULL;
1894	}
1895}
1896
1897static void cfq_exit_single_io_context(struct io_context *ioc,
1898				       struct cfq_io_context *cic)
1899{
1900	struct cfq_data *cfqd = cic->key;
1901
1902	if (cfqd) {
1903		struct request_queue *q = cfqd->queue;
1904		unsigned long flags;
1905
1906		spin_lock_irqsave(q->queue_lock, flags);
1907
1908		/*
1909		 * Ensure we get a fresh copy of the ->key to prevent
1910		 * race between exiting task and queue
1911		 */
1912		smp_read_barrier_depends();
1913		if (cic->key)
1914			__cfq_exit_single_io_context(cfqd, cic);
1915
1916		spin_unlock_irqrestore(q->queue_lock, flags);
1917	}
1918}
1919
1920/*
1921 * The process that ioc belongs to has exited, we need to clean up
1922 * and put the internal structures we have that belongs to that process.
1923 */
1924static void cfq_exit_io_context(struct io_context *ioc)
1925{
1926	call_for_each_cic(ioc, cfq_exit_single_io_context);
1927}
1928
1929static struct cfq_io_context *
1930cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1931{
1932	struct cfq_io_context *cic;
1933
1934	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1935							cfqd->queue->node);
1936	if (cic) {
1937		cic->last_end_request = jiffies;
1938		INIT_LIST_HEAD(&cic->queue_list);
1939		INIT_HLIST_NODE(&cic->cic_list);
1940		cic->dtor = cfq_free_io_context;
1941		cic->exit = cfq_exit_io_context;
1942		elv_ioc_count_inc(cfq_ioc_count);
1943	}
1944
1945	return cic;
1946}
1947
1948static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1949{
1950	struct task_struct *tsk = current;
1951	int ioprio_class;
1952
1953	if (!cfq_cfqq_prio_changed(cfqq))
1954		return;
1955
1956	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1957	switch (ioprio_class) {
1958	default:
1959		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1960	case IOPRIO_CLASS_NONE:
1961		/*
1962		 * no prio set, inherit CPU scheduling settings
1963		 */
1964		cfqq->ioprio = task_nice_ioprio(tsk);
1965		cfqq->ioprio_class = task_nice_ioclass(tsk);
1966		break;
1967	case IOPRIO_CLASS_RT:
1968		cfqq->ioprio = task_ioprio(ioc);
1969		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1970		break;
1971	case IOPRIO_CLASS_BE:
1972		cfqq->ioprio = task_ioprio(ioc);
1973		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1974		break;
1975	case IOPRIO_CLASS_IDLE:
1976		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1977		cfqq->ioprio = 7;
1978		cfq_clear_cfqq_idle_window(cfqq);
1979		break;
1980	}
1981
1982	/*
1983	 * keep track of original prio settings in case we have to temporarily
1984	 * elevate the priority of this queue
1985	 */
1986	cfqq->org_ioprio = cfqq->ioprio;
1987	cfqq->org_ioprio_class = cfqq->ioprio_class;
1988	cfq_clear_cfqq_prio_changed(cfqq);
1989}
1990
1991static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1992{
1993	struct cfq_data *cfqd = cic->key;
1994	struct cfq_queue *cfqq;
1995	unsigned long flags;
1996
1997	if (unlikely(!cfqd))
1998		return;
1999
2000	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2001
2002	cfqq = cic->cfqq[BLK_RW_ASYNC];
2003	if (cfqq) {
2004		struct cfq_queue *new_cfqq;
2005		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2006						GFP_ATOMIC);
2007		if (new_cfqq) {
2008			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2009			cfq_put_queue(cfqq);
2010		}
2011	}
2012
2013	cfqq = cic->cfqq[BLK_RW_SYNC];
2014	if (cfqq)
2015		cfq_mark_cfqq_prio_changed(cfqq);
2016
2017	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2018}
2019
2020static void cfq_ioc_set_ioprio(struct io_context *ioc)
2021{
2022	call_for_each_cic(ioc, changed_ioprio);
2023	ioc->ioprio_changed = 0;
2024}
2025
2026static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2027			  pid_t pid, bool is_sync)
2028{
2029	RB_CLEAR_NODE(&cfqq->rb_node);
2030	RB_CLEAR_NODE(&cfqq->p_node);
2031	INIT_LIST_HEAD(&cfqq->fifo);
2032
2033	atomic_set(&cfqq->ref, 0);
2034	cfqq->cfqd = cfqd;
2035
2036	cfq_mark_cfqq_prio_changed(cfqq);
2037
2038	if (is_sync) {
2039		if (!cfq_class_idle(cfqq))
2040			cfq_mark_cfqq_idle_window(cfqq);
2041		cfq_mark_cfqq_sync(cfqq);
2042	}
2043	cfqq->pid = pid;
2044}
2045
2046static struct cfq_queue *
2047cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2048		     struct io_context *ioc, gfp_t gfp_mask)
2049{
2050	struct cfq_queue *cfqq, *new_cfqq = NULL;
2051	struct cfq_io_context *cic;
2052
2053retry:
2054	cic = cfq_cic_lookup(cfqd, ioc);
2055	/* cic always exists here */
2056	cfqq = cic_to_cfqq(cic, is_sync);
2057
2058	/*
2059	 * Always try a new alloc if we fell back to the OOM cfqq
2060	 * originally, since it should just be a temporary situation.
2061	 */
2062	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2063		cfqq = NULL;
2064		if (new_cfqq) {
2065			cfqq = new_cfqq;
2066			new_cfqq = NULL;
2067		} else if (gfp_mask & __GFP_WAIT) {
2068			spin_unlock_irq(cfqd->queue->queue_lock);
2069			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2070					gfp_mask | __GFP_ZERO,
2071					cfqd->queue->node);
2072			spin_lock_irq(cfqd->queue->queue_lock);
2073			if (new_cfqq)
2074				goto retry;
2075		} else {
2076			cfqq = kmem_cache_alloc_node(cfq_pool,
2077					gfp_mask | __GFP_ZERO,
2078					cfqd->queue->node);
2079		}
2080
2081		if (cfqq) {
2082			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2083			cfq_init_prio_data(cfqq, ioc);
2084			cfq_log_cfqq(cfqd, cfqq, "alloced");
2085		} else
2086			cfqq = &cfqd->oom_cfqq;
2087	}
2088
2089	if (new_cfqq)
2090		kmem_cache_free(cfq_pool, new_cfqq);
2091
2092	return cfqq;
2093}
2094
2095static struct cfq_queue **
2096cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2097{
2098	switch (ioprio_class) {
2099	case IOPRIO_CLASS_RT:
2100		return &cfqd->async_cfqq[0][ioprio];
2101	case IOPRIO_CLASS_BE:
2102		return &cfqd->async_cfqq[1][ioprio];
2103	case IOPRIO_CLASS_IDLE:
2104		return &cfqd->async_idle_cfqq;
2105	default:
2106		BUG();
2107	}
2108}
2109
2110static struct cfq_queue *
2111cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2112	      gfp_t gfp_mask)
2113{
2114	const int ioprio = task_ioprio(ioc);
2115	const int ioprio_class = task_ioprio_class(ioc);
2116	struct cfq_queue **async_cfqq = NULL;
2117	struct cfq_queue *cfqq = NULL;
2118
2119	if (!is_sync) {
2120		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2121		cfqq = *async_cfqq;
2122	}
2123
2124	if (!cfqq)
2125		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2126
2127	/*
2128	 * pin the queue now that it's allocated, scheduler exit will prune it
2129	 */
2130	if (!is_sync && !(*async_cfqq)) {
2131		atomic_inc(&cfqq->ref);
2132		*async_cfqq = cfqq;
2133	}
2134
2135	atomic_inc(&cfqq->ref);
2136	return cfqq;
2137}
2138
2139/*
2140 * We drop cfq io contexts lazily, so we may find a dead one.
2141 */
2142static void
2143cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2144		  struct cfq_io_context *cic)
2145{
2146	unsigned long flags;
2147
2148	WARN_ON(!list_empty(&cic->queue_list));
2149
2150	spin_lock_irqsave(&ioc->lock, flags);
2151
2152	BUG_ON(ioc->ioc_data == cic);
2153
2154	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2155	hlist_del_rcu(&cic->cic_list);
2156	spin_unlock_irqrestore(&ioc->lock, flags);
2157
2158	cfq_cic_free(cic);
2159}
2160
2161static struct cfq_io_context *
2162cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2163{
2164	struct cfq_io_context *cic;
2165	unsigned long flags;
2166	void *k;
2167
2168	if (unlikely(!ioc))
2169		return NULL;
2170
2171	rcu_read_lock();
2172
2173	/*
2174	 * we maintain a last-hit cache, to avoid browsing over the tree
2175	 */
2176	cic = rcu_dereference(ioc->ioc_data);
2177	if (cic && cic->key == cfqd) {
2178		rcu_read_unlock();
2179		return cic;
2180	}
2181
2182	do {
2183		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2184		rcu_read_unlock();
2185		if (!cic)
2186			break;
2187		/* ->key must be copied to avoid race with cfq_exit_queue() */
2188		k = cic->key;
2189		if (unlikely(!k)) {
2190			cfq_drop_dead_cic(cfqd, ioc, cic);
2191			rcu_read_lock();
2192			continue;
2193		}
2194
2195		spin_lock_irqsave(&ioc->lock, flags);
2196		rcu_assign_pointer(ioc->ioc_data, cic);
2197		spin_unlock_irqrestore(&ioc->lock, flags);
2198		break;
2199	} while (1);
2200
2201	return cic;
2202}
2203
2204/*
2205 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2206 * the process specific cfq io context when entered from the block layer.
2207 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2208 */
2209static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2210			struct cfq_io_context *cic, gfp_t gfp_mask)
2211{
2212	unsigned long flags;
2213	int ret;
2214
2215	ret = radix_tree_preload(gfp_mask);
2216	if (!ret) {
2217		cic->ioc = ioc;
2218		cic->key = cfqd;
2219
2220		spin_lock_irqsave(&ioc->lock, flags);
2221		ret = radix_tree_insert(&ioc->radix_root,
2222						(unsigned long) cfqd, cic);
2223		if (!ret)
2224			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2225		spin_unlock_irqrestore(&ioc->lock, flags);
2226
2227		radix_tree_preload_end();
2228
2229		if (!ret) {
2230			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2231			list_add(&cic->queue_list, &cfqd->cic_list);
2232			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2233		}
2234	}
2235
2236	if (ret)
2237		printk(KERN_ERR "cfq: cic link failed!\n");
2238
2239	return ret;
2240}
2241
2242/*
2243 * Setup general io context and cfq io context. There can be several cfq
2244 * io contexts per general io context, if this process is doing io to more
2245 * than one device managed by cfq.
2246 */
2247static struct cfq_io_context *
2248cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2249{
2250	struct io_context *ioc = NULL;
2251	struct cfq_io_context *cic;
2252
2253	might_sleep_if(gfp_mask & __GFP_WAIT);
2254
2255	ioc = get_io_context(gfp_mask, cfqd->queue->node);
2256	if (!ioc)
2257		return NULL;
2258
2259	cic = cfq_cic_lookup(cfqd, ioc);
2260	if (cic)
2261		goto out;
2262
2263	cic = cfq_alloc_io_context(cfqd, gfp_mask);
2264	if (cic == NULL)
2265		goto err;
2266
2267	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2268		goto err_free;
2269
2270out:
2271	smp_read_barrier_depends();
2272	if (unlikely(ioc->ioprio_changed))
2273		cfq_ioc_set_ioprio(ioc);
2274
2275	return cic;
2276err_free:
2277	cfq_cic_free(cic);
2278err:
2279	put_io_context(ioc);
2280	return NULL;
2281}
2282
2283static void
2284cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2285{
2286	unsigned long elapsed = jiffies - cic->last_end_request;
2287	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2288
2289	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2290	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2291	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2292}
2293
2294static void
2295cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2296		       struct request *rq)
2297{
2298	sector_t sdist;
2299	u64 total;
2300
2301	if (!cfqq->last_request_pos)
2302		sdist = 0;
2303	else if (cfqq->last_request_pos < blk_rq_pos(rq))
2304		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2305	else
2306		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2307
2308	/*
2309	 * Don't allow the seek distance to get too large from the
2310	 * odd fragment, pagein, etc
2311	 */
2312	if (cfqq->seek_samples <= 60) /* second&third seek */
2313		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2314	else
2315		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2316
2317	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2318	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2319	total = cfqq->seek_total + (cfqq->seek_samples/2);
2320	do_div(total, cfqq->seek_samples);
2321	cfqq->seek_mean = (sector_t)total;
2322
2323	/*
2324	 * If this cfqq is shared between multiple processes, check to
2325	 * make sure that those processes are still issuing I/Os within
2326	 * the mean seek distance.  If not, it may be time to break the
2327	 * queues apart again.
2328	 */
2329	if (cfq_cfqq_coop(cfqq)) {
2330		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2331			cfqq->seeky_start = jiffies;
2332		else if (!CFQQ_SEEKY(cfqq))
2333			cfqq->seeky_start = 0;
2334	}
2335}
2336
2337/*
2338 * Disable idle window if the process thinks too long or seeks so much that
2339 * it doesn't matter
2340 */
2341static void
2342cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2343		       struct cfq_io_context *cic)
2344{
2345	int old_idle, enable_idle;
2346
2347	/*
2348	 * Don't idle for async or idle io prio class
2349	 */
2350	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2351		return;
2352
2353	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2354
2355	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2356		cfq_mark_cfqq_deep(cfqq);
2357
2358	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2359	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2360	     && CFQQ_SEEKY(cfqq)))
2361		enable_idle = 0;
2362	else if (sample_valid(cic->ttime_samples)) {
2363		if (cic->ttime_mean > cfqd->cfq_slice_idle)
2364			enable_idle = 0;
2365		else
2366			enable_idle = 1;
2367	}
2368
2369	if (old_idle != enable_idle) {
2370		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2371		if (enable_idle)
2372			cfq_mark_cfqq_idle_window(cfqq);
2373		else
2374			cfq_clear_cfqq_idle_window(cfqq);
2375	}
2376}
2377
2378/*
2379 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2380 * no or if we aren't sure, a 1 will cause a preempt.
2381 */
2382static bool
2383cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2384		   struct request *rq)
2385{
2386	struct cfq_queue *cfqq;
2387
2388	cfqq = cfqd->active_queue;
2389	if (!cfqq)
2390		return false;
2391
2392	if (cfq_slice_used(cfqq))
2393		return true;
2394
2395	if (cfq_class_idle(new_cfqq))
2396		return false;
2397
2398	if (cfq_class_idle(cfqq))
2399		return true;
2400
2401	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2402	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2403	    new_cfqq->service_tree->count == 1)
2404		return true;
2405
2406	/*
2407	 * if the new request is sync, but the currently running queue is
2408	 * not, let the sync request have priority.
2409	 */
2410	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2411		return true;
2412
2413	/*
2414	 * So both queues are sync. Let the new request get disk time if
2415	 * it's a metadata request and the current queue is doing regular IO.
2416	 */
2417	if (rq_is_meta(rq) && !cfqq->meta_pending)
2418		return true;
2419
2420	/*
2421	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2422	 */
2423	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2424		return true;
2425
2426	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2427		return false;
2428
2429	/*
2430	 * if this request is as-good as one we would expect from the
2431	 * current cfqq, let it preempt
2432	 */
2433	if (cfq_rq_close(cfqd, cfqq, rq))
2434		return true;
2435
2436	return false;
2437}
2438
2439/*
2440 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2441 * let it have half of its nominal slice.
2442 */
2443static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2444{
2445	cfq_log_cfqq(cfqd, cfqq, "preempt");
2446	cfq_slice_expired(cfqd, 1);
2447
2448	/*
2449	 * Put the new queue at the front of the of the current list,
2450	 * so we know that it will be selected next.
2451	 */
2452	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2453
2454	cfq_service_tree_add(cfqd, cfqq, 1);
2455
2456	cfqq->slice_end = 0;
2457	cfq_mark_cfqq_slice_new(cfqq);
2458}
2459
2460/*
2461 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2462 * something we should do about it
2463 */
2464static void
2465cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2466		struct request *rq)
2467{
2468	struct cfq_io_context *cic = RQ_CIC(rq);
2469
2470	cfqd->rq_queued++;
2471	if (rq_is_meta(rq))
2472		cfqq->meta_pending++;
2473
2474	cfq_update_io_thinktime(cfqd, cic);
2475	cfq_update_io_seektime(cfqd, cfqq, rq);
2476	cfq_update_idle_window(cfqd, cfqq, cic);
2477
2478	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2479
2480	if (cfqq == cfqd->active_queue) {
2481		/*
2482		 * Remember that we saw a request from this process, but
2483		 * don't start queuing just yet. Otherwise we risk seeing lots
2484		 * of tiny requests, because we disrupt the normal plugging
2485		 * and merging. If the request is already larger than a single
2486		 * page, let it rip immediately. For that case we assume that
2487		 * merging is already done. Ditto for a busy system that
2488		 * has other work pending, don't risk delaying until the
2489		 * idle timer unplug to continue working.
2490		 */
2491		if (cfq_cfqq_wait_request(cfqq)) {
2492			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2493			    cfqd->busy_queues > 1) {
2494				del_timer(&cfqd->idle_slice_timer);
2495			__blk_run_queue(cfqd->queue);
2496			}
2497			cfq_mark_cfqq_must_dispatch(cfqq);
2498		}
2499	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2500		/*
2501		 * not the active queue - expire current slice if it is
2502		 * idle and has expired it's mean thinktime or this new queue
2503		 * has some old slice time left and is of higher priority or
2504		 * this new queue is RT and the current one is BE
2505		 */
2506		cfq_preempt_queue(cfqd, cfqq);
2507		__blk_run_queue(cfqd->queue);
2508	}
2509}
2510
2511static void cfq_insert_request(struct request_queue *q, struct request *rq)
2512{
2513	struct cfq_data *cfqd = q->elevator->elevator_data;
2514	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2515
2516	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2517	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2518
2519	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2520	list_add_tail(&rq->queuelist, &cfqq->fifo);
2521	cfq_add_rq_rb(rq);
2522
2523	cfq_rq_enqueued(cfqd, cfqq, rq);
2524}
2525
2526/*
2527 * Update hw_tag based on peak queue depth over 50 samples under
2528 * sufficient load.
2529 */
2530static void cfq_update_hw_tag(struct cfq_data *cfqd)
2531{
2532	struct cfq_queue *cfqq = cfqd->active_queue;
2533
2534	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2535		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2536
2537	if (cfqd->hw_tag == 1)
2538		return;
2539
2540	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2541	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2542		return;
2543
2544	/*
2545	 * If active queue hasn't enough requests and can idle, cfq might not
2546	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2547	 * case
2548	 */
2549	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2550	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2551	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2552		return;
2553
2554	if (cfqd->hw_tag_samples++ < 50)
2555		return;
2556
2557	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2558		cfqd->hw_tag = 1;
2559	else
2560		cfqd->hw_tag = 0;
2561}
2562
2563static void cfq_completed_request(struct request_queue *q, struct request *rq)
2564{
2565	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2566	struct cfq_data *cfqd = cfqq->cfqd;
2567	const int sync = rq_is_sync(rq);
2568	unsigned long now;
2569
2570	now = jiffies;
2571	cfq_log_cfqq(cfqd, cfqq, "complete");
2572
2573	cfq_update_hw_tag(cfqd);
2574
2575	WARN_ON(!cfqd->rq_in_driver[sync]);
2576	WARN_ON(!cfqq->dispatched);
2577	cfqd->rq_in_driver[sync]--;
2578	cfqq->dispatched--;
2579
2580	if (cfq_cfqq_sync(cfqq))
2581		cfqd->sync_flight--;
2582
2583	if (sync) {
2584		RQ_CIC(rq)->last_end_request = now;
2585		cfqd->last_end_sync_rq = now;
2586	}
2587
2588	/*
2589	 * If this is the active queue, check if it needs to be expired,
2590	 * or if we want to idle in case it has no pending requests.
2591	 */
2592	if (cfqd->active_queue == cfqq) {
2593		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2594
2595		if (cfq_cfqq_slice_new(cfqq)) {
2596			cfq_set_prio_slice(cfqd, cfqq);
2597			cfq_clear_cfqq_slice_new(cfqq);
2598		}
2599		/*
2600		 * If there are no requests waiting in this queue, and
2601		 * there are other queues ready to issue requests, AND
2602		 * those other queues are issuing requests within our
2603		 * mean seek distance, give them a chance to run instead
2604		 * of idling.
2605		 */
2606		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2607			cfq_slice_expired(cfqd, 1);
2608		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2609			 sync && !rq_noidle(rq))
2610			cfq_arm_slice_timer(cfqd);
2611	}
2612
2613	if (!rq_in_driver(cfqd))
2614		cfq_schedule_dispatch(cfqd);
2615}
2616
2617/*
2618 * we temporarily boost lower priority queues if they are holding fs exclusive
2619 * resources. they are boosted to normal prio (CLASS_BE/4)
2620 */
2621static void cfq_prio_boost(struct cfq_queue *cfqq)
2622{
2623	if (has_fs_excl()) {
2624		/*
2625		 * boost idle prio on transactions that would lock out other
2626		 * users of the filesystem
2627		 */
2628		if (cfq_class_idle(cfqq))
2629			cfqq->ioprio_class = IOPRIO_CLASS_BE;
2630		if (cfqq->ioprio > IOPRIO_NORM)
2631			cfqq->ioprio = IOPRIO_NORM;
2632	} else {
2633		/*
2634		 * unboost the queue (if needed)
2635		 */
2636		cfqq->ioprio_class = cfqq->org_ioprio_class;
2637		cfqq->ioprio = cfqq->org_ioprio;
2638	}
2639}
2640
2641static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2642{
2643	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2644		cfq_mark_cfqq_must_alloc_slice(cfqq);
2645		return ELV_MQUEUE_MUST;
2646	}
2647
2648	return ELV_MQUEUE_MAY;
2649}
2650
2651static int cfq_may_queue(struct request_queue *q, int rw)
2652{
2653	struct cfq_data *cfqd = q->elevator->elevator_data;
2654	struct task_struct *tsk = current;
2655	struct cfq_io_context *cic;
2656	struct cfq_queue *cfqq;
2657
2658	/*
2659	 * don't force setup of a queue from here, as a call to may_queue
2660	 * does not necessarily imply that a request actually will be queued.
2661	 * so just lookup a possibly existing queue, or return 'may queue'
2662	 * if that fails
2663	 */
2664	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2665	if (!cic)
2666		return ELV_MQUEUE_MAY;
2667
2668	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2669	if (cfqq) {
2670		cfq_init_prio_data(cfqq, cic->ioc);
2671		cfq_prio_boost(cfqq);
2672
2673		return __cfq_may_queue(cfqq);
2674	}
2675
2676	return ELV_MQUEUE_MAY;
2677}
2678
2679/*
2680 * queue lock held here
2681 */
2682static void cfq_put_request(struct request *rq)
2683{
2684	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2685
2686	if (cfqq) {
2687		const int rw = rq_data_dir(rq);
2688
2689		BUG_ON(!cfqq->allocated[rw]);
2690		cfqq->allocated[rw]--;
2691
2692		put_io_context(RQ_CIC(rq)->ioc);
2693
2694		rq->elevator_private = NULL;
2695		rq->elevator_private2 = NULL;
2696
2697		cfq_put_queue(cfqq);
2698	}
2699}
2700
2701static struct cfq_queue *
2702cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2703		struct cfq_queue *cfqq)
2704{
2705	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2706	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2707	cfq_mark_cfqq_coop(cfqq->new_cfqq);
2708	cfq_put_queue(cfqq);
2709	return cic_to_cfqq(cic, 1);
2710}
2711
2712static int should_split_cfqq(struct cfq_queue *cfqq)
2713{
2714	if (cfqq->seeky_start &&
2715	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2716		return 1;
2717	return 0;
2718}
2719
2720/*
2721 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2722 * was the last process referring to said cfqq.
2723 */
2724static struct cfq_queue *
2725split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2726{
2727	if (cfqq_process_refs(cfqq) == 1) {
2728		cfqq->seeky_start = 0;
2729		cfqq->pid = current->pid;
2730		cfq_clear_cfqq_coop(cfqq);
2731		return cfqq;
2732	}
2733
2734	cic_set_cfqq(cic, NULL, 1);
2735	cfq_put_queue(cfqq);
2736	return NULL;
2737}
2738/*
2739 * Allocate cfq data structures associated with this request.
2740 */
2741static int
2742cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2743{
2744	struct cfq_data *cfqd = q->elevator->elevator_data;
2745	struct cfq_io_context *cic;
2746	const int rw = rq_data_dir(rq);
2747	const bool is_sync = rq_is_sync(rq);
2748	struct cfq_queue *cfqq;
2749	unsigned long flags;
2750
2751	might_sleep_if(gfp_mask & __GFP_WAIT);
2752
2753	cic = cfq_get_io_context(cfqd, gfp_mask);
2754
2755	spin_lock_irqsave(q->queue_lock, flags);
2756
2757	if (!cic)
2758		goto queue_fail;
2759
2760new_queue:
2761	cfqq = cic_to_cfqq(cic, is_sync);
2762	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2763		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2764		cic_set_cfqq(cic, cfqq, is_sync);
2765	} else {
2766		/*
2767		 * If the queue was seeky for too long, break it apart.
2768		 */
2769		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2770			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2771			cfqq = split_cfqq(cic, cfqq);
2772			if (!cfqq)
2773				goto new_queue;
2774		}
2775
2776		/*
2777		 * Check to see if this queue is scheduled to merge with
2778		 * another, closely cooperating queue.  The merging of
2779		 * queues happens here as it must be done in process context.
2780		 * The reference on new_cfqq was taken in merge_cfqqs.
2781		 */
2782		if (cfqq->new_cfqq)
2783			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2784	}
2785
2786	cfqq->allocated[rw]++;
2787	atomic_inc(&cfqq->ref);
2788
2789	spin_unlock_irqrestore(q->queue_lock, flags);
2790
2791	rq->elevator_private = cic;
2792	rq->elevator_private2 = cfqq;
2793	return 0;
2794
2795queue_fail:
2796	if (cic)
2797		put_io_context(cic->ioc);
2798
2799	cfq_schedule_dispatch(cfqd);
2800	spin_unlock_irqrestore(q->queue_lock, flags);
2801	cfq_log(cfqd, "set_request fail");
2802	return 1;
2803}
2804
2805static void cfq_kick_queue(struct work_struct *work)
2806{
2807	struct cfq_data *cfqd =
2808		container_of(work, struct cfq_data, unplug_work);
2809	struct request_queue *q = cfqd->queue;
2810
2811	spin_lock_irq(q->queue_lock);
2812	__blk_run_queue(cfqd->queue);
2813	spin_unlock_irq(q->queue_lock);
2814}
2815
2816/*
2817 * Timer running if the active_queue is currently idling inside its time slice
2818 */
2819static void cfq_idle_slice_timer(unsigned long data)
2820{
2821	struct cfq_data *cfqd = (struct cfq_data *) data;
2822	struct cfq_queue *cfqq;
2823	unsigned long flags;
2824	int timed_out = 1;
2825
2826	cfq_log(cfqd, "idle timer fired");
2827
2828	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2829
2830	cfqq = cfqd->active_queue;
2831	if (cfqq) {
2832		timed_out = 0;
2833
2834		/*
2835		 * We saw a request before the queue expired, let it through
2836		 */
2837		if (cfq_cfqq_must_dispatch(cfqq))
2838			goto out_kick;
2839
2840		/*
2841		 * expired
2842		 */
2843		if (cfq_slice_used(cfqq))
2844			goto expire;
2845
2846		/*
2847		 * only expire and reinvoke request handler, if there are
2848		 * other queues with pending requests
2849		 */
2850		if (!cfqd->busy_queues)
2851			goto out_cont;
2852
2853		/*
2854		 * not expired and it has a request pending, let it dispatch
2855		 */
2856		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2857			goto out_kick;
2858
2859		/*
2860		 * Queue depth flag is reset only when the idle didn't succeed
2861		 */
2862		cfq_clear_cfqq_deep(cfqq);
2863	}
2864expire:
2865	cfq_slice_expired(cfqd, timed_out);
2866out_kick:
2867	cfq_schedule_dispatch(cfqd);
2868out_cont:
2869	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2870}
2871
2872static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2873{
2874	del_timer_sync(&cfqd->idle_slice_timer);
2875	cancel_work_sync(&cfqd->unplug_work);
2876}
2877
2878static void cfq_put_async_queues(struct cfq_data *cfqd)
2879{
2880	int i;
2881
2882	for (i = 0; i < IOPRIO_BE_NR; i++) {
2883		if (cfqd->async_cfqq[0][i])
2884			cfq_put_queue(cfqd->async_cfqq[0][i]);
2885		if (cfqd->async_cfqq[1][i])
2886			cfq_put_queue(cfqd->async_cfqq[1][i]);
2887	}
2888
2889	if (cfqd->async_idle_cfqq)
2890		cfq_put_queue(cfqd->async_idle_cfqq);
2891}
2892
2893static void cfq_exit_queue(struct elevator_queue *e)
2894{
2895	struct cfq_data *cfqd = e->elevator_data;
2896	struct request_queue *q = cfqd->queue;
2897
2898	cfq_shutdown_timer_wq(cfqd);
2899
2900	spin_lock_irq(q->queue_lock);
2901
2902	if (cfqd->active_queue)
2903		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2904
2905	while (!list_empty(&cfqd->cic_list)) {
2906		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2907							struct cfq_io_context,
2908							queue_list);
2909
2910		__cfq_exit_single_io_context(cfqd, cic);
2911	}
2912
2913	cfq_put_async_queues(cfqd);
2914
2915	spin_unlock_irq(q->queue_lock);
2916
2917	cfq_shutdown_timer_wq(cfqd);
2918
2919	kfree(cfqd);
2920}
2921
2922static void *cfq_init_queue(struct request_queue *q)
2923{
2924	struct cfq_data *cfqd;
2925	int i, j;
2926
2927	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2928	if (!cfqd)
2929		return NULL;
2930
2931	for (i = 0; i < 2; ++i)
2932		for (j = 0; j < 3; ++j)
2933			cfqd->service_trees[i][j] = CFQ_RB_ROOT;
2934	cfqd->service_tree_idle = CFQ_RB_ROOT;
2935
2936	/*
2937	 * Not strictly needed (since RB_ROOT just clears the node and we
2938	 * zeroed cfqd on alloc), but better be safe in case someone decides
2939	 * to add magic to the rb code
2940	 */
2941	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2942		cfqd->prio_trees[i] = RB_ROOT;
2943
2944	/*
2945	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2946	 * Grab a permanent reference to it, so that the normal code flow
2947	 * will not attempt to free it.
2948	 */
2949	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2950	atomic_inc(&cfqd->oom_cfqq.ref);
2951
2952	INIT_LIST_HEAD(&cfqd->cic_list);
2953
2954	cfqd->queue = q;
2955
2956	init_timer(&cfqd->idle_slice_timer);
2957	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2958	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2959
2960	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2961
2962	cfqd->cfq_quantum = cfq_quantum;
2963	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2964	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2965	cfqd->cfq_back_max = cfq_back_max;
2966	cfqd->cfq_back_penalty = cfq_back_penalty;
2967	cfqd->cfq_slice[0] = cfq_slice_async;
2968	cfqd->cfq_slice[1] = cfq_slice_sync;
2969	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2970	cfqd->cfq_slice_idle = cfq_slice_idle;
2971	cfqd->cfq_latency = 1;
2972	cfqd->hw_tag = -1;
2973	cfqd->last_end_sync_rq = jiffies;
2974	return cfqd;
2975}
2976
2977static void cfq_slab_kill(void)
2978{
2979	/*
2980	 * Caller already ensured that pending RCU callbacks are completed,
2981	 * so we should have no busy allocations at this point.
2982	 */
2983	if (cfq_pool)
2984		kmem_cache_destroy(cfq_pool);
2985	if (cfq_ioc_pool)
2986		kmem_cache_destroy(cfq_ioc_pool);
2987}
2988
2989static int __init cfq_slab_setup(void)
2990{
2991	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2992	if (!cfq_pool)
2993		goto fail;
2994
2995	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2996	if (!cfq_ioc_pool)
2997		goto fail;
2998
2999	return 0;
3000fail:
3001	cfq_slab_kill();
3002	return -ENOMEM;
3003}
3004
3005/*
3006 * sysfs parts below -->
3007 */
3008static ssize_t
3009cfq_var_show(unsigned int var, char *page)
3010{
3011	return sprintf(page, "%d\n", var);
3012}
3013
3014static ssize_t
3015cfq_var_store(unsigned int *var, const char *page, size_t count)
3016{
3017	char *p = (char *) page;
3018
3019	*var = simple_strtoul(p, &p, 10);
3020	return count;
3021}
3022
3023#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3024static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3025{									\
3026	struct cfq_data *cfqd = e->elevator_data;			\
3027	unsigned int __data = __VAR;					\
3028	if (__CONV)							\
3029		__data = jiffies_to_msecs(__data);			\
3030	return cfq_var_show(__data, (page));				\
3031}
3032SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3033SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3034SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3035SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3036SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3037SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3038SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3039SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3040SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3041SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3042#undef SHOW_FUNCTION
3043
3044#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3045static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3046{									\
3047	struct cfq_data *cfqd = e->elevator_data;			\
3048	unsigned int __data;						\
3049	int ret = cfq_var_store(&__data, (page), count);		\
3050	if (__data < (MIN))						\
3051		__data = (MIN);						\
3052	else if (__data > (MAX))					\
3053		__data = (MAX);						\
3054	if (__CONV)							\
3055		*(__PTR) = msecs_to_jiffies(__data);			\
3056	else								\
3057		*(__PTR) = __data;					\
3058	return ret;							\
3059}
3060STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3061STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3062		UINT_MAX, 1);
3063STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3064		UINT_MAX, 1);
3065STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3066STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3067		UINT_MAX, 0);
3068STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3069STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3070STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3071STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3072		UINT_MAX, 0);
3073STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3074#undef STORE_FUNCTION
3075
3076#define CFQ_ATTR(name) \
3077	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3078
3079static struct elv_fs_entry cfq_attrs[] = {
3080	CFQ_ATTR(quantum),
3081	CFQ_ATTR(fifo_expire_sync),
3082	CFQ_ATTR(fifo_expire_async),
3083	CFQ_ATTR(back_seek_max),
3084	CFQ_ATTR(back_seek_penalty),
3085	CFQ_ATTR(slice_sync),
3086	CFQ_ATTR(slice_async),
3087	CFQ_ATTR(slice_async_rq),
3088	CFQ_ATTR(slice_idle),
3089	CFQ_ATTR(low_latency),
3090	__ATTR_NULL
3091};
3092
3093static struct elevator_type iosched_cfq = {
3094	.ops = {
3095		.elevator_merge_fn = 		cfq_merge,
3096		.elevator_merged_fn =		cfq_merged_request,
3097		.elevator_merge_req_fn =	cfq_merged_requests,
3098		.elevator_allow_merge_fn =	cfq_allow_merge,
3099		.elevator_dispatch_fn =		cfq_dispatch_requests,
3100		.elevator_add_req_fn =		cfq_insert_request,
3101		.elevator_activate_req_fn =	cfq_activate_request,
3102		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3103		.elevator_queue_empty_fn =	cfq_queue_empty,
3104		.elevator_completed_req_fn =	cfq_completed_request,
3105		.elevator_former_req_fn =	elv_rb_former_request,
3106		.elevator_latter_req_fn =	elv_rb_latter_request,
3107		.elevator_set_req_fn =		cfq_set_request,
3108		.elevator_put_req_fn =		cfq_put_request,
3109		.elevator_may_queue_fn =	cfq_may_queue,
3110		.elevator_init_fn =		cfq_init_queue,
3111		.elevator_exit_fn =		cfq_exit_queue,
3112		.trim =				cfq_free_io_context,
3113	},
3114	.elevator_attrs =	cfq_attrs,
3115	.elevator_name =	"cfq",
3116	.elevator_owner =	THIS_MODULE,
3117};
3118
3119static int __init cfq_init(void)
3120{
3121	/*
3122	 * could be 0 on HZ < 1000 setups
3123	 */
3124	if (!cfq_slice_async)
3125		cfq_slice_async = 1;
3126	if (!cfq_slice_idle)
3127		cfq_slice_idle = 1;
3128
3129	if (cfq_slab_setup())
3130		return -ENOMEM;
3131
3132	elv_register(&iosched_cfq);
3133
3134	return 0;
3135}
3136
3137static void __exit cfq_exit(void)
3138{
3139	DECLARE_COMPLETION_ONSTACK(all_gone);
3140	elv_unregister(&iosched_cfq);
3141	ioc_gone = &all_gone;
3142	/* ioc_gone's update must be visible before reading ioc_count */
3143	smp_wmb();
3144
3145	/*
3146	 * this also protects us from entering cfq_slab_kill() with
3147	 * pending RCU callbacks
3148	 */
3149	if (elv_ioc_count_read(cfq_ioc_count))
3150		wait_for_completion(&all_gone);
3151	cfq_slab_kill();
3152}
3153
3154module_init(cfq_init);
3155module_exit(cfq_exit);
3156
3157MODULE_AUTHOR("Jens Axboe");
3158MODULE_LICENSE("GPL");
3159MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3160