cfq-iosched.c revision 9d6a986c0b276085f7944cd8ad65f4f82aff7536
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16#include "blk-cgroup.h"
17#include "cfq-iosched.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 4;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
34static const int cfq_hist_divisor = 4;
35
36/*
37 * offset from end of service tree
38 */
39#define CFQ_IDLE_DELAY		(HZ / 5)
40
41/*
42 * below this threshold, we consider thinktime immediate
43 */
44#define CFQ_MIN_TT		(2)
45
46/*
47 * Allow merged cfqqs to perform this amount of seeky I/O before
48 * deciding to break the queues up again.
49 */
50#define CFQQ_COOP_TOUT		(HZ)
51
52#define CFQ_SLICE_SCALE		(5)
53#define CFQ_HW_QUEUE_MIN	(5)
54#define CFQ_SERVICE_SHIFT       12
55
56#define RQ_CIC(rq)		\
57	((struct cfq_io_context *) (rq)->elevator_private)
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
59
60static struct kmem_cache *cfq_pool;
61static struct kmem_cache *cfq_ioc_pool;
62
63static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
64static struct completion *ioc_gone;
65static DEFINE_SPINLOCK(ioc_gone_lock);
66
67#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
68#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
70
71#define sample_valid(samples)	((samples) > 80)
72#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
73
74/*
75 * Most of our rbtree usage is for sorting with min extraction, so
76 * if we cache the leftmost node we don't have to walk down the tree
77 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
78 * move this into the elevator for the rq sorting as well.
79 */
80struct cfq_rb_root {
81	struct rb_root rb;
82	struct rb_node *left;
83	unsigned count;
84	u64 min_vdisktime;
85	struct rb_node *active;
86	unsigned total_weight;
87};
88#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
89
90/*
91 * Per process-grouping structure
92 */
93struct cfq_queue {
94	/* reference count */
95	atomic_t ref;
96	/* various state flags, see below */
97	unsigned int flags;
98	/* parent cfq_data */
99	struct cfq_data *cfqd;
100	/* service_tree member */
101	struct rb_node rb_node;
102	/* service_tree key */
103	unsigned long rb_key;
104	/* prio tree member */
105	struct rb_node p_node;
106	/* prio tree root we belong to, if any */
107	struct rb_root *p_root;
108	/* sorted list of pending requests */
109	struct rb_root sort_list;
110	/* if fifo isn't expired, next request to serve */
111	struct request *next_rq;
112	/* requests queued in sort_list */
113	int queued[2];
114	/* currently allocated requests */
115	int allocated[2];
116	/* fifo list of requests in sort_list */
117	struct list_head fifo;
118
119	/* time when queue got scheduled in to dispatch first request. */
120	unsigned long dispatch_start;
121	unsigned int allocated_slice;
122	/* time when first request from queue completed and slice started. */
123	unsigned long slice_start;
124	unsigned long slice_end;
125	long slice_resid;
126	unsigned int slice_dispatch;
127
128	/* pending metadata requests */
129	int meta_pending;
130	/* number of requests that are on the dispatch list or inside driver */
131	int dispatched;
132
133	/* io prio of this group */
134	unsigned short ioprio, org_ioprio;
135	unsigned short ioprio_class, org_ioprio_class;
136
137	unsigned int seek_samples;
138	u64 seek_total;
139	sector_t seek_mean;
140	sector_t last_request_pos;
141	unsigned long seeky_start;
142
143	pid_t pid;
144
145	struct cfq_rb_root *service_tree;
146	struct cfq_queue *new_cfqq;
147	struct cfq_group *cfqg;
148	struct cfq_group *orig_cfqg;
149	/* Sectors dispatched in current dispatch round */
150	unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_prio_t {
158	BE_WORKLOAD = 0,
159	RT_WORKLOAD = 1,
160	IDLE_WORKLOAD = 2,
161};
162
163/*
164 * Second index in the service_trees.
165 */
166enum wl_type_t {
167	ASYNC_WORKLOAD = 0,
168	SYNC_NOIDLE_WORKLOAD = 1,
169	SYNC_WORKLOAD = 2
170};
171
172/* This is per cgroup per device grouping structure */
173struct cfq_group {
174	/* group service_tree member */
175	struct rb_node rb_node;
176
177	/* group service_tree key */
178	u64 vdisktime;
179	unsigned int weight;
180	bool on_st;
181
182	/* number of cfqq currently on this group */
183	int nr_cfqq;
184
185	/* Per group busy queus average. Useful for workload slice calc. */
186	unsigned int busy_queues_avg[2];
187	/*
188	 * rr lists of queues with requests, onle rr for each priority class.
189	 * Counts are embedded in the cfq_rb_root
190	 */
191	struct cfq_rb_root service_trees[2][3];
192	struct cfq_rb_root service_tree_idle;
193
194	unsigned long saved_workload_slice;
195	enum wl_type_t saved_workload;
196	enum wl_prio_t saved_serving_prio;
197	struct blkio_group blkg;
198#ifdef CONFIG_CFQ_GROUP_IOSCHED
199	struct hlist_node cfqd_node;
200	atomic_t ref;
201#endif
202};
203
204/*
205 * Per block device queue structure
206 */
207struct cfq_data {
208	struct request_queue *queue;
209	/* Root service tree for cfq_groups */
210	struct cfq_rb_root grp_service_tree;
211	struct cfq_group root_group;
212	/* Number of active cfq groups on group service tree */
213	int nr_groups;
214
215	/*
216	 * The priority currently being served
217	 */
218	enum wl_prio_t serving_prio;
219	enum wl_type_t serving_type;
220	unsigned long workload_expires;
221	struct cfq_group *serving_group;
222	bool noidle_tree_requires_idle;
223
224	/*
225	 * Each priority tree is sorted by next_request position.  These
226	 * trees are used when determining if two or more queues are
227	 * interleaving requests (see cfq_close_cooperator).
228	 */
229	struct rb_root prio_trees[CFQ_PRIO_LISTS];
230
231	unsigned int busy_queues;
232
233	int rq_in_driver[2];
234	int sync_flight;
235
236	/*
237	 * queue-depth detection
238	 */
239	int rq_queued;
240	int hw_tag;
241	/*
242	 * hw_tag can be
243	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
244	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
245	 *  0 => no NCQ
246	 */
247	int hw_tag_est_depth;
248	unsigned int hw_tag_samples;
249
250	/*
251	 * idle window management
252	 */
253	struct timer_list idle_slice_timer;
254	struct work_struct unplug_work;
255
256	struct cfq_queue *active_queue;
257	struct cfq_io_context *active_cic;
258
259	/*
260	 * async queue for each priority case
261	 */
262	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
263	struct cfq_queue *async_idle_cfqq;
264
265	sector_t last_position;
266
267	/*
268	 * tunables, see top of file
269	 */
270	unsigned int cfq_quantum;
271	unsigned int cfq_fifo_expire[2];
272	unsigned int cfq_back_penalty;
273	unsigned int cfq_back_max;
274	unsigned int cfq_slice[2];
275	unsigned int cfq_slice_async_rq;
276	unsigned int cfq_slice_idle;
277	unsigned int cfq_latency;
278	unsigned int cfq_group_isolation;
279
280	struct list_head cic_list;
281
282	/*
283	 * Fallback dummy cfqq for extreme OOM conditions
284	 */
285	struct cfq_queue oom_cfqq;
286
287	unsigned long last_end_sync_rq;
288
289	/* List of cfq groups being managed on this device*/
290	struct hlist_head cfqg_list;
291};
292
293static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
295static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296					    enum wl_prio_t prio,
297					    enum wl_type_t type,
298					    struct cfq_data *cfqd)
299{
300	if (!cfqg)
301		return NULL;
302
303	if (prio == IDLE_WORKLOAD)
304		return &cfqg->service_tree_idle;
305
306	return &cfqg->service_trees[prio][type];
307}
308
309enum cfqq_state_flags {
310	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
311	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
312	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
313	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
314	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
315	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
316	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
317	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
318	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
319	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
320	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
321	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
322	CFQ_CFQQ_FLAG_wait_busy_done,	/* Got new request. Expire the queue */
323};
324
325#define CFQ_CFQQ_FNS(name)						\
326static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
327{									\
328	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
329}									\
330static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
331{									\
332	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
333}									\
334static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
335{									\
336	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
337}
338
339CFQ_CFQQ_FNS(on_rr);
340CFQ_CFQQ_FNS(wait_request);
341CFQ_CFQQ_FNS(must_dispatch);
342CFQ_CFQQ_FNS(must_alloc_slice);
343CFQ_CFQQ_FNS(fifo_expire);
344CFQ_CFQQ_FNS(idle_window);
345CFQ_CFQQ_FNS(prio_changed);
346CFQ_CFQQ_FNS(slice_new);
347CFQ_CFQQ_FNS(sync);
348CFQ_CFQQ_FNS(coop);
349CFQ_CFQQ_FNS(deep);
350CFQ_CFQQ_FNS(wait_busy);
351CFQ_CFQQ_FNS(wait_busy_done);
352#undef CFQ_CFQQ_FNS
353
354#ifdef CONFIG_DEBUG_CFQ_IOSCHED
355#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
356	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
357			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
358			blkg_path(&(cfqq)->cfqg->blkg), ##args);
359
360#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
361	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
362				blkg_path(&(cfqg)->blkg), ##args);      \
363
364#else
365#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
366	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
367#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
368#endif
369#define cfq_log(cfqd, fmt, args...)	\
370	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
371
372/* Traverses through cfq group service trees */
373#define for_each_cfqg_st(cfqg, i, j, st) \
374	for (i = 0; i <= IDLE_WORKLOAD; i++) \
375		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
376			: &cfqg->service_tree_idle; \
377			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
378			(i == IDLE_WORKLOAD && j == 0); \
379			j++, st = i < IDLE_WORKLOAD ? \
380			&cfqg->service_trees[i][j]: NULL) \
381
382
383static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
384{
385	if (cfq_class_idle(cfqq))
386		return IDLE_WORKLOAD;
387	if (cfq_class_rt(cfqq))
388		return RT_WORKLOAD;
389	return BE_WORKLOAD;
390}
391
392
393static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
394{
395	if (!cfq_cfqq_sync(cfqq))
396		return ASYNC_WORKLOAD;
397	if (!cfq_cfqq_idle_window(cfqq))
398		return SYNC_NOIDLE_WORKLOAD;
399	return SYNC_WORKLOAD;
400}
401
402static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
403					struct cfq_data *cfqd,
404					struct cfq_group *cfqg)
405{
406	if (wl == IDLE_WORKLOAD)
407		return cfqg->service_tree_idle.count;
408
409	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
410		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
411		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412}
413
414static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
415					struct cfq_group *cfqg)
416{
417	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
418		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419}
420
421static void cfq_dispatch_insert(struct request_queue *, struct request *);
422static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
423				       struct io_context *, gfp_t);
424static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
425						struct io_context *);
426
427static inline int rq_in_driver(struct cfq_data *cfqd)
428{
429	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
430}
431
432static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
433					    bool is_sync)
434{
435	return cic->cfqq[is_sync];
436}
437
438static inline void cic_set_cfqq(struct cfq_io_context *cic,
439				struct cfq_queue *cfqq, bool is_sync)
440{
441	cic->cfqq[is_sync] = cfqq;
442}
443
444/*
445 * We regard a request as SYNC, if it's either a read or has the SYNC bit
446 * set (in which case it could also be direct WRITE).
447 */
448static inline bool cfq_bio_sync(struct bio *bio)
449{
450	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
451}
452
453/*
454 * scheduler run of queue, if there are requests pending and no one in the
455 * driver that will restart queueing
456 */
457static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
458{
459	if (cfqd->busy_queues) {
460		cfq_log(cfqd, "schedule dispatch");
461		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
462	}
463}
464
465static int cfq_queue_empty(struct request_queue *q)
466{
467	struct cfq_data *cfqd = q->elevator->elevator_data;
468
469	return !cfqd->rq_queued;
470}
471
472/*
473 * Scale schedule slice based on io priority. Use the sync time slice only
474 * if a queue is marked sync and has sync io queued. A sync queue with async
475 * io only, should not get full sync slice length.
476 */
477static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
478				 unsigned short prio)
479{
480	const int base_slice = cfqd->cfq_slice[sync];
481
482	WARN_ON(prio >= IOPRIO_BE_NR);
483
484	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
485}
486
487static inline int
488cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
489{
490	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
491}
492
493static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
494{
495	u64 d = delta << CFQ_SERVICE_SHIFT;
496
497	d = d * BLKIO_WEIGHT_DEFAULT;
498	do_div(d, cfqg->weight);
499	return d;
500}
501
502static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
503{
504	s64 delta = (s64)(vdisktime - min_vdisktime);
505	if (delta > 0)
506		min_vdisktime = vdisktime;
507
508	return min_vdisktime;
509}
510
511static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
512{
513	s64 delta = (s64)(vdisktime - min_vdisktime);
514	if (delta < 0)
515		min_vdisktime = vdisktime;
516
517	return min_vdisktime;
518}
519
520static void update_min_vdisktime(struct cfq_rb_root *st)
521{
522	u64 vdisktime = st->min_vdisktime;
523	struct cfq_group *cfqg;
524
525	if (st->active) {
526		cfqg = rb_entry_cfqg(st->active);
527		vdisktime = cfqg->vdisktime;
528	}
529
530	if (st->left) {
531		cfqg = rb_entry_cfqg(st->left);
532		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
533	}
534
535	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
536}
537
538/*
539 * get averaged number of queues of RT/BE priority.
540 * average is updated, with a formula that gives more weight to higher numbers,
541 * to quickly follows sudden increases and decrease slowly
542 */
543
544static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
545					struct cfq_group *cfqg, bool rt)
546{
547	unsigned min_q, max_q;
548	unsigned mult  = cfq_hist_divisor - 1;
549	unsigned round = cfq_hist_divisor / 2;
550	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
551
552	min_q = min(cfqg->busy_queues_avg[rt], busy);
553	max_q = max(cfqg->busy_queues_avg[rt], busy);
554	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
555		cfq_hist_divisor;
556	return cfqg->busy_queues_avg[rt];
557}
558
559static inline unsigned
560cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
561{
562	struct cfq_rb_root *st = &cfqd->grp_service_tree;
563
564	return cfq_target_latency * cfqg->weight / st->total_weight;
565}
566
567static inline void
568cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
569{
570	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
571	if (cfqd->cfq_latency) {
572		/*
573		 * interested queues (we consider only the ones with the same
574		 * priority class in the cfq group)
575		 */
576		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
577						cfq_class_rt(cfqq));
578		unsigned sync_slice = cfqd->cfq_slice[1];
579		unsigned expect_latency = sync_slice * iq;
580		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
581
582		if (expect_latency > group_slice) {
583			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
584			/* scale low_slice according to IO priority
585			 * and sync vs async */
586			unsigned low_slice =
587				min(slice, base_low_slice * slice / sync_slice);
588			/* the adapted slice value is scaled to fit all iqs
589			 * into the target latency */
590			slice = max(slice * group_slice / expect_latency,
591				    low_slice);
592		}
593	}
594	cfqq->slice_start = jiffies;
595	cfqq->slice_end = jiffies + slice;
596	cfqq->allocated_slice = slice;
597	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
598}
599
600/*
601 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
602 * isn't valid until the first request from the dispatch is activated
603 * and the slice time set.
604 */
605static inline bool cfq_slice_used(struct cfq_queue *cfqq)
606{
607	if (cfq_cfqq_slice_new(cfqq))
608		return 0;
609	if (time_before(jiffies, cfqq->slice_end))
610		return 0;
611
612	return 1;
613}
614
615/*
616 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
617 * We choose the request that is closest to the head right now. Distance
618 * behind the head is penalized and only allowed to a certain extent.
619 */
620static struct request *
621cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
622{
623	sector_t s1, s2, d1 = 0, d2 = 0;
624	unsigned long back_max;
625#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
626#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
627	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
628
629	if (rq1 == NULL || rq1 == rq2)
630		return rq2;
631	if (rq2 == NULL)
632		return rq1;
633
634	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
635		return rq1;
636	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
637		return rq2;
638	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
639		return rq1;
640	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
641		return rq2;
642
643	s1 = blk_rq_pos(rq1);
644	s2 = blk_rq_pos(rq2);
645
646	/*
647	 * by definition, 1KiB is 2 sectors
648	 */
649	back_max = cfqd->cfq_back_max * 2;
650
651	/*
652	 * Strict one way elevator _except_ in the case where we allow
653	 * short backward seeks which are biased as twice the cost of a
654	 * similar forward seek.
655	 */
656	if (s1 >= last)
657		d1 = s1 - last;
658	else if (s1 + back_max >= last)
659		d1 = (last - s1) * cfqd->cfq_back_penalty;
660	else
661		wrap |= CFQ_RQ1_WRAP;
662
663	if (s2 >= last)
664		d2 = s2 - last;
665	else if (s2 + back_max >= last)
666		d2 = (last - s2) * cfqd->cfq_back_penalty;
667	else
668		wrap |= CFQ_RQ2_WRAP;
669
670	/* Found required data */
671
672	/*
673	 * By doing switch() on the bit mask "wrap" we avoid having to
674	 * check two variables for all permutations: --> faster!
675	 */
676	switch (wrap) {
677	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
678		if (d1 < d2)
679			return rq1;
680		else if (d2 < d1)
681			return rq2;
682		else {
683			if (s1 >= s2)
684				return rq1;
685			else
686				return rq2;
687		}
688
689	case CFQ_RQ2_WRAP:
690		return rq1;
691	case CFQ_RQ1_WRAP:
692		return rq2;
693	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
694	default:
695		/*
696		 * Since both rqs are wrapped,
697		 * start with the one that's further behind head
698		 * (--> only *one* back seek required),
699		 * since back seek takes more time than forward.
700		 */
701		if (s1 <= s2)
702			return rq1;
703		else
704			return rq2;
705	}
706}
707
708/*
709 * The below is leftmost cache rbtree addon
710 */
711static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
712{
713	/* Service tree is empty */
714	if (!root->count)
715		return NULL;
716
717	if (!root->left)
718		root->left = rb_first(&root->rb);
719
720	if (root->left)
721		return rb_entry(root->left, struct cfq_queue, rb_node);
722
723	return NULL;
724}
725
726static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
727{
728	if (!root->left)
729		root->left = rb_first(&root->rb);
730
731	if (root->left)
732		return rb_entry_cfqg(root->left);
733
734	return NULL;
735}
736
737static void rb_erase_init(struct rb_node *n, struct rb_root *root)
738{
739	rb_erase(n, root);
740	RB_CLEAR_NODE(n);
741}
742
743static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
744{
745	if (root->left == n)
746		root->left = NULL;
747	rb_erase_init(n, &root->rb);
748	--root->count;
749}
750
751/*
752 * would be nice to take fifo expire time into account as well
753 */
754static struct request *
755cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
756		  struct request *last)
757{
758	struct rb_node *rbnext = rb_next(&last->rb_node);
759	struct rb_node *rbprev = rb_prev(&last->rb_node);
760	struct request *next = NULL, *prev = NULL;
761
762	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
763
764	if (rbprev)
765		prev = rb_entry_rq(rbprev);
766
767	if (rbnext)
768		next = rb_entry_rq(rbnext);
769	else {
770		rbnext = rb_first(&cfqq->sort_list);
771		if (rbnext && rbnext != &last->rb_node)
772			next = rb_entry_rq(rbnext);
773	}
774
775	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
776}
777
778static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
779				      struct cfq_queue *cfqq)
780{
781	/*
782	 * just an approximation, should be ok.
783	 */
784	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
785		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
786}
787
788static inline s64
789cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
790{
791	return cfqg->vdisktime - st->min_vdisktime;
792}
793
794static void
795__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
796{
797	struct rb_node **node = &st->rb.rb_node;
798	struct rb_node *parent = NULL;
799	struct cfq_group *__cfqg;
800	s64 key = cfqg_key(st, cfqg);
801	int left = 1;
802
803	while (*node != NULL) {
804		parent = *node;
805		__cfqg = rb_entry_cfqg(parent);
806
807		if (key < cfqg_key(st, __cfqg))
808			node = &parent->rb_left;
809		else {
810			node = &parent->rb_right;
811			left = 0;
812		}
813	}
814
815	if (left)
816		st->left = &cfqg->rb_node;
817
818	rb_link_node(&cfqg->rb_node, parent, node);
819	rb_insert_color(&cfqg->rb_node, &st->rb);
820}
821
822static void
823cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
824{
825	struct cfq_rb_root *st = &cfqd->grp_service_tree;
826	struct cfq_group *__cfqg;
827	struct rb_node *n;
828
829	cfqg->nr_cfqq++;
830	if (cfqg->on_st)
831		return;
832
833	/*
834	 * Currently put the group at the end. Later implement something
835	 * so that groups get lesser vtime based on their weights, so that
836	 * if group does not loose all if it was not continously backlogged.
837	 */
838	n = rb_last(&st->rb);
839	if (n) {
840		__cfqg = rb_entry_cfqg(n);
841		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
842	} else
843		cfqg->vdisktime = st->min_vdisktime;
844
845	__cfq_group_service_tree_add(st, cfqg);
846	cfqg->on_st = true;
847	cfqd->nr_groups++;
848	st->total_weight += cfqg->weight;
849}
850
851static void
852cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
853{
854	struct cfq_rb_root *st = &cfqd->grp_service_tree;
855
856	if (st->active == &cfqg->rb_node)
857		st->active = NULL;
858
859	BUG_ON(cfqg->nr_cfqq < 1);
860	cfqg->nr_cfqq--;
861
862	/* If there are other cfq queues under this group, don't delete it */
863	if (cfqg->nr_cfqq)
864		return;
865
866	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
867	cfqg->on_st = false;
868	cfqd->nr_groups--;
869	st->total_weight -= cfqg->weight;
870	if (!RB_EMPTY_NODE(&cfqg->rb_node))
871		cfq_rb_erase(&cfqg->rb_node, st);
872	cfqg->saved_workload_slice = 0;
873	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
874}
875
876static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
877{
878	unsigned int slice_used;
879
880	/*
881	 * Queue got expired before even a single request completed or
882	 * got expired immediately after first request completion.
883	 */
884	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
885		/*
886		 * Also charge the seek time incurred to the group, otherwise
887		 * if there are mutiple queues in the group, each can dispatch
888		 * a single request on seeky media and cause lots of seek time
889		 * and group will never know it.
890		 */
891		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
892					1);
893	} else {
894		slice_used = jiffies - cfqq->slice_start;
895		if (slice_used > cfqq->allocated_slice)
896			slice_used = cfqq->allocated_slice;
897	}
898
899	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
900				cfqq->nr_sectors);
901	return slice_used;
902}
903
904static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
905				struct cfq_queue *cfqq)
906{
907	struct cfq_rb_root *st = &cfqd->grp_service_tree;
908	unsigned int used_sl, charge_sl;
909	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
910			- cfqg->service_tree_idle.count;
911
912	BUG_ON(nr_sync < 0);
913	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
914
915	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
916		charge_sl = cfqq->allocated_slice;
917
918	/* Can't update vdisktime while group is on service tree */
919	cfq_rb_erase(&cfqg->rb_node, st);
920	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
921	__cfq_group_service_tree_add(st, cfqg);
922
923	/* This group is being expired. Save the context */
924	if (time_after(cfqd->workload_expires, jiffies)) {
925		cfqg->saved_workload_slice = cfqd->workload_expires
926						- jiffies;
927		cfqg->saved_workload = cfqd->serving_type;
928		cfqg->saved_serving_prio = cfqd->serving_prio;
929	} else
930		cfqg->saved_workload_slice = 0;
931
932	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
933					st->min_vdisktime);
934	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
935						cfqq->nr_sectors);
936}
937
938#ifdef CONFIG_CFQ_GROUP_IOSCHED
939static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
940{
941	if (blkg)
942		return container_of(blkg, struct cfq_group, blkg);
943	return NULL;
944}
945
946void
947cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
948{
949	cfqg_of_blkg(blkg)->weight = weight;
950}
951
952static struct cfq_group *
953cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
954{
955	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
956	struct cfq_group *cfqg = NULL;
957	void *key = cfqd;
958	int i, j;
959	struct cfq_rb_root *st;
960	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
961	unsigned int major, minor;
962
963	/* Do we need to take this reference */
964	if (!blkiocg_css_tryget(blkcg))
965		return NULL;;
966
967	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
968	if (cfqg || !create)
969		goto done;
970
971	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
972	if (!cfqg)
973		goto done;
974
975	cfqg->weight = blkcg->weight;
976	for_each_cfqg_st(cfqg, i, j, st)
977		*st = CFQ_RB_ROOT;
978	RB_CLEAR_NODE(&cfqg->rb_node);
979
980	/*
981	 * Take the initial reference that will be released on destroy
982	 * This can be thought of a joint reference by cgroup and
983	 * elevator which will be dropped by either elevator exit
984	 * or cgroup deletion path depending on who is exiting first.
985	 */
986	atomic_set(&cfqg->ref, 1);
987
988	/* Add group onto cgroup list */
989	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
990	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
991					MKDEV(major, minor));
992
993	/* Add group on cfqd list */
994	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
995
996done:
997	blkiocg_css_put(blkcg);
998	return cfqg;
999}
1000
1001/*
1002 * Search for the cfq group current task belongs to. If create = 1, then also
1003 * create the cfq group if it does not exist. request_queue lock must be held.
1004 */
1005static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1006{
1007	struct cgroup *cgroup;
1008	struct cfq_group *cfqg = NULL;
1009
1010	rcu_read_lock();
1011	cgroup = task_cgroup(current, blkio_subsys_id);
1012	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1013	if (!cfqg && create)
1014		cfqg = &cfqd->root_group;
1015	rcu_read_unlock();
1016	return cfqg;
1017}
1018
1019static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1020{
1021	/* Currently, all async queues are mapped to root group */
1022	if (!cfq_cfqq_sync(cfqq))
1023		cfqg = &cfqq->cfqd->root_group;
1024
1025	cfqq->cfqg = cfqg;
1026	/* cfqq reference on cfqg */
1027	atomic_inc(&cfqq->cfqg->ref);
1028}
1029
1030static void cfq_put_cfqg(struct cfq_group *cfqg)
1031{
1032	struct cfq_rb_root *st;
1033	int i, j;
1034
1035	BUG_ON(atomic_read(&cfqg->ref) <= 0);
1036	if (!atomic_dec_and_test(&cfqg->ref))
1037		return;
1038	for_each_cfqg_st(cfqg, i, j, st)
1039		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1040	kfree(cfqg);
1041}
1042
1043static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1044{
1045	/* Something wrong if we are trying to remove same group twice */
1046	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1047
1048	hlist_del_init(&cfqg->cfqd_node);
1049
1050	/*
1051	 * Put the reference taken at the time of creation so that when all
1052	 * queues are gone, group can be destroyed.
1053	 */
1054	cfq_put_cfqg(cfqg);
1055}
1056
1057static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1058{
1059	struct hlist_node *pos, *n;
1060	struct cfq_group *cfqg;
1061
1062	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1063		/*
1064		 * If cgroup removal path got to blk_group first and removed
1065		 * it from cgroup list, then it will take care of destroying
1066		 * cfqg also.
1067		 */
1068		if (!blkiocg_del_blkio_group(&cfqg->blkg))
1069			cfq_destroy_cfqg(cfqd, cfqg);
1070	}
1071}
1072
1073/*
1074 * Blk cgroup controller notification saying that blkio_group object is being
1075 * delinked as associated cgroup object is going away. That also means that
1076 * no new IO will come in this group. So get rid of this group as soon as
1077 * any pending IO in the group is finished.
1078 *
1079 * This function is called under rcu_read_lock(). key is the rcu protected
1080 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1081 * read lock.
1082 *
1083 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1084 * it should not be NULL as even if elevator was exiting, cgroup deltion
1085 * path got to it first.
1086 */
1087void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1088{
1089	unsigned long  flags;
1090	struct cfq_data *cfqd = key;
1091
1092	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1093	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1094	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1095}
1096
1097#else /* GROUP_IOSCHED */
1098static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1099{
1100	return &cfqd->root_group;
1101}
1102static inline void
1103cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1104	cfqq->cfqg = cfqg;
1105}
1106
1107static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1108static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1109
1110#endif /* GROUP_IOSCHED */
1111
1112/*
1113 * The cfqd->service_trees holds all pending cfq_queue's that have
1114 * requests waiting to be processed. It is sorted in the order that
1115 * we will service the queues.
1116 */
1117static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1118				 bool add_front)
1119{
1120	struct rb_node **p, *parent;
1121	struct cfq_queue *__cfqq;
1122	unsigned long rb_key;
1123	struct cfq_rb_root *service_tree;
1124	int left;
1125	int new_cfqq = 1;
1126	int group_changed = 0;
1127
1128#ifdef CONFIG_CFQ_GROUP_IOSCHED
1129	if (!cfqd->cfq_group_isolation
1130	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1131	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1132		/* Move this cfq to root group */
1133		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1134		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1135			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1136		cfqq->orig_cfqg = cfqq->cfqg;
1137		cfqq->cfqg = &cfqd->root_group;
1138		atomic_inc(&cfqd->root_group.ref);
1139		group_changed = 1;
1140	} else if (!cfqd->cfq_group_isolation
1141		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1142		/* cfqq is sequential now needs to go to its original group */
1143		BUG_ON(cfqq->cfqg != &cfqd->root_group);
1144		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1145			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1146		cfq_put_cfqg(cfqq->cfqg);
1147		cfqq->cfqg = cfqq->orig_cfqg;
1148		cfqq->orig_cfqg = NULL;
1149		group_changed = 1;
1150		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1151	}
1152#endif
1153
1154	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1155						cfqq_type(cfqq), cfqd);
1156	if (cfq_class_idle(cfqq)) {
1157		rb_key = CFQ_IDLE_DELAY;
1158		parent = rb_last(&service_tree->rb);
1159		if (parent && parent != &cfqq->rb_node) {
1160			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1161			rb_key += __cfqq->rb_key;
1162		} else
1163			rb_key += jiffies;
1164	} else if (!add_front) {
1165		/*
1166		 * Get our rb key offset. Subtract any residual slice
1167		 * value carried from last service. A negative resid
1168		 * count indicates slice overrun, and this should position
1169		 * the next service time further away in the tree.
1170		 */
1171		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1172		rb_key -= cfqq->slice_resid;
1173		cfqq->slice_resid = 0;
1174	} else {
1175		rb_key = -HZ;
1176		__cfqq = cfq_rb_first(service_tree);
1177		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1178	}
1179
1180	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1181		new_cfqq = 0;
1182		/*
1183		 * same position, nothing more to do
1184		 */
1185		if (rb_key == cfqq->rb_key &&
1186		    cfqq->service_tree == service_tree)
1187			return;
1188
1189		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1190		cfqq->service_tree = NULL;
1191	}
1192
1193	left = 1;
1194	parent = NULL;
1195	cfqq->service_tree = service_tree;
1196	p = &service_tree->rb.rb_node;
1197	while (*p) {
1198		struct rb_node **n;
1199
1200		parent = *p;
1201		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1202
1203		/*
1204		 * sort by key, that represents service time.
1205		 */
1206		if (time_before(rb_key, __cfqq->rb_key))
1207			n = &(*p)->rb_left;
1208		else {
1209			n = &(*p)->rb_right;
1210			left = 0;
1211		}
1212
1213		p = n;
1214	}
1215
1216	if (left)
1217		service_tree->left = &cfqq->rb_node;
1218
1219	cfqq->rb_key = rb_key;
1220	rb_link_node(&cfqq->rb_node, parent, p);
1221	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1222	service_tree->count++;
1223	if ((add_front || !new_cfqq) && !group_changed)
1224		return;
1225	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1226}
1227
1228static struct cfq_queue *
1229cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1230		     sector_t sector, struct rb_node **ret_parent,
1231		     struct rb_node ***rb_link)
1232{
1233	struct rb_node **p, *parent;
1234	struct cfq_queue *cfqq = NULL;
1235
1236	parent = NULL;
1237	p = &root->rb_node;
1238	while (*p) {
1239		struct rb_node **n;
1240
1241		parent = *p;
1242		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1243
1244		/*
1245		 * Sort strictly based on sector.  Smallest to the left,
1246		 * largest to the right.
1247		 */
1248		if (sector > blk_rq_pos(cfqq->next_rq))
1249			n = &(*p)->rb_right;
1250		else if (sector < blk_rq_pos(cfqq->next_rq))
1251			n = &(*p)->rb_left;
1252		else
1253			break;
1254		p = n;
1255		cfqq = NULL;
1256	}
1257
1258	*ret_parent = parent;
1259	if (rb_link)
1260		*rb_link = p;
1261	return cfqq;
1262}
1263
1264static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265{
1266	struct rb_node **p, *parent;
1267	struct cfq_queue *__cfqq;
1268
1269	if (cfqq->p_root) {
1270		rb_erase(&cfqq->p_node, cfqq->p_root);
1271		cfqq->p_root = NULL;
1272	}
1273
1274	if (cfq_class_idle(cfqq))
1275		return;
1276	if (!cfqq->next_rq)
1277		return;
1278
1279	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1280	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1281				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1282	if (!__cfqq) {
1283		rb_link_node(&cfqq->p_node, parent, p);
1284		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1285	} else
1286		cfqq->p_root = NULL;
1287}
1288
1289/*
1290 * Update cfqq's position in the service tree.
1291 */
1292static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1293{
1294	/*
1295	 * Resorting requires the cfqq to be on the RR list already.
1296	 */
1297	if (cfq_cfqq_on_rr(cfqq)) {
1298		cfq_service_tree_add(cfqd, cfqq, 0);
1299		cfq_prio_tree_add(cfqd, cfqq);
1300	}
1301}
1302
1303/*
1304 * add to busy list of queues for service, trying to be fair in ordering
1305 * the pending list according to last request service
1306 */
1307static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1308{
1309	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1310	BUG_ON(cfq_cfqq_on_rr(cfqq));
1311	cfq_mark_cfqq_on_rr(cfqq);
1312	cfqd->busy_queues++;
1313
1314	cfq_resort_rr_list(cfqd, cfqq);
1315}
1316
1317/*
1318 * Called when the cfqq no longer has requests pending, remove it from
1319 * the service tree.
1320 */
1321static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1322{
1323	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1324	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1325	cfq_clear_cfqq_on_rr(cfqq);
1326
1327	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1328		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1329		cfqq->service_tree = NULL;
1330	}
1331	if (cfqq->p_root) {
1332		rb_erase(&cfqq->p_node, cfqq->p_root);
1333		cfqq->p_root = NULL;
1334	}
1335
1336	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1337	BUG_ON(!cfqd->busy_queues);
1338	cfqd->busy_queues--;
1339}
1340
1341/*
1342 * rb tree support functions
1343 */
1344static void cfq_del_rq_rb(struct request *rq)
1345{
1346	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1347	const int sync = rq_is_sync(rq);
1348
1349	BUG_ON(!cfqq->queued[sync]);
1350	cfqq->queued[sync]--;
1351
1352	elv_rb_del(&cfqq->sort_list, rq);
1353
1354	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1355		/*
1356		 * Queue will be deleted from service tree when we actually
1357		 * expire it later. Right now just remove it from prio tree
1358		 * as it is empty.
1359		 */
1360		if (cfqq->p_root) {
1361			rb_erase(&cfqq->p_node, cfqq->p_root);
1362			cfqq->p_root = NULL;
1363		}
1364	}
1365}
1366
1367static void cfq_add_rq_rb(struct request *rq)
1368{
1369	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1370	struct cfq_data *cfqd = cfqq->cfqd;
1371	struct request *__alias, *prev;
1372
1373	cfqq->queued[rq_is_sync(rq)]++;
1374
1375	/*
1376	 * looks a little odd, but the first insert might return an alias.
1377	 * if that happens, put the alias on the dispatch list
1378	 */
1379	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1380		cfq_dispatch_insert(cfqd->queue, __alias);
1381
1382	if (!cfq_cfqq_on_rr(cfqq))
1383		cfq_add_cfqq_rr(cfqd, cfqq);
1384
1385	/*
1386	 * check if this request is a better next-serve candidate
1387	 */
1388	prev = cfqq->next_rq;
1389	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1390
1391	/*
1392	 * adjust priority tree position, if ->next_rq changes
1393	 */
1394	if (prev != cfqq->next_rq)
1395		cfq_prio_tree_add(cfqd, cfqq);
1396
1397	BUG_ON(!cfqq->next_rq);
1398}
1399
1400static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1401{
1402	elv_rb_del(&cfqq->sort_list, rq);
1403	cfqq->queued[rq_is_sync(rq)]--;
1404	cfq_add_rq_rb(rq);
1405}
1406
1407static struct request *
1408cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1409{
1410	struct task_struct *tsk = current;
1411	struct cfq_io_context *cic;
1412	struct cfq_queue *cfqq;
1413
1414	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1415	if (!cic)
1416		return NULL;
1417
1418	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1419	if (cfqq) {
1420		sector_t sector = bio->bi_sector + bio_sectors(bio);
1421
1422		return elv_rb_find(&cfqq->sort_list, sector);
1423	}
1424
1425	return NULL;
1426}
1427
1428static void cfq_activate_request(struct request_queue *q, struct request *rq)
1429{
1430	struct cfq_data *cfqd = q->elevator->elevator_data;
1431
1432	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1433	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1434						rq_in_driver(cfqd));
1435
1436	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1437}
1438
1439static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1440{
1441	struct cfq_data *cfqd = q->elevator->elevator_data;
1442	const int sync = rq_is_sync(rq);
1443
1444	WARN_ON(!cfqd->rq_in_driver[sync]);
1445	cfqd->rq_in_driver[sync]--;
1446	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1447						rq_in_driver(cfqd));
1448}
1449
1450static void cfq_remove_request(struct request *rq)
1451{
1452	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1453
1454	if (cfqq->next_rq == rq)
1455		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1456
1457	list_del_init(&rq->queuelist);
1458	cfq_del_rq_rb(rq);
1459
1460	cfqq->cfqd->rq_queued--;
1461	if (rq_is_meta(rq)) {
1462		WARN_ON(!cfqq->meta_pending);
1463		cfqq->meta_pending--;
1464	}
1465}
1466
1467static int cfq_merge(struct request_queue *q, struct request **req,
1468		     struct bio *bio)
1469{
1470	struct cfq_data *cfqd = q->elevator->elevator_data;
1471	struct request *__rq;
1472
1473	__rq = cfq_find_rq_fmerge(cfqd, bio);
1474	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1475		*req = __rq;
1476		return ELEVATOR_FRONT_MERGE;
1477	}
1478
1479	return ELEVATOR_NO_MERGE;
1480}
1481
1482static void cfq_merged_request(struct request_queue *q, struct request *req,
1483			       int type)
1484{
1485	if (type == ELEVATOR_FRONT_MERGE) {
1486		struct cfq_queue *cfqq = RQ_CFQQ(req);
1487
1488		cfq_reposition_rq_rb(cfqq, req);
1489	}
1490}
1491
1492static void
1493cfq_merged_requests(struct request_queue *q, struct request *rq,
1494		    struct request *next)
1495{
1496	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497	/*
1498	 * reposition in fifo if next is older than rq
1499	 */
1500	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1501	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1502		list_move(&rq->queuelist, &next->queuelist);
1503		rq_set_fifo_time(rq, rq_fifo_time(next));
1504	}
1505
1506	if (cfqq->next_rq == next)
1507		cfqq->next_rq = rq;
1508	cfq_remove_request(next);
1509}
1510
1511static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1512			   struct bio *bio)
1513{
1514	struct cfq_data *cfqd = q->elevator->elevator_data;
1515	struct cfq_io_context *cic;
1516	struct cfq_queue *cfqq;
1517
1518	/* Deny merge if bio and rq don't belong to same cfq group */
1519	if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1520		return false;
1521	/*
1522	 * Disallow merge of a sync bio into an async request.
1523	 */
1524	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1525		return false;
1526
1527	/*
1528	 * Lookup the cfqq that this bio will be queued with. Allow
1529	 * merge only if rq is queued there.
1530	 */
1531	cic = cfq_cic_lookup(cfqd, current->io_context);
1532	if (!cic)
1533		return false;
1534
1535	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1536	return cfqq == RQ_CFQQ(rq);
1537}
1538
1539static void __cfq_set_active_queue(struct cfq_data *cfqd,
1540				   struct cfq_queue *cfqq)
1541{
1542	if (cfqq) {
1543		cfq_log_cfqq(cfqd, cfqq, "set_active");
1544		cfqq->slice_start = 0;
1545		cfqq->dispatch_start = jiffies;
1546		cfqq->allocated_slice = 0;
1547		cfqq->slice_end = 0;
1548		cfqq->slice_dispatch = 0;
1549		cfqq->nr_sectors = 0;
1550
1551		cfq_clear_cfqq_wait_request(cfqq);
1552		cfq_clear_cfqq_must_dispatch(cfqq);
1553		cfq_clear_cfqq_must_alloc_slice(cfqq);
1554		cfq_clear_cfqq_fifo_expire(cfqq);
1555		cfq_mark_cfqq_slice_new(cfqq);
1556
1557		del_timer(&cfqd->idle_slice_timer);
1558	}
1559
1560	cfqd->active_queue = cfqq;
1561}
1562
1563/*
1564 * current cfqq expired its slice (or was too idle), select new one
1565 */
1566static void
1567__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1568		    bool timed_out)
1569{
1570	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1571
1572	if (cfq_cfqq_wait_request(cfqq))
1573		del_timer(&cfqd->idle_slice_timer);
1574
1575	cfq_clear_cfqq_wait_request(cfqq);
1576	cfq_clear_cfqq_wait_busy(cfqq);
1577	cfq_clear_cfqq_wait_busy_done(cfqq);
1578
1579	/*
1580	 * store what was left of this slice, if the queue idled/timed out
1581	 */
1582	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1583		cfqq->slice_resid = cfqq->slice_end - jiffies;
1584		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1585	}
1586
1587	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1588
1589	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1590		cfq_del_cfqq_rr(cfqd, cfqq);
1591
1592	cfq_resort_rr_list(cfqd, cfqq);
1593
1594	if (cfqq == cfqd->active_queue)
1595		cfqd->active_queue = NULL;
1596
1597	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1598		cfqd->grp_service_tree.active = NULL;
1599
1600	if (cfqd->active_cic) {
1601		put_io_context(cfqd->active_cic->ioc);
1602		cfqd->active_cic = NULL;
1603	}
1604}
1605
1606static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1607{
1608	struct cfq_queue *cfqq = cfqd->active_queue;
1609
1610	if (cfqq)
1611		__cfq_slice_expired(cfqd, cfqq, timed_out);
1612}
1613
1614/*
1615 * Get next queue for service. Unless we have a queue preemption,
1616 * we'll simply select the first cfqq in the service tree.
1617 */
1618static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1619{
1620	struct cfq_rb_root *service_tree =
1621		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1622					cfqd->serving_type, cfqd);
1623
1624	if (!cfqd->rq_queued)
1625		return NULL;
1626
1627	/* There is nothing to dispatch */
1628	if (!service_tree)
1629		return NULL;
1630	if (RB_EMPTY_ROOT(&service_tree->rb))
1631		return NULL;
1632	return cfq_rb_first(service_tree);
1633}
1634
1635static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1636{
1637	struct cfq_group *cfqg;
1638	struct cfq_queue *cfqq;
1639	int i, j;
1640	struct cfq_rb_root *st;
1641
1642	if (!cfqd->rq_queued)
1643		return NULL;
1644
1645	cfqg = cfq_get_next_cfqg(cfqd);
1646	if (!cfqg)
1647		return NULL;
1648
1649	for_each_cfqg_st(cfqg, i, j, st)
1650		if ((cfqq = cfq_rb_first(st)) != NULL)
1651			return cfqq;
1652	return NULL;
1653}
1654
1655/*
1656 * Get and set a new active queue for service.
1657 */
1658static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1659					      struct cfq_queue *cfqq)
1660{
1661	if (!cfqq)
1662		cfqq = cfq_get_next_queue(cfqd);
1663
1664	__cfq_set_active_queue(cfqd, cfqq);
1665	return cfqq;
1666}
1667
1668static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1669					  struct request *rq)
1670{
1671	if (blk_rq_pos(rq) >= cfqd->last_position)
1672		return blk_rq_pos(rq) - cfqd->last_position;
1673	else
1674		return cfqd->last_position - blk_rq_pos(rq);
1675}
1676
1677#define CFQQ_SEEK_THR		8 * 1024
1678#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1679
1680static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1681			       struct request *rq)
1682{
1683	sector_t sdist = cfqq->seek_mean;
1684
1685	if (!sample_valid(cfqq->seek_samples))
1686		sdist = CFQQ_SEEK_THR;
1687
1688	return cfq_dist_from_last(cfqd, rq) <= sdist;
1689}
1690
1691static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1692				    struct cfq_queue *cur_cfqq)
1693{
1694	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1695	struct rb_node *parent, *node;
1696	struct cfq_queue *__cfqq;
1697	sector_t sector = cfqd->last_position;
1698
1699	if (RB_EMPTY_ROOT(root))
1700		return NULL;
1701
1702	/*
1703	 * First, if we find a request starting at the end of the last
1704	 * request, choose it.
1705	 */
1706	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1707	if (__cfqq)
1708		return __cfqq;
1709
1710	/*
1711	 * If the exact sector wasn't found, the parent of the NULL leaf
1712	 * will contain the closest sector.
1713	 */
1714	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1715	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1716		return __cfqq;
1717
1718	if (blk_rq_pos(__cfqq->next_rq) < sector)
1719		node = rb_next(&__cfqq->p_node);
1720	else
1721		node = rb_prev(&__cfqq->p_node);
1722	if (!node)
1723		return NULL;
1724
1725	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1726	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1727		return __cfqq;
1728
1729	return NULL;
1730}
1731
1732/*
1733 * cfqd - obvious
1734 * cur_cfqq - passed in so that we don't decide that the current queue is
1735 * 	      closely cooperating with itself.
1736 *
1737 * So, basically we're assuming that that cur_cfqq has dispatched at least
1738 * one request, and that cfqd->last_position reflects a position on the disk
1739 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1740 * assumption.
1741 */
1742static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1743					      struct cfq_queue *cur_cfqq)
1744{
1745	struct cfq_queue *cfqq;
1746
1747	if (!cfq_cfqq_sync(cur_cfqq))
1748		return NULL;
1749	if (CFQQ_SEEKY(cur_cfqq))
1750		return NULL;
1751
1752	/*
1753	 * We should notice if some of the queues are cooperating, eg
1754	 * working closely on the same area of the disk. In that case,
1755	 * we can group them together and don't waste time idling.
1756	 */
1757	cfqq = cfqq_close(cfqd, cur_cfqq);
1758	if (!cfqq)
1759		return NULL;
1760
1761	/* If new queue belongs to different cfq_group, don't choose it */
1762	if (cur_cfqq->cfqg != cfqq->cfqg)
1763		return NULL;
1764
1765	/*
1766	 * It only makes sense to merge sync queues.
1767	 */
1768	if (!cfq_cfqq_sync(cfqq))
1769		return NULL;
1770	if (CFQQ_SEEKY(cfqq))
1771		return NULL;
1772
1773	/*
1774	 * Do not merge queues of different priority classes
1775	 */
1776	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1777		return NULL;
1778
1779	return cfqq;
1780}
1781
1782/*
1783 * Determine whether we should enforce idle window for this queue.
1784 */
1785
1786static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1787{
1788	enum wl_prio_t prio = cfqq_prio(cfqq);
1789	struct cfq_rb_root *service_tree = cfqq->service_tree;
1790
1791	BUG_ON(!service_tree);
1792	BUG_ON(!service_tree->count);
1793
1794	/* We never do for idle class queues. */
1795	if (prio == IDLE_WORKLOAD)
1796		return false;
1797
1798	/* We do for queues that were marked with idle window flag. */
1799	if (cfq_cfqq_idle_window(cfqq) &&
1800	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1801		return true;
1802
1803	/*
1804	 * Otherwise, we do only if they are the last ones
1805	 * in their service tree.
1806	 */
1807	return service_tree->count == 1;
1808}
1809
1810static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1811{
1812	struct cfq_queue *cfqq = cfqd->active_queue;
1813	struct cfq_io_context *cic;
1814	unsigned long sl;
1815
1816	/*
1817	 * SSD device without seek penalty, disable idling. But only do so
1818	 * for devices that support queuing, otherwise we still have a problem
1819	 * with sync vs async workloads.
1820	 */
1821	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1822		return;
1823
1824	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1825	WARN_ON(cfq_cfqq_slice_new(cfqq));
1826
1827	/*
1828	 * idle is disabled, either manually or by past process history
1829	 */
1830	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1831		return;
1832
1833	/*
1834	 * still active requests from this queue, don't idle
1835	 */
1836	if (cfqq->dispatched)
1837		return;
1838
1839	/*
1840	 * task has exited, don't wait
1841	 */
1842	cic = cfqd->active_cic;
1843	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1844		return;
1845
1846	/*
1847	 * If our average think time is larger than the remaining time
1848	 * slice, then don't idle. This avoids overrunning the allotted
1849	 * time slice.
1850	 */
1851	if (sample_valid(cic->ttime_samples) &&
1852	    (cfqq->slice_end - jiffies < cic->ttime_mean))
1853		return;
1854
1855	cfq_mark_cfqq_wait_request(cfqq);
1856
1857	sl = cfqd->cfq_slice_idle;
1858
1859	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1860	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1861}
1862
1863/*
1864 * Move request from internal lists to the request queue dispatch list.
1865 */
1866static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1867{
1868	struct cfq_data *cfqd = q->elevator->elevator_data;
1869	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1870
1871	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1872
1873	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1874	cfq_remove_request(rq);
1875	cfqq->dispatched++;
1876	elv_dispatch_sort(q, rq);
1877
1878	if (cfq_cfqq_sync(cfqq))
1879		cfqd->sync_flight++;
1880	cfqq->nr_sectors += blk_rq_sectors(rq);
1881}
1882
1883/*
1884 * return expired entry, or NULL to just start from scratch in rbtree
1885 */
1886static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1887{
1888	struct request *rq = NULL;
1889
1890	if (cfq_cfqq_fifo_expire(cfqq))
1891		return NULL;
1892
1893	cfq_mark_cfqq_fifo_expire(cfqq);
1894
1895	if (list_empty(&cfqq->fifo))
1896		return NULL;
1897
1898	rq = rq_entry_fifo(cfqq->fifo.next);
1899	if (time_before(jiffies, rq_fifo_time(rq)))
1900		rq = NULL;
1901
1902	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1903	return rq;
1904}
1905
1906static inline int
1907cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1908{
1909	const int base_rq = cfqd->cfq_slice_async_rq;
1910
1911	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1912
1913	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1914}
1915
1916/*
1917 * Must be called with the queue_lock held.
1918 */
1919static int cfqq_process_refs(struct cfq_queue *cfqq)
1920{
1921	int process_refs, io_refs;
1922
1923	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1924	process_refs = atomic_read(&cfqq->ref) - io_refs;
1925	BUG_ON(process_refs < 0);
1926	return process_refs;
1927}
1928
1929static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1930{
1931	int process_refs, new_process_refs;
1932	struct cfq_queue *__cfqq;
1933
1934	/* Avoid a circular list and skip interim queue merges */
1935	while ((__cfqq = new_cfqq->new_cfqq)) {
1936		if (__cfqq == cfqq)
1937			return;
1938		new_cfqq = __cfqq;
1939	}
1940
1941	process_refs = cfqq_process_refs(cfqq);
1942	/*
1943	 * If the process for the cfqq has gone away, there is no
1944	 * sense in merging the queues.
1945	 */
1946	if (process_refs == 0)
1947		return;
1948
1949	/*
1950	 * Merge in the direction of the lesser amount of work.
1951	 */
1952	new_process_refs = cfqq_process_refs(new_cfqq);
1953	if (new_process_refs >= process_refs) {
1954		cfqq->new_cfqq = new_cfqq;
1955		atomic_add(process_refs, &new_cfqq->ref);
1956	} else {
1957		new_cfqq->new_cfqq = cfqq;
1958		atomic_add(new_process_refs, &cfqq->ref);
1959	}
1960}
1961
1962static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1963				struct cfq_group *cfqg, enum wl_prio_t prio,
1964				bool prio_changed)
1965{
1966	struct cfq_queue *queue;
1967	int i;
1968	bool key_valid = false;
1969	unsigned long lowest_key = 0;
1970	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1971
1972	if (prio_changed) {
1973		/*
1974		 * When priorities switched, we prefer starting
1975		 * from SYNC_NOIDLE (first choice), or just SYNC
1976		 * over ASYNC
1977		 */
1978		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1979			return cur_best;
1980		cur_best = SYNC_WORKLOAD;
1981		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1982			return cur_best;
1983
1984		return ASYNC_WORKLOAD;
1985	}
1986
1987	for (i = 0; i < 3; ++i) {
1988		/* otherwise, select the one with lowest rb_key */
1989		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1990		if (queue &&
1991		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
1992			lowest_key = queue->rb_key;
1993			cur_best = i;
1994			key_valid = true;
1995		}
1996	}
1997
1998	return cur_best;
1999}
2000
2001static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2002{
2003	enum wl_prio_t previous_prio = cfqd->serving_prio;
2004	bool prio_changed;
2005	unsigned slice;
2006	unsigned count;
2007	struct cfq_rb_root *st;
2008	unsigned group_slice;
2009
2010	if (!cfqg) {
2011		cfqd->serving_prio = IDLE_WORKLOAD;
2012		cfqd->workload_expires = jiffies + 1;
2013		return;
2014	}
2015
2016	/* Choose next priority. RT > BE > IDLE */
2017	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2018		cfqd->serving_prio = RT_WORKLOAD;
2019	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2020		cfqd->serving_prio = BE_WORKLOAD;
2021	else {
2022		cfqd->serving_prio = IDLE_WORKLOAD;
2023		cfqd->workload_expires = jiffies + 1;
2024		return;
2025	}
2026
2027	/*
2028	 * For RT and BE, we have to choose also the type
2029	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2030	 * expiration time
2031	 */
2032	prio_changed = (cfqd->serving_prio != previous_prio);
2033	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2034				cfqd);
2035	count = st->count;
2036
2037	/*
2038	 * If priority didn't change, check workload expiration,
2039	 * and that we still have other queues ready
2040	 */
2041	if (!prio_changed && count &&
2042	    !time_after(jiffies, cfqd->workload_expires))
2043		return;
2044
2045	/* otherwise select new workload type */
2046	cfqd->serving_type =
2047		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2048	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2049				cfqd);
2050	count = st->count;
2051
2052	/*
2053	 * the workload slice is computed as a fraction of target latency
2054	 * proportional to the number of queues in that workload, over
2055	 * all the queues in the same priority class
2056	 */
2057	group_slice = cfq_group_slice(cfqd, cfqg);
2058
2059	slice = group_slice * count /
2060		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2061		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2062
2063	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2064		unsigned int tmp;
2065
2066		/*
2067		 * Async queues are currently system wide. Just taking
2068		 * proportion of queues with-in same group will lead to higher
2069		 * async ratio system wide as generally root group is going
2070		 * to have higher weight. A more accurate thing would be to
2071		 * calculate system wide asnc/sync ratio.
2072		 */
2073		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2074		tmp = tmp/cfqd->busy_queues;
2075		slice = min_t(unsigned, slice, tmp);
2076
2077		/* async workload slice is scaled down according to
2078		 * the sync/async slice ratio. */
2079		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2080	} else
2081		/* sync workload slice is at least 2 * cfq_slice_idle */
2082		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2083
2084	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2085	cfqd->workload_expires = jiffies + slice;
2086	cfqd->noidle_tree_requires_idle = false;
2087}
2088
2089static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2090{
2091	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2092	struct cfq_group *cfqg;
2093
2094	if (RB_EMPTY_ROOT(&st->rb))
2095		return NULL;
2096	cfqg = cfq_rb_first_group(st);
2097	st->active = &cfqg->rb_node;
2098	update_min_vdisktime(st);
2099	return cfqg;
2100}
2101
2102static void cfq_choose_cfqg(struct cfq_data *cfqd)
2103{
2104	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2105
2106	cfqd->serving_group = cfqg;
2107
2108	/* Restore the workload type data */
2109	if (cfqg->saved_workload_slice) {
2110		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2111		cfqd->serving_type = cfqg->saved_workload;
2112		cfqd->serving_prio = cfqg->saved_serving_prio;
2113	}
2114	choose_service_tree(cfqd, cfqg);
2115}
2116
2117/*
2118 * Select a queue for service. If we have a current active queue,
2119 * check whether to continue servicing it, or retrieve and set a new one.
2120 */
2121static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2122{
2123	struct cfq_queue *cfqq, *new_cfqq = NULL;
2124
2125	cfqq = cfqd->active_queue;
2126	if (!cfqq)
2127		goto new_queue;
2128
2129	if (!cfqd->rq_queued)
2130		return NULL;
2131	/*
2132	 * The active queue has run out of time, expire it and select new.
2133	 */
2134	if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2135	     && !cfq_cfqq_must_dispatch(cfqq))
2136		goto expire;
2137
2138	/*
2139	 * The active queue has requests and isn't expired, allow it to
2140	 * dispatch.
2141	 */
2142	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2143		goto keep_queue;
2144
2145	/*
2146	 * If another queue has a request waiting within our mean seek
2147	 * distance, let it run.  The expire code will check for close
2148	 * cooperators and put the close queue at the front of the service
2149	 * tree.  If possible, merge the expiring queue with the new cfqq.
2150	 */
2151	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2152	if (new_cfqq) {
2153		if (!cfqq->new_cfqq)
2154			cfq_setup_merge(cfqq, new_cfqq);
2155		goto expire;
2156	}
2157
2158	/*
2159	 * No requests pending. If the active queue still has requests in
2160	 * flight or is idling for a new request, allow either of these
2161	 * conditions to happen (or time out) before selecting a new queue.
2162	 */
2163	if (timer_pending(&cfqd->idle_slice_timer) ||
2164	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2165		cfqq = NULL;
2166		goto keep_queue;
2167	}
2168
2169expire:
2170	cfq_slice_expired(cfqd, 0);
2171new_queue:
2172	/*
2173	 * Current queue expired. Check if we have to switch to a new
2174	 * service tree
2175	 */
2176	if (!new_cfqq)
2177		cfq_choose_cfqg(cfqd);
2178
2179	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2180keep_queue:
2181	return cfqq;
2182}
2183
2184static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2185{
2186	int dispatched = 0;
2187
2188	while (cfqq->next_rq) {
2189		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2190		dispatched++;
2191	}
2192
2193	BUG_ON(!list_empty(&cfqq->fifo));
2194
2195	/* By default cfqq is not expired if it is empty. Do it explicitly */
2196	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2197	return dispatched;
2198}
2199
2200/*
2201 * Drain our current requests. Used for barriers and when switching
2202 * io schedulers on-the-fly.
2203 */
2204static int cfq_forced_dispatch(struct cfq_data *cfqd)
2205{
2206	struct cfq_queue *cfqq;
2207	int dispatched = 0;
2208
2209	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2210		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2211
2212	cfq_slice_expired(cfqd, 0);
2213	BUG_ON(cfqd->busy_queues);
2214
2215	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2216	return dispatched;
2217}
2218
2219static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2220{
2221	unsigned int max_dispatch;
2222
2223	/*
2224	 * Drain async requests before we start sync IO
2225	 */
2226	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2227		return false;
2228
2229	/*
2230	 * If this is an async queue and we have sync IO in flight, let it wait
2231	 */
2232	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2233		return false;
2234
2235	max_dispatch = cfqd->cfq_quantum;
2236	if (cfq_class_idle(cfqq))
2237		max_dispatch = 1;
2238
2239	/*
2240	 * Does this cfqq already have too much IO in flight?
2241	 */
2242	if (cfqq->dispatched >= max_dispatch) {
2243		/*
2244		 * idle queue must always only have a single IO in flight
2245		 */
2246		if (cfq_class_idle(cfqq))
2247			return false;
2248
2249		/*
2250		 * We have other queues, don't allow more IO from this one
2251		 */
2252		if (cfqd->busy_queues > 1)
2253			return false;
2254
2255		/*
2256		 * Sole queue user, no limit
2257		 */
2258		max_dispatch = -1;
2259	}
2260
2261	/*
2262	 * Async queues must wait a bit before being allowed dispatch.
2263	 * We also ramp up the dispatch depth gradually for async IO,
2264	 * based on the last sync IO we serviced
2265	 */
2266	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2267		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2268		unsigned int depth;
2269
2270		depth = last_sync / cfqd->cfq_slice[1];
2271		if (!depth && !cfqq->dispatched)
2272			depth = 1;
2273		if (depth < max_dispatch)
2274			max_dispatch = depth;
2275	}
2276
2277	/*
2278	 * If we're below the current max, allow a dispatch
2279	 */
2280	return cfqq->dispatched < max_dispatch;
2281}
2282
2283/*
2284 * Dispatch a request from cfqq, moving them to the request queue
2285 * dispatch list.
2286 */
2287static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2288{
2289	struct request *rq;
2290
2291	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2292
2293	if (!cfq_may_dispatch(cfqd, cfqq))
2294		return false;
2295
2296	/*
2297	 * follow expired path, else get first next available
2298	 */
2299	rq = cfq_check_fifo(cfqq);
2300	if (!rq)
2301		rq = cfqq->next_rq;
2302
2303	/*
2304	 * insert request into driver dispatch list
2305	 */
2306	cfq_dispatch_insert(cfqd->queue, rq);
2307
2308	if (!cfqd->active_cic) {
2309		struct cfq_io_context *cic = RQ_CIC(rq);
2310
2311		atomic_long_inc(&cic->ioc->refcount);
2312		cfqd->active_cic = cic;
2313	}
2314
2315	return true;
2316}
2317
2318/*
2319 * Find the cfqq that we need to service and move a request from that to the
2320 * dispatch list
2321 */
2322static int cfq_dispatch_requests(struct request_queue *q, int force)
2323{
2324	struct cfq_data *cfqd = q->elevator->elevator_data;
2325	struct cfq_queue *cfqq;
2326
2327	if (!cfqd->busy_queues)
2328		return 0;
2329
2330	if (unlikely(force))
2331		return cfq_forced_dispatch(cfqd);
2332
2333	cfqq = cfq_select_queue(cfqd);
2334	if (!cfqq)
2335		return 0;
2336
2337	/*
2338	 * Dispatch a request from this cfqq, if it is allowed
2339	 */
2340	if (!cfq_dispatch_request(cfqd, cfqq))
2341		return 0;
2342
2343	cfqq->slice_dispatch++;
2344	cfq_clear_cfqq_must_dispatch(cfqq);
2345
2346	/*
2347	 * expire an async queue immediately if it has used up its slice. idle
2348	 * queue always expire after 1 dispatch round.
2349	 */
2350	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2351	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2352	    cfq_class_idle(cfqq))) {
2353		cfqq->slice_end = jiffies + 1;
2354		cfq_slice_expired(cfqd, 0);
2355	}
2356
2357	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2358	return 1;
2359}
2360
2361/*
2362 * task holds one reference to the queue, dropped when task exits. each rq
2363 * in-flight on this queue also holds a reference, dropped when rq is freed.
2364 *
2365 * Each cfq queue took a reference on the parent group. Drop it now.
2366 * queue lock must be held here.
2367 */
2368static void cfq_put_queue(struct cfq_queue *cfqq)
2369{
2370	struct cfq_data *cfqd = cfqq->cfqd;
2371	struct cfq_group *cfqg;
2372
2373	BUG_ON(atomic_read(&cfqq->ref) <= 0);
2374
2375	if (!atomic_dec_and_test(&cfqq->ref))
2376		return;
2377
2378	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2379	BUG_ON(rb_first(&cfqq->sort_list));
2380	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2381	cfqg = cfqq->cfqg;
2382
2383	if (unlikely(cfqd->active_queue == cfqq)) {
2384		__cfq_slice_expired(cfqd, cfqq, 0);
2385		cfq_schedule_dispatch(cfqd);
2386	}
2387
2388	BUG_ON(cfq_cfqq_on_rr(cfqq));
2389	kmem_cache_free(cfq_pool, cfqq);
2390	cfq_put_cfqg(cfqg);
2391	if (cfqq->orig_cfqg)
2392		cfq_put_cfqg(cfqq->orig_cfqg);
2393}
2394
2395/*
2396 * Must always be called with the rcu_read_lock() held
2397 */
2398static void
2399__call_for_each_cic(struct io_context *ioc,
2400		    void (*func)(struct io_context *, struct cfq_io_context *))
2401{
2402	struct cfq_io_context *cic;
2403	struct hlist_node *n;
2404
2405	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2406		func(ioc, cic);
2407}
2408
2409/*
2410 * Call func for each cic attached to this ioc.
2411 */
2412static void
2413call_for_each_cic(struct io_context *ioc,
2414		  void (*func)(struct io_context *, struct cfq_io_context *))
2415{
2416	rcu_read_lock();
2417	__call_for_each_cic(ioc, func);
2418	rcu_read_unlock();
2419}
2420
2421static void cfq_cic_free_rcu(struct rcu_head *head)
2422{
2423	struct cfq_io_context *cic;
2424
2425	cic = container_of(head, struct cfq_io_context, rcu_head);
2426
2427	kmem_cache_free(cfq_ioc_pool, cic);
2428	elv_ioc_count_dec(cfq_ioc_count);
2429
2430	if (ioc_gone) {
2431		/*
2432		 * CFQ scheduler is exiting, grab exit lock and check
2433		 * the pending io context count. If it hits zero,
2434		 * complete ioc_gone and set it back to NULL
2435		 */
2436		spin_lock(&ioc_gone_lock);
2437		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2438			complete(ioc_gone);
2439			ioc_gone = NULL;
2440		}
2441		spin_unlock(&ioc_gone_lock);
2442	}
2443}
2444
2445static void cfq_cic_free(struct cfq_io_context *cic)
2446{
2447	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2448}
2449
2450static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2451{
2452	unsigned long flags;
2453
2454	BUG_ON(!cic->dead_key);
2455
2456	spin_lock_irqsave(&ioc->lock, flags);
2457	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2458	hlist_del_rcu(&cic->cic_list);
2459	spin_unlock_irqrestore(&ioc->lock, flags);
2460
2461	cfq_cic_free(cic);
2462}
2463
2464/*
2465 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2466 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2467 * and ->trim() which is called with the task lock held
2468 */
2469static void cfq_free_io_context(struct io_context *ioc)
2470{
2471	/*
2472	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2473	 * so no more cic's are allowed to be linked into this ioc.  So it
2474	 * should be ok to iterate over the known list, we will see all cic's
2475	 * since no new ones are added.
2476	 */
2477	__call_for_each_cic(ioc, cic_free_func);
2478}
2479
2480static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2481{
2482	struct cfq_queue *__cfqq, *next;
2483
2484	if (unlikely(cfqq == cfqd->active_queue)) {
2485		__cfq_slice_expired(cfqd, cfqq, 0);
2486		cfq_schedule_dispatch(cfqd);
2487	}
2488
2489	/*
2490	 * If this queue was scheduled to merge with another queue, be
2491	 * sure to drop the reference taken on that queue (and others in
2492	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2493	 */
2494	__cfqq = cfqq->new_cfqq;
2495	while (__cfqq) {
2496		if (__cfqq == cfqq) {
2497			WARN(1, "cfqq->new_cfqq loop detected\n");
2498			break;
2499		}
2500		next = __cfqq->new_cfqq;
2501		cfq_put_queue(__cfqq);
2502		__cfqq = next;
2503	}
2504
2505	cfq_put_queue(cfqq);
2506}
2507
2508static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2509					 struct cfq_io_context *cic)
2510{
2511	struct io_context *ioc = cic->ioc;
2512
2513	list_del_init(&cic->queue_list);
2514
2515	/*
2516	 * Make sure key == NULL is seen for dead queues
2517	 */
2518	smp_wmb();
2519	cic->dead_key = (unsigned long) cic->key;
2520	cic->key = NULL;
2521
2522	if (ioc->ioc_data == cic)
2523		rcu_assign_pointer(ioc->ioc_data, NULL);
2524
2525	if (cic->cfqq[BLK_RW_ASYNC]) {
2526		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2527		cic->cfqq[BLK_RW_ASYNC] = NULL;
2528	}
2529
2530	if (cic->cfqq[BLK_RW_SYNC]) {
2531		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2532		cic->cfqq[BLK_RW_SYNC] = NULL;
2533	}
2534}
2535
2536static void cfq_exit_single_io_context(struct io_context *ioc,
2537				       struct cfq_io_context *cic)
2538{
2539	struct cfq_data *cfqd = cic->key;
2540
2541	if (cfqd) {
2542		struct request_queue *q = cfqd->queue;
2543		unsigned long flags;
2544
2545		spin_lock_irqsave(q->queue_lock, flags);
2546
2547		/*
2548		 * Ensure we get a fresh copy of the ->key to prevent
2549		 * race between exiting task and queue
2550		 */
2551		smp_read_barrier_depends();
2552		if (cic->key)
2553			__cfq_exit_single_io_context(cfqd, cic);
2554
2555		spin_unlock_irqrestore(q->queue_lock, flags);
2556	}
2557}
2558
2559/*
2560 * The process that ioc belongs to has exited, we need to clean up
2561 * and put the internal structures we have that belongs to that process.
2562 */
2563static void cfq_exit_io_context(struct io_context *ioc)
2564{
2565	call_for_each_cic(ioc, cfq_exit_single_io_context);
2566}
2567
2568static struct cfq_io_context *
2569cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2570{
2571	struct cfq_io_context *cic;
2572
2573	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2574							cfqd->queue->node);
2575	if (cic) {
2576		cic->last_end_request = jiffies;
2577		INIT_LIST_HEAD(&cic->queue_list);
2578		INIT_HLIST_NODE(&cic->cic_list);
2579		cic->dtor = cfq_free_io_context;
2580		cic->exit = cfq_exit_io_context;
2581		elv_ioc_count_inc(cfq_ioc_count);
2582	}
2583
2584	return cic;
2585}
2586
2587static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2588{
2589	struct task_struct *tsk = current;
2590	int ioprio_class;
2591
2592	if (!cfq_cfqq_prio_changed(cfqq))
2593		return;
2594
2595	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2596	switch (ioprio_class) {
2597	default:
2598		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2599	case IOPRIO_CLASS_NONE:
2600		/*
2601		 * no prio set, inherit CPU scheduling settings
2602		 */
2603		cfqq->ioprio = task_nice_ioprio(tsk);
2604		cfqq->ioprio_class = task_nice_ioclass(tsk);
2605		break;
2606	case IOPRIO_CLASS_RT:
2607		cfqq->ioprio = task_ioprio(ioc);
2608		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2609		break;
2610	case IOPRIO_CLASS_BE:
2611		cfqq->ioprio = task_ioprio(ioc);
2612		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2613		break;
2614	case IOPRIO_CLASS_IDLE:
2615		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2616		cfqq->ioprio = 7;
2617		cfq_clear_cfqq_idle_window(cfqq);
2618		break;
2619	}
2620
2621	/*
2622	 * keep track of original prio settings in case we have to temporarily
2623	 * elevate the priority of this queue
2624	 */
2625	cfqq->org_ioprio = cfqq->ioprio;
2626	cfqq->org_ioprio_class = cfqq->ioprio_class;
2627	cfq_clear_cfqq_prio_changed(cfqq);
2628}
2629
2630static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2631{
2632	struct cfq_data *cfqd = cic->key;
2633	struct cfq_queue *cfqq;
2634	unsigned long flags;
2635
2636	if (unlikely(!cfqd))
2637		return;
2638
2639	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2640
2641	cfqq = cic->cfqq[BLK_RW_ASYNC];
2642	if (cfqq) {
2643		struct cfq_queue *new_cfqq;
2644		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2645						GFP_ATOMIC);
2646		if (new_cfqq) {
2647			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2648			cfq_put_queue(cfqq);
2649		}
2650	}
2651
2652	cfqq = cic->cfqq[BLK_RW_SYNC];
2653	if (cfqq)
2654		cfq_mark_cfqq_prio_changed(cfqq);
2655
2656	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2657}
2658
2659static void cfq_ioc_set_ioprio(struct io_context *ioc)
2660{
2661	call_for_each_cic(ioc, changed_ioprio);
2662	ioc->ioprio_changed = 0;
2663}
2664
2665static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2666			  pid_t pid, bool is_sync)
2667{
2668	RB_CLEAR_NODE(&cfqq->rb_node);
2669	RB_CLEAR_NODE(&cfqq->p_node);
2670	INIT_LIST_HEAD(&cfqq->fifo);
2671
2672	atomic_set(&cfqq->ref, 0);
2673	cfqq->cfqd = cfqd;
2674
2675	cfq_mark_cfqq_prio_changed(cfqq);
2676
2677	if (is_sync) {
2678		if (!cfq_class_idle(cfqq))
2679			cfq_mark_cfqq_idle_window(cfqq);
2680		cfq_mark_cfqq_sync(cfqq);
2681	}
2682	cfqq->pid = pid;
2683}
2684
2685#ifdef CONFIG_CFQ_GROUP_IOSCHED
2686static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2687{
2688	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2689	struct cfq_data *cfqd = cic->key;
2690	unsigned long flags;
2691	struct request_queue *q;
2692
2693	if (unlikely(!cfqd))
2694		return;
2695
2696	q = cfqd->queue;
2697
2698	spin_lock_irqsave(q->queue_lock, flags);
2699
2700	if (sync_cfqq) {
2701		/*
2702		 * Drop reference to sync queue. A new sync queue will be
2703		 * assigned in new group upon arrival of a fresh request.
2704		 */
2705		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2706		cic_set_cfqq(cic, NULL, 1);
2707		cfq_put_queue(sync_cfqq);
2708	}
2709
2710	spin_unlock_irqrestore(q->queue_lock, flags);
2711}
2712
2713static void cfq_ioc_set_cgroup(struct io_context *ioc)
2714{
2715	call_for_each_cic(ioc, changed_cgroup);
2716	ioc->cgroup_changed = 0;
2717}
2718#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2719
2720static struct cfq_queue *
2721cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2722		     struct io_context *ioc, gfp_t gfp_mask)
2723{
2724	struct cfq_queue *cfqq, *new_cfqq = NULL;
2725	struct cfq_io_context *cic;
2726	struct cfq_group *cfqg;
2727
2728retry:
2729	cfqg = cfq_get_cfqg(cfqd, 1);
2730	cic = cfq_cic_lookup(cfqd, ioc);
2731	/* cic always exists here */
2732	cfqq = cic_to_cfqq(cic, is_sync);
2733
2734	/*
2735	 * Always try a new alloc if we fell back to the OOM cfqq
2736	 * originally, since it should just be a temporary situation.
2737	 */
2738	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2739		cfqq = NULL;
2740		if (new_cfqq) {
2741			cfqq = new_cfqq;
2742			new_cfqq = NULL;
2743		} else if (gfp_mask & __GFP_WAIT) {
2744			spin_unlock_irq(cfqd->queue->queue_lock);
2745			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2746					gfp_mask | __GFP_ZERO,
2747					cfqd->queue->node);
2748			spin_lock_irq(cfqd->queue->queue_lock);
2749			if (new_cfqq)
2750				goto retry;
2751		} else {
2752			cfqq = kmem_cache_alloc_node(cfq_pool,
2753					gfp_mask | __GFP_ZERO,
2754					cfqd->queue->node);
2755		}
2756
2757		if (cfqq) {
2758			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2759			cfq_init_prio_data(cfqq, ioc);
2760			cfq_link_cfqq_cfqg(cfqq, cfqg);
2761			cfq_log_cfqq(cfqd, cfqq, "alloced");
2762		} else
2763			cfqq = &cfqd->oom_cfqq;
2764	}
2765
2766	if (new_cfqq)
2767		kmem_cache_free(cfq_pool, new_cfqq);
2768
2769	return cfqq;
2770}
2771
2772static struct cfq_queue **
2773cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2774{
2775	switch (ioprio_class) {
2776	case IOPRIO_CLASS_RT:
2777		return &cfqd->async_cfqq[0][ioprio];
2778	case IOPRIO_CLASS_BE:
2779		return &cfqd->async_cfqq[1][ioprio];
2780	case IOPRIO_CLASS_IDLE:
2781		return &cfqd->async_idle_cfqq;
2782	default:
2783		BUG();
2784	}
2785}
2786
2787static struct cfq_queue *
2788cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2789	      gfp_t gfp_mask)
2790{
2791	const int ioprio = task_ioprio(ioc);
2792	const int ioprio_class = task_ioprio_class(ioc);
2793	struct cfq_queue **async_cfqq = NULL;
2794	struct cfq_queue *cfqq = NULL;
2795
2796	if (!is_sync) {
2797		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2798		cfqq = *async_cfqq;
2799	}
2800
2801	if (!cfqq)
2802		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2803
2804	/*
2805	 * pin the queue now that it's allocated, scheduler exit will prune it
2806	 */
2807	if (!is_sync && !(*async_cfqq)) {
2808		atomic_inc(&cfqq->ref);
2809		*async_cfqq = cfqq;
2810	}
2811
2812	atomic_inc(&cfqq->ref);
2813	return cfqq;
2814}
2815
2816/*
2817 * We drop cfq io contexts lazily, so we may find a dead one.
2818 */
2819static void
2820cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2821		  struct cfq_io_context *cic)
2822{
2823	unsigned long flags;
2824
2825	WARN_ON(!list_empty(&cic->queue_list));
2826
2827	spin_lock_irqsave(&ioc->lock, flags);
2828
2829	BUG_ON(ioc->ioc_data == cic);
2830
2831	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2832	hlist_del_rcu(&cic->cic_list);
2833	spin_unlock_irqrestore(&ioc->lock, flags);
2834
2835	cfq_cic_free(cic);
2836}
2837
2838static struct cfq_io_context *
2839cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2840{
2841	struct cfq_io_context *cic;
2842	unsigned long flags;
2843	void *k;
2844
2845	if (unlikely(!ioc))
2846		return NULL;
2847
2848	rcu_read_lock();
2849
2850	/*
2851	 * we maintain a last-hit cache, to avoid browsing over the tree
2852	 */
2853	cic = rcu_dereference(ioc->ioc_data);
2854	if (cic && cic->key == cfqd) {
2855		rcu_read_unlock();
2856		return cic;
2857	}
2858
2859	do {
2860		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2861		rcu_read_unlock();
2862		if (!cic)
2863			break;
2864		/* ->key must be copied to avoid race with cfq_exit_queue() */
2865		k = cic->key;
2866		if (unlikely(!k)) {
2867			cfq_drop_dead_cic(cfqd, ioc, cic);
2868			rcu_read_lock();
2869			continue;
2870		}
2871
2872		spin_lock_irqsave(&ioc->lock, flags);
2873		rcu_assign_pointer(ioc->ioc_data, cic);
2874		spin_unlock_irqrestore(&ioc->lock, flags);
2875		break;
2876	} while (1);
2877
2878	return cic;
2879}
2880
2881/*
2882 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2883 * the process specific cfq io context when entered from the block layer.
2884 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2885 */
2886static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2887			struct cfq_io_context *cic, gfp_t gfp_mask)
2888{
2889	unsigned long flags;
2890	int ret;
2891
2892	ret = radix_tree_preload(gfp_mask);
2893	if (!ret) {
2894		cic->ioc = ioc;
2895		cic->key = cfqd;
2896
2897		spin_lock_irqsave(&ioc->lock, flags);
2898		ret = radix_tree_insert(&ioc->radix_root,
2899						(unsigned long) cfqd, cic);
2900		if (!ret)
2901			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2902		spin_unlock_irqrestore(&ioc->lock, flags);
2903
2904		radix_tree_preload_end();
2905
2906		if (!ret) {
2907			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2908			list_add(&cic->queue_list, &cfqd->cic_list);
2909			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2910		}
2911	}
2912
2913	if (ret)
2914		printk(KERN_ERR "cfq: cic link failed!\n");
2915
2916	return ret;
2917}
2918
2919/*
2920 * Setup general io context and cfq io context. There can be several cfq
2921 * io contexts per general io context, if this process is doing io to more
2922 * than one device managed by cfq.
2923 */
2924static struct cfq_io_context *
2925cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2926{
2927	struct io_context *ioc = NULL;
2928	struct cfq_io_context *cic;
2929
2930	might_sleep_if(gfp_mask & __GFP_WAIT);
2931
2932	ioc = get_io_context(gfp_mask, cfqd->queue->node);
2933	if (!ioc)
2934		return NULL;
2935
2936	cic = cfq_cic_lookup(cfqd, ioc);
2937	if (cic)
2938		goto out;
2939
2940	cic = cfq_alloc_io_context(cfqd, gfp_mask);
2941	if (cic == NULL)
2942		goto err;
2943
2944	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2945		goto err_free;
2946
2947out:
2948	smp_read_barrier_depends();
2949	if (unlikely(ioc->ioprio_changed))
2950		cfq_ioc_set_ioprio(ioc);
2951
2952#ifdef CONFIG_CFQ_GROUP_IOSCHED
2953	if (unlikely(ioc->cgroup_changed))
2954		cfq_ioc_set_cgroup(ioc);
2955#endif
2956	return cic;
2957err_free:
2958	cfq_cic_free(cic);
2959err:
2960	put_io_context(ioc);
2961	return NULL;
2962}
2963
2964static void
2965cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2966{
2967	unsigned long elapsed = jiffies - cic->last_end_request;
2968	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2969
2970	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2971	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2972	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2973}
2974
2975static void
2976cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2977		       struct request *rq)
2978{
2979	sector_t sdist;
2980	u64 total;
2981
2982	if (!cfqq->last_request_pos)
2983		sdist = 0;
2984	else if (cfqq->last_request_pos < blk_rq_pos(rq))
2985		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2986	else
2987		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2988
2989	/*
2990	 * Don't allow the seek distance to get too large from the
2991	 * odd fragment, pagein, etc
2992	 */
2993	if (cfqq->seek_samples <= 60) /* second&third seek */
2994		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2995	else
2996		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2997
2998	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2999	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3000	total = cfqq->seek_total + (cfqq->seek_samples/2);
3001	do_div(total, cfqq->seek_samples);
3002	cfqq->seek_mean = (sector_t)total;
3003
3004	/*
3005	 * If this cfqq is shared between multiple processes, check to
3006	 * make sure that those processes are still issuing I/Os within
3007	 * the mean seek distance.  If not, it may be time to break the
3008	 * queues apart again.
3009	 */
3010	if (cfq_cfqq_coop(cfqq)) {
3011		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3012			cfqq->seeky_start = jiffies;
3013		else if (!CFQQ_SEEKY(cfqq))
3014			cfqq->seeky_start = 0;
3015	}
3016}
3017
3018/*
3019 * Disable idle window if the process thinks too long or seeks so much that
3020 * it doesn't matter
3021 */
3022static void
3023cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3024		       struct cfq_io_context *cic)
3025{
3026	int old_idle, enable_idle;
3027
3028	/*
3029	 * Don't idle for async or idle io prio class
3030	 */
3031	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3032		return;
3033
3034	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3035
3036	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3037		cfq_mark_cfqq_deep(cfqq);
3038
3039	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3040	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3041	     && CFQQ_SEEKY(cfqq)))
3042		enable_idle = 0;
3043	else if (sample_valid(cic->ttime_samples)) {
3044		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3045			enable_idle = 0;
3046		else
3047			enable_idle = 1;
3048	}
3049
3050	if (old_idle != enable_idle) {
3051		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3052		if (enable_idle)
3053			cfq_mark_cfqq_idle_window(cfqq);
3054		else
3055			cfq_clear_cfqq_idle_window(cfqq);
3056	}
3057}
3058
3059/*
3060 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3061 * no or if we aren't sure, a 1 will cause a preempt.
3062 */
3063static bool
3064cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3065		   struct request *rq)
3066{
3067	struct cfq_queue *cfqq;
3068
3069	cfqq = cfqd->active_queue;
3070	if (!cfqq)
3071		return false;
3072
3073	if (cfq_class_idle(new_cfqq))
3074		return false;
3075
3076	if (cfq_class_idle(cfqq))
3077		return true;
3078
3079	/*
3080	 * if the new request is sync, but the currently running queue is
3081	 * not, let the sync request have priority.
3082	 */
3083	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3084		return true;
3085
3086	if (new_cfqq->cfqg != cfqq->cfqg)
3087		return false;
3088
3089	if (cfq_slice_used(cfqq))
3090		return true;
3091
3092	/* Allow preemption only if we are idling on sync-noidle tree */
3093	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3094	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3095	    new_cfqq->service_tree->count == 2 &&
3096	    RB_EMPTY_ROOT(&cfqq->sort_list))
3097		return true;
3098
3099	/*
3100	 * So both queues are sync. Let the new request get disk time if
3101	 * it's a metadata request and the current queue is doing regular IO.
3102	 */
3103	if (rq_is_meta(rq) && !cfqq->meta_pending)
3104		return true;
3105
3106	/*
3107	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3108	 */
3109	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3110		return true;
3111
3112	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3113		return false;
3114
3115	/*
3116	 * if this request is as-good as one we would expect from the
3117	 * current cfqq, let it preempt
3118	 */
3119	if (cfq_rq_close(cfqd, cfqq, rq))
3120		return true;
3121
3122	return false;
3123}
3124
3125/*
3126 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3127 * let it have half of its nominal slice.
3128 */
3129static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3130{
3131	cfq_log_cfqq(cfqd, cfqq, "preempt");
3132	cfq_slice_expired(cfqd, 1);
3133
3134	/*
3135	 * Put the new queue at the front of the of the current list,
3136	 * so we know that it will be selected next.
3137	 */
3138	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3139
3140	cfq_service_tree_add(cfqd, cfqq, 1);
3141
3142	cfqq->slice_end = 0;
3143	cfq_mark_cfqq_slice_new(cfqq);
3144}
3145
3146/*
3147 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3148 * something we should do about it
3149 */
3150static void
3151cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3152		struct request *rq)
3153{
3154	struct cfq_io_context *cic = RQ_CIC(rq);
3155
3156	cfqd->rq_queued++;
3157	if (rq_is_meta(rq))
3158		cfqq->meta_pending++;
3159
3160	cfq_update_io_thinktime(cfqd, cic);
3161	cfq_update_io_seektime(cfqd, cfqq, rq);
3162	cfq_update_idle_window(cfqd, cfqq, cic);
3163
3164	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3165
3166	if (cfqq == cfqd->active_queue) {
3167		if (cfq_cfqq_wait_busy(cfqq)) {
3168			cfq_clear_cfqq_wait_busy(cfqq);
3169			cfq_mark_cfqq_wait_busy_done(cfqq);
3170		}
3171		/*
3172		 * Remember that we saw a request from this process, but
3173		 * don't start queuing just yet. Otherwise we risk seeing lots
3174		 * of tiny requests, because we disrupt the normal plugging
3175		 * and merging. If the request is already larger than a single
3176		 * page, let it rip immediately. For that case we assume that
3177		 * merging is already done. Ditto for a busy system that
3178		 * has other work pending, don't risk delaying until the
3179		 * idle timer unplug to continue working.
3180		 */
3181		if (cfq_cfqq_wait_request(cfqq)) {
3182			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3183			    cfqd->busy_queues > 1) {
3184				del_timer(&cfqd->idle_slice_timer);
3185				__blk_run_queue(cfqd->queue);
3186			} else
3187				cfq_mark_cfqq_must_dispatch(cfqq);
3188		}
3189	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3190		/*
3191		 * not the active queue - expire current slice if it is
3192		 * idle and has expired it's mean thinktime or this new queue
3193		 * has some old slice time left and is of higher priority or
3194		 * this new queue is RT and the current one is BE
3195		 */
3196		cfq_preempt_queue(cfqd, cfqq);
3197		__blk_run_queue(cfqd->queue);
3198	}
3199}
3200
3201static void cfq_insert_request(struct request_queue *q, struct request *rq)
3202{
3203	struct cfq_data *cfqd = q->elevator->elevator_data;
3204	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3205
3206	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3207	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3208
3209	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3210	list_add_tail(&rq->queuelist, &cfqq->fifo);
3211	cfq_add_rq_rb(rq);
3212
3213	cfq_rq_enqueued(cfqd, cfqq, rq);
3214}
3215
3216/*
3217 * Update hw_tag based on peak queue depth over 50 samples under
3218 * sufficient load.
3219 */
3220static void cfq_update_hw_tag(struct cfq_data *cfqd)
3221{
3222	struct cfq_queue *cfqq = cfqd->active_queue;
3223
3224	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3225		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3226
3227	if (cfqd->hw_tag == 1)
3228		return;
3229
3230	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3231	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3232		return;
3233
3234	/*
3235	 * If active queue hasn't enough requests and can idle, cfq might not
3236	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3237	 * case
3238	 */
3239	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3240	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3241	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3242		return;
3243
3244	if (cfqd->hw_tag_samples++ < 50)
3245		return;
3246
3247	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3248		cfqd->hw_tag = 1;
3249	else
3250		cfqd->hw_tag = 0;
3251}
3252
3253static void cfq_completed_request(struct request_queue *q, struct request *rq)
3254{
3255	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3256	struct cfq_data *cfqd = cfqq->cfqd;
3257	const int sync = rq_is_sync(rq);
3258	unsigned long now;
3259
3260	now = jiffies;
3261	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3262
3263	cfq_update_hw_tag(cfqd);
3264
3265	WARN_ON(!cfqd->rq_in_driver[sync]);
3266	WARN_ON(!cfqq->dispatched);
3267	cfqd->rq_in_driver[sync]--;
3268	cfqq->dispatched--;
3269
3270	if (cfq_cfqq_sync(cfqq))
3271		cfqd->sync_flight--;
3272
3273	if (sync) {
3274		RQ_CIC(rq)->last_end_request = now;
3275		cfqd->last_end_sync_rq = now;
3276	}
3277
3278	/*
3279	 * If this is the active queue, check if it needs to be expired,
3280	 * or if we want to idle in case it has no pending requests.
3281	 */
3282	if (cfqd->active_queue == cfqq) {
3283		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3284
3285		if (cfq_cfqq_slice_new(cfqq)) {
3286			cfq_set_prio_slice(cfqd, cfqq);
3287			cfq_clear_cfqq_slice_new(cfqq);
3288		}
3289
3290		/*
3291		 * If this queue consumed its slice and this is last queue
3292		 * in the group, wait for next request before we expire
3293		 * the queue
3294		 */
3295		if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3296			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3297			cfq_mark_cfqq_wait_busy(cfqq);
3298		}
3299
3300		/*
3301		 * Idling is not enabled on:
3302		 * - expired queues
3303		 * - idle-priority queues
3304		 * - async queues
3305		 * - queues with still some requests queued
3306		 * - when there is a close cooperator
3307		 */
3308		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3309			cfq_slice_expired(cfqd, 1);
3310		else if (sync && cfqq_empty &&
3311			 !cfq_close_cooperator(cfqd, cfqq)) {
3312			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3313			/*
3314			 * Idling is enabled for SYNC_WORKLOAD.
3315			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3316			 * only if we processed at least one !rq_noidle request
3317			 */
3318			if (cfqd->serving_type == SYNC_WORKLOAD
3319			    || cfqd->noidle_tree_requires_idle
3320			    || cfqq->cfqg->nr_cfqq == 1)
3321				cfq_arm_slice_timer(cfqd);
3322		}
3323	}
3324
3325	if (!rq_in_driver(cfqd))
3326		cfq_schedule_dispatch(cfqd);
3327}
3328
3329/*
3330 * we temporarily boost lower priority queues if they are holding fs exclusive
3331 * resources. they are boosted to normal prio (CLASS_BE/4)
3332 */
3333static void cfq_prio_boost(struct cfq_queue *cfqq)
3334{
3335	if (has_fs_excl()) {
3336		/*
3337		 * boost idle prio on transactions that would lock out other
3338		 * users of the filesystem
3339		 */
3340		if (cfq_class_idle(cfqq))
3341			cfqq->ioprio_class = IOPRIO_CLASS_BE;
3342		if (cfqq->ioprio > IOPRIO_NORM)
3343			cfqq->ioprio = IOPRIO_NORM;
3344	} else {
3345		/*
3346		 * unboost the queue (if needed)
3347		 */
3348		cfqq->ioprio_class = cfqq->org_ioprio_class;
3349		cfqq->ioprio = cfqq->org_ioprio;
3350	}
3351}
3352
3353static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3354{
3355	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3356		cfq_mark_cfqq_must_alloc_slice(cfqq);
3357		return ELV_MQUEUE_MUST;
3358	}
3359
3360	return ELV_MQUEUE_MAY;
3361}
3362
3363static int cfq_may_queue(struct request_queue *q, int rw)
3364{
3365	struct cfq_data *cfqd = q->elevator->elevator_data;
3366	struct task_struct *tsk = current;
3367	struct cfq_io_context *cic;
3368	struct cfq_queue *cfqq;
3369
3370	/*
3371	 * don't force setup of a queue from here, as a call to may_queue
3372	 * does not necessarily imply that a request actually will be queued.
3373	 * so just lookup a possibly existing queue, or return 'may queue'
3374	 * if that fails
3375	 */
3376	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3377	if (!cic)
3378		return ELV_MQUEUE_MAY;
3379
3380	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3381	if (cfqq) {
3382		cfq_init_prio_data(cfqq, cic->ioc);
3383		cfq_prio_boost(cfqq);
3384
3385		return __cfq_may_queue(cfqq);
3386	}
3387
3388	return ELV_MQUEUE_MAY;
3389}
3390
3391/*
3392 * queue lock held here
3393 */
3394static void cfq_put_request(struct request *rq)
3395{
3396	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3397
3398	if (cfqq) {
3399		const int rw = rq_data_dir(rq);
3400
3401		BUG_ON(!cfqq->allocated[rw]);
3402		cfqq->allocated[rw]--;
3403
3404		put_io_context(RQ_CIC(rq)->ioc);
3405
3406		rq->elevator_private = NULL;
3407		rq->elevator_private2 = NULL;
3408
3409		cfq_put_queue(cfqq);
3410	}
3411}
3412
3413static struct cfq_queue *
3414cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3415		struct cfq_queue *cfqq)
3416{
3417	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3418	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3419	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3420	cfq_put_queue(cfqq);
3421	return cic_to_cfqq(cic, 1);
3422}
3423
3424static int should_split_cfqq(struct cfq_queue *cfqq)
3425{
3426	if (cfqq->seeky_start &&
3427	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3428		return 1;
3429	return 0;
3430}
3431
3432/*
3433 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3434 * was the last process referring to said cfqq.
3435 */
3436static struct cfq_queue *
3437split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3438{
3439	if (cfqq_process_refs(cfqq) == 1) {
3440		cfqq->seeky_start = 0;
3441		cfqq->pid = current->pid;
3442		cfq_clear_cfqq_coop(cfqq);
3443		return cfqq;
3444	}
3445
3446	cic_set_cfqq(cic, NULL, 1);
3447	cfq_put_queue(cfqq);
3448	return NULL;
3449}
3450/*
3451 * Allocate cfq data structures associated with this request.
3452 */
3453static int
3454cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3455{
3456	struct cfq_data *cfqd = q->elevator->elevator_data;
3457	struct cfq_io_context *cic;
3458	const int rw = rq_data_dir(rq);
3459	const bool is_sync = rq_is_sync(rq);
3460	struct cfq_queue *cfqq;
3461	unsigned long flags;
3462
3463	might_sleep_if(gfp_mask & __GFP_WAIT);
3464
3465	cic = cfq_get_io_context(cfqd, gfp_mask);
3466
3467	spin_lock_irqsave(q->queue_lock, flags);
3468
3469	if (!cic)
3470		goto queue_fail;
3471
3472new_queue:
3473	cfqq = cic_to_cfqq(cic, is_sync);
3474	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3475		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3476		cic_set_cfqq(cic, cfqq, is_sync);
3477	} else {
3478		/*
3479		 * If the queue was seeky for too long, break it apart.
3480		 */
3481		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3482			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3483			cfqq = split_cfqq(cic, cfqq);
3484			if (!cfqq)
3485				goto new_queue;
3486		}
3487
3488		/*
3489		 * Check to see if this queue is scheduled to merge with
3490		 * another, closely cooperating queue.  The merging of
3491		 * queues happens here as it must be done in process context.
3492		 * The reference on new_cfqq was taken in merge_cfqqs.
3493		 */
3494		if (cfqq->new_cfqq)
3495			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3496	}
3497
3498	cfqq->allocated[rw]++;
3499	atomic_inc(&cfqq->ref);
3500
3501	spin_unlock_irqrestore(q->queue_lock, flags);
3502
3503	rq->elevator_private = cic;
3504	rq->elevator_private2 = cfqq;
3505	return 0;
3506
3507queue_fail:
3508	if (cic)
3509		put_io_context(cic->ioc);
3510
3511	cfq_schedule_dispatch(cfqd);
3512	spin_unlock_irqrestore(q->queue_lock, flags);
3513	cfq_log(cfqd, "set_request fail");
3514	return 1;
3515}
3516
3517static void cfq_kick_queue(struct work_struct *work)
3518{
3519	struct cfq_data *cfqd =
3520		container_of(work, struct cfq_data, unplug_work);
3521	struct request_queue *q = cfqd->queue;
3522
3523	spin_lock_irq(q->queue_lock);
3524	__blk_run_queue(cfqd->queue);
3525	spin_unlock_irq(q->queue_lock);
3526}
3527
3528/*
3529 * Timer running if the active_queue is currently idling inside its time slice
3530 */
3531static void cfq_idle_slice_timer(unsigned long data)
3532{
3533	struct cfq_data *cfqd = (struct cfq_data *) data;
3534	struct cfq_queue *cfqq;
3535	unsigned long flags;
3536	int timed_out = 1;
3537
3538	cfq_log(cfqd, "idle timer fired");
3539
3540	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3541
3542	cfqq = cfqd->active_queue;
3543	if (cfqq) {
3544		timed_out = 0;
3545
3546		/*
3547		 * We saw a request before the queue expired, let it through
3548		 */
3549		if (cfq_cfqq_must_dispatch(cfqq))
3550			goto out_kick;
3551
3552		/*
3553		 * expired
3554		 */
3555		if (cfq_slice_used(cfqq))
3556			goto expire;
3557
3558		/*
3559		 * only expire and reinvoke request handler, if there are
3560		 * other queues with pending requests
3561		 */
3562		if (!cfqd->busy_queues)
3563			goto out_cont;
3564
3565		/*
3566		 * not expired and it has a request pending, let it dispatch
3567		 */
3568		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3569			goto out_kick;
3570
3571		/*
3572		 * Queue depth flag is reset only when the idle didn't succeed
3573		 */
3574		cfq_clear_cfqq_deep(cfqq);
3575	}
3576expire:
3577	cfq_slice_expired(cfqd, timed_out);
3578out_kick:
3579	cfq_schedule_dispatch(cfqd);
3580out_cont:
3581	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3582}
3583
3584static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3585{
3586	del_timer_sync(&cfqd->idle_slice_timer);
3587	cancel_work_sync(&cfqd->unplug_work);
3588}
3589
3590static void cfq_put_async_queues(struct cfq_data *cfqd)
3591{
3592	int i;
3593
3594	for (i = 0; i < IOPRIO_BE_NR; i++) {
3595		if (cfqd->async_cfqq[0][i])
3596			cfq_put_queue(cfqd->async_cfqq[0][i]);
3597		if (cfqd->async_cfqq[1][i])
3598			cfq_put_queue(cfqd->async_cfqq[1][i]);
3599	}
3600
3601	if (cfqd->async_idle_cfqq)
3602		cfq_put_queue(cfqd->async_idle_cfqq);
3603}
3604
3605static void cfq_exit_queue(struct elevator_queue *e)
3606{
3607	struct cfq_data *cfqd = e->elevator_data;
3608	struct request_queue *q = cfqd->queue;
3609
3610	cfq_shutdown_timer_wq(cfqd);
3611
3612	spin_lock_irq(q->queue_lock);
3613
3614	if (cfqd->active_queue)
3615		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3616
3617	while (!list_empty(&cfqd->cic_list)) {
3618		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3619							struct cfq_io_context,
3620							queue_list);
3621
3622		__cfq_exit_single_io_context(cfqd, cic);
3623	}
3624
3625	cfq_put_async_queues(cfqd);
3626	cfq_release_cfq_groups(cfqd);
3627	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3628
3629	spin_unlock_irq(q->queue_lock);
3630
3631	cfq_shutdown_timer_wq(cfqd);
3632
3633	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3634	synchronize_rcu();
3635	kfree(cfqd);
3636}
3637
3638static void *cfq_init_queue(struct request_queue *q)
3639{
3640	struct cfq_data *cfqd;
3641	int i, j;
3642	struct cfq_group *cfqg;
3643	struct cfq_rb_root *st;
3644
3645	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3646	if (!cfqd)
3647		return NULL;
3648
3649	/* Init root service tree */
3650	cfqd->grp_service_tree = CFQ_RB_ROOT;
3651
3652	/* Init root group */
3653	cfqg = &cfqd->root_group;
3654	for_each_cfqg_st(cfqg, i, j, st)
3655		*st = CFQ_RB_ROOT;
3656	RB_CLEAR_NODE(&cfqg->rb_node);
3657
3658	/* Give preference to root group over other groups */
3659	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3660
3661#ifdef CONFIG_CFQ_GROUP_IOSCHED
3662	/*
3663	 * Take a reference to root group which we never drop. This is just
3664	 * to make sure that cfq_put_cfqg() does not try to kfree root group
3665	 */
3666	atomic_set(&cfqg->ref, 1);
3667	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3668					0);
3669#endif
3670	/*
3671	 * Not strictly needed (since RB_ROOT just clears the node and we
3672	 * zeroed cfqd on alloc), but better be safe in case someone decides
3673	 * to add magic to the rb code
3674	 */
3675	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3676		cfqd->prio_trees[i] = RB_ROOT;
3677
3678	/*
3679	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3680	 * Grab a permanent reference to it, so that the normal code flow
3681	 * will not attempt to free it.
3682	 */
3683	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3684	atomic_inc(&cfqd->oom_cfqq.ref);
3685	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3686
3687	INIT_LIST_HEAD(&cfqd->cic_list);
3688
3689	cfqd->queue = q;
3690
3691	init_timer(&cfqd->idle_slice_timer);
3692	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3693	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3694
3695	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3696
3697	cfqd->cfq_quantum = cfq_quantum;
3698	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3699	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3700	cfqd->cfq_back_max = cfq_back_max;
3701	cfqd->cfq_back_penalty = cfq_back_penalty;
3702	cfqd->cfq_slice[0] = cfq_slice_async;
3703	cfqd->cfq_slice[1] = cfq_slice_sync;
3704	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3705	cfqd->cfq_slice_idle = cfq_slice_idle;
3706	cfqd->cfq_latency = 1;
3707	cfqd->cfq_group_isolation = 0;
3708	cfqd->hw_tag = -1;
3709	cfqd->last_end_sync_rq = jiffies;
3710	return cfqd;
3711}
3712
3713static void cfq_slab_kill(void)
3714{
3715	/*
3716	 * Caller already ensured that pending RCU callbacks are completed,
3717	 * so we should have no busy allocations at this point.
3718	 */
3719	if (cfq_pool)
3720		kmem_cache_destroy(cfq_pool);
3721	if (cfq_ioc_pool)
3722		kmem_cache_destroy(cfq_ioc_pool);
3723}
3724
3725static int __init cfq_slab_setup(void)
3726{
3727	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3728	if (!cfq_pool)
3729		goto fail;
3730
3731	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3732	if (!cfq_ioc_pool)
3733		goto fail;
3734
3735	return 0;
3736fail:
3737	cfq_slab_kill();
3738	return -ENOMEM;
3739}
3740
3741/*
3742 * sysfs parts below -->
3743 */
3744static ssize_t
3745cfq_var_show(unsigned int var, char *page)
3746{
3747	return sprintf(page, "%d\n", var);
3748}
3749
3750static ssize_t
3751cfq_var_store(unsigned int *var, const char *page, size_t count)
3752{
3753	char *p = (char *) page;
3754
3755	*var = simple_strtoul(p, &p, 10);
3756	return count;
3757}
3758
3759#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3760static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3761{									\
3762	struct cfq_data *cfqd = e->elevator_data;			\
3763	unsigned int __data = __VAR;					\
3764	if (__CONV)							\
3765		__data = jiffies_to_msecs(__data);			\
3766	return cfq_var_show(__data, (page));				\
3767}
3768SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3769SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3770SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3771SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3772SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3773SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3774SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3775SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3776SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3777SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3778SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3779#undef SHOW_FUNCTION
3780
3781#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3782static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3783{									\
3784	struct cfq_data *cfqd = e->elevator_data;			\
3785	unsigned int __data;						\
3786	int ret = cfq_var_store(&__data, (page), count);		\
3787	if (__data < (MIN))						\
3788		__data = (MIN);						\
3789	else if (__data > (MAX))					\
3790		__data = (MAX);						\
3791	if (__CONV)							\
3792		*(__PTR) = msecs_to_jiffies(__data);			\
3793	else								\
3794		*(__PTR) = __data;					\
3795	return ret;							\
3796}
3797STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3798STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3799		UINT_MAX, 1);
3800STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3801		UINT_MAX, 1);
3802STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3803STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3804		UINT_MAX, 0);
3805STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3806STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3807STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3808STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3809		UINT_MAX, 0);
3810STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3811STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3812#undef STORE_FUNCTION
3813
3814#define CFQ_ATTR(name) \
3815	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3816
3817static struct elv_fs_entry cfq_attrs[] = {
3818	CFQ_ATTR(quantum),
3819	CFQ_ATTR(fifo_expire_sync),
3820	CFQ_ATTR(fifo_expire_async),
3821	CFQ_ATTR(back_seek_max),
3822	CFQ_ATTR(back_seek_penalty),
3823	CFQ_ATTR(slice_sync),
3824	CFQ_ATTR(slice_async),
3825	CFQ_ATTR(slice_async_rq),
3826	CFQ_ATTR(slice_idle),
3827	CFQ_ATTR(low_latency),
3828	CFQ_ATTR(group_isolation),
3829	__ATTR_NULL
3830};
3831
3832static struct elevator_type iosched_cfq = {
3833	.ops = {
3834		.elevator_merge_fn = 		cfq_merge,
3835		.elevator_merged_fn =		cfq_merged_request,
3836		.elevator_merge_req_fn =	cfq_merged_requests,
3837		.elevator_allow_merge_fn =	cfq_allow_merge,
3838		.elevator_dispatch_fn =		cfq_dispatch_requests,
3839		.elevator_add_req_fn =		cfq_insert_request,
3840		.elevator_activate_req_fn =	cfq_activate_request,
3841		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3842		.elevator_queue_empty_fn =	cfq_queue_empty,
3843		.elevator_completed_req_fn =	cfq_completed_request,
3844		.elevator_former_req_fn =	elv_rb_former_request,
3845		.elevator_latter_req_fn =	elv_rb_latter_request,
3846		.elevator_set_req_fn =		cfq_set_request,
3847		.elevator_put_req_fn =		cfq_put_request,
3848		.elevator_may_queue_fn =	cfq_may_queue,
3849		.elevator_init_fn =		cfq_init_queue,
3850		.elevator_exit_fn =		cfq_exit_queue,
3851		.trim =				cfq_free_io_context,
3852	},
3853	.elevator_attrs =	cfq_attrs,
3854	.elevator_name =	"cfq",
3855	.elevator_owner =	THIS_MODULE,
3856};
3857
3858static int __init cfq_init(void)
3859{
3860	/*
3861	 * could be 0 on HZ < 1000 setups
3862	 */
3863	if (!cfq_slice_async)
3864		cfq_slice_async = 1;
3865	if (!cfq_slice_idle)
3866		cfq_slice_idle = 1;
3867
3868	if (cfq_slab_setup())
3869		return -ENOMEM;
3870
3871	elv_register(&iosched_cfq);
3872
3873	return 0;
3874}
3875
3876static void __exit cfq_exit(void)
3877{
3878	DECLARE_COMPLETION_ONSTACK(all_gone);
3879	elv_unregister(&iosched_cfq);
3880	ioc_gone = &all_gone;
3881	/* ioc_gone's update must be visible before reading ioc_count */
3882	smp_wmb();
3883
3884	/*
3885	 * this also protects us from entering cfq_slab_kill() with
3886	 * pending RCU callbacks
3887	 */
3888	if (elv_ioc_count_read(cfq_ioc_count))
3889		wait_for_completion(&all_gone);
3890	cfq_slab_kill();
3891}
3892
3893module_init(cfq_init);
3894module_exit(cfq_exit);
3895
3896MODULE_AUTHOR("Jens Axboe");
3897MODULE_LICENSE("GPL");
3898MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3899