cfq-iosched.c revision a07405b7802691d29ab3b23bdc76ee6d006aad0b
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "cfq.h"
18
19/*
20 * tunables
21 */
22/* max queue in one round of service */
23static const int cfq_quantum = 8;
24static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
25/* maximum backwards seek, in KiB */
26static const int cfq_back_max = 16 * 1024;
27/* penalty of a backwards seek */
28static const int cfq_back_penalty = 2;
29static const int cfq_slice_sync = HZ / 10;
30static int cfq_slice_async = HZ / 25;
31static const int cfq_slice_async_rq = 2;
32static int cfq_slice_idle = HZ / 125;
33static int cfq_group_idle = HZ / 125;
34static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
35static const int cfq_hist_divisor = 4;
36
37/*
38 * offset from end of service tree
39 */
40#define CFQ_IDLE_DELAY		(HZ / 5)
41
42/*
43 * below this threshold, we consider thinktime immediate
44 */
45#define CFQ_MIN_TT		(2)
46
47#define CFQ_SLICE_SCALE		(5)
48#define CFQ_HW_QUEUE_MIN	(5)
49#define CFQ_SERVICE_SHIFT       12
50
51#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
52#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
53#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
54#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
55
56#define RQ_CIC(rq)		\
57	((struct cfq_io_context *) (rq)->elevator_private[0])
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private[1])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elevator_private[2])
60
61static struct kmem_cache *cfq_pool;
62static struct kmem_cache *cfq_ioc_pool;
63
64static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
65static struct completion *ioc_gone;
66static DEFINE_SPINLOCK(ioc_gone_lock);
67
68static DEFINE_SPINLOCK(cic_index_lock);
69static DEFINE_IDA(cic_index_ida);
70
71#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
72#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
74
75#define sample_valid(samples)	((samples) > 80)
76#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	unsigned total_weight;
89	u64 min_vdisktime;
90};
91#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92			.count = 0, .min_vdisktime = 0, }
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98	/* reference count */
99	int ref;
100	/* various state flags, see below */
101	unsigned int flags;
102	/* parent cfq_data */
103	struct cfq_data *cfqd;
104	/* service_tree member */
105	struct rb_node rb_node;
106	/* service_tree key */
107	unsigned long rb_key;
108	/* prio tree member */
109	struct rb_node p_node;
110	/* prio tree root we belong to, if any */
111	struct rb_root *p_root;
112	/* sorted list of pending requests */
113	struct rb_root sort_list;
114	/* if fifo isn't expired, next request to serve */
115	struct request *next_rq;
116	/* requests queued in sort_list */
117	int queued[2];
118	/* currently allocated requests */
119	int allocated[2];
120	/* fifo list of requests in sort_list */
121	struct list_head fifo;
122
123	/* time when queue got scheduled in to dispatch first request. */
124	unsigned long dispatch_start;
125	unsigned int allocated_slice;
126	unsigned int slice_dispatch;
127	/* time when first request from queue completed and slice started. */
128	unsigned long slice_start;
129	unsigned long slice_end;
130	long slice_resid;
131
132	/* number of requests that are on the dispatch list or inside driver */
133	int dispatched;
134
135	/* io prio of this group */
136	unsigned short ioprio, org_ioprio;
137	unsigned short ioprio_class, org_ioprio_class;
138
139	pid_t pid;
140
141	u32 seek_history;
142	sector_t last_request_pos;
143
144	struct cfq_rb_root *service_tree;
145	struct cfq_queue *new_cfqq;
146	struct cfq_group *cfqg;
147	/* Number of sectors dispatched from queue in single dispatch round */
148	unsigned long nr_sectors;
149};
150
151/*
152 * First index in the service_trees.
153 * IDLE is handled separately, so it has negative index
154 */
155enum wl_prio_t {
156	BE_WORKLOAD = 0,
157	RT_WORKLOAD = 1,
158	IDLE_WORKLOAD = 2,
159	CFQ_PRIO_NR,
160};
161
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166	ASYNC_WORKLOAD = 0,
167	SYNC_NOIDLE_WORKLOAD = 1,
168	SYNC_WORKLOAD = 2
169};
170
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
173	/* group service_tree member */
174	struct rb_node rb_node;
175
176	/* group service_tree key */
177	u64 vdisktime;
178	unsigned int weight;
179	unsigned int new_weight;
180	bool needs_update;
181
182	/* number of cfqq currently on this group */
183	int nr_cfqq;
184
185	/*
186	 * Per group busy queues average. Useful for workload slice calc. We
187	 * create the array for each prio class but at run time it is used
188	 * only for RT and BE class and slot for IDLE class remains unused.
189	 * This is primarily done to avoid confusion and a gcc warning.
190	 */
191	unsigned int busy_queues_avg[CFQ_PRIO_NR];
192	/*
193	 * rr lists of queues with requests. We maintain service trees for
194	 * RT and BE classes. These trees are subdivided in subclasses
195	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
196	 * class there is no subclassification and all the cfq queues go on
197	 * a single tree service_tree_idle.
198	 * Counts are embedded in the cfq_rb_root
199	 */
200	struct cfq_rb_root service_trees[2][3];
201	struct cfq_rb_root service_tree_idle;
202
203	unsigned long saved_workload_slice;
204	enum wl_type_t saved_workload;
205	enum wl_prio_t saved_serving_prio;
206	struct blkio_group blkg;
207#ifdef CONFIG_CFQ_GROUP_IOSCHED
208	struct hlist_node cfqd_node;
209	int ref;
210#endif
211	/* number of requests that are on the dispatch list or inside driver */
212	int dispatched;
213};
214
215/*
216 * Per block device queue structure
217 */
218struct cfq_data {
219	struct request_queue *queue;
220	/* Root service tree for cfq_groups */
221	struct cfq_rb_root grp_service_tree;
222	struct cfq_group root_group;
223
224	/*
225	 * The priority currently being served
226	 */
227	enum wl_prio_t serving_prio;
228	enum wl_type_t serving_type;
229	unsigned long workload_expires;
230	struct cfq_group *serving_group;
231
232	/*
233	 * Each priority tree is sorted by next_request position.  These
234	 * trees are used when determining if two or more queues are
235	 * interleaving requests (see cfq_close_cooperator).
236	 */
237	struct rb_root prio_trees[CFQ_PRIO_LISTS];
238
239	unsigned int busy_queues;
240	unsigned int busy_sync_queues;
241
242	int rq_in_driver;
243	int rq_in_flight[2];
244
245	/*
246	 * queue-depth detection
247	 */
248	int rq_queued;
249	int hw_tag;
250	/*
251	 * hw_tag can be
252	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
253	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
254	 *  0 => no NCQ
255	 */
256	int hw_tag_est_depth;
257	unsigned int hw_tag_samples;
258
259	/*
260	 * idle window management
261	 */
262	struct timer_list idle_slice_timer;
263	struct work_struct unplug_work;
264
265	struct cfq_queue *active_queue;
266	struct cfq_io_context *active_cic;
267
268	/*
269	 * async queue for each priority case
270	 */
271	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
272	struct cfq_queue *async_idle_cfqq;
273
274	sector_t last_position;
275
276	/*
277	 * tunables, see top of file
278	 */
279	unsigned int cfq_quantum;
280	unsigned int cfq_fifo_expire[2];
281	unsigned int cfq_back_penalty;
282	unsigned int cfq_back_max;
283	unsigned int cfq_slice[2];
284	unsigned int cfq_slice_async_rq;
285	unsigned int cfq_slice_idle;
286	unsigned int cfq_group_idle;
287	unsigned int cfq_latency;
288
289	unsigned int cic_index;
290	struct list_head cic_list;
291
292	/*
293	 * Fallback dummy cfqq for extreme OOM conditions
294	 */
295	struct cfq_queue oom_cfqq;
296
297	unsigned long last_delayed_sync;
298
299	/* List of cfq groups being managed on this device*/
300	struct hlist_head cfqg_list;
301
302	/* Number of groups which are on blkcg->blkg_list */
303	unsigned int nr_blkcg_linked_grps;
304};
305
306static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
307
308static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
309					    enum wl_prio_t prio,
310					    enum wl_type_t type)
311{
312	if (!cfqg)
313		return NULL;
314
315	if (prio == IDLE_WORKLOAD)
316		return &cfqg->service_tree_idle;
317
318	return &cfqg->service_trees[prio][type];
319}
320
321enum cfqq_state_flags {
322	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
323	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
324	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
325	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
326	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
327	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
328	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
329	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
330	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
331	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
332	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
333	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
334	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
335};
336
337#define CFQ_CFQQ_FNS(name)						\
338static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
339{									\
340	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
341}									\
342static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
343{									\
344	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
345}									\
346static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
347{									\
348	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
349}
350
351CFQ_CFQQ_FNS(on_rr);
352CFQ_CFQQ_FNS(wait_request);
353CFQ_CFQQ_FNS(must_dispatch);
354CFQ_CFQQ_FNS(must_alloc_slice);
355CFQ_CFQQ_FNS(fifo_expire);
356CFQ_CFQQ_FNS(idle_window);
357CFQ_CFQQ_FNS(prio_changed);
358CFQ_CFQQ_FNS(slice_new);
359CFQ_CFQQ_FNS(sync);
360CFQ_CFQQ_FNS(coop);
361CFQ_CFQQ_FNS(split_coop);
362CFQ_CFQQ_FNS(deep);
363CFQ_CFQQ_FNS(wait_busy);
364#undef CFQ_CFQQ_FNS
365
366#ifdef CONFIG_CFQ_GROUP_IOSCHED
367#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
368	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
369			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
370			blkg_path(&(cfqq)->cfqg->blkg), ##args)
371
372#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
373	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
374				blkg_path(&(cfqg)->blkg), ##args)       \
375
376#else
377#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
378	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
380#endif
381#define cfq_log(cfqd, fmt, args...)	\
382	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
383
384/* Traverses through cfq group service trees */
385#define for_each_cfqg_st(cfqg, i, j, st) \
386	for (i = 0; i <= IDLE_WORKLOAD; i++) \
387		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
388			: &cfqg->service_tree_idle; \
389			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
390			(i == IDLE_WORKLOAD && j == 0); \
391			j++, st = i < IDLE_WORKLOAD ? \
392			&cfqg->service_trees[i][j]: NULL) \
393
394
395static inline bool iops_mode(struct cfq_data *cfqd)
396{
397	/*
398	 * If we are not idling on queues and it is a NCQ drive, parallel
399	 * execution of requests is on and measuring time is not possible
400	 * in most of the cases until and unless we drive shallower queue
401	 * depths and that becomes a performance bottleneck. In such cases
402	 * switch to start providing fairness in terms of number of IOs.
403	 */
404	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
405		return true;
406	else
407		return false;
408}
409
410static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
411{
412	if (cfq_class_idle(cfqq))
413		return IDLE_WORKLOAD;
414	if (cfq_class_rt(cfqq))
415		return RT_WORKLOAD;
416	return BE_WORKLOAD;
417}
418
419
420static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
421{
422	if (!cfq_cfqq_sync(cfqq))
423		return ASYNC_WORKLOAD;
424	if (!cfq_cfqq_idle_window(cfqq))
425		return SYNC_NOIDLE_WORKLOAD;
426	return SYNC_WORKLOAD;
427}
428
429static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
430					struct cfq_data *cfqd,
431					struct cfq_group *cfqg)
432{
433	if (wl == IDLE_WORKLOAD)
434		return cfqg->service_tree_idle.count;
435
436	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
437		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
438		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
439}
440
441static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
442					struct cfq_group *cfqg)
443{
444	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
445		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
446}
447
448static void cfq_dispatch_insert(struct request_queue *, struct request *);
449static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
450				       struct io_context *, gfp_t);
451static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
452						struct io_context *);
453
454static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
455					    bool is_sync)
456{
457	return cic->cfqq[is_sync];
458}
459
460static inline void cic_set_cfqq(struct cfq_io_context *cic,
461				struct cfq_queue *cfqq, bool is_sync)
462{
463	cic->cfqq[is_sync] = cfqq;
464}
465
466#define CIC_DEAD_KEY	1ul
467#define CIC_DEAD_INDEX_SHIFT	1
468
469static inline void *cfqd_dead_key(struct cfq_data *cfqd)
470{
471	return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
472}
473
474static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
475{
476	struct cfq_data *cfqd = cic->key;
477
478	if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
479		return NULL;
480
481	return cfqd;
482}
483
484/*
485 * We regard a request as SYNC, if it's either a read or has the SYNC bit
486 * set (in which case it could also be direct WRITE).
487 */
488static inline bool cfq_bio_sync(struct bio *bio)
489{
490	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
491}
492
493/*
494 * scheduler run of queue, if there are requests pending and no one in the
495 * driver that will restart queueing
496 */
497static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
498{
499	if (cfqd->busy_queues) {
500		cfq_log(cfqd, "schedule dispatch");
501		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
502	}
503}
504
505/*
506 * Scale schedule slice based on io priority. Use the sync time slice only
507 * if a queue is marked sync and has sync io queued. A sync queue with async
508 * io only, should not get full sync slice length.
509 */
510static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
511				 unsigned short prio)
512{
513	const int base_slice = cfqd->cfq_slice[sync];
514
515	WARN_ON(prio >= IOPRIO_BE_NR);
516
517	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
518}
519
520static inline int
521cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
522{
523	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
524}
525
526static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
527{
528	u64 d = delta << CFQ_SERVICE_SHIFT;
529
530	d = d * BLKIO_WEIGHT_DEFAULT;
531	do_div(d, cfqg->weight);
532	return d;
533}
534
535static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
536{
537	s64 delta = (s64)(vdisktime - min_vdisktime);
538	if (delta > 0)
539		min_vdisktime = vdisktime;
540
541	return min_vdisktime;
542}
543
544static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
545{
546	s64 delta = (s64)(vdisktime - min_vdisktime);
547	if (delta < 0)
548		min_vdisktime = vdisktime;
549
550	return min_vdisktime;
551}
552
553static void update_min_vdisktime(struct cfq_rb_root *st)
554{
555	struct cfq_group *cfqg;
556
557	if (st->left) {
558		cfqg = rb_entry_cfqg(st->left);
559		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
560						  cfqg->vdisktime);
561	}
562}
563
564/*
565 * get averaged number of queues of RT/BE priority.
566 * average is updated, with a formula that gives more weight to higher numbers,
567 * to quickly follows sudden increases and decrease slowly
568 */
569
570static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
571					struct cfq_group *cfqg, bool rt)
572{
573	unsigned min_q, max_q;
574	unsigned mult  = cfq_hist_divisor - 1;
575	unsigned round = cfq_hist_divisor / 2;
576	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
577
578	min_q = min(cfqg->busy_queues_avg[rt], busy);
579	max_q = max(cfqg->busy_queues_avg[rt], busy);
580	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
581		cfq_hist_divisor;
582	return cfqg->busy_queues_avg[rt];
583}
584
585static inline unsigned
586cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
587{
588	struct cfq_rb_root *st = &cfqd->grp_service_tree;
589
590	return cfq_target_latency * cfqg->weight / st->total_weight;
591}
592
593static inline unsigned
594cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
595{
596	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
597	if (cfqd->cfq_latency) {
598		/*
599		 * interested queues (we consider only the ones with the same
600		 * priority class in the cfq group)
601		 */
602		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
603						cfq_class_rt(cfqq));
604		unsigned sync_slice = cfqd->cfq_slice[1];
605		unsigned expect_latency = sync_slice * iq;
606		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
607
608		if (expect_latency > group_slice) {
609			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
610			/* scale low_slice according to IO priority
611			 * and sync vs async */
612			unsigned low_slice =
613				min(slice, base_low_slice * slice / sync_slice);
614			/* the adapted slice value is scaled to fit all iqs
615			 * into the target latency */
616			slice = max(slice * group_slice / expect_latency,
617				    low_slice);
618		}
619	}
620	return slice;
621}
622
623static inline void
624cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
625{
626	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
627
628	cfqq->slice_start = jiffies;
629	cfqq->slice_end = jiffies + slice;
630	cfqq->allocated_slice = slice;
631	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
632}
633
634/*
635 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
636 * isn't valid until the first request from the dispatch is activated
637 * and the slice time set.
638 */
639static inline bool cfq_slice_used(struct cfq_queue *cfqq)
640{
641	if (cfq_cfqq_slice_new(cfqq))
642		return false;
643	if (time_before(jiffies, cfqq->slice_end))
644		return false;
645
646	return true;
647}
648
649/*
650 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
651 * We choose the request that is closest to the head right now. Distance
652 * behind the head is penalized and only allowed to a certain extent.
653 */
654static struct request *
655cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
656{
657	sector_t s1, s2, d1 = 0, d2 = 0;
658	unsigned long back_max;
659#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
660#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
661	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
662
663	if (rq1 == NULL || rq1 == rq2)
664		return rq2;
665	if (rq2 == NULL)
666		return rq1;
667
668	if (rq_is_sync(rq1) != rq_is_sync(rq2))
669		return rq_is_sync(rq1) ? rq1 : rq2;
670
671	s1 = blk_rq_pos(rq1);
672	s2 = blk_rq_pos(rq2);
673
674	/*
675	 * by definition, 1KiB is 2 sectors
676	 */
677	back_max = cfqd->cfq_back_max * 2;
678
679	/*
680	 * Strict one way elevator _except_ in the case where we allow
681	 * short backward seeks which are biased as twice the cost of a
682	 * similar forward seek.
683	 */
684	if (s1 >= last)
685		d1 = s1 - last;
686	else if (s1 + back_max >= last)
687		d1 = (last - s1) * cfqd->cfq_back_penalty;
688	else
689		wrap |= CFQ_RQ1_WRAP;
690
691	if (s2 >= last)
692		d2 = s2 - last;
693	else if (s2 + back_max >= last)
694		d2 = (last - s2) * cfqd->cfq_back_penalty;
695	else
696		wrap |= CFQ_RQ2_WRAP;
697
698	/* Found required data */
699
700	/*
701	 * By doing switch() on the bit mask "wrap" we avoid having to
702	 * check two variables for all permutations: --> faster!
703	 */
704	switch (wrap) {
705	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
706		if (d1 < d2)
707			return rq1;
708		else if (d2 < d1)
709			return rq2;
710		else {
711			if (s1 >= s2)
712				return rq1;
713			else
714				return rq2;
715		}
716
717	case CFQ_RQ2_WRAP:
718		return rq1;
719	case CFQ_RQ1_WRAP:
720		return rq2;
721	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
722	default:
723		/*
724		 * Since both rqs are wrapped,
725		 * start with the one that's further behind head
726		 * (--> only *one* back seek required),
727		 * since back seek takes more time than forward.
728		 */
729		if (s1 <= s2)
730			return rq1;
731		else
732			return rq2;
733	}
734}
735
736/*
737 * The below is leftmost cache rbtree addon
738 */
739static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
740{
741	/* Service tree is empty */
742	if (!root->count)
743		return NULL;
744
745	if (!root->left)
746		root->left = rb_first(&root->rb);
747
748	if (root->left)
749		return rb_entry(root->left, struct cfq_queue, rb_node);
750
751	return NULL;
752}
753
754static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
755{
756	if (!root->left)
757		root->left = rb_first(&root->rb);
758
759	if (root->left)
760		return rb_entry_cfqg(root->left);
761
762	return NULL;
763}
764
765static void rb_erase_init(struct rb_node *n, struct rb_root *root)
766{
767	rb_erase(n, root);
768	RB_CLEAR_NODE(n);
769}
770
771static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
772{
773	if (root->left == n)
774		root->left = NULL;
775	rb_erase_init(n, &root->rb);
776	--root->count;
777}
778
779/*
780 * would be nice to take fifo expire time into account as well
781 */
782static struct request *
783cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
784		  struct request *last)
785{
786	struct rb_node *rbnext = rb_next(&last->rb_node);
787	struct rb_node *rbprev = rb_prev(&last->rb_node);
788	struct request *next = NULL, *prev = NULL;
789
790	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
791
792	if (rbprev)
793		prev = rb_entry_rq(rbprev);
794
795	if (rbnext)
796		next = rb_entry_rq(rbnext);
797	else {
798		rbnext = rb_first(&cfqq->sort_list);
799		if (rbnext && rbnext != &last->rb_node)
800			next = rb_entry_rq(rbnext);
801	}
802
803	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
804}
805
806static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
807				      struct cfq_queue *cfqq)
808{
809	/*
810	 * just an approximation, should be ok.
811	 */
812	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
813		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
814}
815
816static inline s64
817cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
818{
819	return cfqg->vdisktime - st->min_vdisktime;
820}
821
822static void
823__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
824{
825	struct rb_node **node = &st->rb.rb_node;
826	struct rb_node *parent = NULL;
827	struct cfq_group *__cfqg;
828	s64 key = cfqg_key(st, cfqg);
829	int left = 1;
830
831	while (*node != NULL) {
832		parent = *node;
833		__cfqg = rb_entry_cfqg(parent);
834
835		if (key < cfqg_key(st, __cfqg))
836			node = &parent->rb_left;
837		else {
838			node = &parent->rb_right;
839			left = 0;
840		}
841	}
842
843	if (left)
844		st->left = &cfqg->rb_node;
845
846	rb_link_node(&cfqg->rb_node, parent, node);
847	rb_insert_color(&cfqg->rb_node, &st->rb);
848}
849
850static void
851cfq_update_group_weight(struct cfq_group *cfqg)
852{
853	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
854	if (cfqg->needs_update) {
855		cfqg->weight = cfqg->new_weight;
856		cfqg->needs_update = false;
857	}
858}
859
860static void
861cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
862{
863	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
864
865	cfq_update_group_weight(cfqg);
866	__cfq_group_service_tree_add(st, cfqg);
867	st->total_weight += cfqg->weight;
868}
869
870static void
871cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
872{
873	struct cfq_rb_root *st = &cfqd->grp_service_tree;
874	struct cfq_group *__cfqg;
875	struct rb_node *n;
876
877	cfqg->nr_cfqq++;
878	if (!RB_EMPTY_NODE(&cfqg->rb_node))
879		return;
880
881	/*
882	 * Currently put the group at the end. Later implement something
883	 * so that groups get lesser vtime based on their weights, so that
884	 * if group does not loose all if it was not continuously backlogged.
885	 */
886	n = rb_last(&st->rb);
887	if (n) {
888		__cfqg = rb_entry_cfqg(n);
889		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
890	} else
891		cfqg->vdisktime = st->min_vdisktime;
892	cfq_group_service_tree_add(st, cfqg);
893}
894
895static void
896cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
897{
898	st->total_weight -= cfqg->weight;
899	if (!RB_EMPTY_NODE(&cfqg->rb_node))
900		cfq_rb_erase(&cfqg->rb_node, st);
901}
902
903static void
904cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
905{
906	struct cfq_rb_root *st = &cfqd->grp_service_tree;
907
908	BUG_ON(cfqg->nr_cfqq < 1);
909	cfqg->nr_cfqq--;
910
911	/* If there are other cfq queues under this group, don't delete it */
912	if (cfqg->nr_cfqq)
913		return;
914
915	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
916	cfq_group_service_tree_del(st, cfqg);
917	cfqg->saved_workload_slice = 0;
918	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
919}
920
921static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
922						unsigned int *unaccounted_time)
923{
924	unsigned int slice_used;
925
926	/*
927	 * Queue got expired before even a single request completed or
928	 * got expired immediately after first request completion.
929	 */
930	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
931		/*
932		 * Also charge the seek time incurred to the group, otherwise
933		 * if there are mutiple queues in the group, each can dispatch
934		 * a single request on seeky media and cause lots of seek time
935		 * and group will never know it.
936		 */
937		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
938					1);
939	} else {
940		slice_used = jiffies - cfqq->slice_start;
941		if (slice_used > cfqq->allocated_slice) {
942			*unaccounted_time = slice_used - cfqq->allocated_slice;
943			slice_used = cfqq->allocated_slice;
944		}
945		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
946			*unaccounted_time += cfqq->slice_start -
947					cfqq->dispatch_start;
948	}
949
950	return slice_used;
951}
952
953static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
954				struct cfq_queue *cfqq)
955{
956	struct cfq_rb_root *st = &cfqd->grp_service_tree;
957	unsigned int used_sl, charge, unaccounted_sl = 0;
958	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
959			- cfqg->service_tree_idle.count;
960
961	BUG_ON(nr_sync < 0);
962	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
963
964	if (iops_mode(cfqd))
965		charge = cfqq->slice_dispatch;
966	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
967		charge = cfqq->allocated_slice;
968
969	/* Can't update vdisktime while group is on service tree */
970	cfq_group_service_tree_del(st, cfqg);
971	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
972	/* If a new weight was requested, update now, off tree */
973	cfq_group_service_tree_add(st, cfqg);
974
975	/* This group is being expired. Save the context */
976	if (time_after(cfqd->workload_expires, jiffies)) {
977		cfqg->saved_workload_slice = cfqd->workload_expires
978						- jiffies;
979		cfqg->saved_workload = cfqd->serving_type;
980		cfqg->saved_serving_prio = cfqd->serving_prio;
981	} else
982		cfqg->saved_workload_slice = 0;
983
984	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
985					st->min_vdisktime);
986	cfq_log_cfqq(cfqq->cfqd, cfqq,
987		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
988		     used_sl, cfqq->slice_dispatch, charge,
989		     iops_mode(cfqd), cfqq->nr_sectors);
990	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
991					  unaccounted_sl);
992	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
993}
994
995#ifdef CONFIG_CFQ_GROUP_IOSCHED
996static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
997{
998	if (blkg)
999		return container_of(blkg, struct cfq_group, blkg);
1000	return NULL;
1001}
1002
1003static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1004					  unsigned int weight)
1005{
1006	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1007	cfqg->new_weight = weight;
1008	cfqg->needs_update = true;
1009}
1010
1011static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1012			struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
1013{
1014	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1015	unsigned int major, minor;
1016
1017	/*
1018	 * Add group onto cgroup list. It might happen that bdi->dev is
1019	 * not initialized yet. Initialize this new group without major
1020	 * and minor info and this info will be filled in once a new thread
1021	 * comes for IO.
1022	 */
1023	if (bdi->dev) {
1024		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1025		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1026					(void *)cfqd, MKDEV(major, minor));
1027	} else
1028		cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1029					(void *)cfqd, 0);
1030
1031	cfqd->nr_blkcg_linked_grps++;
1032	cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1033
1034	/* Add group on cfqd list */
1035	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1036}
1037
1038/*
1039 * Should be called from sleepable context. No request queue lock as per
1040 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1041 * from sleepable context.
1042 */
1043static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1044{
1045	struct cfq_group *cfqg = NULL;
1046	int i, j, ret;
1047	struct cfq_rb_root *st;
1048
1049	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1050	if (!cfqg)
1051		return NULL;
1052
1053	for_each_cfqg_st(cfqg, i, j, st)
1054		*st = CFQ_RB_ROOT;
1055	RB_CLEAR_NODE(&cfqg->rb_node);
1056
1057	/*
1058	 * Take the initial reference that will be released on destroy
1059	 * This can be thought of a joint reference by cgroup and
1060	 * elevator which will be dropped by either elevator exit
1061	 * or cgroup deletion path depending on who is exiting first.
1062	 */
1063	cfqg->ref = 1;
1064
1065	ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1066	if (ret) {
1067		kfree(cfqg);
1068		return NULL;
1069	}
1070
1071	return cfqg;
1072}
1073
1074static struct cfq_group *
1075cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1076{
1077	struct cfq_group *cfqg = NULL;
1078	void *key = cfqd;
1079	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1080	unsigned int major, minor;
1081
1082	/*
1083	 * This is the common case when there are no blkio cgroups.
1084	 * Avoid lookup in this case
1085	 */
1086	if (blkcg == &blkio_root_cgroup)
1087		cfqg = &cfqd->root_group;
1088	else
1089		cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
1090
1091	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1092		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1093		cfqg->blkg.dev = MKDEV(major, minor);
1094	}
1095
1096	return cfqg;
1097}
1098
1099/*
1100 * Search for the cfq group current task belongs to. request_queue lock must
1101 * be held.
1102 */
1103static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1104{
1105	struct blkio_cgroup *blkcg;
1106	struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1107	struct request_queue *q = cfqd->queue;
1108
1109	rcu_read_lock();
1110	blkcg = task_blkio_cgroup(current);
1111	cfqg = cfq_find_cfqg(cfqd, blkcg);
1112	if (cfqg) {
1113		rcu_read_unlock();
1114		return cfqg;
1115	}
1116
1117	/*
1118	 * Need to allocate a group. Allocation of group also needs allocation
1119	 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1120	 * we need to drop rcu lock and queue_lock before we call alloc.
1121	 *
1122	 * Not taking any queue reference here and assuming that queue is
1123	 * around by the time we return. CFQ queue allocation code does
1124	 * the same. It might be racy though.
1125	 */
1126
1127	rcu_read_unlock();
1128	spin_unlock_irq(q->queue_lock);
1129
1130	cfqg = cfq_alloc_cfqg(cfqd);
1131
1132	spin_lock_irq(q->queue_lock);
1133
1134	rcu_read_lock();
1135	blkcg = task_blkio_cgroup(current);
1136
1137	/*
1138	 * If some other thread already allocated the group while we were
1139	 * not holding queue lock, free up the group
1140	 */
1141	__cfqg = cfq_find_cfqg(cfqd, blkcg);
1142
1143	if (__cfqg) {
1144		kfree(cfqg);
1145		rcu_read_unlock();
1146		return __cfqg;
1147	}
1148
1149	if (!cfqg)
1150		cfqg = &cfqd->root_group;
1151
1152	cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
1153	rcu_read_unlock();
1154	return cfqg;
1155}
1156
1157static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1158{
1159	cfqg->ref++;
1160	return cfqg;
1161}
1162
1163static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1164{
1165	/* Currently, all async queues are mapped to root group */
1166	if (!cfq_cfqq_sync(cfqq))
1167		cfqg = &cfqq->cfqd->root_group;
1168
1169	cfqq->cfqg = cfqg;
1170	/* cfqq reference on cfqg */
1171	cfqq->cfqg->ref++;
1172}
1173
1174static void cfq_put_cfqg(struct cfq_group *cfqg)
1175{
1176	struct cfq_rb_root *st;
1177	int i, j;
1178
1179	BUG_ON(cfqg->ref <= 0);
1180	cfqg->ref--;
1181	if (cfqg->ref)
1182		return;
1183	for_each_cfqg_st(cfqg, i, j, st)
1184		BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1185	free_percpu(cfqg->blkg.stats_cpu);
1186	kfree(cfqg);
1187}
1188
1189static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1190{
1191	/* Something wrong if we are trying to remove same group twice */
1192	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1193
1194	hlist_del_init(&cfqg->cfqd_node);
1195
1196	/*
1197	 * Put the reference taken at the time of creation so that when all
1198	 * queues are gone, group can be destroyed.
1199	 */
1200	cfq_put_cfqg(cfqg);
1201}
1202
1203static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1204{
1205	struct hlist_node *pos, *n;
1206	struct cfq_group *cfqg;
1207
1208	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1209		/*
1210		 * If cgroup removal path got to blk_group first and removed
1211		 * it from cgroup list, then it will take care of destroying
1212		 * cfqg also.
1213		 */
1214		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1215			cfq_destroy_cfqg(cfqd, cfqg);
1216	}
1217}
1218
1219/*
1220 * Blk cgroup controller notification saying that blkio_group object is being
1221 * delinked as associated cgroup object is going away. That also means that
1222 * no new IO will come in this group. So get rid of this group as soon as
1223 * any pending IO in the group is finished.
1224 *
1225 * This function is called under rcu_read_lock(). key is the rcu protected
1226 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1227 * read lock.
1228 *
1229 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1230 * it should not be NULL as even if elevator was exiting, cgroup deltion
1231 * path got to it first.
1232 */
1233static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1234{
1235	unsigned long  flags;
1236	struct cfq_data *cfqd = key;
1237
1238	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1239	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1240	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1241}
1242
1243#else /* GROUP_IOSCHED */
1244static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
1245{
1246	return &cfqd->root_group;
1247}
1248
1249static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1250{
1251	return cfqg;
1252}
1253
1254static inline void
1255cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1256	cfqq->cfqg = cfqg;
1257}
1258
1259static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1260static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1261
1262#endif /* GROUP_IOSCHED */
1263
1264/*
1265 * The cfqd->service_trees holds all pending cfq_queue's that have
1266 * requests waiting to be processed. It is sorted in the order that
1267 * we will service the queues.
1268 */
1269static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1270				 bool add_front)
1271{
1272	struct rb_node **p, *parent;
1273	struct cfq_queue *__cfqq;
1274	unsigned long rb_key;
1275	struct cfq_rb_root *service_tree;
1276	int left;
1277	int new_cfqq = 1;
1278
1279	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1280						cfqq_type(cfqq));
1281	if (cfq_class_idle(cfqq)) {
1282		rb_key = CFQ_IDLE_DELAY;
1283		parent = rb_last(&service_tree->rb);
1284		if (parent && parent != &cfqq->rb_node) {
1285			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1286			rb_key += __cfqq->rb_key;
1287		} else
1288			rb_key += jiffies;
1289	} else if (!add_front) {
1290		/*
1291		 * Get our rb key offset. Subtract any residual slice
1292		 * value carried from last service. A negative resid
1293		 * count indicates slice overrun, and this should position
1294		 * the next service time further away in the tree.
1295		 */
1296		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1297		rb_key -= cfqq->slice_resid;
1298		cfqq->slice_resid = 0;
1299	} else {
1300		rb_key = -HZ;
1301		__cfqq = cfq_rb_first(service_tree);
1302		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1303	}
1304
1305	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1306		new_cfqq = 0;
1307		/*
1308		 * same position, nothing more to do
1309		 */
1310		if (rb_key == cfqq->rb_key &&
1311		    cfqq->service_tree == service_tree)
1312			return;
1313
1314		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1315		cfqq->service_tree = NULL;
1316	}
1317
1318	left = 1;
1319	parent = NULL;
1320	cfqq->service_tree = service_tree;
1321	p = &service_tree->rb.rb_node;
1322	while (*p) {
1323		struct rb_node **n;
1324
1325		parent = *p;
1326		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1327
1328		/*
1329		 * sort by key, that represents service time.
1330		 */
1331		if (time_before(rb_key, __cfqq->rb_key))
1332			n = &(*p)->rb_left;
1333		else {
1334			n = &(*p)->rb_right;
1335			left = 0;
1336		}
1337
1338		p = n;
1339	}
1340
1341	if (left)
1342		service_tree->left = &cfqq->rb_node;
1343
1344	cfqq->rb_key = rb_key;
1345	rb_link_node(&cfqq->rb_node, parent, p);
1346	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1347	service_tree->count++;
1348	if (add_front || !new_cfqq)
1349		return;
1350	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1351}
1352
1353static struct cfq_queue *
1354cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1355		     sector_t sector, struct rb_node **ret_parent,
1356		     struct rb_node ***rb_link)
1357{
1358	struct rb_node **p, *parent;
1359	struct cfq_queue *cfqq = NULL;
1360
1361	parent = NULL;
1362	p = &root->rb_node;
1363	while (*p) {
1364		struct rb_node **n;
1365
1366		parent = *p;
1367		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1368
1369		/*
1370		 * Sort strictly based on sector.  Smallest to the left,
1371		 * largest to the right.
1372		 */
1373		if (sector > blk_rq_pos(cfqq->next_rq))
1374			n = &(*p)->rb_right;
1375		else if (sector < blk_rq_pos(cfqq->next_rq))
1376			n = &(*p)->rb_left;
1377		else
1378			break;
1379		p = n;
1380		cfqq = NULL;
1381	}
1382
1383	*ret_parent = parent;
1384	if (rb_link)
1385		*rb_link = p;
1386	return cfqq;
1387}
1388
1389static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1390{
1391	struct rb_node **p, *parent;
1392	struct cfq_queue *__cfqq;
1393
1394	if (cfqq->p_root) {
1395		rb_erase(&cfqq->p_node, cfqq->p_root);
1396		cfqq->p_root = NULL;
1397	}
1398
1399	if (cfq_class_idle(cfqq))
1400		return;
1401	if (!cfqq->next_rq)
1402		return;
1403
1404	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1405	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1406				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1407	if (!__cfqq) {
1408		rb_link_node(&cfqq->p_node, parent, p);
1409		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1410	} else
1411		cfqq->p_root = NULL;
1412}
1413
1414/*
1415 * Update cfqq's position in the service tree.
1416 */
1417static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1418{
1419	/*
1420	 * Resorting requires the cfqq to be on the RR list already.
1421	 */
1422	if (cfq_cfqq_on_rr(cfqq)) {
1423		cfq_service_tree_add(cfqd, cfqq, 0);
1424		cfq_prio_tree_add(cfqd, cfqq);
1425	}
1426}
1427
1428/*
1429 * add to busy list of queues for service, trying to be fair in ordering
1430 * the pending list according to last request service
1431 */
1432static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1433{
1434	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1435	BUG_ON(cfq_cfqq_on_rr(cfqq));
1436	cfq_mark_cfqq_on_rr(cfqq);
1437	cfqd->busy_queues++;
1438	if (cfq_cfqq_sync(cfqq))
1439		cfqd->busy_sync_queues++;
1440
1441	cfq_resort_rr_list(cfqd, cfqq);
1442}
1443
1444/*
1445 * Called when the cfqq no longer has requests pending, remove it from
1446 * the service tree.
1447 */
1448static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1449{
1450	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1451	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1452	cfq_clear_cfqq_on_rr(cfqq);
1453
1454	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1455		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1456		cfqq->service_tree = NULL;
1457	}
1458	if (cfqq->p_root) {
1459		rb_erase(&cfqq->p_node, cfqq->p_root);
1460		cfqq->p_root = NULL;
1461	}
1462
1463	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1464	BUG_ON(!cfqd->busy_queues);
1465	cfqd->busy_queues--;
1466	if (cfq_cfqq_sync(cfqq))
1467		cfqd->busy_sync_queues--;
1468}
1469
1470/*
1471 * rb tree support functions
1472 */
1473static void cfq_del_rq_rb(struct request *rq)
1474{
1475	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1476	const int sync = rq_is_sync(rq);
1477
1478	BUG_ON(!cfqq->queued[sync]);
1479	cfqq->queued[sync]--;
1480
1481	elv_rb_del(&cfqq->sort_list, rq);
1482
1483	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1484		/*
1485		 * Queue will be deleted from service tree when we actually
1486		 * expire it later. Right now just remove it from prio tree
1487		 * as it is empty.
1488		 */
1489		if (cfqq->p_root) {
1490			rb_erase(&cfqq->p_node, cfqq->p_root);
1491			cfqq->p_root = NULL;
1492		}
1493	}
1494}
1495
1496static void cfq_add_rq_rb(struct request *rq)
1497{
1498	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1499	struct cfq_data *cfqd = cfqq->cfqd;
1500	struct request *prev;
1501
1502	cfqq->queued[rq_is_sync(rq)]++;
1503
1504	elv_rb_add(&cfqq->sort_list, rq);
1505
1506	if (!cfq_cfqq_on_rr(cfqq))
1507		cfq_add_cfqq_rr(cfqd, cfqq);
1508
1509	/*
1510	 * check if this request is a better next-serve candidate
1511	 */
1512	prev = cfqq->next_rq;
1513	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1514
1515	/*
1516	 * adjust priority tree position, if ->next_rq changes
1517	 */
1518	if (prev != cfqq->next_rq)
1519		cfq_prio_tree_add(cfqd, cfqq);
1520
1521	BUG_ON(!cfqq->next_rq);
1522}
1523
1524static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1525{
1526	elv_rb_del(&cfqq->sort_list, rq);
1527	cfqq->queued[rq_is_sync(rq)]--;
1528	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1529					rq_data_dir(rq), rq_is_sync(rq));
1530	cfq_add_rq_rb(rq);
1531	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1532			&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1533			rq_is_sync(rq));
1534}
1535
1536static struct request *
1537cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1538{
1539	struct task_struct *tsk = current;
1540	struct cfq_io_context *cic;
1541	struct cfq_queue *cfqq;
1542
1543	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1544	if (!cic)
1545		return NULL;
1546
1547	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1548	if (cfqq) {
1549		sector_t sector = bio->bi_sector + bio_sectors(bio);
1550
1551		return elv_rb_find(&cfqq->sort_list, sector);
1552	}
1553
1554	return NULL;
1555}
1556
1557static void cfq_activate_request(struct request_queue *q, struct request *rq)
1558{
1559	struct cfq_data *cfqd = q->elevator->elevator_data;
1560
1561	cfqd->rq_in_driver++;
1562	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1563						cfqd->rq_in_driver);
1564
1565	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1566}
1567
1568static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1569{
1570	struct cfq_data *cfqd = q->elevator->elevator_data;
1571
1572	WARN_ON(!cfqd->rq_in_driver);
1573	cfqd->rq_in_driver--;
1574	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1575						cfqd->rq_in_driver);
1576}
1577
1578static void cfq_remove_request(struct request *rq)
1579{
1580	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1581
1582	if (cfqq->next_rq == rq)
1583		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1584
1585	list_del_init(&rq->queuelist);
1586	cfq_del_rq_rb(rq);
1587
1588	cfqq->cfqd->rq_queued--;
1589	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1590					rq_data_dir(rq), rq_is_sync(rq));
1591}
1592
1593static int cfq_merge(struct request_queue *q, struct request **req,
1594		     struct bio *bio)
1595{
1596	struct cfq_data *cfqd = q->elevator->elevator_data;
1597	struct request *__rq;
1598
1599	__rq = cfq_find_rq_fmerge(cfqd, bio);
1600	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1601		*req = __rq;
1602		return ELEVATOR_FRONT_MERGE;
1603	}
1604
1605	return ELEVATOR_NO_MERGE;
1606}
1607
1608static void cfq_merged_request(struct request_queue *q, struct request *req,
1609			       int type)
1610{
1611	if (type == ELEVATOR_FRONT_MERGE) {
1612		struct cfq_queue *cfqq = RQ_CFQQ(req);
1613
1614		cfq_reposition_rq_rb(cfqq, req);
1615	}
1616}
1617
1618static void cfq_bio_merged(struct request_queue *q, struct request *req,
1619				struct bio *bio)
1620{
1621	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1622					bio_data_dir(bio), cfq_bio_sync(bio));
1623}
1624
1625static void
1626cfq_merged_requests(struct request_queue *q, struct request *rq,
1627		    struct request *next)
1628{
1629	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1630	/*
1631	 * reposition in fifo if next is older than rq
1632	 */
1633	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1634	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1635		list_move(&rq->queuelist, &next->queuelist);
1636		rq_set_fifo_time(rq, rq_fifo_time(next));
1637	}
1638
1639	if (cfqq->next_rq == next)
1640		cfqq->next_rq = rq;
1641	cfq_remove_request(next);
1642	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1643					rq_data_dir(next), rq_is_sync(next));
1644}
1645
1646static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1647			   struct bio *bio)
1648{
1649	struct cfq_data *cfqd = q->elevator->elevator_data;
1650	struct cfq_io_context *cic;
1651	struct cfq_queue *cfqq;
1652
1653	/*
1654	 * Disallow merge of a sync bio into an async request.
1655	 */
1656	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1657		return false;
1658
1659	/*
1660	 * Lookup the cfqq that this bio will be queued with. Allow
1661	 * merge only if rq is queued there.
1662	 */
1663	cic = cfq_cic_lookup(cfqd, current->io_context);
1664	if (!cic)
1665		return false;
1666
1667	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1668	return cfqq == RQ_CFQQ(rq);
1669}
1670
1671static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1672{
1673	del_timer(&cfqd->idle_slice_timer);
1674	cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1675}
1676
1677static void __cfq_set_active_queue(struct cfq_data *cfqd,
1678				   struct cfq_queue *cfqq)
1679{
1680	if (cfqq) {
1681		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1682				cfqd->serving_prio, cfqd->serving_type);
1683		cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1684		cfqq->slice_start = 0;
1685		cfqq->dispatch_start = jiffies;
1686		cfqq->allocated_slice = 0;
1687		cfqq->slice_end = 0;
1688		cfqq->slice_dispatch = 0;
1689		cfqq->nr_sectors = 0;
1690
1691		cfq_clear_cfqq_wait_request(cfqq);
1692		cfq_clear_cfqq_must_dispatch(cfqq);
1693		cfq_clear_cfqq_must_alloc_slice(cfqq);
1694		cfq_clear_cfqq_fifo_expire(cfqq);
1695		cfq_mark_cfqq_slice_new(cfqq);
1696
1697		cfq_del_timer(cfqd, cfqq);
1698	}
1699
1700	cfqd->active_queue = cfqq;
1701}
1702
1703/*
1704 * current cfqq expired its slice (or was too idle), select new one
1705 */
1706static void
1707__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1708		    bool timed_out)
1709{
1710	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1711
1712	if (cfq_cfqq_wait_request(cfqq))
1713		cfq_del_timer(cfqd, cfqq);
1714
1715	cfq_clear_cfqq_wait_request(cfqq);
1716	cfq_clear_cfqq_wait_busy(cfqq);
1717
1718	/*
1719	 * If this cfqq is shared between multiple processes, check to
1720	 * make sure that those processes are still issuing I/Os within
1721	 * the mean seek distance.  If not, it may be time to break the
1722	 * queues apart again.
1723	 */
1724	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1725		cfq_mark_cfqq_split_coop(cfqq);
1726
1727	/*
1728	 * store what was left of this slice, if the queue idled/timed out
1729	 */
1730	if (timed_out) {
1731		if (cfq_cfqq_slice_new(cfqq))
1732			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1733		else
1734			cfqq->slice_resid = cfqq->slice_end - jiffies;
1735		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1736	}
1737
1738	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1739
1740	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1741		cfq_del_cfqq_rr(cfqd, cfqq);
1742
1743	cfq_resort_rr_list(cfqd, cfqq);
1744
1745	if (cfqq == cfqd->active_queue)
1746		cfqd->active_queue = NULL;
1747
1748	if (cfqd->active_cic) {
1749		put_io_context(cfqd->active_cic->ioc);
1750		cfqd->active_cic = NULL;
1751	}
1752}
1753
1754static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1755{
1756	struct cfq_queue *cfqq = cfqd->active_queue;
1757
1758	if (cfqq)
1759		__cfq_slice_expired(cfqd, cfqq, timed_out);
1760}
1761
1762/*
1763 * Get next queue for service. Unless we have a queue preemption,
1764 * we'll simply select the first cfqq in the service tree.
1765 */
1766static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1767{
1768	struct cfq_rb_root *service_tree =
1769		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1770					cfqd->serving_type);
1771
1772	if (!cfqd->rq_queued)
1773		return NULL;
1774
1775	/* There is nothing to dispatch */
1776	if (!service_tree)
1777		return NULL;
1778	if (RB_EMPTY_ROOT(&service_tree->rb))
1779		return NULL;
1780	return cfq_rb_first(service_tree);
1781}
1782
1783static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1784{
1785	struct cfq_group *cfqg;
1786	struct cfq_queue *cfqq;
1787	int i, j;
1788	struct cfq_rb_root *st;
1789
1790	if (!cfqd->rq_queued)
1791		return NULL;
1792
1793	cfqg = cfq_get_next_cfqg(cfqd);
1794	if (!cfqg)
1795		return NULL;
1796
1797	for_each_cfqg_st(cfqg, i, j, st)
1798		if ((cfqq = cfq_rb_first(st)) != NULL)
1799			return cfqq;
1800	return NULL;
1801}
1802
1803/*
1804 * Get and set a new active queue for service.
1805 */
1806static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1807					      struct cfq_queue *cfqq)
1808{
1809	if (!cfqq)
1810		cfqq = cfq_get_next_queue(cfqd);
1811
1812	__cfq_set_active_queue(cfqd, cfqq);
1813	return cfqq;
1814}
1815
1816static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1817					  struct request *rq)
1818{
1819	if (blk_rq_pos(rq) >= cfqd->last_position)
1820		return blk_rq_pos(rq) - cfqd->last_position;
1821	else
1822		return cfqd->last_position - blk_rq_pos(rq);
1823}
1824
1825static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1826			       struct request *rq)
1827{
1828	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1829}
1830
1831static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1832				    struct cfq_queue *cur_cfqq)
1833{
1834	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1835	struct rb_node *parent, *node;
1836	struct cfq_queue *__cfqq;
1837	sector_t sector = cfqd->last_position;
1838
1839	if (RB_EMPTY_ROOT(root))
1840		return NULL;
1841
1842	/*
1843	 * First, if we find a request starting at the end of the last
1844	 * request, choose it.
1845	 */
1846	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1847	if (__cfqq)
1848		return __cfqq;
1849
1850	/*
1851	 * If the exact sector wasn't found, the parent of the NULL leaf
1852	 * will contain the closest sector.
1853	 */
1854	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1855	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1856		return __cfqq;
1857
1858	if (blk_rq_pos(__cfqq->next_rq) < sector)
1859		node = rb_next(&__cfqq->p_node);
1860	else
1861		node = rb_prev(&__cfqq->p_node);
1862	if (!node)
1863		return NULL;
1864
1865	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1866	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1867		return __cfqq;
1868
1869	return NULL;
1870}
1871
1872/*
1873 * cfqd - obvious
1874 * cur_cfqq - passed in so that we don't decide that the current queue is
1875 * 	      closely cooperating with itself.
1876 *
1877 * So, basically we're assuming that that cur_cfqq has dispatched at least
1878 * one request, and that cfqd->last_position reflects a position on the disk
1879 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1880 * assumption.
1881 */
1882static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1883					      struct cfq_queue *cur_cfqq)
1884{
1885	struct cfq_queue *cfqq;
1886
1887	if (cfq_class_idle(cur_cfqq))
1888		return NULL;
1889	if (!cfq_cfqq_sync(cur_cfqq))
1890		return NULL;
1891	if (CFQQ_SEEKY(cur_cfqq))
1892		return NULL;
1893
1894	/*
1895	 * Don't search priority tree if it's the only queue in the group.
1896	 */
1897	if (cur_cfqq->cfqg->nr_cfqq == 1)
1898		return NULL;
1899
1900	/*
1901	 * We should notice if some of the queues are cooperating, eg
1902	 * working closely on the same area of the disk. In that case,
1903	 * we can group them together and don't waste time idling.
1904	 */
1905	cfqq = cfqq_close(cfqd, cur_cfqq);
1906	if (!cfqq)
1907		return NULL;
1908
1909	/* If new queue belongs to different cfq_group, don't choose it */
1910	if (cur_cfqq->cfqg != cfqq->cfqg)
1911		return NULL;
1912
1913	/*
1914	 * It only makes sense to merge sync queues.
1915	 */
1916	if (!cfq_cfqq_sync(cfqq))
1917		return NULL;
1918	if (CFQQ_SEEKY(cfqq))
1919		return NULL;
1920
1921	/*
1922	 * Do not merge queues of different priority classes
1923	 */
1924	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1925		return NULL;
1926
1927	return cfqq;
1928}
1929
1930/*
1931 * Determine whether we should enforce idle window for this queue.
1932 */
1933
1934static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1935{
1936	enum wl_prio_t prio = cfqq_prio(cfqq);
1937	struct cfq_rb_root *service_tree = cfqq->service_tree;
1938
1939	BUG_ON(!service_tree);
1940	BUG_ON(!service_tree->count);
1941
1942	if (!cfqd->cfq_slice_idle)
1943		return false;
1944
1945	/* We never do for idle class queues. */
1946	if (prio == IDLE_WORKLOAD)
1947		return false;
1948
1949	/* We do for queues that were marked with idle window flag. */
1950	if (cfq_cfqq_idle_window(cfqq) &&
1951	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1952		return true;
1953
1954	/*
1955	 * Otherwise, we do only if they are the last ones
1956	 * in their service tree.
1957	 */
1958	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1959		return true;
1960	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1961			service_tree->count);
1962	return false;
1963}
1964
1965static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1966{
1967	struct cfq_queue *cfqq = cfqd->active_queue;
1968	struct cfq_io_context *cic;
1969	unsigned long sl, group_idle = 0;
1970
1971	/*
1972	 * SSD device without seek penalty, disable idling. But only do so
1973	 * for devices that support queuing, otherwise we still have a problem
1974	 * with sync vs async workloads.
1975	 */
1976	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1977		return;
1978
1979	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1980	WARN_ON(cfq_cfqq_slice_new(cfqq));
1981
1982	/*
1983	 * idle is disabled, either manually or by past process history
1984	 */
1985	if (!cfq_should_idle(cfqd, cfqq)) {
1986		/* no queue idling. Check for group idling */
1987		if (cfqd->cfq_group_idle)
1988			group_idle = cfqd->cfq_group_idle;
1989		else
1990			return;
1991	}
1992
1993	/*
1994	 * still active requests from this queue, don't idle
1995	 */
1996	if (cfqq->dispatched)
1997		return;
1998
1999	/*
2000	 * task has exited, don't wait
2001	 */
2002	cic = cfqd->active_cic;
2003	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
2004		return;
2005
2006	/*
2007	 * If our average think time is larger than the remaining time
2008	 * slice, then don't idle. This avoids overrunning the allotted
2009	 * time slice.
2010	 */
2011	if (sample_valid(cic->ttime_samples) &&
2012	    (cfqq->slice_end - jiffies < cic->ttime_mean)) {
2013		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2014			     cic->ttime_mean);
2015		return;
2016	}
2017
2018	/* There are other queues in the group, don't do group idle */
2019	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2020		return;
2021
2022	cfq_mark_cfqq_wait_request(cfqq);
2023
2024	if (group_idle)
2025		sl = cfqd->cfq_group_idle;
2026	else
2027		sl = cfqd->cfq_slice_idle;
2028
2029	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2030	cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2031	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2032			group_idle ? 1 : 0);
2033}
2034
2035/*
2036 * Move request from internal lists to the request queue dispatch list.
2037 */
2038static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2039{
2040	struct cfq_data *cfqd = q->elevator->elevator_data;
2041	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2042
2043	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2044
2045	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2046	cfq_remove_request(rq);
2047	cfqq->dispatched++;
2048	(RQ_CFQG(rq))->dispatched++;
2049	elv_dispatch_sort(q, rq);
2050
2051	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2052	cfqq->nr_sectors += blk_rq_sectors(rq);
2053	cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2054					rq_data_dir(rq), rq_is_sync(rq));
2055}
2056
2057/*
2058 * return expired entry, or NULL to just start from scratch in rbtree
2059 */
2060static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2061{
2062	struct request *rq = NULL;
2063
2064	if (cfq_cfqq_fifo_expire(cfqq))
2065		return NULL;
2066
2067	cfq_mark_cfqq_fifo_expire(cfqq);
2068
2069	if (list_empty(&cfqq->fifo))
2070		return NULL;
2071
2072	rq = rq_entry_fifo(cfqq->fifo.next);
2073	if (time_before(jiffies, rq_fifo_time(rq)))
2074		rq = NULL;
2075
2076	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2077	return rq;
2078}
2079
2080static inline int
2081cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2082{
2083	const int base_rq = cfqd->cfq_slice_async_rq;
2084
2085	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2086
2087	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2088}
2089
2090/*
2091 * Must be called with the queue_lock held.
2092 */
2093static int cfqq_process_refs(struct cfq_queue *cfqq)
2094{
2095	int process_refs, io_refs;
2096
2097	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2098	process_refs = cfqq->ref - io_refs;
2099	BUG_ON(process_refs < 0);
2100	return process_refs;
2101}
2102
2103static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2104{
2105	int process_refs, new_process_refs;
2106	struct cfq_queue *__cfqq;
2107
2108	/*
2109	 * If there are no process references on the new_cfqq, then it is
2110	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2111	 * chain may have dropped their last reference (not just their
2112	 * last process reference).
2113	 */
2114	if (!cfqq_process_refs(new_cfqq))
2115		return;
2116
2117	/* Avoid a circular list and skip interim queue merges */
2118	while ((__cfqq = new_cfqq->new_cfqq)) {
2119		if (__cfqq == cfqq)
2120			return;
2121		new_cfqq = __cfqq;
2122	}
2123
2124	process_refs = cfqq_process_refs(cfqq);
2125	new_process_refs = cfqq_process_refs(new_cfqq);
2126	/*
2127	 * If the process for the cfqq has gone away, there is no
2128	 * sense in merging the queues.
2129	 */
2130	if (process_refs == 0 || new_process_refs == 0)
2131		return;
2132
2133	/*
2134	 * Merge in the direction of the lesser amount of work.
2135	 */
2136	if (new_process_refs >= process_refs) {
2137		cfqq->new_cfqq = new_cfqq;
2138		new_cfqq->ref += process_refs;
2139	} else {
2140		new_cfqq->new_cfqq = cfqq;
2141		cfqq->ref += new_process_refs;
2142	}
2143}
2144
2145static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2146				struct cfq_group *cfqg, enum wl_prio_t prio)
2147{
2148	struct cfq_queue *queue;
2149	int i;
2150	bool key_valid = false;
2151	unsigned long lowest_key = 0;
2152	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2153
2154	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2155		/* select the one with lowest rb_key */
2156		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2157		if (queue &&
2158		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2159			lowest_key = queue->rb_key;
2160			cur_best = i;
2161			key_valid = true;
2162		}
2163	}
2164
2165	return cur_best;
2166}
2167
2168static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2169{
2170	unsigned slice;
2171	unsigned count;
2172	struct cfq_rb_root *st;
2173	unsigned group_slice;
2174	enum wl_prio_t original_prio = cfqd->serving_prio;
2175
2176	/* Choose next priority. RT > BE > IDLE */
2177	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2178		cfqd->serving_prio = RT_WORKLOAD;
2179	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2180		cfqd->serving_prio = BE_WORKLOAD;
2181	else {
2182		cfqd->serving_prio = IDLE_WORKLOAD;
2183		cfqd->workload_expires = jiffies + 1;
2184		return;
2185	}
2186
2187	if (original_prio != cfqd->serving_prio)
2188		goto new_workload;
2189
2190	/*
2191	 * For RT and BE, we have to choose also the type
2192	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2193	 * expiration time
2194	 */
2195	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2196	count = st->count;
2197
2198	/*
2199	 * check workload expiration, and that we still have other queues ready
2200	 */
2201	if (count && !time_after(jiffies, cfqd->workload_expires))
2202		return;
2203
2204new_workload:
2205	/* otherwise select new workload type */
2206	cfqd->serving_type =
2207		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2208	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2209	count = st->count;
2210
2211	/*
2212	 * the workload slice is computed as a fraction of target latency
2213	 * proportional to the number of queues in that workload, over
2214	 * all the queues in the same priority class
2215	 */
2216	group_slice = cfq_group_slice(cfqd, cfqg);
2217
2218	slice = group_slice * count /
2219		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2220		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2221
2222	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2223		unsigned int tmp;
2224
2225		/*
2226		 * Async queues are currently system wide. Just taking
2227		 * proportion of queues with-in same group will lead to higher
2228		 * async ratio system wide as generally root group is going
2229		 * to have higher weight. A more accurate thing would be to
2230		 * calculate system wide asnc/sync ratio.
2231		 */
2232		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2233		tmp = tmp/cfqd->busy_queues;
2234		slice = min_t(unsigned, slice, tmp);
2235
2236		/* async workload slice is scaled down according to
2237		 * the sync/async slice ratio. */
2238		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2239	} else
2240		/* sync workload slice is at least 2 * cfq_slice_idle */
2241		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2242
2243	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2244	cfq_log(cfqd, "workload slice:%d", slice);
2245	cfqd->workload_expires = jiffies + slice;
2246}
2247
2248static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2249{
2250	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2251	struct cfq_group *cfqg;
2252
2253	if (RB_EMPTY_ROOT(&st->rb))
2254		return NULL;
2255	cfqg = cfq_rb_first_group(st);
2256	update_min_vdisktime(st);
2257	return cfqg;
2258}
2259
2260static void cfq_choose_cfqg(struct cfq_data *cfqd)
2261{
2262	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2263
2264	cfqd->serving_group = cfqg;
2265
2266	/* Restore the workload type data */
2267	if (cfqg->saved_workload_slice) {
2268		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2269		cfqd->serving_type = cfqg->saved_workload;
2270		cfqd->serving_prio = cfqg->saved_serving_prio;
2271	} else
2272		cfqd->workload_expires = jiffies - 1;
2273
2274	choose_service_tree(cfqd, cfqg);
2275}
2276
2277/*
2278 * Select a queue for service. If we have a current active queue,
2279 * check whether to continue servicing it, or retrieve and set a new one.
2280 */
2281static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2282{
2283	struct cfq_queue *cfqq, *new_cfqq = NULL;
2284
2285	cfqq = cfqd->active_queue;
2286	if (!cfqq)
2287		goto new_queue;
2288
2289	if (!cfqd->rq_queued)
2290		return NULL;
2291
2292	/*
2293	 * We were waiting for group to get backlogged. Expire the queue
2294	 */
2295	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2296		goto expire;
2297
2298	/*
2299	 * The active queue has run out of time, expire it and select new.
2300	 */
2301	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2302		/*
2303		 * If slice had not expired at the completion of last request
2304		 * we might not have turned on wait_busy flag. Don't expire
2305		 * the queue yet. Allow the group to get backlogged.
2306		 *
2307		 * The very fact that we have used the slice, that means we
2308		 * have been idling all along on this queue and it should be
2309		 * ok to wait for this request to complete.
2310		 */
2311		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2312		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2313			cfqq = NULL;
2314			goto keep_queue;
2315		} else
2316			goto check_group_idle;
2317	}
2318
2319	/*
2320	 * The active queue has requests and isn't expired, allow it to
2321	 * dispatch.
2322	 */
2323	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2324		goto keep_queue;
2325
2326	/*
2327	 * If another queue has a request waiting within our mean seek
2328	 * distance, let it run.  The expire code will check for close
2329	 * cooperators and put the close queue at the front of the service
2330	 * tree.  If possible, merge the expiring queue with the new cfqq.
2331	 */
2332	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2333	if (new_cfqq) {
2334		if (!cfqq->new_cfqq)
2335			cfq_setup_merge(cfqq, new_cfqq);
2336		goto expire;
2337	}
2338
2339	/*
2340	 * No requests pending. If the active queue still has requests in
2341	 * flight or is idling for a new request, allow either of these
2342	 * conditions to happen (or time out) before selecting a new queue.
2343	 */
2344	if (timer_pending(&cfqd->idle_slice_timer)) {
2345		cfqq = NULL;
2346		goto keep_queue;
2347	}
2348
2349	/*
2350	 * This is a deep seek queue, but the device is much faster than
2351	 * the queue can deliver, don't idle
2352	 **/
2353	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2354	    (cfq_cfqq_slice_new(cfqq) ||
2355	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2356		cfq_clear_cfqq_deep(cfqq);
2357		cfq_clear_cfqq_idle_window(cfqq);
2358	}
2359
2360	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2361		cfqq = NULL;
2362		goto keep_queue;
2363	}
2364
2365	/*
2366	 * If group idle is enabled and there are requests dispatched from
2367	 * this group, wait for requests to complete.
2368	 */
2369check_group_idle:
2370	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
2371	    && cfqq->cfqg->dispatched) {
2372		cfqq = NULL;
2373		goto keep_queue;
2374	}
2375
2376expire:
2377	cfq_slice_expired(cfqd, 0);
2378new_queue:
2379	/*
2380	 * Current queue expired. Check if we have to switch to a new
2381	 * service tree
2382	 */
2383	if (!new_cfqq)
2384		cfq_choose_cfqg(cfqd);
2385
2386	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2387keep_queue:
2388	return cfqq;
2389}
2390
2391static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2392{
2393	int dispatched = 0;
2394
2395	while (cfqq->next_rq) {
2396		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2397		dispatched++;
2398	}
2399
2400	BUG_ON(!list_empty(&cfqq->fifo));
2401
2402	/* By default cfqq is not expired if it is empty. Do it explicitly */
2403	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2404	return dispatched;
2405}
2406
2407/*
2408 * Drain our current requests. Used for barriers and when switching
2409 * io schedulers on-the-fly.
2410 */
2411static int cfq_forced_dispatch(struct cfq_data *cfqd)
2412{
2413	struct cfq_queue *cfqq;
2414	int dispatched = 0;
2415
2416	/* Expire the timeslice of the current active queue first */
2417	cfq_slice_expired(cfqd, 0);
2418	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2419		__cfq_set_active_queue(cfqd, cfqq);
2420		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2421	}
2422
2423	BUG_ON(cfqd->busy_queues);
2424
2425	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2426	return dispatched;
2427}
2428
2429static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2430	struct cfq_queue *cfqq)
2431{
2432	/* the queue hasn't finished any request, can't estimate */
2433	if (cfq_cfqq_slice_new(cfqq))
2434		return true;
2435	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2436		cfqq->slice_end))
2437		return true;
2438
2439	return false;
2440}
2441
2442static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2443{
2444	unsigned int max_dispatch;
2445
2446	/*
2447	 * Drain async requests before we start sync IO
2448	 */
2449	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2450		return false;
2451
2452	/*
2453	 * If this is an async queue and we have sync IO in flight, let it wait
2454	 */
2455	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2456		return false;
2457
2458	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2459	if (cfq_class_idle(cfqq))
2460		max_dispatch = 1;
2461
2462	/*
2463	 * Does this cfqq already have too much IO in flight?
2464	 */
2465	if (cfqq->dispatched >= max_dispatch) {
2466		bool promote_sync = false;
2467		/*
2468		 * idle queue must always only have a single IO in flight
2469		 */
2470		if (cfq_class_idle(cfqq))
2471			return false;
2472
2473		/*
2474		 * If there is only one sync queue
2475		 * we can ignore async queue here and give the sync
2476		 * queue no dispatch limit. The reason is a sync queue can
2477		 * preempt async queue, limiting the sync queue doesn't make
2478		 * sense. This is useful for aiostress test.
2479		 */
2480		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2481			promote_sync = true;
2482
2483		/*
2484		 * We have other queues, don't allow more IO from this one
2485		 */
2486		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2487				!promote_sync)
2488			return false;
2489
2490		/*
2491		 * Sole queue user, no limit
2492		 */
2493		if (cfqd->busy_queues == 1 || promote_sync)
2494			max_dispatch = -1;
2495		else
2496			/*
2497			 * Normally we start throttling cfqq when cfq_quantum/2
2498			 * requests have been dispatched. But we can drive
2499			 * deeper queue depths at the beginning of slice
2500			 * subjected to upper limit of cfq_quantum.
2501			 * */
2502			max_dispatch = cfqd->cfq_quantum;
2503	}
2504
2505	/*
2506	 * Async queues must wait a bit before being allowed dispatch.
2507	 * We also ramp up the dispatch depth gradually for async IO,
2508	 * based on the last sync IO we serviced
2509	 */
2510	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2511		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2512		unsigned int depth;
2513
2514		depth = last_sync / cfqd->cfq_slice[1];
2515		if (!depth && !cfqq->dispatched)
2516			depth = 1;
2517		if (depth < max_dispatch)
2518			max_dispatch = depth;
2519	}
2520
2521	/*
2522	 * If we're below the current max, allow a dispatch
2523	 */
2524	return cfqq->dispatched < max_dispatch;
2525}
2526
2527/*
2528 * Dispatch a request from cfqq, moving them to the request queue
2529 * dispatch list.
2530 */
2531static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2532{
2533	struct request *rq;
2534
2535	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2536
2537	if (!cfq_may_dispatch(cfqd, cfqq))
2538		return false;
2539
2540	/*
2541	 * follow expired path, else get first next available
2542	 */
2543	rq = cfq_check_fifo(cfqq);
2544	if (!rq)
2545		rq = cfqq->next_rq;
2546
2547	/*
2548	 * insert request into driver dispatch list
2549	 */
2550	cfq_dispatch_insert(cfqd->queue, rq);
2551
2552	if (!cfqd->active_cic) {
2553		struct cfq_io_context *cic = RQ_CIC(rq);
2554
2555		atomic_long_inc(&cic->ioc->refcount);
2556		cfqd->active_cic = cic;
2557	}
2558
2559	return true;
2560}
2561
2562/*
2563 * Find the cfqq that we need to service and move a request from that to the
2564 * dispatch list
2565 */
2566static int cfq_dispatch_requests(struct request_queue *q, int force)
2567{
2568	struct cfq_data *cfqd = q->elevator->elevator_data;
2569	struct cfq_queue *cfqq;
2570
2571	if (!cfqd->busy_queues)
2572		return 0;
2573
2574	if (unlikely(force))
2575		return cfq_forced_dispatch(cfqd);
2576
2577	cfqq = cfq_select_queue(cfqd);
2578	if (!cfqq)
2579		return 0;
2580
2581	/*
2582	 * Dispatch a request from this cfqq, if it is allowed
2583	 */
2584	if (!cfq_dispatch_request(cfqd, cfqq))
2585		return 0;
2586
2587	cfqq->slice_dispatch++;
2588	cfq_clear_cfqq_must_dispatch(cfqq);
2589
2590	/*
2591	 * expire an async queue immediately if it has used up its slice. idle
2592	 * queue always expire after 1 dispatch round.
2593	 */
2594	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2595	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2596	    cfq_class_idle(cfqq))) {
2597		cfqq->slice_end = jiffies + 1;
2598		cfq_slice_expired(cfqd, 0);
2599	}
2600
2601	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2602	return 1;
2603}
2604
2605/*
2606 * task holds one reference to the queue, dropped when task exits. each rq
2607 * in-flight on this queue also holds a reference, dropped when rq is freed.
2608 *
2609 * Each cfq queue took a reference on the parent group. Drop it now.
2610 * queue lock must be held here.
2611 */
2612static void cfq_put_queue(struct cfq_queue *cfqq)
2613{
2614	struct cfq_data *cfqd = cfqq->cfqd;
2615	struct cfq_group *cfqg;
2616
2617	BUG_ON(cfqq->ref <= 0);
2618
2619	cfqq->ref--;
2620	if (cfqq->ref)
2621		return;
2622
2623	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2624	BUG_ON(rb_first(&cfqq->sort_list));
2625	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2626	cfqg = cfqq->cfqg;
2627
2628	if (unlikely(cfqd->active_queue == cfqq)) {
2629		__cfq_slice_expired(cfqd, cfqq, 0);
2630		cfq_schedule_dispatch(cfqd);
2631	}
2632
2633	BUG_ON(cfq_cfqq_on_rr(cfqq));
2634	kmem_cache_free(cfq_pool, cfqq);
2635	cfq_put_cfqg(cfqg);
2636}
2637
2638/*
2639 * Call func for each cic attached to this ioc.
2640 */
2641static void
2642call_for_each_cic(struct io_context *ioc,
2643		  void (*func)(struct io_context *, struct cfq_io_context *))
2644{
2645	struct cfq_io_context *cic;
2646	struct hlist_node *n;
2647
2648	rcu_read_lock();
2649
2650	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2651		func(ioc, cic);
2652
2653	rcu_read_unlock();
2654}
2655
2656static void cfq_cic_free_rcu(struct rcu_head *head)
2657{
2658	struct cfq_io_context *cic;
2659
2660	cic = container_of(head, struct cfq_io_context, rcu_head);
2661
2662	kmem_cache_free(cfq_ioc_pool, cic);
2663	elv_ioc_count_dec(cfq_ioc_count);
2664
2665	if (ioc_gone) {
2666		/*
2667		 * CFQ scheduler is exiting, grab exit lock and check
2668		 * the pending io context count. If it hits zero,
2669		 * complete ioc_gone and set it back to NULL
2670		 */
2671		spin_lock(&ioc_gone_lock);
2672		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2673			complete(ioc_gone);
2674			ioc_gone = NULL;
2675		}
2676		spin_unlock(&ioc_gone_lock);
2677	}
2678}
2679
2680static void cfq_cic_free(struct cfq_io_context *cic)
2681{
2682	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2683}
2684
2685static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2686{
2687	unsigned long flags;
2688	unsigned long dead_key = (unsigned long) cic->key;
2689
2690	BUG_ON(!(dead_key & CIC_DEAD_KEY));
2691
2692	spin_lock_irqsave(&ioc->lock, flags);
2693	radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
2694	hlist_del_rcu(&cic->cic_list);
2695	spin_unlock_irqrestore(&ioc->lock, flags);
2696
2697	cfq_cic_free(cic);
2698}
2699
2700/*
2701 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2702 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2703 * and ->trim() which is called with the task lock held
2704 */
2705static void cfq_free_io_context(struct io_context *ioc)
2706{
2707	/*
2708	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2709	 * so no more cic's are allowed to be linked into this ioc.  So it
2710	 * should be ok to iterate over the known list, we will see all cic's
2711	 * since no new ones are added.
2712	 */
2713	call_for_each_cic(ioc, cic_free_func);
2714}
2715
2716static void cfq_put_cooperator(struct cfq_queue *cfqq)
2717{
2718	struct cfq_queue *__cfqq, *next;
2719
2720	/*
2721	 * If this queue was scheduled to merge with another queue, be
2722	 * sure to drop the reference taken on that queue (and others in
2723	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2724	 */
2725	__cfqq = cfqq->new_cfqq;
2726	while (__cfqq) {
2727		if (__cfqq == cfqq) {
2728			WARN(1, "cfqq->new_cfqq loop detected\n");
2729			break;
2730		}
2731		next = __cfqq->new_cfqq;
2732		cfq_put_queue(__cfqq);
2733		__cfqq = next;
2734	}
2735}
2736
2737static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2738{
2739	if (unlikely(cfqq == cfqd->active_queue)) {
2740		__cfq_slice_expired(cfqd, cfqq, 0);
2741		cfq_schedule_dispatch(cfqd);
2742	}
2743
2744	cfq_put_cooperator(cfqq);
2745
2746	cfq_put_queue(cfqq);
2747}
2748
2749static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2750					 struct cfq_io_context *cic)
2751{
2752	struct io_context *ioc = cic->ioc;
2753
2754	list_del_init(&cic->queue_list);
2755
2756	/*
2757	 * Make sure dead mark is seen for dead queues
2758	 */
2759	smp_wmb();
2760	cic->key = cfqd_dead_key(cfqd);
2761
2762	rcu_read_lock();
2763	if (rcu_dereference(ioc->ioc_data) == cic) {
2764		rcu_read_unlock();
2765		spin_lock(&ioc->lock);
2766		rcu_assign_pointer(ioc->ioc_data, NULL);
2767		spin_unlock(&ioc->lock);
2768	} else
2769		rcu_read_unlock();
2770
2771	if (cic->cfqq[BLK_RW_ASYNC]) {
2772		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2773		cic->cfqq[BLK_RW_ASYNC] = NULL;
2774	}
2775
2776	if (cic->cfqq[BLK_RW_SYNC]) {
2777		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2778		cic->cfqq[BLK_RW_SYNC] = NULL;
2779	}
2780}
2781
2782static void cfq_exit_single_io_context(struct io_context *ioc,
2783				       struct cfq_io_context *cic)
2784{
2785	struct cfq_data *cfqd = cic_to_cfqd(cic);
2786
2787	if (cfqd) {
2788		struct request_queue *q = cfqd->queue;
2789		unsigned long flags;
2790
2791		spin_lock_irqsave(q->queue_lock, flags);
2792
2793		/*
2794		 * Ensure we get a fresh copy of the ->key to prevent
2795		 * race between exiting task and queue
2796		 */
2797		smp_read_barrier_depends();
2798		if (cic->key == cfqd)
2799			__cfq_exit_single_io_context(cfqd, cic);
2800
2801		spin_unlock_irqrestore(q->queue_lock, flags);
2802	}
2803}
2804
2805/*
2806 * The process that ioc belongs to has exited, we need to clean up
2807 * and put the internal structures we have that belongs to that process.
2808 */
2809static void cfq_exit_io_context(struct io_context *ioc)
2810{
2811	call_for_each_cic(ioc, cfq_exit_single_io_context);
2812}
2813
2814static struct cfq_io_context *
2815cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2816{
2817	struct cfq_io_context *cic;
2818
2819	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2820							cfqd->queue->node);
2821	if (cic) {
2822		cic->last_end_request = jiffies;
2823		INIT_LIST_HEAD(&cic->queue_list);
2824		INIT_HLIST_NODE(&cic->cic_list);
2825		cic->dtor = cfq_free_io_context;
2826		cic->exit = cfq_exit_io_context;
2827		elv_ioc_count_inc(cfq_ioc_count);
2828	}
2829
2830	return cic;
2831}
2832
2833static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2834{
2835	struct task_struct *tsk = current;
2836	int ioprio_class;
2837
2838	if (!cfq_cfqq_prio_changed(cfqq))
2839		return;
2840
2841	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2842	switch (ioprio_class) {
2843	default:
2844		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2845	case IOPRIO_CLASS_NONE:
2846		/*
2847		 * no prio set, inherit CPU scheduling settings
2848		 */
2849		cfqq->ioprio = task_nice_ioprio(tsk);
2850		cfqq->ioprio_class = task_nice_ioclass(tsk);
2851		break;
2852	case IOPRIO_CLASS_RT:
2853		cfqq->ioprio = task_ioprio(ioc);
2854		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2855		break;
2856	case IOPRIO_CLASS_BE:
2857		cfqq->ioprio = task_ioprio(ioc);
2858		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2859		break;
2860	case IOPRIO_CLASS_IDLE:
2861		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2862		cfqq->ioprio = 7;
2863		cfq_clear_cfqq_idle_window(cfqq);
2864		break;
2865	}
2866
2867	/*
2868	 * keep track of original prio settings in case we have to temporarily
2869	 * elevate the priority of this queue
2870	 */
2871	cfqq->org_ioprio = cfqq->ioprio;
2872	cfqq->org_ioprio_class = cfqq->ioprio_class;
2873	cfq_clear_cfqq_prio_changed(cfqq);
2874}
2875
2876static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2877{
2878	struct cfq_data *cfqd = cic_to_cfqd(cic);
2879	struct cfq_queue *cfqq;
2880	unsigned long flags;
2881
2882	if (unlikely(!cfqd))
2883		return;
2884
2885	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2886
2887	cfqq = cic->cfqq[BLK_RW_ASYNC];
2888	if (cfqq) {
2889		struct cfq_queue *new_cfqq;
2890		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2891						GFP_ATOMIC);
2892		if (new_cfqq) {
2893			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2894			cfq_put_queue(cfqq);
2895		}
2896	}
2897
2898	cfqq = cic->cfqq[BLK_RW_SYNC];
2899	if (cfqq)
2900		cfq_mark_cfqq_prio_changed(cfqq);
2901
2902	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2903}
2904
2905static void cfq_ioc_set_ioprio(struct io_context *ioc)
2906{
2907	call_for_each_cic(ioc, changed_ioprio);
2908	ioc->ioprio_changed = 0;
2909}
2910
2911static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2912			  pid_t pid, bool is_sync)
2913{
2914	RB_CLEAR_NODE(&cfqq->rb_node);
2915	RB_CLEAR_NODE(&cfqq->p_node);
2916	INIT_LIST_HEAD(&cfqq->fifo);
2917
2918	cfqq->ref = 0;
2919	cfqq->cfqd = cfqd;
2920
2921	cfq_mark_cfqq_prio_changed(cfqq);
2922
2923	if (is_sync) {
2924		if (!cfq_class_idle(cfqq))
2925			cfq_mark_cfqq_idle_window(cfqq);
2926		cfq_mark_cfqq_sync(cfqq);
2927	}
2928	cfqq->pid = pid;
2929}
2930
2931#ifdef CONFIG_CFQ_GROUP_IOSCHED
2932static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2933{
2934	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2935	struct cfq_data *cfqd = cic_to_cfqd(cic);
2936	unsigned long flags;
2937	struct request_queue *q;
2938
2939	if (unlikely(!cfqd))
2940		return;
2941
2942	q = cfqd->queue;
2943
2944	spin_lock_irqsave(q->queue_lock, flags);
2945
2946	if (sync_cfqq) {
2947		/*
2948		 * Drop reference to sync queue. A new sync queue will be
2949		 * assigned in new group upon arrival of a fresh request.
2950		 */
2951		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2952		cic_set_cfqq(cic, NULL, 1);
2953		cfq_put_queue(sync_cfqq);
2954	}
2955
2956	spin_unlock_irqrestore(q->queue_lock, flags);
2957}
2958
2959static void cfq_ioc_set_cgroup(struct io_context *ioc)
2960{
2961	call_for_each_cic(ioc, changed_cgroup);
2962	ioc->cgroup_changed = 0;
2963}
2964#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2965
2966static struct cfq_queue *
2967cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2968		     struct io_context *ioc, gfp_t gfp_mask)
2969{
2970	struct cfq_queue *cfqq, *new_cfqq = NULL;
2971	struct cfq_io_context *cic;
2972	struct cfq_group *cfqg;
2973
2974retry:
2975	cfqg = cfq_get_cfqg(cfqd);
2976	cic = cfq_cic_lookup(cfqd, ioc);
2977	/* cic always exists here */
2978	cfqq = cic_to_cfqq(cic, is_sync);
2979
2980	/*
2981	 * Always try a new alloc if we fell back to the OOM cfqq
2982	 * originally, since it should just be a temporary situation.
2983	 */
2984	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2985		cfqq = NULL;
2986		if (new_cfqq) {
2987			cfqq = new_cfqq;
2988			new_cfqq = NULL;
2989		} else if (gfp_mask & __GFP_WAIT) {
2990			spin_unlock_irq(cfqd->queue->queue_lock);
2991			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2992					gfp_mask | __GFP_ZERO,
2993					cfqd->queue->node);
2994			spin_lock_irq(cfqd->queue->queue_lock);
2995			if (new_cfqq)
2996				goto retry;
2997		} else {
2998			cfqq = kmem_cache_alloc_node(cfq_pool,
2999					gfp_mask | __GFP_ZERO,
3000					cfqd->queue->node);
3001		}
3002
3003		if (cfqq) {
3004			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3005			cfq_init_prio_data(cfqq, ioc);
3006			cfq_link_cfqq_cfqg(cfqq, cfqg);
3007			cfq_log_cfqq(cfqd, cfqq, "alloced");
3008		} else
3009			cfqq = &cfqd->oom_cfqq;
3010	}
3011
3012	if (new_cfqq)
3013		kmem_cache_free(cfq_pool, new_cfqq);
3014
3015	return cfqq;
3016}
3017
3018static struct cfq_queue **
3019cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3020{
3021	switch (ioprio_class) {
3022	case IOPRIO_CLASS_RT:
3023		return &cfqd->async_cfqq[0][ioprio];
3024	case IOPRIO_CLASS_BE:
3025		return &cfqd->async_cfqq[1][ioprio];
3026	case IOPRIO_CLASS_IDLE:
3027		return &cfqd->async_idle_cfqq;
3028	default:
3029		BUG();
3030	}
3031}
3032
3033static struct cfq_queue *
3034cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
3035	      gfp_t gfp_mask)
3036{
3037	const int ioprio = task_ioprio(ioc);
3038	const int ioprio_class = task_ioprio_class(ioc);
3039	struct cfq_queue **async_cfqq = NULL;
3040	struct cfq_queue *cfqq = NULL;
3041
3042	if (!is_sync) {
3043		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3044		cfqq = *async_cfqq;
3045	}
3046
3047	if (!cfqq)
3048		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
3049
3050	/*
3051	 * pin the queue now that it's allocated, scheduler exit will prune it
3052	 */
3053	if (!is_sync && !(*async_cfqq)) {
3054		cfqq->ref++;
3055		*async_cfqq = cfqq;
3056	}
3057
3058	cfqq->ref++;
3059	return cfqq;
3060}
3061
3062/*
3063 * We drop cfq io contexts lazily, so we may find a dead one.
3064 */
3065static void
3066cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
3067		  struct cfq_io_context *cic)
3068{
3069	unsigned long flags;
3070
3071	WARN_ON(!list_empty(&cic->queue_list));
3072	BUG_ON(cic->key != cfqd_dead_key(cfqd));
3073
3074	spin_lock_irqsave(&ioc->lock, flags);
3075
3076	BUG_ON(rcu_dereference_check(ioc->ioc_data,
3077		lockdep_is_held(&ioc->lock)) == cic);
3078
3079	radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
3080	hlist_del_rcu(&cic->cic_list);
3081	spin_unlock_irqrestore(&ioc->lock, flags);
3082
3083	cfq_cic_free(cic);
3084}
3085
3086static struct cfq_io_context *
3087cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
3088{
3089	struct cfq_io_context *cic;
3090	unsigned long flags;
3091
3092	if (unlikely(!ioc))
3093		return NULL;
3094
3095	rcu_read_lock();
3096
3097	/*
3098	 * we maintain a last-hit cache, to avoid browsing over the tree
3099	 */
3100	cic = rcu_dereference(ioc->ioc_data);
3101	if (cic && cic->key == cfqd) {
3102		rcu_read_unlock();
3103		return cic;
3104	}
3105
3106	do {
3107		cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
3108		rcu_read_unlock();
3109		if (!cic)
3110			break;
3111		if (unlikely(cic->key != cfqd)) {
3112			cfq_drop_dead_cic(cfqd, ioc, cic);
3113			rcu_read_lock();
3114			continue;
3115		}
3116
3117		spin_lock_irqsave(&ioc->lock, flags);
3118		rcu_assign_pointer(ioc->ioc_data, cic);
3119		spin_unlock_irqrestore(&ioc->lock, flags);
3120		break;
3121	} while (1);
3122
3123	return cic;
3124}
3125
3126/*
3127 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3128 * the process specific cfq io context when entered from the block layer.
3129 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3130 */
3131static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
3132			struct cfq_io_context *cic, gfp_t gfp_mask)
3133{
3134	unsigned long flags;
3135	int ret;
3136
3137	ret = radix_tree_preload(gfp_mask);
3138	if (!ret) {
3139		cic->ioc = ioc;
3140		cic->key = cfqd;
3141
3142		spin_lock_irqsave(&ioc->lock, flags);
3143		ret = radix_tree_insert(&ioc->radix_root,
3144						cfqd->cic_index, cic);
3145		if (!ret)
3146			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
3147		spin_unlock_irqrestore(&ioc->lock, flags);
3148
3149		radix_tree_preload_end();
3150
3151		if (!ret) {
3152			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3153			list_add(&cic->queue_list, &cfqd->cic_list);
3154			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3155		}
3156	}
3157
3158	if (ret)
3159		printk(KERN_ERR "cfq: cic link failed!\n");
3160
3161	return ret;
3162}
3163
3164/*
3165 * Setup general io context and cfq io context. There can be several cfq
3166 * io contexts per general io context, if this process is doing io to more
3167 * than one device managed by cfq.
3168 */
3169static struct cfq_io_context *
3170cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
3171{
3172	struct io_context *ioc = NULL;
3173	struct cfq_io_context *cic;
3174
3175	might_sleep_if(gfp_mask & __GFP_WAIT);
3176
3177	ioc = get_io_context(gfp_mask, cfqd->queue->node);
3178	if (!ioc)
3179		return NULL;
3180
3181	cic = cfq_cic_lookup(cfqd, ioc);
3182	if (cic)
3183		goto out;
3184
3185	cic = cfq_alloc_io_context(cfqd, gfp_mask);
3186	if (cic == NULL)
3187		goto err;
3188
3189	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
3190		goto err_free;
3191
3192out:
3193	smp_read_barrier_depends();
3194	if (unlikely(ioc->ioprio_changed))
3195		cfq_ioc_set_ioprio(ioc);
3196
3197#ifdef CONFIG_CFQ_GROUP_IOSCHED
3198	if (unlikely(ioc->cgroup_changed))
3199		cfq_ioc_set_cgroup(ioc);
3200#endif
3201	return cic;
3202err_free:
3203	cfq_cic_free(cic);
3204err:
3205	put_io_context(ioc);
3206	return NULL;
3207}
3208
3209static void
3210cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
3211{
3212	unsigned long elapsed = jiffies - cic->last_end_request;
3213	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
3214
3215	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
3216	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
3217	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
3218}
3219
3220static void
3221cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3222		       struct request *rq)
3223{
3224	sector_t sdist = 0;
3225	sector_t n_sec = blk_rq_sectors(rq);
3226	if (cfqq->last_request_pos) {
3227		if (cfqq->last_request_pos < blk_rq_pos(rq))
3228			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3229		else
3230			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3231	}
3232
3233	cfqq->seek_history <<= 1;
3234	if (blk_queue_nonrot(cfqd->queue))
3235		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3236	else
3237		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3238}
3239
3240/*
3241 * Disable idle window if the process thinks too long or seeks so much that
3242 * it doesn't matter
3243 */
3244static void
3245cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3246		       struct cfq_io_context *cic)
3247{
3248	int old_idle, enable_idle;
3249
3250	/*
3251	 * Don't idle for async or idle io prio class
3252	 */
3253	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3254		return;
3255
3256	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3257
3258	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3259		cfq_mark_cfqq_deep(cfqq);
3260
3261	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3262		enable_idle = 0;
3263	else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3264	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3265		enable_idle = 0;
3266	else if (sample_valid(cic->ttime_samples)) {
3267		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3268			enable_idle = 0;
3269		else
3270			enable_idle = 1;
3271	}
3272
3273	if (old_idle != enable_idle) {
3274		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3275		if (enable_idle)
3276			cfq_mark_cfqq_idle_window(cfqq);
3277		else
3278			cfq_clear_cfqq_idle_window(cfqq);
3279	}
3280}
3281
3282/*
3283 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3284 * no or if we aren't sure, a 1 will cause a preempt.
3285 */
3286static bool
3287cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3288		   struct request *rq)
3289{
3290	struct cfq_queue *cfqq;
3291
3292	cfqq = cfqd->active_queue;
3293	if (!cfqq)
3294		return false;
3295
3296	if (cfq_class_idle(new_cfqq))
3297		return false;
3298
3299	if (cfq_class_idle(cfqq))
3300		return true;
3301
3302	/*
3303	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3304	 */
3305	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3306		return false;
3307
3308	/*
3309	 * if the new request is sync, but the currently running queue is
3310	 * not, let the sync request have priority.
3311	 */
3312	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3313		return true;
3314
3315	if (new_cfqq->cfqg != cfqq->cfqg)
3316		return false;
3317
3318	if (cfq_slice_used(cfqq))
3319		return true;
3320
3321	/* Allow preemption only if we are idling on sync-noidle tree */
3322	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3323	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3324	    new_cfqq->service_tree->count == 2 &&
3325	    RB_EMPTY_ROOT(&cfqq->sort_list))
3326		return true;
3327
3328	/*
3329	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3330	 */
3331	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3332		return true;
3333
3334	/* An idle queue should not be idle now for some reason */
3335	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3336		return true;
3337
3338	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3339		return false;
3340
3341	/*
3342	 * if this request is as-good as one we would expect from the
3343	 * current cfqq, let it preempt
3344	 */
3345	if (cfq_rq_close(cfqd, cfqq, rq))
3346		return true;
3347
3348	return false;
3349}
3350
3351/*
3352 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3353 * let it have half of its nominal slice.
3354 */
3355static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3356{
3357	struct cfq_queue *old_cfqq = cfqd->active_queue;
3358
3359	cfq_log_cfqq(cfqd, cfqq, "preempt");
3360	cfq_slice_expired(cfqd, 1);
3361
3362	/*
3363	 * workload type is changed, don't save slice, otherwise preempt
3364	 * doesn't happen
3365	 */
3366	if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3367		cfqq->cfqg->saved_workload_slice = 0;
3368
3369	/*
3370	 * Put the new queue at the front of the of the current list,
3371	 * so we know that it will be selected next.
3372	 */
3373	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3374
3375	cfq_service_tree_add(cfqd, cfqq, 1);
3376
3377	cfqq->slice_end = 0;
3378	cfq_mark_cfqq_slice_new(cfqq);
3379}
3380
3381/*
3382 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3383 * something we should do about it
3384 */
3385static void
3386cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3387		struct request *rq)
3388{
3389	struct cfq_io_context *cic = RQ_CIC(rq);
3390
3391	cfqd->rq_queued++;
3392
3393	cfq_update_io_thinktime(cfqd, cic);
3394	cfq_update_io_seektime(cfqd, cfqq, rq);
3395	cfq_update_idle_window(cfqd, cfqq, cic);
3396
3397	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3398
3399	if (cfqq == cfqd->active_queue) {
3400		/*
3401		 * Remember that we saw a request from this process, but
3402		 * don't start queuing just yet. Otherwise we risk seeing lots
3403		 * of tiny requests, because we disrupt the normal plugging
3404		 * and merging. If the request is already larger than a single
3405		 * page, let it rip immediately. For that case we assume that
3406		 * merging is already done. Ditto for a busy system that
3407		 * has other work pending, don't risk delaying until the
3408		 * idle timer unplug to continue working.
3409		 */
3410		if (cfq_cfqq_wait_request(cfqq)) {
3411			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3412			    cfqd->busy_queues > 1) {
3413				cfq_del_timer(cfqd, cfqq);
3414				cfq_clear_cfqq_wait_request(cfqq);
3415				__blk_run_queue(cfqd->queue);
3416			} else {
3417				cfq_blkiocg_update_idle_time_stats(
3418						&cfqq->cfqg->blkg);
3419				cfq_mark_cfqq_must_dispatch(cfqq);
3420			}
3421		}
3422	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3423		/*
3424		 * not the active queue - expire current slice if it is
3425		 * idle and has expired it's mean thinktime or this new queue
3426		 * has some old slice time left and is of higher priority or
3427		 * this new queue is RT and the current one is BE
3428		 */
3429		cfq_preempt_queue(cfqd, cfqq);
3430		__blk_run_queue(cfqd->queue);
3431	}
3432}
3433
3434static void cfq_insert_request(struct request_queue *q, struct request *rq)
3435{
3436	struct cfq_data *cfqd = q->elevator->elevator_data;
3437	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3438
3439	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3440	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3441
3442	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3443	list_add_tail(&rq->queuelist, &cfqq->fifo);
3444	cfq_add_rq_rb(rq);
3445	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3446			&cfqd->serving_group->blkg, rq_data_dir(rq),
3447			rq_is_sync(rq));
3448	cfq_rq_enqueued(cfqd, cfqq, rq);
3449}
3450
3451/*
3452 * Update hw_tag based on peak queue depth over 50 samples under
3453 * sufficient load.
3454 */
3455static void cfq_update_hw_tag(struct cfq_data *cfqd)
3456{
3457	struct cfq_queue *cfqq = cfqd->active_queue;
3458
3459	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3460		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3461
3462	if (cfqd->hw_tag == 1)
3463		return;
3464
3465	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3466	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3467		return;
3468
3469	/*
3470	 * If active queue hasn't enough requests and can idle, cfq might not
3471	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3472	 * case
3473	 */
3474	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3475	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3476	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3477		return;
3478
3479	if (cfqd->hw_tag_samples++ < 50)
3480		return;
3481
3482	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3483		cfqd->hw_tag = 1;
3484	else
3485		cfqd->hw_tag = 0;
3486}
3487
3488static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3489{
3490	struct cfq_io_context *cic = cfqd->active_cic;
3491
3492	/* If the queue already has requests, don't wait */
3493	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3494		return false;
3495
3496	/* If there are other queues in the group, don't wait */
3497	if (cfqq->cfqg->nr_cfqq > 1)
3498		return false;
3499
3500	if (cfq_slice_used(cfqq))
3501		return true;
3502
3503	/* if slice left is less than think time, wait busy */
3504	if (cic && sample_valid(cic->ttime_samples)
3505	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
3506		return true;
3507
3508	/*
3509	 * If think times is less than a jiffy than ttime_mean=0 and above
3510	 * will not be true. It might happen that slice has not expired yet
3511	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3512	 * case where think time is less than a jiffy, mark the queue wait
3513	 * busy if only 1 jiffy is left in the slice.
3514	 */
3515	if (cfqq->slice_end - jiffies == 1)
3516		return true;
3517
3518	return false;
3519}
3520
3521static void cfq_completed_request(struct request_queue *q, struct request *rq)
3522{
3523	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3524	struct cfq_data *cfqd = cfqq->cfqd;
3525	const int sync = rq_is_sync(rq);
3526	unsigned long now;
3527
3528	now = jiffies;
3529	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3530		     !!(rq->cmd_flags & REQ_NOIDLE));
3531
3532	cfq_update_hw_tag(cfqd);
3533
3534	WARN_ON(!cfqd->rq_in_driver);
3535	WARN_ON(!cfqq->dispatched);
3536	cfqd->rq_in_driver--;
3537	cfqq->dispatched--;
3538	(RQ_CFQG(rq))->dispatched--;
3539	cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3540			rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3541			rq_data_dir(rq), rq_is_sync(rq));
3542
3543	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3544
3545	if (sync) {
3546		RQ_CIC(rq)->last_end_request = now;
3547		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3548			cfqd->last_delayed_sync = now;
3549	}
3550
3551	/*
3552	 * If this is the active queue, check if it needs to be expired,
3553	 * or if we want to idle in case it has no pending requests.
3554	 */
3555	if (cfqd->active_queue == cfqq) {
3556		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3557
3558		if (cfq_cfqq_slice_new(cfqq)) {
3559			cfq_set_prio_slice(cfqd, cfqq);
3560			cfq_clear_cfqq_slice_new(cfqq);
3561		}
3562
3563		/*
3564		 * Should we wait for next request to come in before we expire
3565		 * the queue.
3566		 */
3567		if (cfq_should_wait_busy(cfqd, cfqq)) {
3568			unsigned long extend_sl = cfqd->cfq_slice_idle;
3569			if (!cfqd->cfq_slice_idle)
3570				extend_sl = cfqd->cfq_group_idle;
3571			cfqq->slice_end = jiffies + extend_sl;
3572			cfq_mark_cfqq_wait_busy(cfqq);
3573			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3574		}
3575
3576		/*
3577		 * Idling is not enabled on:
3578		 * - expired queues
3579		 * - idle-priority queues
3580		 * - async queues
3581		 * - queues with still some requests queued
3582		 * - when there is a close cooperator
3583		 */
3584		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3585			cfq_slice_expired(cfqd, 1);
3586		else if (sync && cfqq_empty &&
3587			 !cfq_close_cooperator(cfqd, cfqq)) {
3588			cfq_arm_slice_timer(cfqd);
3589		}
3590	}
3591
3592	if (!cfqd->rq_in_driver)
3593		cfq_schedule_dispatch(cfqd);
3594}
3595
3596/*
3597 * we temporarily boost lower priority queues if they are holding fs exclusive
3598 * resources. they are boosted to normal prio (CLASS_BE/4)
3599 */
3600static void cfq_prio_boost(struct cfq_queue *cfqq)
3601{
3602	if (has_fs_excl()) {
3603		/*
3604		 * boost idle prio on transactions that would lock out other
3605		 * users of the filesystem
3606		 */
3607		if (cfq_class_idle(cfqq))
3608			cfqq->ioprio_class = IOPRIO_CLASS_BE;
3609		if (cfqq->ioprio > IOPRIO_NORM)
3610			cfqq->ioprio = IOPRIO_NORM;
3611	} else {
3612		/*
3613		 * unboost the queue (if needed)
3614		 */
3615		cfqq->ioprio_class = cfqq->org_ioprio_class;
3616		cfqq->ioprio = cfqq->org_ioprio;
3617	}
3618}
3619
3620static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3621{
3622	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3623		cfq_mark_cfqq_must_alloc_slice(cfqq);
3624		return ELV_MQUEUE_MUST;
3625	}
3626
3627	return ELV_MQUEUE_MAY;
3628}
3629
3630static int cfq_may_queue(struct request_queue *q, int rw)
3631{
3632	struct cfq_data *cfqd = q->elevator->elevator_data;
3633	struct task_struct *tsk = current;
3634	struct cfq_io_context *cic;
3635	struct cfq_queue *cfqq;
3636
3637	/*
3638	 * don't force setup of a queue from here, as a call to may_queue
3639	 * does not necessarily imply that a request actually will be queued.
3640	 * so just lookup a possibly existing queue, or return 'may queue'
3641	 * if that fails
3642	 */
3643	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3644	if (!cic)
3645		return ELV_MQUEUE_MAY;
3646
3647	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3648	if (cfqq) {
3649		cfq_init_prio_data(cfqq, cic->ioc);
3650		cfq_prio_boost(cfqq);
3651
3652		return __cfq_may_queue(cfqq);
3653	}
3654
3655	return ELV_MQUEUE_MAY;
3656}
3657
3658/*
3659 * queue lock held here
3660 */
3661static void cfq_put_request(struct request *rq)
3662{
3663	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3664
3665	if (cfqq) {
3666		const int rw = rq_data_dir(rq);
3667
3668		BUG_ON(!cfqq->allocated[rw]);
3669		cfqq->allocated[rw]--;
3670
3671		put_io_context(RQ_CIC(rq)->ioc);
3672
3673		rq->elevator_private[0] = NULL;
3674		rq->elevator_private[1] = NULL;
3675
3676		/* Put down rq reference on cfqg */
3677		cfq_put_cfqg(RQ_CFQG(rq));
3678		rq->elevator_private[2] = NULL;
3679
3680		cfq_put_queue(cfqq);
3681	}
3682}
3683
3684static struct cfq_queue *
3685cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3686		struct cfq_queue *cfqq)
3687{
3688	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3689	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3690	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3691	cfq_put_queue(cfqq);
3692	return cic_to_cfqq(cic, 1);
3693}
3694
3695/*
3696 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3697 * was the last process referring to said cfqq.
3698 */
3699static struct cfq_queue *
3700split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3701{
3702	if (cfqq_process_refs(cfqq) == 1) {
3703		cfqq->pid = current->pid;
3704		cfq_clear_cfqq_coop(cfqq);
3705		cfq_clear_cfqq_split_coop(cfqq);
3706		return cfqq;
3707	}
3708
3709	cic_set_cfqq(cic, NULL, 1);
3710
3711	cfq_put_cooperator(cfqq);
3712
3713	cfq_put_queue(cfqq);
3714	return NULL;
3715}
3716/*
3717 * Allocate cfq data structures associated with this request.
3718 */
3719static int
3720cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3721{
3722	struct cfq_data *cfqd = q->elevator->elevator_data;
3723	struct cfq_io_context *cic;
3724	const int rw = rq_data_dir(rq);
3725	const bool is_sync = rq_is_sync(rq);
3726	struct cfq_queue *cfqq;
3727	unsigned long flags;
3728
3729	might_sleep_if(gfp_mask & __GFP_WAIT);
3730
3731	cic = cfq_get_io_context(cfqd, gfp_mask);
3732
3733	spin_lock_irqsave(q->queue_lock, flags);
3734
3735	if (!cic)
3736		goto queue_fail;
3737
3738new_queue:
3739	cfqq = cic_to_cfqq(cic, is_sync);
3740	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3741		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3742		cic_set_cfqq(cic, cfqq, is_sync);
3743	} else {
3744		/*
3745		 * If the queue was seeky for too long, break it apart.
3746		 */
3747		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3748			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3749			cfqq = split_cfqq(cic, cfqq);
3750			if (!cfqq)
3751				goto new_queue;
3752		}
3753
3754		/*
3755		 * Check to see if this queue is scheduled to merge with
3756		 * another, closely cooperating queue.  The merging of
3757		 * queues happens here as it must be done in process context.
3758		 * The reference on new_cfqq was taken in merge_cfqqs.
3759		 */
3760		if (cfqq->new_cfqq)
3761			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3762	}
3763
3764	cfqq->allocated[rw]++;
3765
3766	cfqq->ref++;
3767	rq->elevator_private[0] = cic;
3768	rq->elevator_private[1] = cfqq;
3769	rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
3770	spin_unlock_irqrestore(q->queue_lock, flags);
3771	return 0;
3772
3773queue_fail:
3774	cfq_schedule_dispatch(cfqd);
3775	spin_unlock_irqrestore(q->queue_lock, flags);
3776	cfq_log(cfqd, "set_request fail");
3777	return 1;
3778}
3779
3780static void cfq_kick_queue(struct work_struct *work)
3781{
3782	struct cfq_data *cfqd =
3783		container_of(work, struct cfq_data, unplug_work);
3784	struct request_queue *q = cfqd->queue;
3785
3786	spin_lock_irq(q->queue_lock);
3787	__blk_run_queue(cfqd->queue);
3788	spin_unlock_irq(q->queue_lock);
3789}
3790
3791/*
3792 * Timer running if the active_queue is currently idling inside its time slice
3793 */
3794static void cfq_idle_slice_timer(unsigned long data)
3795{
3796	struct cfq_data *cfqd = (struct cfq_data *) data;
3797	struct cfq_queue *cfqq;
3798	unsigned long flags;
3799	int timed_out = 1;
3800
3801	cfq_log(cfqd, "idle timer fired");
3802
3803	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3804
3805	cfqq = cfqd->active_queue;
3806	if (cfqq) {
3807		timed_out = 0;
3808
3809		/*
3810		 * We saw a request before the queue expired, let it through
3811		 */
3812		if (cfq_cfqq_must_dispatch(cfqq))
3813			goto out_kick;
3814
3815		/*
3816		 * expired
3817		 */
3818		if (cfq_slice_used(cfqq))
3819			goto expire;
3820
3821		/*
3822		 * only expire and reinvoke request handler, if there are
3823		 * other queues with pending requests
3824		 */
3825		if (!cfqd->busy_queues)
3826			goto out_cont;
3827
3828		/*
3829		 * not expired and it has a request pending, let it dispatch
3830		 */
3831		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3832			goto out_kick;
3833
3834		/*
3835		 * Queue depth flag is reset only when the idle didn't succeed
3836		 */
3837		cfq_clear_cfqq_deep(cfqq);
3838	}
3839expire:
3840	cfq_slice_expired(cfqd, timed_out);
3841out_kick:
3842	cfq_schedule_dispatch(cfqd);
3843out_cont:
3844	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3845}
3846
3847static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3848{
3849	del_timer_sync(&cfqd->idle_slice_timer);
3850	cancel_work_sync(&cfqd->unplug_work);
3851}
3852
3853static void cfq_put_async_queues(struct cfq_data *cfqd)
3854{
3855	int i;
3856
3857	for (i = 0; i < IOPRIO_BE_NR; i++) {
3858		if (cfqd->async_cfqq[0][i])
3859			cfq_put_queue(cfqd->async_cfqq[0][i]);
3860		if (cfqd->async_cfqq[1][i])
3861			cfq_put_queue(cfqd->async_cfqq[1][i]);
3862	}
3863
3864	if (cfqd->async_idle_cfqq)
3865		cfq_put_queue(cfqd->async_idle_cfqq);
3866}
3867
3868static void cfq_exit_queue(struct elevator_queue *e)
3869{
3870	struct cfq_data *cfqd = e->elevator_data;
3871	struct request_queue *q = cfqd->queue;
3872	bool wait = false;
3873
3874	cfq_shutdown_timer_wq(cfqd);
3875
3876	spin_lock_irq(q->queue_lock);
3877
3878	if (cfqd->active_queue)
3879		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3880
3881	while (!list_empty(&cfqd->cic_list)) {
3882		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3883							struct cfq_io_context,
3884							queue_list);
3885
3886		__cfq_exit_single_io_context(cfqd, cic);
3887	}
3888
3889	cfq_put_async_queues(cfqd);
3890	cfq_release_cfq_groups(cfqd);
3891
3892	/*
3893	 * If there are groups which we could not unlink from blkcg list,
3894	 * wait for a rcu period for them to be freed.
3895	 */
3896	if (cfqd->nr_blkcg_linked_grps)
3897		wait = true;
3898
3899	spin_unlock_irq(q->queue_lock);
3900
3901	cfq_shutdown_timer_wq(cfqd);
3902
3903	spin_lock(&cic_index_lock);
3904	ida_remove(&cic_index_ida, cfqd->cic_index);
3905	spin_unlock(&cic_index_lock);
3906
3907	/*
3908	 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3909	 * Do this wait only if there are other unlinked groups out
3910	 * there. This can happen if cgroup deletion path claimed the
3911	 * responsibility of cleaning up a group before queue cleanup code
3912	 * get to the group.
3913	 *
3914	 * Do not call synchronize_rcu() unconditionally as there are drivers
3915	 * which create/delete request queue hundreds of times during scan/boot
3916	 * and synchronize_rcu() can take significant time and slow down boot.
3917	 */
3918	if (wait)
3919		synchronize_rcu();
3920
3921#ifdef CONFIG_CFQ_GROUP_IOSCHED
3922	/* Free up per cpu stats for root group */
3923	free_percpu(cfqd->root_group.blkg.stats_cpu);
3924#endif
3925	kfree(cfqd);
3926}
3927
3928static int cfq_alloc_cic_index(void)
3929{
3930	int index, error;
3931
3932	do {
3933		if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
3934			return -ENOMEM;
3935
3936		spin_lock(&cic_index_lock);
3937		error = ida_get_new(&cic_index_ida, &index);
3938		spin_unlock(&cic_index_lock);
3939		if (error && error != -EAGAIN)
3940			return error;
3941	} while (error);
3942
3943	return index;
3944}
3945
3946static void *cfq_init_queue(struct request_queue *q)
3947{
3948	struct cfq_data *cfqd;
3949	int i, j;
3950	struct cfq_group *cfqg;
3951	struct cfq_rb_root *st;
3952
3953	i = cfq_alloc_cic_index();
3954	if (i < 0)
3955		return NULL;
3956
3957	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3958	if (!cfqd) {
3959		spin_lock(&cic_index_lock);
3960		ida_remove(&cic_index_ida, i);
3961		spin_unlock(&cic_index_lock);
3962		return NULL;
3963	}
3964
3965	/*
3966	 * Don't need take queue_lock in the routine, since we are
3967	 * initializing the ioscheduler, and nobody is using cfqd
3968	 */
3969	cfqd->cic_index = i;
3970
3971	/* Init root service tree */
3972	cfqd->grp_service_tree = CFQ_RB_ROOT;
3973
3974	/* Init root group */
3975	cfqg = &cfqd->root_group;
3976	for_each_cfqg_st(cfqg, i, j, st)
3977		*st = CFQ_RB_ROOT;
3978	RB_CLEAR_NODE(&cfqg->rb_node);
3979
3980	/* Give preference to root group over other groups */
3981	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3982
3983#ifdef CONFIG_CFQ_GROUP_IOSCHED
3984	/*
3985	 * Set root group reference to 2. One reference will be dropped when
3986	 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3987	 * Other reference will remain there as we don't want to delete this
3988	 * group as it is statically allocated and gets destroyed when
3989	 * throtl_data goes away.
3990	 */
3991	cfqg->ref = 2;
3992
3993	if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3994		kfree(cfqg);
3995		kfree(cfqd);
3996		return NULL;
3997	}
3998
3999	rcu_read_lock();
4000
4001	cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
4002					(void *)cfqd, 0);
4003	rcu_read_unlock();
4004	cfqd->nr_blkcg_linked_grps++;
4005
4006	/* Add group on cfqd->cfqg_list */
4007	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
4008#endif
4009	/*
4010	 * Not strictly needed (since RB_ROOT just clears the node and we
4011	 * zeroed cfqd on alloc), but better be safe in case someone decides
4012	 * to add magic to the rb code
4013	 */
4014	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4015		cfqd->prio_trees[i] = RB_ROOT;
4016
4017	/*
4018	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4019	 * Grab a permanent reference to it, so that the normal code flow
4020	 * will not attempt to free it.
4021	 */
4022	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4023	cfqd->oom_cfqq.ref++;
4024	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
4025
4026	INIT_LIST_HEAD(&cfqd->cic_list);
4027
4028	cfqd->queue = q;
4029
4030	init_timer(&cfqd->idle_slice_timer);
4031	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4032	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4033
4034	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4035
4036	cfqd->cfq_quantum = cfq_quantum;
4037	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4038	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4039	cfqd->cfq_back_max = cfq_back_max;
4040	cfqd->cfq_back_penalty = cfq_back_penalty;
4041	cfqd->cfq_slice[0] = cfq_slice_async;
4042	cfqd->cfq_slice[1] = cfq_slice_sync;
4043	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4044	cfqd->cfq_slice_idle = cfq_slice_idle;
4045	cfqd->cfq_group_idle = cfq_group_idle;
4046	cfqd->cfq_latency = 1;
4047	cfqd->hw_tag = -1;
4048	/*
4049	 * we optimistically start assuming sync ops weren't delayed in last
4050	 * second, in order to have larger depth for async operations.
4051	 */
4052	cfqd->last_delayed_sync = jiffies - HZ;
4053	return cfqd;
4054}
4055
4056static void cfq_slab_kill(void)
4057{
4058	/*
4059	 * Caller already ensured that pending RCU callbacks are completed,
4060	 * so we should have no busy allocations at this point.
4061	 */
4062	if (cfq_pool)
4063		kmem_cache_destroy(cfq_pool);
4064	if (cfq_ioc_pool)
4065		kmem_cache_destroy(cfq_ioc_pool);
4066}
4067
4068static int __init cfq_slab_setup(void)
4069{
4070	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4071	if (!cfq_pool)
4072		goto fail;
4073
4074	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
4075	if (!cfq_ioc_pool)
4076		goto fail;
4077
4078	return 0;
4079fail:
4080	cfq_slab_kill();
4081	return -ENOMEM;
4082}
4083
4084/*
4085 * sysfs parts below -->
4086 */
4087static ssize_t
4088cfq_var_show(unsigned int var, char *page)
4089{
4090	return sprintf(page, "%d\n", var);
4091}
4092
4093static ssize_t
4094cfq_var_store(unsigned int *var, const char *page, size_t count)
4095{
4096	char *p = (char *) page;
4097
4098	*var = simple_strtoul(p, &p, 10);
4099	return count;
4100}
4101
4102#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4103static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4104{									\
4105	struct cfq_data *cfqd = e->elevator_data;			\
4106	unsigned int __data = __VAR;					\
4107	if (__CONV)							\
4108		__data = jiffies_to_msecs(__data);			\
4109	return cfq_var_show(__data, (page));				\
4110}
4111SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4112SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4113SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4114SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4115SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4116SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4117SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4118SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4119SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4120SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4121SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4122#undef SHOW_FUNCTION
4123
4124#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4125static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4126{									\
4127	struct cfq_data *cfqd = e->elevator_data;			\
4128	unsigned int __data;						\
4129	int ret = cfq_var_store(&__data, (page), count);		\
4130	if (__data < (MIN))						\
4131		__data = (MIN);						\
4132	else if (__data > (MAX))					\
4133		__data = (MAX);						\
4134	if (__CONV)							\
4135		*(__PTR) = msecs_to_jiffies(__data);			\
4136	else								\
4137		*(__PTR) = __data;					\
4138	return ret;							\
4139}
4140STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4141STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4142		UINT_MAX, 1);
4143STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4144		UINT_MAX, 1);
4145STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4146STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4147		UINT_MAX, 0);
4148STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4149STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4150STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4151STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4152STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4153		UINT_MAX, 0);
4154STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4155#undef STORE_FUNCTION
4156
4157#define CFQ_ATTR(name) \
4158	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4159
4160static struct elv_fs_entry cfq_attrs[] = {
4161	CFQ_ATTR(quantum),
4162	CFQ_ATTR(fifo_expire_sync),
4163	CFQ_ATTR(fifo_expire_async),
4164	CFQ_ATTR(back_seek_max),
4165	CFQ_ATTR(back_seek_penalty),
4166	CFQ_ATTR(slice_sync),
4167	CFQ_ATTR(slice_async),
4168	CFQ_ATTR(slice_async_rq),
4169	CFQ_ATTR(slice_idle),
4170	CFQ_ATTR(group_idle),
4171	CFQ_ATTR(low_latency),
4172	__ATTR_NULL
4173};
4174
4175static struct elevator_type iosched_cfq = {
4176	.ops = {
4177		.elevator_merge_fn = 		cfq_merge,
4178		.elevator_merged_fn =		cfq_merged_request,
4179		.elevator_merge_req_fn =	cfq_merged_requests,
4180		.elevator_allow_merge_fn =	cfq_allow_merge,
4181		.elevator_bio_merged_fn =	cfq_bio_merged,
4182		.elevator_dispatch_fn =		cfq_dispatch_requests,
4183		.elevator_add_req_fn =		cfq_insert_request,
4184		.elevator_activate_req_fn =	cfq_activate_request,
4185		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4186		.elevator_completed_req_fn =	cfq_completed_request,
4187		.elevator_former_req_fn =	elv_rb_former_request,
4188		.elevator_latter_req_fn =	elv_rb_latter_request,
4189		.elevator_set_req_fn =		cfq_set_request,
4190		.elevator_put_req_fn =		cfq_put_request,
4191		.elevator_may_queue_fn =	cfq_may_queue,
4192		.elevator_init_fn =		cfq_init_queue,
4193		.elevator_exit_fn =		cfq_exit_queue,
4194		.trim =				cfq_free_io_context,
4195	},
4196	.elevator_attrs =	cfq_attrs,
4197	.elevator_name =	"cfq",
4198	.elevator_owner =	THIS_MODULE,
4199};
4200
4201#ifdef CONFIG_CFQ_GROUP_IOSCHED
4202static struct blkio_policy_type blkio_policy_cfq = {
4203	.ops = {
4204		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
4205		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
4206	},
4207	.plid = BLKIO_POLICY_PROP,
4208};
4209#else
4210static struct blkio_policy_type blkio_policy_cfq;
4211#endif
4212
4213static int __init cfq_init(void)
4214{
4215	/*
4216	 * could be 0 on HZ < 1000 setups
4217	 */
4218	if (!cfq_slice_async)
4219		cfq_slice_async = 1;
4220	if (!cfq_slice_idle)
4221		cfq_slice_idle = 1;
4222
4223#ifdef CONFIG_CFQ_GROUP_IOSCHED
4224	if (!cfq_group_idle)
4225		cfq_group_idle = 1;
4226#else
4227		cfq_group_idle = 0;
4228#endif
4229	if (cfq_slab_setup())
4230		return -ENOMEM;
4231
4232	elv_register(&iosched_cfq);
4233	blkio_policy_register(&blkio_policy_cfq);
4234
4235	return 0;
4236}
4237
4238static void __exit cfq_exit(void)
4239{
4240	DECLARE_COMPLETION_ONSTACK(all_gone);
4241	blkio_policy_unregister(&blkio_policy_cfq);
4242	elv_unregister(&iosched_cfq);
4243	ioc_gone = &all_gone;
4244	/* ioc_gone's update must be visible before reading ioc_count */
4245	smp_wmb();
4246
4247	/*
4248	 * this also protects us from entering cfq_slab_kill() with
4249	 * pending RCU callbacks
4250	 */
4251	if (elv_ioc_count_read(cfq_ioc_count))
4252		wait_for_completion(&all_gone);
4253	ida_destroy(&cic_index_ida);
4254	cfq_slab_kill();
4255}
4256
4257module_init(cfq_init);
4258module_exit(cfq_exit);
4259
4260MODULE_AUTHOR("Jens Axboe");
4261MODULE_LICENSE("GPL");
4262MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4263