cfq-iosched.c revision a3cc86c2f00839453d2dbeb46bfc44e885b073db
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "blk-cgroup.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY		(HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT		(2)
47
48#define CFQ_SLICE_SCALE		(5)
49#define CFQ_HW_QUEUE_MIN	(5)
50#define CFQ_SERVICE_SHIFT       12
51
52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples)	((samples) > 80)
68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71	unsigned long last_end_request;
72
73	unsigned long ttime_total;
74	unsigned long ttime_samples;
75	unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	u64 min_vdisktime;
89	struct cfq_ttime ttime;
90};
91#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
92			.ttime = {.last_end_request = jiffies,},}
93
94/*
95 * Per process-grouping structure
96 */
97struct cfq_queue {
98	/* reference count */
99	int ref;
100	/* various state flags, see below */
101	unsigned int flags;
102	/* parent cfq_data */
103	struct cfq_data *cfqd;
104	/* service_tree member */
105	struct rb_node rb_node;
106	/* service_tree key */
107	unsigned long rb_key;
108	/* prio tree member */
109	struct rb_node p_node;
110	/* prio tree root we belong to, if any */
111	struct rb_root *p_root;
112	/* sorted list of pending requests */
113	struct rb_root sort_list;
114	/* if fifo isn't expired, next request to serve */
115	struct request *next_rq;
116	/* requests queued in sort_list */
117	int queued[2];
118	/* currently allocated requests */
119	int allocated[2];
120	/* fifo list of requests in sort_list */
121	struct list_head fifo;
122
123	/* time when queue got scheduled in to dispatch first request. */
124	unsigned long dispatch_start;
125	unsigned int allocated_slice;
126	unsigned int slice_dispatch;
127	/* time when first request from queue completed and slice started. */
128	unsigned long slice_start;
129	unsigned long slice_end;
130	long slice_resid;
131
132	/* pending priority requests */
133	int prio_pending;
134	/* number of requests that are on the dispatch list or inside driver */
135	int dispatched;
136
137	/* io prio of this group */
138	unsigned short ioprio, org_ioprio;
139	unsigned short ioprio_class;
140
141	pid_t pid;
142
143	u32 seek_history;
144	sector_t last_request_pos;
145
146	struct cfq_rb_root *service_tree;
147	struct cfq_queue *new_cfqq;
148	struct cfq_group *cfqg;
149	/* Number of sectors dispatched from queue in single dispatch round */
150	unsigned long nr_sectors;
151};
152
153/*
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
156 */
157enum wl_class_t {
158	BE_WORKLOAD = 0,
159	RT_WORKLOAD = 1,
160	IDLE_WORKLOAD = 2,
161	CFQ_PRIO_NR,
162};
163
164/*
165 * Second index in the service_trees.
166 */
167enum wl_type_t {
168	ASYNC_WORKLOAD = 0,
169	SYNC_NOIDLE_WORKLOAD = 1,
170	SYNC_WORKLOAD = 2
171};
172
173struct cfqg_stats {
174#ifdef CONFIG_CFQ_GROUP_IOSCHED
175	/* total bytes transferred */
176	struct blkg_rwstat		service_bytes;
177	/* total IOs serviced, post merge */
178	struct blkg_rwstat		serviced;
179	/* number of ios merged */
180	struct blkg_rwstat		merged;
181	/* total time spent on device in ns, may not be accurate w/ queueing */
182	struct blkg_rwstat		service_time;
183	/* total time spent waiting in scheduler queue in ns */
184	struct blkg_rwstat		wait_time;
185	/* number of IOs queued up */
186	struct blkg_rwstat		queued;
187	/* total sectors transferred */
188	struct blkg_stat		sectors;
189	/* total disk time and nr sectors dispatched by this group */
190	struct blkg_stat		time;
191#ifdef CONFIG_DEBUG_BLK_CGROUP
192	/* time not charged to this cgroup */
193	struct blkg_stat		unaccounted_time;
194	/* sum of number of ios queued across all samples */
195	struct blkg_stat		avg_queue_size_sum;
196	/* count of samples taken for average */
197	struct blkg_stat		avg_queue_size_samples;
198	/* how many times this group has been removed from service tree */
199	struct blkg_stat		dequeue;
200	/* total time spent waiting for it to be assigned a timeslice. */
201	struct blkg_stat		group_wait_time;
202	/* time spent idling for this blkcg_gq */
203	struct blkg_stat		idle_time;
204	/* total time with empty current active q with other requests queued */
205	struct blkg_stat		empty_time;
206	/* fields after this shouldn't be cleared on stat reset */
207	uint64_t			start_group_wait_time;
208	uint64_t			start_idle_time;
209	uint64_t			start_empty_time;
210	uint16_t			flags;
211#endif	/* CONFIG_DEBUG_BLK_CGROUP */
212#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
213};
214
215/* This is per cgroup per device grouping structure */
216struct cfq_group {
217	/* must be the first member */
218	struct blkg_policy_data pd;
219
220	/* group service_tree member */
221	struct rb_node rb_node;
222
223	/* group service_tree key */
224	u64 vdisktime;
225
226	/*
227	 * The number of active cfqgs and sum of their weights under this
228	 * cfqg.  This covers this cfqg's leaf_weight and all children's
229	 * weights, but does not cover weights of further descendants.
230	 *
231	 * If a cfqg is on the service tree, it's active.  An active cfqg
232	 * also activates its parent and contributes to the children_weight
233	 * of the parent.
234	 */
235	int nr_active;
236	unsigned int children_weight;
237
238	/*
239	 * vfraction is the fraction of vdisktime that the tasks in this
240	 * cfqg are entitled to.  This is determined by compounding the
241	 * ratios walking up from this cfqg to the root.
242	 *
243	 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
244	 * vfractions on a service tree is approximately 1.  The sum may
245	 * deviate a bit due to rounding errors and fluctuations caused by
246	 * cfqgs entering and leaving the service tree.
247	 */
248	unsigned int vfraction;
249
250	/*
251	 * There are two weights - (internal) weight is the weight of this
252	 * cfqg against the sibling cfqgs.  leaf_weight is the wight of
253	 * this cfqg against the child cfqgs.  For the root cfqg, both
254	 * weights are kept in sync for backward compatibility.
255	 */
256	unsigned int weight;
257	unsigned int new_weight;
258	unsigned int dev_weight;
259
260	unsigned int leaf_weight;
261	unsigned int new_leaf_weight;
262	unsigned int dev_leaf_weight;
263
264	/* number of cfqq currently on this group */
265	int nr_cfqq;
266
267	/*
268	 * Per group busy queues average. Useful for workload slice calc. We
269	 * create the array for each prio class but at run time it is used
270	 * only for RT and BE class and slot for IDLE class remains unused.
271	 * This is primarily done to avoid confusion and a gcc warning.
272	 */
273	unsigned int busy_queues_avg[CFQ_PRIO_NR];
274	/*
275	 * rr lists of queues with requests. We maintain service trees for
276	 * RT and BE classes. These trees are subdivided in subclasses
277	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
278	 * class there is no subclassification and all the cfq queues go on
279	 * a single tree service_tree_idle.
280	 * Counts are embedded in the cfq_rb_root
281	 */
282	struct cfq_rb_root service_trees[2][3];
283	struct cfq_rb_root service_tree_idle;
284
285	unsigned long saved_wl_slice;
286	enum wl_type_t saved_wl_type;
287	enum wl_class_t saved_wl_class;
288
289	/* number of requests that are on the dispatch list or inside driver */
290	int dispatched;
291	struct cfq_ttime ttime;
292	struct cfqg_stats stats;	/* stats for this cfqg */
293	struct cfqg_stats dead_stats;	/* stats pushed from dead children */
294};
295
296struct cfq_io_cq {
297	struct io_cq		icq;		/* must be the first member */
298	struct cfq_queue	*cfqq[2];
299	struct cfq_ttime	ttime;
300	int			ioprio;		/* the current ioprio */
301#ifdef CONFIG_CFQ_GROUP_IOSCHED
302	uint64_t		blkcg_id;	/* the current blkcg ID */
303#endif
304};
305
306/*
307 * Per block device queue structure
308 */
309struct cfq_data {
310	struct request_queue *queue;
311	/* Root service tree for cfq_groups */
312	struct cfq_rb_root grp_service_tree;
313	struct cfq_group *root_group;
314
315	/*
316	 * The priority currently being served
317	 */
318	enum wl_class_t serving_wl_class;
319	enum wl_type_t serving_wl_type;
320	unsigned long workload_expires;
321	struct cfq_group *serving_group;
322
323	/*
324	 * Each priority tree is sorted by next_request position.  These
325	 * trees are used when determining if two or more queues are
326	 * interleaving requests (see cfq_close_cooperator).
327	 */
328	struct rb_root prio_trees[CFQ_PRIO_LISTS];
329
330	unsigned int busy_queues;
331	unsigned int busy_sync_queues;
332
333	int rq_in_driver;
334	int rq_in_flight[2];
335
336	/*
337	 * queue-depth detection
338	 */
339	int rq_queued;
340	int hw_tag;
341	/*
342	 * hw_tag can be
343	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
344	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
345	 *  0 => no NCQ
346	 */
347	int hw_tag_est_depth;
348	unsigned int hw_tag_samples;
349
350	/*
351	 * idle window management
352	 */
353	struct timer_list idle_slice_timer;
354	struct work_struct unplug_work;
355
356	struct cfq_queue *active_queue;
357	struct cfq_io_cq *active_cic;
358
359	/*
360	 * async queue for each priority case
361	 */
362	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
363	struct cfq_queue *async_idle_cfqq;
364
365	sector_t last_position;
366
367	/*
368	 * tunables, see top of file
369	 */
370	unsigned int cfq_quantum;
371	unsigned int cfq_fifo_expire[2];
372	unsigned int cfq_back_penalty;
373	unsigned int cfq_back_max;
374	unsigned int cfq_slice[2];
375	unsigned int cfq_slice_async_rq;
376	unsigned int cfq_slice_idle;
377	unsigned int cfq_group_idle;
378	unsigned int cfq_latency;
379	unsigned int cfq_target_latency;
380
381	/*
382	 * Fallback dummy cfqq for extreme OOM conditions
383	 */
384	struct cfq_queue oom_cfqq;
385
386	unsigned long last_delayed_sync;
387};
388
389static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
390
391static struct cfq_rb_root *st_for(struct cfq_group *cfqg,
392					    enum wl_class_t class,
393					    enum wl_type_t type)
394{
395	if (!cfqg)
396		return NULL;
397
398	if (class == IDLE_WORKLOAD)
399		return &cfqg->service_tree_idle;
400
401	return &cfqg->service_trees[class][type];
402}
403
404enum cfqq_state_flags {
405	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
406	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
407	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
408	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
409	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
410	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
411	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
412	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
413	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
414	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
415	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
416	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
417	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
418};
419
420#define CFQ_CFQQ_FNS(name)						\
421static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
422{									\
423	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
424}									\
425static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
426{									\
427	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
428}									\
429static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
430{									\
431	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
432}
433
434CFQ_CFQQ_FNS(on_rr);
435CFQ_CFQQ_FNS(wait_request);
436CFQ_CFQQ_FNS(must_dispatch);
437CFQ_CFQQ_FNS(must_alloc_slice);
438CFQ_CFQQ_FNS(fifo_expire);
439CFQ_CFQQ_FNS(idle_window);
440CFQ_CFQQ_FNS(prio_changed);
441CFQ_CFQQ_FNS(slice_new);
442CFQ_CFQQ_FNS(sync);
443CFQ_CFQQ_FNS(coop);
444CFQ_CFQQ_FNS(split_coop);
445CFQ_CFQQ_FNS(deep);
446CFQ_CFQQ_FNS(wait_busy);
447#undef CFQ_CFQQ_FNS
448
449static inline struct cfq_group *pd_to_cfqg(struct blkg_policy_data *pd)
450{
451	return pd ? container_of(pd, struct cfq_group, pd) : NULL;
452}
453
454static inline struct blkcg_gq *cfqg_to_blkg(struct cfq_group *cfqg)
455{
456	return pd_to_blkg(&cfqg->pd);
457}
458
459#if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
460
461/* cfqg stats flags */
462enum cfqg_stats_flags {
463	CFQG_stats_waiting = 0,
464	CFQG_stats_idling,
465	CFQG_stats_empty,
466};
467
468#define CFQG_FLAG_FNS(name)						\
469static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats)	\
470{									\
471	stats->flags |= (1 << CFQG_stats_##name);			\
472}									\
473static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats)	\
474{									\
475	stats->flags &= ~(1 << CFQG_stats_##name);			\
476}									\
477static inline int cfqg_stats_##name(struct cfqg_stats *stats)		\
478{									\
479	return (stats->flags & (1 << CFQG_stats_##name)) != 0;		\
480}									\
481
482CFQG_FLAG_FNS(waiting)
483CFQG_FLAG_FNS(idling)
484CFQG_FLAG_FNS(empty)
485#undef CFQG_FLAG_FNS
486
487/* This should be called with the queue_lock held. */
488static void cfqg_stats_update_group_wait_time(struct cfqg_stats *stats)
489{
490	unsigned long long now;
491
492	if (!cfqg_stats_waiting(stats))
493		return;
494
495	now = sched_clock();
496	if (time_after64(now, stats->start_group_wait_time))
497		blkg_stat_add(&stats->group_wait_time,
498			      now - stats->start_group_wait_time);
499	cfqg_stats_clear_waiting(stats);
500}
501
502/* This should be called with the queue_lock held. */
503static void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg,
504						 struct cfq_group *curr_cfqg)
505{
506	struct cfqg_stats *stats = &cfqg->stats;
507
508	if (cfqg_stats_waiting(stats))
509		return;
510	if (cfqg == curr_cfqg)
511		return;
512	stats->start_group_wait_time = sched_clock();
513	cfqg_stats_mark_waiting(stats);
514}
515
516/* This should be called with the queue_lock held. */
517static void cfqg_stats_end_empty_time(struct cfqg_stats *stats)
518{
519	unsigned long long now;
520
521	if (!cfqg_stats_empty(stats))
522		return;
523
524	now = sched_clock();
525	if (time_after64(now, stats->start_empty_time))
526		blkg_stat_add(&stats->empty_time,
527			      now - stats->start_empty_time);
528	cfqg_stats_clear_empty(stats);
529}
530
531static void cfqg_stats_update_dequeue(struct cfq_group *cfqg)
532{
533	blkg_stat_add(&cfqg->stats.dequeue, 1);
534}
535
536static void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg)
537{
538	struct cfqg_stats *stats = &cfqg->stats;
539
540	if (blkg_rwstat_total(&stats->queued))
541		return;
542
543	/*
544	 * group is already marked empty. This can happen if cfqq got new
545	 * request in parent group and moved to this group while being added
546	 * to service tree. Just ignore the event and move on.
547	 */
548	if (cfqg_stats_empty(stats))
549		return;
550
551	stats->start_empty_time = sched_clock();
552	cfqg_stats_mark_empty(stats);
553}
554
555static void cfqg_stats_update_idle_time(struct cfq_group *cfqg)
556{
557	struct cfqg_stats *stats = &cfqg->stats;
558
559	if (cfqg_stats_idling(stats)) {
560		unsigned long long now = sched_clock();
561
562		if (time_after64(now, stats->start_idle_time))
563			blkg_stat_add(&stats->idle_time,
564				      now - stats->start_idle_time);
565		cfqg_stats_clear_idling(stats);
566	}
567}
568
569static void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg)
570{
571	struct cfqg_stats *stats = &cfqg->stats;
572
573	BUG_ON(cfqg_stats_idling(stats));
574
575	stats->start_idle_time = sched_clock();
576	cfqg_stats_mark_idling(stats);
577}
578
579static void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg)
580{
581	struct cfqg_stats *stats = &cfqg->stats;
582
583	blkg_stat_add(&stats->avg_queue_size_sum,
584		      blkg_rwstat_total(&stats->queued));
585	blkg_stat_add(&stats->avg_queue_size_samples, 1);
586	cfqg_stats_update_group_wait_time(stats);
587}
588
589#else	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
590
591static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group *cfqg, struct cfq_group *curr_cfqg) { }
592static inline void cfqg_stats_end_empty_time(struct cfqg_stats *stats) { }
593static inline void cfqg_stats_update_dequeue(struct cfq_group *cfqg) { }
594static inline void cfqg_stats_set_start_empty_time(struct cfq_group *cfqg) { }
595static inline void cfqg_stats_update_idle_time(struct cfq_group *cfqg) { }
596static inline void cfqg_stats_set_start_idle_time(struct cfq_group *cfqg) { }
597static inline void cfqg_stats_update_avg_queue_size(struct cfq_group *cfqg) { }
598
599#endif	/* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
600
601#ifdef CONFIG_CFQ_GROUP_IOSCHED
602
603static struct blkcg_policy blkcg_policy_cfq;
604
605static inline struct cfq_group *blkg_to_cfqg(struct blkcg_gq *blkg)
606{
607	return pd_to_cfqg(blkg_to_pd(blkg, &blkcg_policy_cfq));
608}
609
610static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg)
611{
612	struct blkcg_gq *pblkg = cfqg_to_blkg(cfqg)->parent;
613
614	return pblkg ? blkg_to_cfqg(pblkg) : NULL;
615}
616
617static inline void cfqg_get(struct cfq_group *cfqg)
618{
619	return blkg_get(cfqg_to_blkg(cfqg));
620}
621
622static inline void cfqg_put(struct cfq_group *cfqg)
623{
624	return blkg_put(cfqg_to_blkg(cfqg));
625}
626
627#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	do {			\
628	char __pbuf[128];						\
629									\
630	blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf));	\
631	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
632			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
633			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
634			  __pbuf, ##args);				\
635} while (0)
636
637#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)	do {			\
638	char __pbuf[128];						\
639									\
640	blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf));		\
641	blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args);	\
642} while (0)
643
644static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
645					    struct cfq_group *curr_cfqg, int rw)
646{
647	blkg_rwstat_add(&cfqg->stats.queued, rw, 1);
648	cfqg_stats_end_empty_time(&cfqg->stats);
649	cfqg_stats_set_start_group_wait_time(cfqg, curr_cfqg);
650}
651
652static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
653			unsigned long time, unsigned long unaccounted_time)
654{
655	blkg_stat_add(&cfqg->stats.time, time);
656#ifdef CONFIG_DEBUG_BLK_CGROUP
657	blkg_stat_add(&cfqg->stats.unaccounted_time, unaccounted_time);
658#endif
659}
660
661static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw)
662{
663	blkg_rwstat_add(&cfqg->stats.queued, rw, -1);
664}
665
666static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw)
667{
668	blkg_rwstat_add(&cfqg->stats.merged, rw, 1);
669}
670
671static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
672					      uint64_t bytes, int rw)
673{
674	blkg_stat_add(&cfqg->stats.sectors, bytes >> 9);
675	blkg_rwstat_add(&cfqg->stats.serviced, rw, 1);
676	blkg_rwstat_add(&cfqg->stats.service_bytes, rw, bytes);
677}
678
679static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
680			uint64_t start_time, uint64_t io_start_time, int rw)
681{
682	struct cfqg_stats *stats = &cfqg->stats;
683	unsigned long long now = sched_clock();
684
685	if (time_after64(now, io_start_time))
686		blkg_rwstat_add(&stats->service_time, rw, now - io_start_time);
687	if (time_after64(io_start_time, start_time))
688		blkg_rwstat_add(&stats->wait_time, rw,
689				io_start_time - start_time);
690}
691
692/* @stats = 0 */
693static void cfqg_stats_reset(struct cfqg_stats *stats)
694{
695	/* queued stats shouldn't be cleared */
696	blkg_rwstat_reset(&stats->service_bytes);
697	blkg_rwstat_reset(&stats->serviced);
698	blkg_rwstat_reset(&stats->merged);
699	blkg_rwstat_reset(&stats->service_time);
700	blkg_rwstat_reset(&stats->wait_time);
701	blkg_stat_reset(&stats->time);
702#ifdef CONFIG_DEBUG_BLK_CGROUP
703	blkg_stat_reset(&stats->unaccounted_time);
704	blkg_stat_reset(&stats->avg_queue_size_sum);
705	blkg_stat_reset(&stats->avg_queue_size_samples);
706	blkg_stat_reset(&stats->dequeue);
707	blkg_stat_reset(&stats->group_wait_time);
708	blkg_stat_reset(&stats->idle_time);
709	blkg_stat_reset(&stats->empty_time);
710#endif
711}
712
713/* @to += @from */
714static void cfqg_stats_merge(struct cfqg_stats *to, struct cfqg_stats *from)
715{
716	/* queued stats shouldn't be cleared */
717	blkg_rwstat_merge(&to->service_bytes, &from->service_bytes);
718	blkg_rwstat_merge(&to->serviced, &from->serviced);
719	blkg_rwstat_merge(&to->merged, &from->merged);
720	blkg_rwstat_merge(&to->service_time, &from->service_time);
721	blkg_rwstat_merge(&to->wait_time, &from->wait_time);
722	blkg_stat_merge(&from->time, &from->time);
723#ifdef CONFIG_DEBUG_BLK_CGROUP
724	blkg_stat_merge(&to->unaccounted_time, &from->unaccounted_time);
725	blkg_stat_merge(&to->avg_queue_size_sum, &from->avg_queue_size_sum);
726	blkg_stat_merge(&to->avg_queue_size_samples, &from->avg_queue_size_samples);
727	blkg_stat_merge(&to->dequeue, &from->dequeue);
728	blkg_stat_merge(&to->group_wait_time, &from->group_wait_time);
729	blkg_stat_merge(&to->idle_time, &from->idle_time);
730	blkg_stat_merge(&to->empty_time, &from->empty_time);
731#endif
732}
733
734/*
735 * Transfer @cfqg's stats to its parent's dead_stats so that the ancestors'
736 * recursive stats can still account for the amount used by this cfqg after
737 * it's gone.
738 */
739static void cfqg_stats_xfer_dead(struct cfq_group *cfqg)
740{
741	struct cfq_group *parent = cfqg_parent(cfqg);
742
743	lockdep_assert_held(cfqg_to_blkg(cfqg)->q->queue_lock);
744
745	if (unlikely(!parent))
746		return;
747
748	cfqg_stats_merge(&parent->dead_stats, &cfqg->stats);
749	cfqg_stats_merge(&parent->dead_stats, &cfqg->dead_stats);
750	cfqg_stats_reset(&cfqg->stats);
751	cfqg_stats_reset(&cfqg->dead_stats);
752}
753
754#else	/* CONFIG_CFQ_GROUP_IOSCHED */
755
756static inline struct cfq_group *cfqg_parent(struct cfq_group *cfqg) { return NULL; }
757static inline void cfqg_get(struct cfq_group *cfqg) { }
758static inline void cfqg_put(struct cfq_group *cfqg) { }
759
760#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
761	blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid,	\
762			cfq_cfqq_sync((cfqq)) ? 'S' : 'A',		\
763			cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
764				##args)
765#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
766
767static inline void cfqg_stats_update_io_add(struct cfq_group *cfqg,
768			struct cfq_group *curr_cfqg, int rw) { }
769static inline void cfqg_stats_update_timeslice_used(struct cfq_group *cfqg,
770			unsigned long time, unsigned long unaccounted_time) { }
771static inline void cfqg_stats_update_io_remove(struct cfq_group *cfqg, int rw) { }
772static inline void cfqg_stats_update_io_merged(struct cfq_group *cfqg, int rw) { }
773static inline void cfqg_stats_update_dispatch(struct cfq_group *cfqg,
774					      uint64_t bytes, int rw) { }
775static inline void cfqg_stats_update_completion(struct cfq_group *cfqg,
776			uint64_t start_time, uint64_t io_start_time, int rw) { }
777
778#endif	/* CONFIG_CFQ_GROUP_IOSCHED */
779
780#define cfq_log(cfqd, fmt, args...)	\
781	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
782
783/* Traverses through cfq group service trees */
784#define for_each_cfqg_st(cfqg, i, j, st) \
785	for (i = 0; i <= IDLE_WORKLOAD; i++) \
786		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
787			: &cfqg->service_tree_idle; \
788			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
789			(i == IDLE_WORKLOAD && j == 0); \
790			j++, st = i < IDLE_WORKLOAD ? \
791			&cfqg->service_trees[i][j]: NULL) \
792
793static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
794	struct cfq_ttime *ttime, bool group_idle)
795{
796	unsigned long slice;
797	if (!sample_valid(ttime->ttime_samples))
798		return false;
799	if (group_idle)
800		slice = cfqd->cfq_group_idle;
801	else
802		slice = cfqd->cfq_slice_idle;
803	return ttime->ttime_mean > slice;
804}
805
806static inline bool iops_mode(struct cfq_data *cfqd)
807{
808	/*
809	 * If we are not idling on queues and it is a NCQ drive, parallel
810	 * execution of requests is on and measuring time is not possible
811	 * in most of the cases until and unless we drive shallower queue
812	 * depths and that becomes a performance bottleneck. In such cases
813	 * switch to start providing fairness in terms of number of IOs.
814	 */
815	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
816		return true;
817	else
818		return false;
819}
820
821static inline enum wl_class_t cfqq_class(struct cfq_queue *cfqq)
822{
823	if (cfq_class_idle(cfqq))
824		return IDLE_WORKLOAD;
825	if (cfq_class_rt(cfqq))
826		return RT_WORKLOAD;
827	return BE_WORKLOAD;
828}
829
830
831static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
832{
833	if (!cfq_cfqq_sync(cfqq))
834		return ASYNC_WORKLOAD;
835	if (!cfq_cfqq_idle_window(cfqq))
836		return SYNC_NOIDLE_WORKLOAD;
837	return SYNC_WORKLOAD;
838}
839
840static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class,
841					struct cfq_data *cfqd,
842					struct cfq_group *cfqg)
843{
844	if (wl_class == IDLE_WORKLOAD)
845		return cfqg->service_tree_idle.count;
846
847	return cfqg->service_trees[wl_class][ASYNC_WORKLOAD].count +
848		cfqg->service_trees[wl_class][SYNC_NOIDLE_WORKLOAD].count +
849		cfqg->service_trees[wl_class][SYNC_WORKLOAD].count;
850}
851
852static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
853					struct cfq_group *cfqg)
854{
855	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count +
856		cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
857}
858
859static void cfq_dispatch_insert(struct request_queue *, struct request *);
860static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, bool is_sync,
861				       struct cfq_io_cq *cic, struct bio *bio,
862				       gfp_t gfp_mask);
863
864static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
865{
866	/* cic->icq is the first member, %NULL will convert to %NULL */
867	return container_of(icq, struct cfq_io_cq, icq);
868}
869
870static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
871					       struct io_context *ioc)
872{
873	if (ioc)
874		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
875	return NULL;
876}
877
878static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
879{
880	return cic->cfqq[is_sync];
881}
882
883static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
884				bool is_sync)
885{
886	cic->cfqq[is_sync] = cfqq;
887}
888
889static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
890{
891	return cic->icq.q->elevator->elevator_data;
892}
893
894/*
895 * We regard a request as SYNC, if it's either a read or has the SYNC bit
896 * set (in which case it could also be direct WRITE).
897 */
898static inline bool cfq_bio_sync(struct bio *bio)
899{
900	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
901}
902
903/*
904 * scheduler run of queue, if there are requests pending and no one in the
905 * driver that will restart queueing
906 */
907static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
908{
909	if (cfqd->busy_queues) {
910		cfq_log(cfqd, "schedule dispatch");
911		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
912	}
913}
914
915/*
916 * Scale schedule slice based on io priority. Use the sync time slice only
917 * if a queue is marked sync and has sync io queued. A sync queue with async
918 * io only, should not get full sync slice length.
919 */
920static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
921				 unsigned short prio)
922{
923	const int base_slice = cfqd->cfq_slice[sync];
924
925	WARN_ON(prio >= IOPRIO_BE_NR);
926
927	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
928}
929
930static inline int
931cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
932{
933	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
934}
935
936/**
937 * cfqg_scale_charge - scale disk time charge according to cfqg weight
938 * @charge: disk time being charged
939 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
940 *
941 * Scale @charge according to @vfraction, which is in range (0, 1].  The
942 * scaling is inversely proportional.
943 *
944 * scaled = charge / vfraction
945 *
946 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
947 */
948static inline u64 cfqg_scale_charge(unsigned long charge,
949				    unsigned int vfraction)
950{
951	u64 c = charge << CFQ_SERVICE_SHIFT;	/* make it fixed point */
952
953	/* charge / vfraction */
954	c <<= CFQ_SERVICE_SHIFT;
955	do_div(c, vfraction);
956	return c;
957}
958
959static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
960{
961	s64 delta = (s64)(vdisktime - min_vdisktime);
962	if (delta > 0)
963		min_vdisktime = vdisktime;
964
965	return min_vdisktime;
966}
967
968static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
969{
970	s64 delta = (s64)(vdisktime - min_vdisktime);
971	if (delta < 0)
972		min_vdisktime = vdisktime;
973
974	return min_vdisktime;
975}
976
977static void update_min_vdisktime(struct cfq_rb_root *st)
978{
979	struct cfq_group *cfqg;
980
981	if (st->left) {
982		cfqg = rb_entry_cfqg(st->left);
983		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
984						  cfqg->vdisktime);
985	}
986}
987
988/*
989 * get averaged number of queues of RT/BE priority.
990 * average is updated, with a formula that gives more weight to higher numbers,
991 * to quickly follows sudden increases and decrease slowly
992 */
993
994static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
995					struct cfq_group *cfqg, bool rt)
996{
997	unsigned min_q, max_q;
998	unsigned mult  = cfq_hist_divisor - 1;
999	unsigned round = cfq_hist_divisor / 2;
1000	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
1001
1002	min_q = min(cfqg->busy_queues_avg[rt], busy);
1003	max_q = max(cfqg->busy_queues_avg[rt], busy);
1004	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
1005		cfq_hist_divisor;
1006	return cfqg->busy_queues_avg[rt];
1007}
1008
1009static inline unsigned
1010cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
1011{
1012	return cfqd->cfq_target_latency * cfqg->vfraction >> CFQ_SERVICE_SHIFT;
1013}
1014
1015static inline unsigned
1016cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1017{
1018	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
1019	if (cfqd->cfq_latency) {
1020		/*
1021		 * interested queues (we consider only the ones with the same
1022		 * priority class in the cfq group)
1023		 */
1024		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
1025						cfq_class_rt(cfqq));
1026		unsigned sync_slice = cfqd->cfq_slice[1];
1027		unsigned expect_latency = sync_slice * iq;
1028		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
1029
1030		if (expect_latency > group_slice) {
1031			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
1032			/* scale low_slice according to IO priority
1033			 * and sync vs async */
1034			unsigned low_slice =
1035				min(slice, base_low_slice * slice / sync_slice);
1036			/* the adapted slice value is scaled to fit all iqs
1037			 * into the target latency */
1038			slice = max(slice * group_slice / expect_latency,
1039				    low_slice);
1040		}
1041	}
1042	return slice;
1043}
1044
1045static inline void
1046cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1047{
1048	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
1049
1050	cfqq->slice_start = jiffies;
1051	cfqq->slice_end = jiffies + slice;
1052	cfqq->allocated_slice = slice;
1053	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
1054}
1055
1056/*
1057 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1058 * isn't valid until the first request from the dispatch is activated
1059 * and the slice time set.
1060 */
1061static inline bool cfq_slice_used(struct cfq_queue *cfqq)
1062{
1063	if (cfq_cfqq_slice_new(cfqq))
1064		return false;
1065	if (time_before(jiffies, cfqq->slice_end))
1066		return false;
1067
1068	return true;
1069}
1070
1071/*
1072 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1073 * We choose the request that is closest to the head right now. Distance
1074 * behind the head is penalized and only allowed to a certain extent.
1075 */
1076static struct request *
1077cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1078{
1079	sector_t s1, s2, d1 = 0, d2 = 0;
1080	unsigned long back_max;
1081#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
1082#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
1083	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1084
1085	if (rq1 == NULL || rq1 == rq2)
1086		return rq2;
1087	if (rq2 == NULL)
1088		return rq1;
1089
1090	if (rq_is_sync(rq1) != rq_is_sync(rq2))
1091		return rq_is_sync(rq1) ? rq1 : rq2;
1092
1093	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
1094		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
1095
1096	s1 = blk_rq_pos(rq1);
1097	s2 = blk_rq_pos(rq2);
1098
1099	/*
1100	 * by definition, 1KiB is 2 sectors
1101	 */
1102	back_max = cfqd->cfq_back_max * 2;
1103
1104	/*
1105	 * Strict one way elevator _except_ in the case where we allow
1106	 * short backward seeks which are biased as twice the cost of a
1107	 * similar forward seek.
1108	 */
1109	if (s1 >= last)
1110		d1 = s1 - last;
1111	else if (s1 + back_max >= last)
1112		d1 = (last - s1) * cfqd->cfq_back_penalty;
1113	else
1114		wrap |= CFQ_RQ1_WRAP;
1115
1116	if (s2 >= last)
1117		d2 = s2 - last;
1118	else if (s2 + back_max >= last)
1119		d2 = (last - s2) * cfqd->cfq_back_penalty;
1120	else
1121		wrap |= CFQ_RQ2_WRAP;
1122
1123	/* Found required data */
1124
1125	/*
1126	 * By doing switch() on the bit mask "wrap" we avoid having to
1127	 * check two variables for all permutations: --> faster!
1128	 */
1129	switch (wrap) {
1130	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1131		if (d1 < d2)
1132			return rq1;
1133		else if (d2 < d1)
1134			return rq2;
1135		else {
1136			if (s1 >= s2)
1137				return rq1;
1138			else
1139				return rq2;
1140		}
1141
1142	case CFQ_RQ2_WRAP:
1143		return rq1;
1144	case CFQ_RQ1_WRAP:
1145		return rq2;
1146	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
1147	default:
1148		/*
1149		 * Since both rqs are wrapped,
1150		 * start with the one that's further behind head
1151		 * (--> only *one* back seek required),
1152		 * since back seek takes more time than forward.
1153		 */
1154		if (s1 <= s2)
1155			return rq1;
1156		else
1157			return rq2;
1158	}
1159}
1160
1161/*
1162 * The below is leftmost cache rbtree addon
1163 */
1164static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
1165{
1166	/* Service tree is empty */
1167	if (!root->count)
1168		return NULL;
1169
1170	if (!root->left)
1171		root->left = rb_first(&root->rb);
1172
1173	if (root->left)
1174		return rb_entry(root->left, struct cfq_queue, rb_node);
1175
1176	return NULL;
1177}
1178
1179static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
1180{
1181	if (!root->left)
1182		root->left = rb_first(&root->rb);
1183
1184	if (root->left)
1185		return rb_entry_cfqg(root->left);
1186
1187	return NULL;
1188}
1189
1190static void rb_erase_init(struct rb_node *n, struct rb_root *root)
1191{
1192	rb_erase(n, root);
1193	RB_CLEAR_NODE(n);
1194}
1195
1196static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
1197{
1198	if (root->left == n)
1199		root->left = NULL;
1200	rb_erase_init(n, &root->rb);
1201	--root->count;
1202}
1203
1204/*
1205 * would be nice to take fifo expire time into account as well
1206 */
1207static struct request *
1208cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1209		  struct request *last)
1210{
1211	struct rb_node *rbnext = rb_next(&last->rb_node);
1212	struct rb_node *rbprev = rb_prev(&last->rb_node);
1213	struct request *next = NULL, *prev = NULL;
1214
1215	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1216
1217	if (rbprev)
1218		prev = rb_entry_rq(rbprev);
1219
1220	if (rbnext)
1221		next = rb_entry_rq(rbnext);
1222	else {
1223		rbnext = rb_first(&cfqq->sort_list);
1224		if (rbnext && rbnext != &last->rb_node)
1225			next = rb_entry_rq(rbnext);
1226	}
1227
1228	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1229}
1230
1231static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
1232				      struct cfq_queue *cfqq)
1233{
1234	/*
1235	 * just an approximation, should be ok.
1236	 */
1237	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
1238		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
1239}
1240
1241static inline s64
1242cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
1243{
1244	return cfqg->vdisktime - st->min_vdisktime;
1245}
1246
1247static void
1248__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1249{
1250	struct rb_node **node = &st->rb.rb_node;
1251	struct rb_node *parent = NULL;
1252	struct cfq_group *__cfqg;
1253	s64 key = cfqg_key(st, cfqg);
1254	int left = 1;
1255
1256	while (*node != NULL) {
1257		parent = *node;
1258		__cfqg = rb_entry_cfqg(parent);
1259
1260		if (key < cfqg_key(st, __cfqg))
1261			node = &parent->rb_left;
1262		else {
1263			node = &parent->rb_right;
1264			left = 0;
1265		}
1266	}
1267
1268	if (left)
1269		st->left = &cfqg->rb_node;
1270
1271	rb_link_node(&cfqg->rb_node, parent, node);
1272	rb_insert_color(&cfqg->rb_node, &st->rb);
1273}
1274
1275static void
1276cfq_update_group_weight(struct cfq_group *cfqg)
1277{
1278	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1279
1280	if (cfqg->new_weight) {
1281		cfqg->weight = cfqg->new_weight;
1282		cfqg->new_weight = 0;
1283	}
1284
1285	if (cfqg->new_leaf_weight) {
1286		cfqg->leaf_weight = cfqg->new_leaf_weight;
1287		cfqg->new_leaf_weight = 0;
1288	}
1289}
1290
1291static void
1292cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
1293{
1294	unsigned int vfr = 1 << CFQ_SERVICE_SHIFT;	/* start with 1 */
1295	struct cfq_group *pos = cfqg;
1296	struct cfq_group *parent;
1297	bool propagate;
1298
1299	/* add to the service tree */
1300	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
1301
1302	cfq_update_group_weight(cfqg);
1303	__cfq_group_service_tree_add(st, cfqg);
1304
1305	/*
1306	 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1307	 * entitled to.  vfraction is calculated by walking the tree
1308	 * towards the root calculating the fraction it has at each level.
1309	 * The compounded ratio is how much vfraction @cfqg owns.
1310	 *
1311	 * Start with the proportion tasks in this cfqg has against active
1312	 * children cfqgs - its leaf_weight against children_weight.
1313	 */
1314	propagate = !pos->nr_active++;
1315	pos->children_weight += pos->leaf_weight;
1316	vfr = vfr * pos->leaf_weight / pos->children_weight;
1317
1318	/*
1319	 * Compound ->weight walking up the tree.  Both activation and
1320	 * vfraction calculation are done in the same loop.  Propagation
1321	 * stops once an already activated node is met.  vfraction
1322	 * calculation should always continue to the root.
1323	 */
1324	while ((parent = cfqg_parent(pos))) {
1325		if (propagate) {
1326			propagate = !parent->nr_active++;
1327			parent->children_weight += pos->weight;
1328		}
1329		vfr = vfr * pos->weight / parent->children_weight;
1330		pos = parent;
1331	}
1332
1333	cfqg->vfraction = max_t(unsigned, vfr, 1);
1334}
1335
1336static void
1337cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1338{
1339	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1340	struct cfq_group *__cfqg;
1341	struct rb_node *n;
1342
1343	cfqg->nr_cfqq++;
1344	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1345		return;
1346
1347	/*
1348	 * Currently put the group at the end. Later implement something
1349	 * so that groups get lesser vtime based on their weights, so that
1350	 * if group does not loose all if it was not continuously backlogged.
1351	 */
1352	n = rb_last(&st->rb);
1353	if (n) {
1354		__cfqg = rb_entry_cfqg(n);
1355		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
1356	} else
1357		cfqg->vdisktime = st->min_vdisktime;
1358	cfq_group_service_tree_add(st, cfqg);
1359}
1360
1361static void
1362cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
1363{
1364	struct cfq_group *pos = cfqg;
1365	bool propagate;
1366
1367	/*
1368	 * Undo activation from cfq_group_service_tree_add().  Deactivate
1369	 * @cfqg and propagate deactivation upwards.
1370	 */
1371	propagate = !--pos->nr_active;
1372	pos->children_weight -= pos->leaf_weight;
1373
1374	while (propagate) {
1375		struct cfq_group *parent = cfqg_parent(pos);
1376
1377		/* @pos has 0 nr_active at this point */
1378		WARN_ON_ONCE(pos->children_weight);
1379		pos->vfraction = 0;
1380
1381		if (!parent)
1382			break;
1383
1384		propagate = !--parent->nr_active;
1385		parent->children_weight -= pos->weight;
1386		pos = parent;
1387	}
1388
1389	/* remove from the service tree */
1390	if (!RB_EMPTY_NODE(&cfqg->rb_node))
1391		cfq_rb_erase(&cfqg->rb_node, st);
1392}
1393
1394static void
1395cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1396{
1397	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1398
1399	BUG_ON(cfqg->nr_cfqq < 1);
1400	cfqg->nr_cfqq--;
1401
1402	/* If there are other cfq queues under this group, don't delete it */
1403	if (cfqg->nr_cfqq)
1404		return;
1405
1406	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
1407	cfq_group_service_tree_del(st, cfqg);
1408	cfqg->saved_wl_slice = 0;
1409	cfqg_stats_update_dequeue(cfqg);
1410}
1411
1412static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
1413						unsigned int *unaccounted_time)
1414{
1415	unsigned int slice_used;
1416
1417	/*
1418	 * Queue got expired before even a single request completed or
1419	 * got expired immediately after first request completion.
1420	 */
1421	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
1422		/*
1423		 * Also charge the seek time incurred to the group, otherwise
1424		 * if there are mutiple queues in the group, each can dispatch
1425		 * a single request on seeky media and cause lots of seek time
1426		 * and group will never know it.
1427		 */
1428		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
1429					1);
1430	} else {
1431		slice_used = jiffies - cfqq->slice_start;
1432		if (slice_used > cfqq->allocated_slice) {
1433			*unaccounted_time = slice_used - cfqq->allocated_slice;
1434			slice_used = cfqq->allocated_slice;
1435		}
1436		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
1437			*unaccounted_time += cfqq->slice_start -
1438					cfqq->dispatch_start;
1439	}
1440
1441	return slice_used;
1442}
1443
1444static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
1445				struct cfq_queue *cfqq)
1446{
1447	struct cfq_rb_root *st = &cfqd->grp_service_tree;
1448	unsigned int used_sl, charge, unaccounted_sl = 0;
1449	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
1450			- cfqg->service_tree_idle.count;
1451	unsigned int vfr;
1452
1453	BUG_ON(nr_sync < 0);
1454	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
1455
1456	if (iops_mode(cfqd))
1457		charge = cfqq->slice_dispatch;
1458	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
1459		charge = cfqq->allocated_slice;
1460
1461	/*
1462	 * Can't update vdisktime while on service tree and cfqg->vfraction
1463	 * is valid only while on it.  Cache vfr, leave the service tree,
1464	 * update vdisktime and go back on.  The re-addition to the tree
1465	 * will also update the weights as necessary.
1466	 */
1467	vfr = cfqg->vfraction;
1468	cfq_group_service_tree_del(st, cfqg);
1469	cfqg->vdisktime += cfqg_scale_charge(charge, vfr);
1470	cfq_group_service_tree_add(st, cfqg);
1471
1472	/* This group is being expired. Save the context */
1473	if (time_after(cfqd->workload_expires, jiffies)) {
1474		cfqg->saved_wl_slice = cfqd->workload_expires
1475						- jiffies;
1476		cfqg->saved_wl_type = cfqd->serving_wl_type;
1477		cfqg->saved_wl_class = cfqd->serving_wl_class;
1478	} else
1479		cfqg->saved_wl_slice = 0;
1480
1481	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1482					st->min_vdisktime);
1483	cfq_log_cfqq(cfqq->cfqd, cfqq,
1484		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1485		     used_sl, cfqq->slice_dispatch, charge,
1486		     iops_mode(cfqd), cfqq->nr_sectors);
1487	cfqg_stats_update_timeslice_used(cfqg, used_sl, unaccounted_sl);
1488	cfqg_stats_set_start_empty_time(cfqg);
1489}
1490
1491/**
1492 * cfq_init_cfqg_base - initialize base part of a cfq_group
1493 * @cfqg: cfq_group to initialize
1494 *
1495 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1496 * is enabled or not.
1497 */
1498static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1499{
1500	struct cfq_rb_root *st;
1501	int i, j;
1502
1503	for_each_cfqg_st(cfqg, i, j, st)
1504		*st = CFQ_RB_ROOT;
1505	RB_CLEAR_NODE(&cfqg->rb_node);
1506
1507	cfqg->ttime.last_end_request = jiffies;
1508}
1509
1510#ifdef CONFIG_CFQ_GROUP_IOSCHED
1511static void cfq_pd_init(struct blkcg_gq *blkg)
1512{
1513	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1514
1515	cfq_init_cfqg_base(cfqg);
1516	cfqg->weight = blkg->blkcg->cfq_weight;
1517	cfqg->leaf_weight = blkg->blkcg->cfq_leaf_weight;
1518}
1519
1520static void cfq_pd_offline(struct blkcg_gq *blkg)
1521{
1522	/*
1523	 * @blkg is going offline and will be ignored by
1524	 * blkg_[rw]stat_recursive_sum().  Transfer stats to the parent so
1525	 * that they don't get lost.  If IOs complete after this point, the
1526	 * stats for them will be lost.  Oh well...
1527	 */
1528	cfqg_stats_xfer_dead(blkg_to_cfqg(blkg));
1529}
1530
1531/* offset delta from cfqg->stats to cfqg->dead_stats */
1532static const int dead_stats_off_delta = offsetof(struct cfq_group, dead_stats) -
1533					offsetof(struct cfq_group, stats);
1534
1535/* to be used by recursive prfill, sums live and dead stats recursively */
1536static u64 cfqg_stat_pd_recursive_sum(struct blkg_policy_data *pd, int off)
1537{
1538	u64 sum = 0;
1539
1540	sum += blkg_stat_recursive_sum(pd, off);
1541	sum += blkg_stat_recursive_sum(pd, off + dead_stats_off_delta);
1542	return sum;
1543}
1544
1545/* to be used by recursive prfill, sums live and dead rwstats recursively */
1546static struct blkg_rwstat cfqg_rwstat_pd_recursive_sum(struct blkg_policy_data *pd,
1547						       int off)
1548{
1549	struct blkg_rwstat a, b;
1550
1551	a = blkg_rwstat_recursive_sum(pd, off);
1552	b = blkg_rwstat_recursive_sum(pd, off + dead_stats_off_delta);
1553	blkg_rwstat_merge(&a, &b);
1554	return a;
1555}
1556
1557static void cfq_pd_reset_stats(struct blkcg_gq *blkg)
1558{
1559	struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1560
1561	cfqg_stats_reset(&cfqg->stats);
1562	cfqg_stats_reset(&cfqg->dead_stats);
1563}
1564
1565/*
1566 * Search for the cfq group current task belongs to. request_queue lock must
1567 * be held.
1568 */
1569static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1570						struct blkcg *blkcg)
1571{
1572	struct request_queue *q = cfqd->queue;
1573	struct cfq_group *cfqg = NULL;
1574
1575	/* avoid lookup for the common case where there's no blkcg */
1576	if (blkcg == &blkcg_root) {
1577		cfqg = cfqd->root_group;
1578	} else {
1579		struct blkcg_gq *blkg;
1580
1581		blkg = blkg_lookup_create(blkcg, q);
1582		if (!IS_ERR(blkg))
1583			cfqg = blkg_to_cfqg(blkg);
1584	}
1585
1586	return cfqg;
1587}
1588
1589static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1590{
1591	/* Currently, all async queues are mapped to root group */
1592	if (!cfq_cfqq_sync(cfqq))
1593		cfqg = cfqq->cfqd->root_group;
1594
1595	cfqq->cfqg = cfqg;
1596	/* cfqq reference on cfqg */
1597	cfqg_get(cfqg);
1598}
1599
1600static u64 cfqg_prfill_weight_device(struct seq_file *sf,
1601				     struct blkg_policy_data *pd, int off)
1602{
1603	struct cfq_group *cfqg = pd_to_cfqg(pd);
1604
1605	if (!cfqg->dev_weight)
1606		return 0;
1607	return __blkg_prfill_u64(sf, pd, cfqg->dev_weight);
1608}
1609
1610static int cfqg_print_weight_device(struct cgroup *cgrp, struct cftype *cft,
1611				    struct seq_file *sf)
1612{
1613	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1614			  cfqg_prfill_weight_device, &blkcg_policy_cfq, 0,
1615			  false);
1616	return 0;
1617}
1618
1619static u64 cfqg_prfill_leaf_weight_device(struct seq_file *sf,
1620					  struct blkg_policy_data *pd, int off)
1621{
1622	struct cfq_group *cfqg = pd_to_cfqg(pd);
1623
1624	if (!cfqg->dev_leaf_weight)
1625		return 0;
1626	return __blkg_prfill_u64(sf, pd, cfqg->dev_leaf_weight);
1627}
1628
1629static int cfqg_print_leaf_weight_device(struct cgroup *cgrp,
1630					 struct cftype *cft,
1631					 struct seq_file *sf)
1632{
1633	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp),
1634			  cfqg_prfill_leaf_weight_device, &blkcg_policy_cfq, 0,
1635			  false);
1636	return 0;
1637}
1638
1639static int cfq_print_weight(struct cgroup *cgrp, struct cftype *cft,
1640			    struct seq_file *sf)
1641{
1642	seq_printf(sf, "%u\n", cgroup_to_blkcg(cgrp)->cfq_weight);
1643	return 0;
1644}
1645
1646static int cfq_print_leaf_weight(struct cgroup *cgrp, struct cftype *cft,
1647				 struct seq_file *sf)
1648{
1649	seq_printf(sf, "%u\n",
1650		   cgroup_to_blkcg(cgrp)->cfq_leaf_weight);
1651	return 0;
1652}
1653
1654static int __cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1655				    const char *buf, bool is_leaf_weight)
1656{
1657	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1658	struct blkg_conf_ctx ctx;
1659	struct cfq_group *cfqg;
1660	int ret;
1661
1662	ret = blkg_conf_prep(blkcg, &blkcg_policy_cfq, buf, &ctx);
1663	if (ret)
1664		return ret;
1665
1666	ret = -EINVAL;
1667	cfqg = blkg_to_cfqg(ctx.blkg);
1668	if (!ctx.v || (ctx.v >= CFQ_WEIGHT_MIN && ctx.v <= CFQ_WEIGHT_MAX)) {
1669		if (!is_leaf_weight) {
1670			cfqg->dev_weight = ctx.v;
1671			cfqg->new_weight = ctx.v ?: blkcg->cfq_weight;
1672		} else {
1673			cfqg->dev_leaf_weight = ctx.v;
1674			cfqg->new_leaf_weight = ctx.v ?: blkcg->cfq_leaf_weight;
1675		}
1676		ret = 0;
1677	}
1678
1679	blkg_conf_finish(&ctx);
1680	return ret;
1681}
1682
1683static int cfqg_set_weight_device(struct cgroup *cgrp, struct cftype *cft,
1684				  const char *buf)
1685{
1686	return __cfqg_set_weight_device(cgrp, cft, buf, false);
1687}
1688
1689static int cfqg_set_leaf_weight_device(struct cgroup *cgrp, struct cftype *cft,
1690				       const char *buf)
1691{
1692	return __cfqg_set_weight_device(cgrp, cft, buf, true);
1693}
1694
1695static int __cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val,
1696			    bool is_leaf_weight)
1697{
1698	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1699	struct blkcg_gq *blkg;
1700	struct hlist_node *n;
1701
1702	if (val < CFQ_WEIGHT_MIN || val > CFQ_WEIGHT_MAX)
1703		return -EINVAL;
1704
1705	spin_lock_irq(&blkcg->lock);
1706
1707	if (!is_leaf_weight)
1708		blkcg->cfq_weight = val;
1709	else
1710		blkcg->cfq_leaf_weight = val;
1711
1712	hlist_for_each_entry(blkg, n, &blkcg->blkg_list, blkcg_node) {
1713		struct cfq_group *cfqg = blkg_to_cfqg(blkg);
1714
1715		if (!cfqg)
1716			continue;
1717
1718		if (!is_leaf_weight) {
1719			if (!cfqg->dev_weight)
1720				cfqg->new_weight = blkcg->cfq_weight;
1721		} else {
1722			if (!cfqg->dev_leaf_weight)
1723				cfqg->new_leaf_weight = blkcg->cfq_leaf_weight;
1724		}
1725	}
1726
1727	spin_unlock_irq(&blkcg->lock);
1728	return 0;
1729}
1730
1731static int cfq_set_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1732{
1733	return __cfq_set_weight(cgrp, cft, val, false);
1734}
1735
1736static int cfq_set_leaf_weight(struct cgroup *cgrp, struct cftype *cft, u64 val)
1737{
1738	return __cfq_set_weight(cgrp, cft, val, true);
1739}
1740
1741static int cfqg_print_stat(struct cgroup *cgrp, struct cftype *cft,
1742			   struct seq_file *sf)
1743{
1744	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1745
1746	blkcg_print_blkgs(sf, blkcg, blkg_prfill_stat, &blkcg_policy_cfq,
1747			  cft->private, false);
1748	return 0;
1749}
1750
1751static int cfqg_print_rwstat(struct cgroup *cgrp, struct cftype *cft,
1752			     struct seq_file *sf)
1753{
1754	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1755
1756	blkcg_print_blkgs(sf, blkcg, blkg_prfill_rwstat, &blkcg_policy_cfq,
1757			  cft->private, true);
1758	return 0;
1759}
1760
1761static u64 cfqg_prfill_stat_recursive(struct seq_file *sf,
1762				      struct blkg_policy_data *pd, int off)
1763{
1764	u64 sum = cfqg_stat_pd_recursive_sum(pd, off);
1765
1766	return __blkg_prfill_u64(sf, pd, sum);
1767}
1768
1769static u64 cfqg_prfill_rwstat_recursive(struct seq_file *sf,
1770					struct blkg_policy_data *pd, int off)
1771{
1772	struct blkg_rwstat sum = cfqg_rwstat_pd_recursive_sum(pd, off);
1773
1774	return __blkg_prfill_rwstat(sf, pd, &sum);
1775}
1776
1777static int cfqg_print_stat_recursive(struct cgroup *cgrp, struct cftype *cft,
1778				     struct seq_file *sf)
1779{
1780	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1781
1782	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_stat_recursive,
1783			  &blkcg_policy_cfq, cft->private, false);
1784	return 0;
1785}
1786
1787static int cfqg_print_rwstat_recursive(struct cgroup *cgrp, struct cftype *cft,
1788				       struct seq_file *sf)
1789{
1790	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1791
1792	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_rwstat_recursive,
1793			  &blkcg_policy_cfq, cft->private, true);
1794	return 0;
1795}
1796
1797#ifdef CONFIG_DEBUG_BLK_CGROUP
1798static u64 cfqg_prfill_avg_queue_size(struct seq_file *sf,
1799				      struct blkg_policy_data *pd, int off)
1800{
1801	struct cfq_group *cfqg = pd_to_cfqg(pd);
1802	u64 samples = blkg_stat_read(&cfqg->stats.avg_queue_size_samples);
1803	u64 v = 0;
1804
1805	if (samples) {
1806		v = blkg_stat_read(&cfqg->stats.avg_queue_size_sum);
1807		do_div(v, samples);
1808	}
1809	__blkg_prfill_u64(sf, pd, v);
1810	return 0;
1811}
1812
1813/* print avg_queue_size */
1814static int cfqg_print_avg_queue_size(struct cgroup *cgrp, struct cftype *cft,
1815				     struct seq_file *sf)
1816{
1817	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1818
1819	blkcg_print_blkgs(sf, blkcg, cfqg_prfill_avg_queue_size,
1820			  &blkcg_policy_cfq, 0, false);
1821	return 0;
1822}
1823#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1824
1825static struct cftype cfq_blkcg_files[] = {
1826	/* on root, weight is mapped to leaf_weight */
1827	{
1828		.name = "weight_device",
1829		.flags = CFTYPE_ONLY_ON_ROOT,
1830		.read_seq_string = cfqg_print_leaf_weight_device,
1831		.write_string = cfqg_set_leaf_weight_device,
1832		.max_write_len = 256,
1833	},
1834	{
1835		.name = "weight",
1836		.flags = CFTYPE_ONLY_ON_ROOT,
1837		.read_seq_string = cfq_print_leaf_weight,
1838		.write_u64 = cfq_set_leaf_weight,
1839	},
1840
1841	/* no such mapping necessary for !roots */
1842	{
1843		.name = "weight_device",
1844		.flags = CFTYPE_NOT_ON_ROOT,
1845		.read_seq_string = cfqg_print_weight_device,
1846		.write_string = cfqg_set_weight_device,
1847		.max_write_len = 256,
1848	},
1849	{
1850		.name = "weight",
1851		.flags = CFTYPE_NOT_ON_ROOT,
1852		.read_seq_string = cfq_print_weight,
1853		.write_u64 = cfq_set_weight,
1854	},
1855
1856	{
1857		.name = "leaf_weight_device",
1858		.read_seq_string = cfqg_print_leaf_weight_device,
1859		.write_string = cfqg_set_leaf_weight_device,
1860		.max_write_len = 256,
1861	},
1862	{
1863		.name = "leaf_weight",
1864		.read_seq_string = cfq_print_leaf_weight,
1865		.write_u64 = cfq_set_leaf_weight,
1866	},
1867
1868	/* statistics, covers only the tasks in the cfqg */
1869	{
1870		.name = "time",
1871		.private = offsetof(struct cfq_group, stats.time),
1872		.read_seq_string = cfqg_print_stat,
1873	},
1874	{
1875		.name = "sectors",
1876		.private = offsetof(struct cfq_group, stats.sectors),
1877		.read_seq_string = cfqg_print_stat,
1878	},
1879	{
1880		.name = "io_service_bytes",
1881		.private = offsetof(struct cfq_group, stats.service_bytes),
1882		.read_seq_string = cfqg_print_rwstat,
1883	},
1884	{
1885		.name = "io_serviced",
1886		.private = offsetof(struct cfq_group, stats.serviced),
1887		.read_seq_string = cfqg_print_rwstat,
1888	},
1889	{
1890		.name = "io_service_time",
1891		.private = offsetof(struct cfq_group, stats.service_time),
1892		.read_seq_string = cfqg_print_rwstat,
1893	},
1894	{
1895		.name = "io_wait_time",
1896		.private = offsetof(struct cfq_group, stats.wait_time),
1897		.read_seq_string = cfqg_print_rwstat,
1898	},
1899	{
1900		.name = "io_merged",
1901		.private = offsetof(struct cfq_group, stats.merged),
1902		.read_seq_string = cfqg_print_rwstat,
1903	},
1904	{
1905		.name = "io_queued",
1906		.private = offsetof(struct cfq_group, stats.queued),
1907		.read_seq_string = cfqg_print_rwstat,
1908	},
1909
1910	/* the same statictics which cover the cfqg and its descendants */
1911	{
1912		.name = "time_recursive",
1913		.private = offsetof(struct cfq_group, stats.time),
1914		.read_seq_string = cfqg_print_stat_recursive,
1915	},
1916	{
1917		.name = "sectors_recursive",
1918		.private = offsetof(struct cfq_group, stats.sectors),
1919		.read_seq_string = cfqg_print_stat_recursive,
1920	},
1921	{
1922		.name = "io_service_bytes_recursive",
1923		.private = offsetof(struct cfq_group, stats.service_bytes),
1924		.read_seq_string = cfqg_print_rwstat_recursive,
1925	},
1926	{
1927		.name = "io_serviced_recursive",
1928		.private = offsetof(struct cfq_group, stats.serviced),
1929		.read_seq_string = cfqg_print_rwstat_recursive,
1930	},
1931	{
1932		.name = "io_service_time_recursive",
1933		.private = offsetof(struct cfq_group, stats.service_time),
1934		.read_seq_string = cfqg_print_rwstat_recursive,
1935	},
1936	{
1937		.name = "io_wait_time_recursive",
1938		.private = offsetof(struct cfq_group, stats.wait_time),
1939		.read_seq_string = cfqg_print_rwstat_recursive,
1940	},
1941	{
1942		.name = "io_merged_recursive",
1943		.private = offsetof(struct cfq_group, stats.merged),
1944		.read_seq_string = cfqg_print_rwstat_recursive,
1945	},
1946	{
1947		.name = "io_queued_recursive",
1948		.private = offsetof(struct cfq_group, stats.queued),
1949		.read_seq_string = cfqg_print_rwstat_recursive,
1950	},
1951#ifdef CONFIG_DEBUG_BLK_CGROUP
1952	{
1953		.name = "avg_queue_size",
1954		.read_seq_string = cfqg_print_avg_queue_size,
1955	},
1956	{
1957		.name = "group_wait_time",
1958		.private = offsetof(struct cfq_group, stats.group_wait_time),
1959		.read_seq_string = cfqg_print_stat,
1960	},
1961	{
1962		.name = "idle_time",
1963		.private = offsetof(struct cfq_group, stats.idle_time),
1964		.read_seq_string = cfqg_print_stat,
1965	},
1966	{
1967		.name = "empty_time",
1968		.private = offsetof(struct cfq_group, stats.empty_time),
1969		.read_seq_string = cfqg_print_stat,
1970	},
1971	{
1972		.name = "dequeue",
1973		.private = offsetof(struct cfq_group, stats.dequeue),
1974		.read_seq_string = cfqg_print_stat,
1975	},
1976	{
1977		.name = "unaccounted_time",
1978		.private = offsetof(struct cfq_group, stats.unaccounted_time),
1979		.read_seq_string = cfqg_print_stat,
1980	},
1981#endif	/* CONFIG_DEBUG_BLK_CGROUP */
1982	{ }	/* terminate */
1983};
1984#else /* GROUP_IOSCHED */
1985static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1986						struct blkcg *blkcg)
1987{
1988	return cfqd->root_group;
1989}
1990
1991static inline void
1992cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1993	cfqq->cfqg = cfqg;
1994}
1995
1996#endif /* GROUP_IOSCHED */
1997
1998/*
1999 * The cfqd->service_trees holds all pending cfq_queue's that have
2000 * requests waiting to be processed. It is sorted in the order that
2001 * we will service the queues.
2002 */
2003static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2004				 bool add_front)
2005{
2006	struct rb_node **p, *parent;
2007	struct cfq_queue *__cfqq;
2008	unsigned long rb_key;
2009	struct cfq_rb_root *st;
2010	int left;
2011	int new_cfqq = 1;
2012
2013	st = st_for(cfqq->cfqg, cfqq_class(cfqq), cfqq_type(cfqq));
2014	if (cfq_class_idle(cfqq)) {
2015		rb_key = CFQ_IDLE_DELAY;
2016		parent = rb_last(&st->rb);
2017		if (parent && parent != &cfqq->rb_node) {
2018			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2019			rb_key += __cfqq->rb_key;
2020		} else
2021			rb_key += jiffies;
2022	} else if (!add_front) {
2023		/*
2024		 * Get our rb key offset. Subtract any residual slice
2025		 * value carried from last service. A negative resid
2026		 * count indicates slice overrun, and this should position
2027		 * the next service time further away in the tree.
2028		 */
2029		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
2030		rb_key -= cfqq->slice_resid;
2031		cfqq->slice_resid = 0;
2032	} else {
2033		rb_key = -HZ;
2034		__cfqq = cfq_rb_first(st);
2035		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
2036	}
2037
2038	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2039		new_cfqq = 0;
2040		/*
2041		 * same position, nothing more to do
2042		 */
2043		if (rb_key == cfqq->rb_key && cfqq->service_tree == st)
2044			return;
2045
2046		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2047		cfqq->service_tree = NULL;
2048	}
2049
2050	left = 1;
2051	parent = NULL;
2052	cfqq->service_tree = st;
2053	p = &st->rb.rb_node;
2054	while (*p) {
2055		parent = *p;
2056		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
2057
2058		/*
2059		 * sort by key, that represents service time.
2060		 */
2061		if (time_before(rb_key, __cfqq->rb_key))
2062			p = &parent->rb_left;
2063		else {
2064			p = &parent->rb_right;
2065			left = 0;
2066		}
2067	}
2068
2069	if (left)
2070		st->left = &cfqq->rb_node;
2071
2072	cfqq->rb_key = rb_key;
2073	rb_link_node(&cfqq->rb_node, parent, p);
2074	rb_insert_color(&cfqq->rb_node, &st->rb);
2075	st->count++;
2076	if (add_front || !new_cfqq)
2077		return;
2078	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
2079}
2080
2081static struct cfq_queue *
2082cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
2083		     sector_t sector, struct rb_node **ret_parent,
2084		     struct rb_node ***rb_link)
2085{
2086	struct rb_node **p, *parent;
2087	struct cfq_queue *cfqq = NULL;
2088
2089	parent = NULL;
2090	p = &root->rb_node;
2091	while (*p) {
2092		struct rb_node **n;
2093
2094		parent = *p;
2095		cfqq = rb_entry(parent, struct cfq_queue, p_node);
2096
2097		/*
2098		 * Sort strictly based on sector.  Smallest to the left,
2099		 * largest to the right.
2100		 */
2101		if (sector > blk_rq_pos(cfqq->next_rq))
2102			n = &(*p)->rb_right;
2103		else if (sector < blk_rq_pos(cfqq->next_rq))
2104			n = &(*p)->rb_left;
2105		else
2106			break;
2107		p = n;
2108		cfqq = NULL;
2109	}
2110
2111	*ret_parent = parent;
2112	if (rb_link)
2113		*rb_link = p;
2114	return cfqq;
2115}
2116
2117static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2118{
2119	struct rb_node **p, *parent;
2120	struct cfq_queue *__cfqq;
2121
2122	if (cfqq->p_root) {
2123		rb_erase(&cfqq->p_node, cfqq->p_root);
2124		cfqq->p_root = NULL;
2125	}
2126
2127	if (cfq_class_idle(cfqq))
2128		return;
2129	if (!cfqq->next_rq)
2130		return;
2131
2132	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2133	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
2134				      blk_rq_pos(cfqq->next_rq), &parent, &p);
2135	if (!__cfqq) {
2136		rb_link_node(&cfqq->p_node, parent, p);
2137		rb_insert_color(&cfqq->p_node, cfqq->p_root);
2138	} else
2139		cfqq->p_root = NULL;
2140}
2141
2142/*
2143 * Update cfqq's position in the service tree.
2144 */
2145static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2146{
2147	/*
2148	 * Resorting requires the cfqq to be on the RR list already.
2149	 */
2150	if (cfq_cfqq_on_rr(cfqq)) {
2151		cfq_service_tree_add(cfqd, cfqq, 0);
2152		cfq_prio_tree_add(cfqd, cfqq);
2153	}
2154}
2155
2156/*
2157 * add to busy list of queues for service, trying to be fair in ordering
2158 * the pending list according to last request service
2159 */
2160static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2161{
2162	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
2163	BUG_ON(cfq_cfqq_on_rr(cfqq));
2164	cfq_mark_cfqq_on_rr(cfqq);
2165	cfqd->busy_queues++;
2166	if (cfq_cfqq_sync(cfqq))
2167		cfqd->busy_sync_queues++;
2168
2169	cfq_resort_rr_list(cfqd, cfqq);
2170}
2171
2172/*
2173 * Called when the cfqq no longer has requests pending, remove it from
2174 * the service tree.
2175 */
2176static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2177{
2178	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
2179	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2180	cfq_clear_cfqq_on_rr(cfqq);
2181
2182	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
2183		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
2184		cfqq->service_tree = NULL;
2185	}
2186	if (cfqq->p_root) {
2187		rb_erase(&cfqq->p_node, cfqq->p_root);
2188		cfqq->p_root = NULL;
2189	}
2190
2191	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
2192	BUG_ON(!cfqd->busy_queues);
2193	cfqd->busy_queues--;
2194	if (cfq_cfqq_sync(cfqq))
2195		cfqd->busy_sync_queues--;
2196}
2197
2198/*
2199 * rb tree support functions
2200 */
2201static void cfq_del_rq_rb(struct request *rq)
2202{
2203	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2204	const int sync = rq_is_sync(rq);
2205
2206	BUG_ON(!cfqq->queued[sync]);
2207	cfqq->queued[sync]--;
2208
2209	elv_rb_del(&cfqq->sort_list, rq);
2210
2211	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
2212		/*
2213		 * Queue will be deleted from service tree when we actually
2214		 * expire it later. Right now just remove it from prio tree
2215		 * as it is empty.
2216		 */
2217		if (cfqq->p_root) {
2218			rb_erase(&cfqq->p_node, cfqq->p_root);
2219			cfqq->p_root = NULL;
2220		}
2221	}
2222}
2223
2224static void cfq_add_rq_rb(struct request *rq)
2225{
2226	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2227	struct cfq_data *cfqd = cfqq->cfqd;
2228	struct request *prev;
2229
2230	cfqq->queued[rq_is_sync(rq)]++;
2231
2232	elv_rb_add(&cfqq->sort_list, rq);
2233
2234	if (!cfq_cfqq_on_rr(cfqq))
2235		cfq_add_cfqq_rr(cfqd, cfqq);
2236
2237	/*
2238	 * check if this request is a better next-serve candidate
2239	 */
2240	prev = cfqq->next_rq;
2241	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
2242
2243	/*
2244	 * adjust priority tree position, if ->next_rq changes
2245	 */
2246	if (prev != cfqq->next_rq)
2247		cfq_prio_tree_add(cfqd, cfqq);
2248
2249	BUG_ON(!cfqq->next_rq);
2250}
2251
2252static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
2253{
2254	elv_rb_del(&cfqq->sort_list, rq);
2255	cfqq->queued[rq_is_sync(rq)]--;
2256	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2257	cfq_add_rq_rb(rq);
2258	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqq->cfqd->serving_group,
2259				 rq->cmd_flags);
2260}
2261
2262static struct request *
2263cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
2264{
2265	struct task_struct *tsk = current;
2266	struct cfq_io_cq *cic;
2267	struct cfq_queue *cfqq;
2268
2269	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2270	if (!cic)
2271		return NULL;
2272
2273	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2274	if (cfqq) {
2275		sector_t sector = bio->bi_sector + bio_sectors(bio);
2276
2277		return elv_rb_find(&cfqq->sort_list, sector);
2278	}
2279
2280	return NULL;
2281}
2282
2283static void cfq_activate_request(struct request_queue *q, struct request *rq)
2284{
2285	struct cfq_data *cfqd = q->elevator->elevator_data;
2286
2287	cfqd->rq_in_driver++;
2288	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
2289						cfqd->rq_in_driver);
2290
2291	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2292}
2293
2294static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
2295{
2296	struct cfq_data *cfqd = q->elevator->elevator_data;
2297
2298	WARN_ON(!cfqd->rq_in_driver);
2299	cfqd->rq_in_driver--;
2300	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
2301						cfqd->rq_in_driver);
2302}
2303
2304static void cfq_remove_request(struct request *rq)
2305{
2306	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2307
2308	if (cfqq->next_rq == rq)
2309		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
2310
2311	list_del_init(&rq->queuelist);
2312	cfq_del_rq_rb(rq);
2313
2314	cfqq->cfqd->rq_queued--;
2315	cfqg_stats_update_io_remove(RQ_CFQG(rq), rq->cmd_flags);
2316	if (rq->cmd_flags & REQ_PRIO) {
2317		WARN_ON(!cfqq->prio_pending);
2318		cfqq->prio_pending--;
2319	}
2320}
2321
2322static int cfq_merge(struct request_queue *q, struct request **req,
2323		     struct bio *bio)
2324{
2325	struct cfq_data *cfqd = q->elevator->elevator_data;
2326	struct request *__rq;
2327
2328	__rq = cfq_find_rq_fmerge(cfqd, bio);
2329	if (__rq && elv_rq_merge_ok(__rq, bio)) {
2330		*req = __rq;
2331		return ELEVATOR_FRONT_MERGE;
2332	}
2333
2334	return ELEVATOR_NO_MERGE;
2335}
2336
2337static void cfq_merged_request(struct request_queue *q, struct request *req,
2338			       int type)
2339{
2340	if (type == ELEVATOR_FRONT_MERGE) {
2341		struct cfq_queue *cfqq = RQ_CFQQ(req);
2342
2343		cfq_reposition_rq_rb(cfqq, req);
2344	}
2345}
2346
2347static void cfq_bio_merged(struct request_queue *q, struct request *req,
2348				struct bio *bio)
2349{
2350	cfqg_stats_update_io_merged(RQ_CFQG(req), bio->bi_rw);
2351}
2352
2353static void
2354cfq_merged_requests(struct request_queue *q, struct request *rq,
2355		    struct request *next)
2356{
2357	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2358	struct cfq_data *cfqd = q->elevator->elevator_data;
2359
2360	/*
2361	 * reposition in fifo if next is older than rq
2362	 */
2363	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2364	    time_before(rq_fifo_time(next), rq_fifo_time(rq)) &&
2365	    cfqq == RQ_CFQQ(next)) {
2366		list_move(&rq->queuelist, &next->queuelist);
2367		rq_set_fifo_time(rq, rq_fifo_time(next));
2368	}
2369
2370	if (cfqq->next_rq == next)
2371		cfqq->next_rq = rq;
2372	cfq_remove_request(next);
2373	cfqg_stats_update_io_merged(RQ_CFQG(rq), next->cmd_flags);
2374
2375	cfqq = RQ_CFQQ(next);
2376	/*
2377	 * all requests of this queue are merged to other queues, delete it
2378	 * from the service tree. If it's the active_queue,
2379	 * cfq_dispatch_requests() will choose to expire it or do idle
2380	 */
2381	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
2382	    cfqq != cfqd->active_queue)
2383		cfq_del_cfqq_rr(cfqd, cfqq);
2384}
2385
2386static int cfq_allow_merge(struct request_queue *q, struct request *rq,
2387			   struct bio *bio)
2388{
2389	struct cfq_data *cfqd = q->elevator->elevator_data;
2390	struct cfq_io_cq *cic;
2391	struct cfq_queue *cfqq;
2392
2393	/*
2394	 * Disallow merge of a sync bio into an async request.
2395	 */
2396	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
2397		return false;
2398
2399	/*
2400	 * Lookup the cfqq that this bio will be queued with and allow
2401	 * merge only if rq is queued there.
2402	 */
2403	cic = cfq_cic_lookup(cfqd, current->io_context);
2404	if (!cic)
2405		return false;
2406
2407	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
2408	return cfqq == RQ_CFQQ(rq);
2409}
2410
2411static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2412{
2413	del_timer(&cfqd->idle_slice_timer);
2414	cfqg_stats_update_idle_time(cfqq->cfqg);
2415}
2416
2417static void __cfq_set_active_queue(struct cfq_data *cfqd,
2418				   struct cfq_queue *cfqq)
2419{
2420	if (cfqq) {
2421		cfq_log_cfqq(cfqd, cfqq, "set_active wl_class:%d wl_type:%d",
2422				cfqd->serving_wl_class, cfqd->serving_wl_type);
2423		cfqg_stats_update_avg_queue_size(cfqq->cfqg);
2424		cfqq->slice_start = 0;
2425		cfqq->dispatch_start = jiffies;
2426		cfqq->allocated_slice = 0;
2427		cfqq->slice_end = 0;
2428		cfqq->slice_dispatch = 0;
2429		cfqq->nr_sectors = 0;
2430
2431		cfq_clear_cfqq_wait_request(cfqq);
2432		cfq_clear_cfqq_must_dispatch(cfqq);
2433		cfq_clear_cfqq_must_alloc_slice(cfqq);
2434		cfq_clear_cfqq_fifo_expire(cfqq);
2435		cfq_mark_cfqq_slice_new(cfqq);
2436
2437		cfq_del_timer(cfqd, cfqq);
2438	}
2439
2440	cfqd->active_queue = cfqq;
2441}
2442
2443/*
2444 * current cfqq expired its slice (or was too idle), select new one
2445 */
2446static void
2447__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2448		    bool timed_out)
2449{
2450	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
2451
2452	if (cfq_cfqq_wait_request(cfqq))
2453		cfq_del_timer(cfqd, cfqq);
2454
2455	cfq_clear_cfqq_wait_request(cfqq);
2456	cfq_clear_cfqq_wait_busy(cfqq);
2457
2458	/*
2459	 * If this cfqq is shared between multiple processes, check to
2460	 * make sure that those processes are still issuing I/Os within
2461	 * the mean seek distance.  If not, it may be time to break the
2462	 * queues apart again.
2463	 */
2464	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
2465		cfq_mark_cfqq_split_coop(cfqq);
2466
2467	/*
2468	 * store what was left of this slice, if the queue idled/timed out
2469	 */
2470	if (timed_out) {
2471		if (cfq_cfqq_slice_new(cfqq))
2472			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
2473		else
2474			cfqq->slice_resid = cfqq->slice_end - jiffies;
2475		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
2476	}
2477
2478	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
2479
2480	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
2481		cfq_del_cfqq_rr(cfqd, cfqq);
2482
2483	cfq_resort_rr_list(cfqd, cfqq);
2484
2485	if (cfqq == cfqd->active_queue)
2486		cfqd->active_queue = NULL;
2487
2488	if (cfqd->active_cic) {
2489		put_io_context(cfqd->active_cic->icq.ioc);
2490		cfqd->active_cic = NULL;
2491	}
2492}
2493
2494static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
2495{
2496	struct cfq_queue *cfqq = cfqd->active_queue;
2497
2498	if (cfqq)
2499		__cfq_slice_expired(cfqd, cfqq, timed_out);
2500}
2501
2502/*
2503 * Get next queue for service. Unless we have a queue preemption,
2504 * we'll simply select the first cfqq in the service tree.
2505 */
2506static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
2507{
2508	struct cfq_rb_root *st = st_for(cfqd->serving_group,
2509			cfqd->serving_wl_class, cfqd->serving_wl_type);
2510
2511	if (!cfqd->rq_queued)
2512		return NULL;
2513
2514	/* There is nothing to dispatch */
2515	if (!st)
2516		return NULL;
2517	if (RB_EMPTY_ROOT(&st->rb))
2518		return NULL;
2519	return cfq_rb_first(st);
2520}
2521
2522static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
2523{
2524	struct cfq_group *cfqg;
2525	struct cfq_queue *cfqq;
2526	int i, j;
2527	struct cfq_rb_root *st;
2528
2529	if (!cfqd->rq_queued)
2530		return NULL;
2531
2532	cfqg = cfq_get_next_cfqg(cfqd);
2533	if (!cfqg)
2534		return NULL;
2535
2536	for_each_cfqg_st(cfqg, i, j, st)
2537		if ((cfqq = cfq_rb_first(st)) != NULL)
2538			return cfqq;
2539	return NULL;
2540}
2541
2542/*
2543 * Get and set a new active queue for service.
2544 */
2545static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
2546					      struct cfq_queue *cfqq)
2547{
2548	if (!cfqq)
2549		cfqq = cfq_get_next_queue(cfqd);
2550
2551	__cfq_set_active_queue(cfqd, cfqq);
2552	return cfqq;
2553}
2554
2555static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
2556					  struct request *rq)
2557{
2558	if (blk_rq_pos(rq) >= cfqd->last_position)
2559		return blk_rq_pos(rq) - cfqd->last_position;
2560	else
2561		return cfqd->last_position - blk_rq_pos(rq);
2562}
2563
2564static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2565			       struct request *rq)
2566{
2567	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
2568}
2569
2570static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
2571				    struct cfq_queue *cur_cfqq)
2572{
2573	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
2574	struct rb_node *parent, *node;
2575	struct cfq_queue *__cfqq;
2576	sector_t sector = cfqd->last_position;
2577
2578	if (RB_EMPTY_ROOT(root))
2579		return NULL;
2580
2581	/*
2582	 * First, if we find a request starting at the end of the last
2583	 * request, choose it.
2584	 */
2585	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
2586	if (__cfqq)
2587		return __cfqq;
2588
2589	/*
2590	 * If the exact sector wasn't found, the parent of the NULL leaf
2591	 * will contain the closest sector.
2592	 */
2593	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
2594	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2595		return __cfqq;
2596
2597	if (blk_rq_pos(__cfqq->next_rq) < sector)
2598		node = rb_next(&__cfqq->p_node);
2599	else
2600		node = rb_prev(&__cfqq->p_node);
2601	if (!node)
2602		return NULL;
2603
2604	__cfqq = rb_entry(node, struct cfq_queue, p_node);
2605	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
2606		return __cfqq;
2607
2608	return NULL;
2609}
2610
2611/*
2612 * cfqd - obvious
2613 * cur_cfqq - passed in so that we don't decide that the current queue is
2614 * 	      closely cooperating with itself.
2615 *
2616 * So, basically we're assuming that that cur_cfqq has dispatched at least
2617 * one request, and that cfqd->last_position reflects a position on the disk
2618 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
2619 * assumption.
2620 */
2621static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
2622					      struct cfq_queue *cur_cfqq)
2623{
2624	struct cfq_queue *cfqq;
2625
2626	if (cfq_class_idle(cur_cfqq))
2627		return NULL;
2628	if (!cfq_cfqq_sync(cur_cfqq))
2629		return NULL;
2630	if (CFQQ_SEEKY(cur_cfqq))
2631		return NULL;
2632
2633	/*
2634	 * Don't search priority tree if it's the only queue in the group.
2635	 */
2636	if (cur_cfqq->cfqg->nr_cfqq == 1)
2637		return NULL;
2638
2639	/*
2640	 * We should notice if some of the queues are cooperating, eg
2641	 * working closely on the same area of the disk. In that case,
2642	 * we can group them together and don't waste time idling.
2643	 */
2644	cfqq = cfqq_close(cfqd, cur_cfqq);
2645	if (!cfqq)
2646		return NULL;
2647
2648	/* If new queue belongs to different cfq_group, don't choose it */
2649	if (cur_cfqq->cfqg != cfqq->cfqg)
2650		return NULL;
2651
2652	/*
2653	 * It only makes sense to merge sync queues.
2654	 */
2655	if (!cfq_cfqq_sync(cfqq))
2656		return NULL;
2657	if (CFQQ_SEEKY(cfqq))
2658		return NULL;
2659
2660	/*
2661	 * Do not merge queues of different priority classes
2662	 */
2663	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
2664		return NULL;
2665
2666	return cfqq;
2667}
2668
2669/*
2670 * Determine whether we should enforce idle window for this queue.
2671 */
2672
2673static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2674{
2675	enum wl_class_t wl_class = cfqq_class(cfqq);
2676	struct cfq_rb_root *st = cfqq->service_tree;
2677
2678	BUG_ON(!st);
2679	BUG_ON(!st->count);
2680
2681	if (!cfqd->cfq_slice_idle)
2682		return false;
2683
2684	/* We never do for idle class queues. */
2685	if (wl_class == IDLE_WORKLOAD)
2686		return false;
2687
2688	/* We do for queues that were marked with idle window flag. */
2689	if (cfq_cfqq_idle_window(cfqq) &&
2690	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
2691		return true;
2692
2693	/*
2694	 * Otherwise, we do only if they are the last ones
2695	 * in their service tree.
2696	 */
2697	if (st->count == 1 && cfq_cfqq_sync(cfqq) &&
2698	   !cfq_io_thinktime_big(cfqd, &st->ttime, false))
2699		return true;
2700	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d", st->count);
2701	return false;
2702}
2703
2704static void cfq_arm_slice_timer(struct cfq_data *cfqd)
2705{
2706	struct cfq_queue *cfqq = cfqd->active_queue;
2707	struct cfq_io_cq *cic;
2708	unsigned long sl, group_idle = 0;
2709
2710	/*
2711	 * SSD device without seek penalty, disable idling. But only do so
2712	 * for devices that support queuing, otherwise we still have a problem
2713	 * with sync vs async workloads.
2714	 */
2715	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
2716		return;
2717
2718	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
2719	WARN_ON(cfq_cfqq_slice_new(cfqq));
2720
2721	/*
2722	 * idle is disabled, either manually or by past process history
2723	 */
2724	if (!cfq_should_idle(cfqd, cfqq)) {
2725		/* no queue idling. Check for group idling */
2726		if (cfqd->cfq_group_idle)
2727			group_idle = cfqd->cfq_group_idle;
2728		else
2729			return;
2730	}
2731
2732	/*
2733	 * still active requests from this queue, don't idle
2734	 */
2735	if (cfqq->dispatched)
2736		return;
2737
2738	/*
2739	 * task has exited, don't wait
2740	 */
2741	cic = cfqd->active_cic;
2742	if (!cic || !atomic_read(&cic->icq.ioc->active_ref))
2743		return;
2744
2745	/*
2746	 * If our average think time is larger than the remaining time
2747	 * slice, then don't idle. This avoids overrunning the allotted
2748	 * time slice.
2749	 */
2750	if (sample_valid(cic->ttime.ttime_samples) &&
2751	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2752		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2753			     cic->ttime.ttime_mean);
2754		return;
2755	}
2756
2757	/* There are other queues in the group, don't do group idle */
2758	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2759		return;
2760
2761	cfq_mark_cfqq_wait_request(cfqq);
2762
2763	if (group_idle)
2764		sl = cfqd->cfq_group_idle;
2765	else
2766		sl = cfqd->cfq_slice_idle;
2767
2768	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2769	cfqg_stats_set_start_idle_time(cfqq->cfqg);
2770	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2771			group_idle ? 1 : 0);
2772}
2773
2774/*
2775 * Move request from internal lists to the request queue dispatch list.
2776 */
2777static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2778{
2779	struct cfq_data *cfqd = q->elevator->elevator_data;
2780	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2781
2782	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2783
2784	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2785	cfq_remove_request(rq);
2786	cfqq->dispatched++;
2787	(RQ_CFQG(rq))->dispatched++;
2788	elv_dispatch_sort(q, rq);
2789
2790	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2791	cfqq->nr_sectors += blk_rq_sectors(rq);
2792	cfqg_stats_update_dispatch(cfqq->cfqg, blk_rq_bytes(rq), rq->cmd_flags);
2793}
2794
2795/*
2796 * return expired entry, or NULL to just start from scratch in rbtree
2797 */
2798static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2799{
2800	struct request *rq = NULL;
2801
2802	if (cfq_cfqq_fifo_expire(cfqq))
2803		return NULL;
2804
2805	cfq_mark_cfqq_fifo_expire(cfqq);
2806
2807	if (list_empty(&cfqq->fifo))
2808		return NULL;
2809
2810	rq = rq_entry_fifo(cfqq->fifo.next);
2811	if (time_before(jiffies, rq_fifo_time(rq)))
2812		rq = NULL;
2813
2814	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2815	return rq;
2816}
2817
2818static inline int
2819cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2820{
2821	const int base_rq = cfqd->cfq_slice_async_rq;
2822
2823	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2824
2825	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2826}
2827
2828/*
2829 * Must be called with the queue_lock held.
2830 */
2831static int cfqq_process_refs(struct cfq_queue *cfqq)
2832{
2833	int process_refs, io_refs;
2834
2835	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2836	process_refs = cfqq->ref - io_refs;
2837	BUG_ON(process_refs < 0);
2838	return process_refs;
2839}
2840
2841static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2842{
2843	int process_refs, new_process_refs;
2844	struct cfq_queue *__cfqq;
2845
2846	/*
2847	 * If there are no process references on the new_cfqq, then it is
2848	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2849	 * chain may have dropped their last reference (not just their
2850	 * last process reference).
2851	 */
2852	if (!cfqq_process_refs(new_cfqq))
2853		return;
2854
2855	/* Avoid a circular list and skip interim queue merges */
2856	while ((__cfqq = new_cfqq->new_cfqq)) {
2857		if (__cfqq == cfqq)
2858			return;
2859		new_cfqq = __cfqq;
2860	}
2861
2862	process_refs = cfqq_process_refs(cfqq);
2863	new_process_refs = cfqq_process_refs(new_cfqq);
2864	/*
2865	 * If the process for the cfqq has gone away, there is no
2866	 * sense in merging the queues.
2867	 */
2868	if (process_refs == 0 || new_process_refs == 0)
2869		return;
2870
2871	/*
2872	 * Merge in the direction of the lesser amount of work.
2873	 */
2874	if (new_process_refs >= process_refs) {
2875		cfqq->new_cfqq = new_cfqq;
2876		new_cfqq->ref += process_refs;
2877	} else {
2878		new_cfqq->new_cfqq = cfqq;
2879		cfqq->ref += new_process_refs;
2880	}
2881}
2882
2883static enum wl_type_t cfq_choose_wl_type(struct cfq_data *cfqd,
2884			struct cfq_group *cfqg, enum wl_class_t wl_class)
2885{
2886	struct cfq_queue *queue;
2887	int i;
2888	bool key_valid = false;
2889	unsigned long lowest_key = 0;
2890	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2891
2892	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2893		/* select the one with lowest rb_key */
2894		queue = cfq_rb_first(st_for(cfqg, wl_class, i));
2895		if (queue &&
2896		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2897			lowest_key = queue->rb_key;
2898			cur_best = i;
2899			key_valid = true;
2900		}
2901	}
2902
2903	return cur_best;
2904}
2905
2906static void
2907choose_wl_class_and_type(struct cfq_data *cfqd, struct cfq_group *cfqg)
2908{
2909	unsigned slice;
2910	unsigned count;
2911	struct cfq_rb_root *st;
2912	unsigned group_slice;
2913	enum wl_class_t original_class = cfqd->serving_wl_class;
2914
2915	/* Choose next priority. RT > BE > IDLE */
2916	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2917		cfqd->serving_wl_class = RT_WORKLOAD;
2918	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2919		cfqd->serving_wl_class = BE_WORKLOAD;
2920	else {
2921		cfqd->serving_wl_class = IDLE_WORKLOAD;
2922		cfqd->workload_expires = jiffies + 1;
2923		return;
2924	}
2925
2926	if (original_class != cfqd->serving_wl_class)
2927		goto new_workload;
2928
2929	/*
2930	 * For RT and BE, we have to choose also the type
2931	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2932	 * expiration time
2933	 */
2934	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2935	count = st->count;
2936
2937	/*
2938	 * check workload expiration, and that we still have other queues ready
2939	 */
2940	if (count && !time_after(jiffies, cfqd->workload_expires))
2941		return;
2942
2943new_workload:
2944	/* otherwise select new workload type */
2945	cfqd->serving_wl_type = cfq_choose_wl_type(cfqd, cfqg,
2946					cfqd->serving_wl_class);
2947	st = st_for(cfqg, cfqd->serving_wl_class, cfqd->serving_wl_type);
2948	count = st->count;
2949
2950	/*
2951	 * the workload slice is computed as a fraction of target latency
2952	 * proportional to the number of queues in that workload, over
2953	 * all the queues in the same priority class
2954	 */
2955	group_slice = cfq_group_slice(cfqd, cfqg);
2956
2957	slice = group_slice * count /
2958		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_wl_class],
2959		      cfq_group_busy_queues_wl(cfqd->serving_wl_class, cfqd,
2960					cfqg));
2961
2962	if (cfqd->serving_wl_type == ASYNC_WORKLOAD) {
2963		unsigned int tmp;
2964
2965		/*
2966		 * Async queues are currently system wide. Just taking
2967		 * proportion of queues with-in same group will lead to higher
2968		 * async ratio system wide as generally root group is going
2969		 * to have higher weight. A more accurate thing would be to
2970		 * calculate system wide asnc/sync ratio.
2971		 */
2972		tmp = cfqd->cfq_target_latency *
2973			cfqg_busy_async_queues(cfqd, cfqg);
2974		tmp = tmp/cfqd->busy_queues;
2975		slice = min_t(unsigned, slice, tmp);
2976
2977		/* async workload slice is scaled down according to
2978		 * the sync/async slice ratio. */
2979		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2980	} else
2981		/* sync workload slice is at least 2 * cfq_slice_idle */
2982		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2983
2984	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2985	cfq_log(cfqd, "workload slice:%d", slice);
2986	cfqd->workload_expires = jiffies + slice;
2987}
2988
2989static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2990{
2991	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2992	struct cfq_group *cfqg;
2993
2994	if (RB_EMPTY_ROOT(&st->rb))
2995		return NULL;
2996	cfqg = cfq_rb_first_group(st);
2997	update_min_vdisktime(st);
2998	return cfqg;
2999}
3000
3001static void cfq_choose_cfqg(struct cfq_data *cfqd)
3002{
3003	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
3004
3005	cfqd->serving_group = cfqg;
3006
3007	/* Restore the workload type data */
3008	if (cfqg->saved_wl_slice) {
3009		cfqd->workload_expires = jiffies + cfqg->saved_wl_slice;
3010		cfqd->serving_wl_type = cfqg->saved_wl_type;
3011		cfqd->serving_wl_class = cfqg->saved_wl_class;
3012	} else
3013		cfqd->workload_expires = jiffies - 1;
3014
3015	choose_wl_class_and_type(cfqd, cfqg);
3016}
3017
3018/*
3019 * Select a queue for service. If we have a current active queue,
3020 * check whether to continue servicing it, or retrieve and set a new one.
3021 */
3022static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
3023{
3024	struct cfq_queue *cfqq, *new_cfqq = NULL;
3025
3026	cfqq = cfqd->active_queue;
3027	if (!cfqq)
3028		goto new_queue;
3029
3030	if (!cfqd->rq_queued)
3031		return NULL;
3032
3033	/*
3034	 * We were waiting for group to get backlogged. Expire the queue
3035	 */
3036	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
3037		goto expire;
3038
3039	/*
3040	 * The active queue has run out of time, expire it and select new.
3041	 */
3042	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
3043		/*
3044		 * If slice had not expired at the completion of last request
3045		 * we might not have turned on wait_busy flag. Don't expire
3046		 * the queue yet. Allow the group to get backlogged.
3047		 *
3048		 * The very fact that we have used the slice, that means we
3049		 * have been idling all along on this queue and it should be
3050		 * ok to wait for this request to complete.
3051		 */
3052		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
3053		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3054			cfqq = NULL;
3055			goto keep_queue;
3056		} else
3057			goto check_group_idle;
3058	}
3059
3060	/*
3061	 * The active queue has requests and isn't expired, allow it to
3062	 * dispatch.
3063	 */
3064	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3065		goto keep_queue;
3066
3067	/*
3068	 * If another queue has a request waiting within our mean seek
3069	 * distance, let it run.  The expire code will check for close
3070	 * cooperators and put the close queue at the front of the service
3071	 * tree.  If possible, merge the expiring queue with the new cfqq.
3072	 */
3073	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
3074	if (new_cfqq) {
3075		if (!cfqq->new_cfqq)
3076			cfq_setup_merge(cfqq, new_cfqq);
3077		goto expire;
3078	}
3079
3080	/*
3081	 * No requests pending. If the active queue still has requests in
3082	 * flight or is idling for a new request, allow either of these
3083	 * conditions to happen (or time out) before selecting a new queue.
3084	 */
3085	if (timer_pending(&cfqd->idle_slice_timer)) {
3086		cfqq = NULL;
3087		goto keep_queue;
3088	}
3089
3090	/*
3091	 * This is a deep seek queue, but the device is much faster than
3092	 * the queue can deliver, don't idle
3093	 **/
3094	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
3095	    (cfq_cfqq_slice_new(cfqq) ||
3096	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
3097		cfq_clear_cfqq_deep(cfqq);
3098		cfq_clear_cfqq_idle_window(cfqq);
3099	}
3100
3101	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
3102		cfqq = NULL;
3103		goto keep_queue;
3104	}
3105
3106	/*
3107	 * If group idle is enabled and there are requests dispatched from
3108	 * this group, wait for requests to complete.
3109	 */
3110check_group_idle:
3111	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
3112	    cfqq->cfqg->dispatched &&
3113	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
3114		cfqq = NULL;
3115		goto keep_queue;
3116	}
3117
3118expire:
3119	cfq_slice_expired(cfqd, 0);
3120new_queue:
3121	/*
3122	 * Current queue expired. Check if we have to switch to a new
3123	 * service tree
3124	 */
3125	if (!new_cfqq)
3126		cfq_choose_cfqg(cfqd);
3127
3128	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
3129keep_queue:
3130	return cfqq;
3131}
3132
3133static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
3134{
3135	int dispatched = 0;
3136
3137	while (cfqq->next_rq) {
3138		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
3139		dispatched++;
3140	}
3141
3142	BUG_ON(!list_empty(&cfqq->fifo));
3143
3144	/* By default cfqq is not expired if it is empty. Do it explicitly */
3145	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
3146	return dispatched;
3147}
3148
3149/*
3150 * Drain our current requests. Used for barriers and when switching
3151 * io schedulers on-the-fly.
3152 */
3153static int cfq_forced_dispatch(struct cfq_data *cfqd)
3154{
3155	struct cfq_queue *cfqq;
3156	int dispatched = 0;
3157
3158	/* Expire the timeslice of the current active queue first */
3159	cfq_slice_expired(cfqd, 0);
3160	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
3161		__cfq_set_active_queue(cfqd, cfqq);
3162		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3163	}
3164
3165	BUG_ON(cfqd->busy_queues);
3166
3167	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
3168	return dispatched;
3169}
3170
3171static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
3172	struct cfq_queue *cfqq)
3173{
3174	/* the queue hasn't finished any request, can't estimate */
3175	if (cfq_cfqq_slice_new(cfqq))
3176		return true;
3177	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
3178		cfqq->slice_end))
3179		return true;
3180
3181	return false;
3182}
3183
3184static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3185{
3186	unsigned int max_dispatch;
3187
3188	/*
3189	 * Drain async requests before we start sync IO
3190	 */
3191	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
3192		return false;
3193
3194	/*
3195	 * If this is an async queue and we have sync IO in flight, let it wait
3196	 */
3197	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
3198		return false;
3199
3200	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
3201	if (cfq_class_idle(cfqq))
3202		max_dispatch = 1;
3203
3204	/*
3205	 * Does this cfqq already have too much IO in flight?
3206	 */
3207	if (cfqq->dispatched >= max_dispatch) {
3208		bool promote_sync = false;
3209		/*
3210		 * idle queue must always only have a single IO in flight
3211		 */
3212		if (cfq_class_idle(cfqq))
3213			return false;
3214
3215		/*
3216		 * If there is only one sync queue
3217		 * we can ignore async queue here and give the sync
3218		 * queue no dispatch limit. The reason is a sync queue can
3219		 * preempt async queue, limiting the sync queue doesn't make
3220		 * sense. This is useful for aiostress test.
3221		 */
3222		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
3223			promote_sync = true;
3224
3225		/*
3226		 * We have other queues, don't allow more IO from this one
3227		 */
3228		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
3229				!promote_sync)
3230			return false;
3231
3232		/*
3233		 * Sole queue user, no limit
3234		 */
3235		if (cfqd->busy_queues == 1 || promote_sync)
3236			max_dispatch = -1;
3237		else
3238			/*
3239			 * Normally we start throttling cfqq when cfq_quantum/2
3240			 * requests have been dispatched. But we can drive
3241			 * deeper queue depths at the beginning of slice
3242			 * subjected to upper limit of cfq_quantum.
3243			 * */
3244			max_dispatch = cfqd->cfq_quantum;
3245	}
3246
3247	/*
3248	 * Async queues must wait a bit before being allowed dispatch.
3249	 * We also ramp up the dispatch depth gradually for async IO,
3250	 * based on the last sync IO we serviced
3251	 */
3252	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
3253		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
3254		unsigned int depth;
3255
3256		depth = last_sync / cfqd->cfq_slice[1];
3257		if (!depth && !cfqq->dispatched)
3258			depth = 1;
3259		if (depth < max_dispatch)
3260			max_dispatch = depth;
3261	}
3262
3263	/*
3264	 * If we're below the current max, allow a dispatch
3265	 */
3266	return cfqq->dispatched < max_dispatch;
3267}
3268
3269/*
3270 * Dispatch a request from cfqq, moving them to the request queue
3271 * dispatch list.
3272 */
3273static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3274{
3275	struct request *rq;
3276
3277	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
3278
3279	if (!cfq_may_dispatch(cfqd, cfqq))
3280		return false;
3281
3282	/*
3283	 * follow expired path, else get first next available
3284	 */
3285	rq = cfq_check_fifo(cfqq);
3286	if (!rq)
3287		rq = cfqq->next_rq;
3288
3289	/*
3290	 * insert request into driver dispatch list
3291	 */
3292	cfq_dispatch_insert(cfqd->queue, rq);
3293
3294	if (!cfqd->active_cic) {
3295		struct cfq_io_cq *cic = RQ_CIC(rq);
3296
3297		atomic_long_inc(&cic->icq.ioc->refcount);
3298		cfqd->active_cic = cic;
3299	}
3300
3301	return true;
3302}
3303
3304/*
3305 * Find the cfqq that we need to service and move a request from that to the
3306 * dispatch list
3307 */
3308static int cfq_dispatch_requests(struct request_queue *q, int force)
3309{
3310	struct cfq_data *cfqd = q->elevator->elevator_data;
3311	struct cfq_queue *cfqq;
3312
3313	if (!cfqd->busy_queues)
3314		return 0;
3315
3316	if (unlikely(force))
3317		return cfq_forced_dispatch(cfqd);
3318
3319	cfqq = cfq_select_queue(cfqd);
3320	if (!cfqq)
3321		return 0;
3322
3323	/*
3324	 * Dispatch a request from this cfqq, if it is allowed
3325	 */
3326	if (!cfq_dispatch_request(cfqd, cfqq))
3327		return 0;
3328
3329	cfqq->slice_dispatch++;
3330	cfq_clear_cfqq_must_dispatch(cfqq);
3331
3332	/*
3333	 * expire an async queue immediately if it has used up its slice. idle
3334	 * queue always expire after 1 dispatch round.
3335	 */
3336	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
3337	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
3338	    cfq_class_idle(cfqq))) {
3339		cfqq->slice_end = jiffies + 1;
3340		cfq_slice_expired(cfqd, 0);
3341	}
3342
3343	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
3344	return 1;
3345}
3346
3347/*
3348 * task holds one reference to the queue, dropped when task exits. each rq
3349 * in-flight on this queue also holds a reference, dropped when rq is freed.
3350 *
3351 * Each cfq queue took a reference on the parent group. Drop it now.
3352 * queue lock must be held here.
3353 */
3354static void cfq_put_queue(struct cfq_queue *cfqq)
3355{
3356	struct cfq_data *cfqd = cfqq->cfqd;
3357	struct cfq_group *cfqg;
3358
3359	BUG_ON(cfqq->ref <= 0);
3360
3361	cfqq->ref--;
3362	if (cfqq->ref)
3363		return;
3364
3365	cfq_log_cfqq(cfqd, cfqq, "put_queue");
3366	BUG_ON(rb_first(&cfqq->sort_list));
3367	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3368	cfqg = cfqq->cfqg;
3369
3370	if (unlikely(cfqd->active_queue == cfqq)) {
3371		__cfq_slice_expired(cfqd, cfqq, 0);
3372		cfq_schedule_dispatch(cfqd);
3373	}
3374
3375	BUG_ON(cfq_cfqq_on_rr(cfqq));
3376	kmem_cache_free(cfq_pool, cfqq);
3377	cfqg_put(cfqg);
3378}
3379
3380static void cfq_put_cooperator(struct cfq_queue *cfqq)
3381{
3382	struct cfq_queue *__cfqq, *next;
3383
3384	/*
3385	 * If this queue was scheduled to merge with another queue, be
3386	 * sure to drop the reference taken on that queue (and others in
3387	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
3388	 */
3389	__cfqq = cfqq->new_cfqq;
3390	while (__cfqq) {
3391		if (__cfqq == cfqq) {
3392			WARN(1, "cfqq->new_cfqq loop detected\n");
3393			break;
3394		}
3395		next = __cfqq->new_cfqq;
3396		cfq_put_queue(__cfqq);
3397		__cfqq = next;
3398	}
3399}
3400
3401static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3402{
3403	if (unlikely(cfqq == cfqd->active_queue)) {
3404		__cfq_slice_expired(cfqd, cfqq, 0);
3405		cfq_schedule_dispatch(cfqd);
3406	}
3407
3408	cfq_put_cooperator(cfqq);
3409
3410	cfq_put_queue(cfqq);
3411}
3412
3413static void cfq_init_icq(struct io_cq *icq)
3414{
3415	struct cfq_io_cq *cic = icq_to_cic(icq);
3416
3417	cic->ttime.last_end_request = jiffies;
3418}
3419
3420static void cfq_exit_icq(struct io_cq *icq)
3421{
3422	struct cfq_io_cq *cic = icq_to_cic(icq);
3423	struct cfq_data *cfqd = cic_to_cfqd(cic);
3424
3425	if (cic->cfqq[BLK_RW_ASYNC]) {
3426		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
3427		cic->cfqq[BLK_RW_ASYNC] = NULL;
3428	}
3429
3430	if (cic->cfqq[BLK_RW_SYNC]) {
3431		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
3432		cic->cfqq[BLK_RW_SYNC] = NULL;
3433	}
3434}
3435
3436static void cfq_init_prio_data(struct cfq_queue *cfqq, struct cfq_io_cq *cic)
3437{
3438	struct task_struct *tsk = current;
3439	int ioprio_class;
3440
3441	if (!cfq_cfqq_prio_changed(cfqq))
3442		return;
3443
3444	ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3445	switch (ioprio_class) {
3446	default:
3447		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
3448	case IOPRIO_CLASS_NONE:
3449		/*
3450		 * no prio set, inherit CPU scheduling settings
3451		 */
3452		cfqq->ioprio = task_nice_ioprio(tsk);
3453		cfqq->ioprio_class = task_nice_ioclass(tsk);
3454		break;
3455	case IOPRIO_CLASS_RT:
3456		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3457		cfqq->ioprio_class = IOPRIO_CLASS_RT;
3458		break;
3459	case IOPRIO_CLASS_BE:
3460		cfqq->ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3461		cfqq->ioprio_class = IOPRIO_CLASS_BE;
3462		break;
3463	case IOPRIO_CLASS_IDLE:
3464		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
3465		cfqq->ioprio = 7;
3466		cfq_clear_cfqq_idle_window(cfqq);
3467		break;
3468	}
3469
3470	/*
3471	 * keep track of original prio settings in case we have to temporarily
3472	 * elevate the priority of this queue
3473	 */
3474	cfqq->org_ioprio = cfqq->ioprio;
3475	cfq_clear_cfqq_prio_changed(cfqq);
3476}
3477
3478static void check_ioprio_changed(struct cfq_io_cq *cic, struct bio *bio)
3479{
3480	int ioprio = cic->icq.ioc->ioprio;
3481	struct cfq_data *cfqd = cic_to_cfqd(cic);
3482	struct cfq_queue *cfqq;
3483
3484	/*
3485	 * Check whether ioprio has changed.  The condition may trigger
3486	 * spuriously on a newly created cic but there's no harm.
3487	 */
3488	if (unlikely(!cfqd) || likely(cic->ioprio == ioprio))
3489		return;
3490
3491	cfqq = cic->cfqq[BLK_RW_ASYNC];
3492	if (cfqq) {
3493		struct cfq_queue *new_cfqq;
3494		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic, bio,
3495					 GFP_ATOMIC);
3496		if (new_cfqq) {
3497			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
3498			cfq_put_queue(cfqq);
3499		}
3500	}
3501
3502	cfqq = cic->cfqq[BLK_RW_SYNC];
3503	if (cfqq)
3504		cfq_mark_cfqq_prio_changed(cfqq);
3505
3506	cic->ioprio = ioprio;
3507}
3508
3509static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3510			  pid_t pid, bool is_sync)
3511{
3512	RB_CLEAR_NODE(&cfqq->rb_node);
3513	RB_CLEAR_NODE(&cfqq->p_node);
3514	INIT_LIST_HEAD(&cfqq->fifo);
3515
3516	cfqq->ref = 0;
3517	cfqq->cfqd = cfqd;
3518
3519	cfq_mark_cfqq_prio_changed(cfqq);
3520
3521	if (is_sync) {
3522		if (!cfq_class_idle(cfqq))
3523			cfq_mark_cfqq_idle_window(cfqq);
3524		cfq_mark_cfqq_sync(cfqq);
3525	}
3526	cfqq->pid = pid;
3527}
3528
3529#ifdef CONFIG_CFQ_GROUP_IOSCHED
3530static void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio)
3531{
3532	struct cfq_data *cfqd = cic_to_cfqd(cic);
3533	struct cfq_queue *sync_cfqq;
3534	uint64_t id;
3535
3536	rcu_read_lock();
3537	id = bio_blkcg(bio)->id;
3538	rcu_read_unlock();
3539
3540	/*
3541	 * Check whether blkcg has changed.  The condition may trigger
3542	 * spuriously on a newly created cic but there's no harm.
3543	 */
3544	if (unlikely(!cfqd) || likely(cic->blkcg_id == id))
3545		return;
3546
3547	sync_cfqq = cic_to_cfqq(cic, 1);
3548	if (sync_cfqq) {
3549		/*
3550		 * Drop reference to sync queue. A new sync queue will be
3551		 * assigned in new group upon arrival of a fresh request.
3552		 */
3553		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
3554		cic_set_cfqq(cic, NULL, 1);
3555		cfq_put_queue(sync_cfqq);
3556	}
3557
3558	cic->blkcg_id = id;
3559}
3560#else
3561static inline void check_blkcg_changed(struct cfq_io_cq *cic, struct bio *bio) { }
3562#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
3563
3564static struct cfq_queue *
3565cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3566		     struct bio *bio, gfp_t gfp_mask)
3567{
3568	struct blkcg *blkcg;
3569	struct cfq_queue *cfqq, *new_cfqq = NULL;
3570	struct cfq_group *cfqg;
3571
3572retry:
3573	rcu_read_lock();
3574
3575	blkcg = bio_blkcg(bio);
3576	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
3577	cfqq = cic_to_cfqq(cic, is_sync);
3578
3579	/*
3580	 * Always try a new alloc if we fell back to the OOM cfqq
3581	 * originally, since it should just be a temporary situation.
3582	 */
3583	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3584		cfqq = NULL;
3585		if (new_cfqq) {
3586			cfqq = new_cfqq;
3587			new_cfqq = NULL;
3588		} else if (gfp_mask & __GFP_WAIT) {
3589			rcu_read_unlock();
3590			spin_unlock_irq(cfqd->queue->queue_lock);
3591			new_cfqq = kmem_cache_alloc_node(cfq_pool,
3592					gfp_mask | __GFP_ZERO,
3593					cfqd->queue->node);
3594			spin_lock_irq(cfqd->queue->queue_lock);
3595			if (new_cfqq)
3596				goto retry;
3597			else
3598				return &cfqd->oom_cfqq;
3599		} else {
3600			cfqq = kmem_cache_alloc_node(cfq_pool,
3601					gfp_mask | __GFP_ZERO,
3602					cfqd->queue->node);
3603		}
3604
3605		if (cfqq) {
3606			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
3607			cfq_init_prio_data(cfqq, cic);
3608			cfq_link_cfqq_cfqg(cfqq, cfqg);
3609			cfq_log_cfqq(cfqd, cfqq, "alloced");
3610		} else
3611			cfqq = &cfqd->oom_cfqq;
3612	}
3613
3614	if (new_cfqq)
3615		kmem_cache_free(cfq_pool, new_cfqq);
3616
3617	rcu_read_unlock();
3618	return cfqq;
3619}
3620
3621static struct cfq_queue **
3622cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
3623{
3624	switch (ioprio_class) {
3625	case IOPRIO_CLASS_RT:
3626		return &cfqd->async_cfqq[0][ioprio];
3627	case IOPRIO_CLASS_NONE:
3628		ioprio = IOPRIO_NORM;
3629		/* fall through */
3630	case IOPRIO_CLASS_BE:
3631		return &cfqd->async_cfqq[1][ioprio];
3632	case IOPRIO_CLASS_IDLE:
3633		return &cfqd->async_idle_cfqq;
3634	default:
3635		BUG();
3636	}
3637}
3638
3639static struct cfq_queue *
3640cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct cfq_io_cq *cic,
3641	      struct bio *bio, gfp_t gfp_mask)
3642{
3643	const int ioprio_class = IOPRIO_PRIO_CLASS(cic->ioprio);
3644	const int ioprio = IOPRIO_PRIO_DATA(cic->ioprio);
3645	struct cfq_queue **async_cfqq = NULL;
3646	struct cfq_queue *cfqq = NULL;
3647
3648	if (!is_sync) {
3649		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
3650		cfqq = *async_cfqq;
3651	}
3652
3653	if (!cfqq)
3654		cfqq = cfq_find_alloc_queue(cfqd, is_sync, cic, bio, gfp_mask);
3655
3656	/*
3657	 * pin the queue now that it's allocated, scheduler exit will prune it
3658	 */
3659	if (!is_sync && !(*async_cfqq)) {
3660		cfqq->ref++;
3661		*async_cfqq = cfqq;
3662	}
3663
3664	cfqq->ref++;
3665	return cfqq;
3666}
3667
3668static void
3669__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
3670{
3671	unsigned long elapsed = jiffies - ttime->last_end_request;
3672	elapsed = min(elapsed, 2UL * slice_idle);
3673
3674	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3675	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3676	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3677}
3678
3679static void
3680cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3681			struct cfq_io_cq *cic)
3682{
3683	if (cfq_cfqq_sync(cfqq)) {
3684		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
3685		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3686			cfqd->cfq_slice_idle);
3687	}
3688#ifdef CONFIG_CFQ_GROUP_IOSCHED
3689	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3690#endif
3691}
3692
3693static void
3694cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3695		       struct request *rq)
3696{
3697	sector_t sdist = 0;
3698	sector_t n_sec = blk_rq_sectors(rq);
3699	if (cfqq->last_request_pos) {
3700		if (cfqq->last_request_pos < blk_rq_pos(rq))
3701			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3702		else
3703			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3704	}
3705
3706	cfqq->seek_history <<= 1;
3707	if (blk_queue_nonrot(cfqd->queue))
3708		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3709	else
3710		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3711}
3712
3713/*
3714 * Disable idle window if the process thinks too long or seeks so much that
3715 * it doesn't matter
3716 */
3717static void
3718cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3719		       struct cfq_io_cq *cic)
3720{
3721	int old_idle, enable_idle;
3722
3723	/*
3724	 * Don't idle for async or idle io prio class
3725	 */
3726	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3727		return;
3728
3729	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3730
3731	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3732		cfq_mark_cfqq_deep(cfqq);
3733
3734	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3735		enable_idle = 0;
3736	else if (!atomic_read(&cic->icq.ioc->active_ref) ||
3737		 !cfqd->cfq_slice_idle ||
3738		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3739		enable_idle = 0;
3740	else if (sample_valid(cic->ttime.ttime_samples)) {
3741		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
3742			enable_idle = 0;
3743		else
3744			enable_idle = 1;
3745	}
3746
3747	if (old_idle != enable_idle) {
3748		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3749		if (enable_idle)
3750			cfq_mark_cfqq_idle_window(cfqq);
3751		else
3752			cfq_clear_cfqq_idle_window(cfqq);
3753	}
3754}
3755
3756/*
3757 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3758 * no or if we aren't sure, a 1 will cause a preempt.
3759 */
3760static bool
3761cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3762		   struct request *rq)
3763{
3764	struct cfq_queue *cfqq;
3765
3766	cfqq = cfqd->active_queue;
3767	if (!cfqq)
3768		return false;
3769
3770	if (cfq_class_idle(new_cfqq))
3771		return false;
3772
3773	if (cfq_class_idle(cfqq))
3774		return true;
3775
3776	/*
3777	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3778	 */
3779	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3780		return false;
3781
3782	/*
3783	 * if the new request is sync, but the currently running queue is
3784	 * not, let the sync request have priority.
3785	 */
3786	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3787		return true;
3788
3789	if (new_cfqq->cfqg != cfqq->cfqg)
3790		return false;
3791
3792	if (cfq_slice_used(cfqq))
3793		return true;
3794
3795	/* Allow preemption only if we are idling on sync-noidle tree */
3796	if (cfqd->serving_wl_type == SYNC_NOIDLE_WORKLOAD &&
3797	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3798	    new_cfqq->service_tree->count == 2 &&
3799	    RB_EMPTY_ROOT(&cfqq->sort_list))
3800		return true;
3801
3802	/*
3803	 * So both queues are sync. Let the new request get disk time if
3804	 * it's a metadata request and the current queue is doing regular IO.
3805	 */
3806	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3807		return true;
3808
3809	/*
3810	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3811	 */
3812	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3813		return true;
3814
3815	/* An idle queue should not be idle now for some reason */
3816	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3817		return true;
3818
3819	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3820		return false;
3821
3822	/*
3823	 * if this request is as-good as one we would expect from the
3824	 * current cfqq, let it preempt
3825	 */
3826	if (cfq_rq_close(cfqd, cfqq, rq))
3827		return true;
3828
3829	return false;
3830}
3831
3832/*
3833 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3834 * let it have half of its nominal slice.
3835 */
3836static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3837{
3838	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3839
3840	cfq_log_cfqq(cfqd, cfqq, "preempt");
3841	cfq_slice_expired(cfqd, 1);
3842
3843	/*
3844	 * workload type is changed, don't save slice, otherwise preempt
3845	 * doesn't happen
3846	 */
3847	if (old_type != cfqq_type(cfqq))
3848		cfqq->cfqg->saved_wl_slice = 0;
3849
3850	/*
3851	 * Put the new queue at the front of the of the current list,
3852	 * so we know that it will be selected next.
3853	 */
3854	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3855
3856	cfq_service_tree_add(cfqd, cfqq, 1);
3857
3858	cfqq->slice_end = 0;
3859	cfq_mark_cfqq_slice_new(cfqq);
3860}
3861
3862/*
3863 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3864 * something we should do about it
3865 */
3866static void
3867cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3868		struct request *rq)
3869{
3870	struct cfq_io_cq *cic = RQ_CIC(rq);
3871
3872	cfqd->rq_queued++;
3873	if (rq->cmd_flags & REQ_PRIO)
3874		cfqq->prio_pending++;
3875
3876	cfq_update_io_thinktime(cfqd, cfqq, cic);
3877	cfq_update_io_seektime(cfqd, cfqq, rq);
3878	cfq_update_idle_window(cfqd, cfqq, cic);
3879
3880	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3881
3882	if (cfqq == cfqd->active_queue) {
3883		/*
3884		 * Remember that we saw a request from this process, but
3885		 * don't start queuing just yet. Otherwise we risk seeing lots
3886		 * of tiny requests, because we disrupt the normal plugging
3887		 * and merging. If the request is already larger than a single
3888		 * page, let it rip immediately. For that case we assume that
3889		 * merging is already done. Ditto for a busy system that
3890		 * has other work pending, don't risk delaying until the
3891		 * idle timer unplug to continue working.
3892		 */
3893		if (cfq_cfqq_wait_request(cfqq)) {
3894			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3895			    cfqd->busy_queues > 1) {
3896				cfq_del_timer(cfqd, cfqq);
3897				cfq_clear_cfqq_wait_request(cfqq);
3898				__blk_run_queue(cfqd->queue);
3899			} else {
3900				cfqg_stats_update_idle_time(cfqq->cfqg);
3901				cfq_mark_cfqq_must_dispatch(cfqq);
3902			}
3903		}
3904	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3905		/*
3906		 * not the active queue - expire current slice if it is
3907		 * idle and has expired it's mean thinktime or this new queue
3908		 * has some old slice time left and is of higher priority or
3909		 * this new queue is RT and the current one is BE
3910		 */
3911		cfq_preempt_queue(cfqd, cfqq);
3912		__blk_run_queue(cfqd->queue);
3913	}
3914}
3915
3916static void cfq_insert_request(struct request_queue *q, struct request *rq)
3917{
3918	struct cfq_data *cfqd = q->elevator->elevator_data;
3919	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3920
3921	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3922	cfq_init_prio_data(cfqq, RQ_CIC(rq));
3923
3924	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3925	list_add_tail(&rq->queuelist, &cfqq->fifo);
3926	cfq_add_rq_rb(rq);
3927	cfqg_stats_update_io_add(RQ_CFQG(rq), cfqd->serving_group,
3928				 rq->cmd_flags);
3929	cfq_rq_enqueued(cfqd, cfqq, rq);
3930}
3931
3932/*
3933 * Update hw_tag based on peak queue depth over 50 samples under
3934 * sufficient load.
3935 */
3936static void cfq_update_hw_tag(struct cfq_data *cfqd)
3937{
3938	struct cfq_queue *cfqq = cfqd->active_queue;
3939
3940	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3941		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3942
3943	if (cfqd->hw_tag == 1)
3944		return;
3945
3946	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3947	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3948		return;
3949
3950	/*
3951	 * If active queue hasn't enough requests and can idle, cfq might not
3952	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3953	 * case
3954	 */
3955	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3956	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3957	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3958		return;
3959
3960	if (cfqd->hw_tag_samples++ < 50)
3961		return;
3962
3963	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3964		cfqd->hw_tag = 1;
3965	else
3966		cfqd->hw_tag = 0;
3967}
3968
3969static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3970{
3971	struct cfq_io_cq *cic = cfqd->active_cic;
3972
3973	/* If the queue already has requests, don't wait */
3974	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3975		return false;
3976
3977	/* If there are other queues in the group, don't wait */
3978	if (cfqq->cfqg->nr_cfqq > 1)
3979		return false;
3980
3981	/* the only queue in the group, but think time is big */
3982	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3983		return false;
3984
3985	if (cfq_slice_used(cfqq))
3986		return true;
3987
3988	/* if slice left is less than think time, wait busy */
3989	if (cic && sample_valid(cic->ttime.ttime_samples)
3990	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3991		return true;
3992
3993	/*
3994	 * If think times is less than a jiffy than ttime_mean=0 and above
3995	 * will not be true. It might happen that slice has not expired yet
3996	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3997	 * case where think time is less than a jiffy, mark the queue wait
3998	 * busy if only 1 jiffy is left in the slice.
3999	 */
4000	if (cfqq->slice_end - jiffies == 1)
4001		return true;
4002
4003	return false;
4004}
4005
4006static void cfq_completed_request(struct request_queue *q, struct request *rq)
4007{
4008	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4009	struct cfq_data *cfqd = cfqq->cfqd;
4010	const int sync = rq_is_sync(rq);
4011	unsigned long now;
4012
4013	now = jiffies;
4014	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
4015		     !!(rq->cmd_flags & REQ_NOIDLE));
4016
4017	cfq_update_hw_tag(cfqd);
4018
4019	WARN_ON(!cfqd->rq_in_driver);
4020	WARN_ON(!cfqq->dispatched);
4021	cfqd->rq_in_driver--;
4022	cfqq->dispatched--;
4023	(RQ_CFQG(rq))->dispatched--;
4024	cfqg_stats_update_completion(cfqq->cfqg, rq_start_time_ns(rq),
4025				     rq_io_start_time_ns(rq), rq->cmd_flags);
4026
4027	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
4028
4029	if (sync) {
4030		struct cfq_rb_root *st;
4031
4032		RQ_CIC(rq)->ttime.last_end_request = now;
4033
4034		if (cfq_cfqq_on_rr(cfqq))
4035			st = cfqq->service_tree;
4036		else
4037			st = st_for(cfqq->cfqg, cfqq_class(cfqq),
4038					cfqq_type(cfqq));
4039
4040		st->ttime.last_end_request = now;
4041		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
4042			cfqd->last_delayed_sync = now;
4043	}
4044
4045#ifdef CONFIG_CFQ_GROUP_IOSCHED
4046	cfqq->cfqg->ttime.last_end_request = now;
4047#endif
4048
4049	/*
4050	 * If this is the active queue, check if it needs to be expired,
4051	 * or if we want to idle in case it has no pending requests.
4052	 */
4053	if (cfqd->active_queue == cfqq) {
4054		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
4055
4056		if (cfq_cfqq_slice_new(cfqq)) {
4057			cfq_set_prio_slice(cfqd, cfqq);
4058			cfq_clear_cfqq_slice_new(cfqq);
4059		}
4060
4061		/*
4062		 * Should we wait for next request to come in before we expire
4063		 * the queue.
4064		 */
4065		if (cfq_should_wait_busy(cfqd, cfqq)) {
4066			unsigned long extend_sl = cfqd->cfq_slice_idle;
4067			if (!cfqd->cfq_slice_idle)
4068				extend_sl = cfqd->cfq_group_idle;
4069			cfqq->slice_end = jiffies + extend_sl;
4070			cfq_mark_cfqq_wait_busy(cfqq);
4071			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
4072		}
4073
4074		/*
4075		 * Idling is not enabled on:
4076		 * - expired queues
4077		 * - idle-priority queues
4078		 * - async queues
4079		 * - queues with still some requests queued
4080		 * - when there is a close cooperator
4081		 */
4082		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
4083			cfq_slice_expired(cfqd, 1);
4084		else if (sync && cfqq_empty &&
4085			 !cfq_close_cooperator(cfqd, cfqq)) {
4086			cfq_arm_slice_timer(cfqd);
4087		}
4088	}
4089
4090	if (!cfqd->rq_in_driver)
4091		cfq_schedule_dispatch(cfqd);
4092}
4093
4094static inline int __cfq_may_queue(struct cfq_queue *cfqq)
4095{
4096	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
4097		cfq_mark_cfqq_must_alloc_slice(cfqq);
4098		return ELV_MQUEUE_MUST;
4099	}
4100
4101	return ELV_MQUEUE_MAY;
4102}
4103
4104static int cfq_may_queue(struct request_queue *q, int rw)
4105{
4106	struct cfq_data *cfqd = q->elevator->elevator_data;
4107	struct task_struct *tsk = current;
4108	struct cfq_io_cq *cic;
4109	struct cfq_queue *cfqq;
4110
4111	/*
4112	 * don't force setup of a queue from here, as a call to may_queue
4113	 * does not necessarily imply that a request actually will be queued.
4114	 * so just lookup a possibly existing queue, or return 'may queue'
4115	 * if that fails
4116	 */
4117	cic = cfq_cic_lookup(cfqd, tsk->io_context);
4118	if (!cic)
4119		return ELV_MQUEUE_MAY;
4120
4121	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
4122	if (cfqq) {
4123		cfq_init_prio_data(cfqq, cic);
4124
4125		return __cfq_may_queue(cfqq);
4126	}
4127
4128	return ELV_MQUEUE_MAY;
4129}
4130
4131/*
4132 * queue lock held here
4133 */
4134static void cfq_put_request(struct request *rq)
4135{
4136	struct cfq_queue *cfqq = RQ_CFQQ(rq);
4137
4138	if (cfqq) {
4139		const int rw = rq_data_dir(rq);
4140
4141		BUG_ON(!cfqq->allocated[rw]);
4142		cfqq->allocated[rw]--;
4143
4144		/* Put down rq reference on cfqg */
4145		cfqg_put(RQ_CFQG(rq));
4146		rq->elv.priv[0] = NULL;
4147		rq->elv.priv[1] = NULL;
4148
4149		cfq_put_queue(cfqq);
4150	}
4151}
4152
4153static struct cfq_queue *
4154cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
4155		struct cfq_queue *cfqq)
4156{
4157	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
4158	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
4159	cfq_mark_cfqq_coop(cfqq->new_cfqq);
4160	cfq_put_queue(cfqq);
4161	return cic_to_cfqq(cic, 1);
4162}
4163
4164/*
4165 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4166 * was the last process referring to said cfqq.
4167 */
4168static struct cfq_queue *
4169split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
4170{
4171	if (cfqq_process_refs(cfqq) == 1) {
4172		cfqq->pid = current->pid;
4173		cfq_clear_cfqq_coop(cfqq);
4174		cfq_clear_cfqq_split_coop(cfqq);
4175		return cfqq;
4176	}
4177
4178	cic_set_cfqq(cic, NULL, 1);
4179
4180	cfq_put_cooperator(cfqq);
4181
4182	cfq_put_queue(cfqq);
4183	return NULL;
4184}
4185/*
4186 * Allocate cfq data structures associated with this request.
4187 */
4188static int
4189cfq_set_request(struct request_queue *q, struct request *rq, struct bio *bio,
4190		gfp_t gfp_mask)
4191{
4192	struct cfq_data *cfqd = q->elevator->elevator_data;
4193	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
4194	const int rw = rq_data_dir(rq);
4195	const bool is_sync = rq_is_sync(rq);
4196	struct cfq_queue *cfqq;
4197
4198	might_sleep_if(gfp_mask & __GFP_WAIT);
4199
4200	spin_lock_irq(q->queue_lock);
4201
4202	check_ioprio_changed(cic, bio);
4203	check_blkcg_changed(cic, bio);
4204new_queue:
4205	cfqq = cic_to_cfqq(cic, is_sync);
4206	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
4207		cfqq = cfq_get_queue(cfqd, is_sync, cic, bio, gfp_mask);
4208		cic_set_cfqq(cic, cfqq, is_sync);
4209	} else {
4210		/*
4211		 * If the queue was seeky for too long, break it apart.
4212		 */
4213		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
4214			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
4215			cfqq = split_cfqq(cic, cfqq);
4216			if (!cfqq)
4217				goto new_queue;
4218		}
4219
4220		/*
4221		 * Check to see if this queue is scheduled to merge with
4222		 * another, closely cooperating queue.  The merging of
4223		 * queues happens here as it must be done in process context.
4224		 * The reference on new_cfqq was taken in merge_cfqqs.
4225		 */
4226		if (cfqq->new_cfqq)
4227			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
4228	}
4229
4230	cfqq->allocated[rw]++;
4231
4232	cfqq->ref++;
4233	cfqg_get(cfqq->cfqg);
4234	rq->elv.priv[0] = cfqq;
4235	rq->elv.priv[1] = cfqq->cfqg;
4236	spin_unlock_irq(q->queue_lock);
4237	return 0;
4238}
4239
4240static void cfq_kick_queue(struct work_struct *work)
4241{
4242	struct cfq_data *cfqd =
4243		container_of(work, struct cfq_data, unplug_work);
4244	struct request_queue *q = cfqd->queue;
4245
4246	spin_lock_irq(q->queue_lock);
4247	__blk_run_queue(cfqd->queue);
4248	spin_unlock_irq(q->queue_lock);
4249}
4250
4251/*
4252 * Timer running if the active_queue is currently idling inside its time slice
4253 */
4254static void cfq_idle_slice_timer(unsigned long data)
4255{
4256	struct cfq_data *cfqd = (struct cfq_data *) data;
4257	struct cfq_queue *cfqq;
4258	unsigned long flags;
4259	int timed_out = 1;
4260
4261	cfq_log(cfqd, "idle timer fired");
4262
4263	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
4264
4265	cfqq = cfqd->active_queue;
4266	if (cfqq) {
4267		timed_out = 0;
4268
4269		/*
4270		 * We saw a request before the queue expired, let it through
4271		 */
4272		if (cfq_cfqq_must_dispatch(cfqq))
4273			goto out_kick;
4274
4275		/*
4276		 * expired
4277		 */
4278		if (cfq_slice_used(cfqq))
4279			goto expire;
4280
4281		/*
4282		 * only expire and reinvoke request handler, if there are
4283		 * other queues with pending requests
4284		 */
4285		if (!cfqd->busy_queues)
4286			goto out_cont;
4287
4288		/*
4289		 * not expired and it has a request pending, let it dispatch
4290		 */
4291		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
4292			goto out_kick;
4293
4294		/*
4295		 * Queue depth flag is reset only when the idle didn't succeed
4296		 */
4297		cfq_clear_cfqq_deep(cfqq);
4298	}
4299expire:
4300	cfq_slice_expired(cfqd, timed_out);
4301out_kick:
4302	cfq_schedule_dispatch(cfqd);
4303out_cont:
4304	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
4305}
4306
4307static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
4308{
4309	del_timer_sync(&cfqd->idle_slice_timer);
4310	cancel_work_sync(&cfqd->unplug_work);
4311}
4312
4313static void cfq_put_async_queues(struct cfq_data *cfqd)
4314{
4315	int i;
4316
4317	for (i = 0; i < IOPRIO_BE_NR; i++) {
4318		if (cfqd->async_cfqq[0][i])
4319			cfq_put_queue(cfqd->async_cfqq[0][i]);
4320		if (cfqd->async_cfqq[1][i])
4321			cfq_put_queue(cfqd->async_cfqq[1][i]);
4322	}
4323
4324	if (cfqd->async_idle_cfqq)
4325		cfq_put_queue(cfqd->async_idle_cfqq);
4326}
4327
4328static void cfq_exit_queue(struct elevator_queue *e)
4329{
4330	struct cfq_data *cfqd = e->elevator_data;
4331	struct request_queue *q = cfqd->queue;
4332
4333	cfq_shutdown_timer_wq(cfqd);
4334
4335	spin_lock_irq(q->queue_lock);
4336
4337	if (cfqd->active_queue)
4338		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
4339
4340	cfq_put_async_queues(cfqd);
4341
4342	spin_unlock_irq(q->queue_lock);
4343
4344	cfq_shutdown_timer_wq(cfqd);
4345
4346#ifdef CONFIG_CFQ_GROUP_IOSCHED
4347	blkcg_deactivate_policy(q, &blkcg_policy_cfq);
4348#else
4349	kfree(cfqd->root_group);
4350#endif
4351	kfree(cfqd);
4352}
4353
4354static int cfq_init_queue(struct request_queue *q)
4355{
4356	struct cfq_data *cfqd;
4357	struct blkcg_gq *blkg __maybe_unused;
4358	int i, ret;
4359
4360	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
4361	if (!cfqd)
4362		return -ENOMEM;
4363
4364	cfqd->queue = q;
4365	q->elevator->elevator_data = cfqd;
4366
4367	/* Init root service tree */
4368	cfqd->grp_service_tree = CFQ_RB_ROOT;
4369
4370	/* Init root group and prefer root group over other groups by default */
4371#ifdef CONFIG_CFQ_GROUP_IOSCHED
4372	ret = blkcg_activate_policy(q, &blkcg_policy_cfq);
4373	if (ret)
4374		goto out_free;
4375
4376	cfqd->root_group = blkg_to_cfqg(q->root_blkg);
4377#else
4378	ret = -ENOMEM;
4379	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
4380					GFP_KERNEL, cfqd->queue->node);
4381	if (!cfqd->root_group)
4382		goto out_free;
4383
4384	cfq_init_cfqg_base(cfqd->root_group);
4385#endif
4386	cfqd->root_group->weight = 2 * CFQ_WEIGHT_DEFAULT;
4387	cfqd->root_group->leaf_weight = 2 * CFQ_WEIGHT_DEFAULT;
4388
4389	/*
4390	 * Not strictly needed (since RB_ROOT just clears the node and we
4391	 * zeroed cfqd on alloc), but better be safe in case someone decides
4392	 * to add magic to the rb code
4393	 */
4394	for (i = 0; i < CFQ_PRIO_LISTS; i++)
4395		cfqd->prio_trees[i] = RB_ROOT;
4396
4397	/*
4398	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4399	 * Grab a permanent reference to it, so that the normal code flow
4400	 * will not attempt to free it.  oom_cfqq is linked to root_group
4401	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
4402	 * the reference from linking right away.
4403	 */
4404	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
4405	cfqd->oom_cfqq.ref++;
4406
4407	spin_lock_irq(q->queue_lock);
4408	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
4409	cfqg_put(cfqd->root_group);
4410	spin_unlock_irq(q->queue_lock);
4411
4412	init_timer(&cfqd->idle_slice_timer);
4413	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
4414	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
4415
4416	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
4417
4418	cfqd->cfq_quantum = cfq_quantum;
4419	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
4420	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
4421	cfqd->cfq_back_max = cfq_back_max;
4422	cfqd->cfq_back_penalty = cfq_back_penalty;
4423	cfqd->cfq_slice[0] = cfq_slice_async;
4424	cfqd->cfq_slice[1] = cfq_slice_sync;
4425	cfqd->cfq_target_latency = cfq_target_latency;
4426	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
4427	cfqd->cfq_slice_idle = cfq_slice_idle;
4428	cfqd->cfq_group_idle = cfq_group_idle;
4429	cfqd->cfq_latency = 1;
4430	cfqd->hw_tag = -1;
4431	/*
4432	 * we optimistically start assuming sync ops weren't delayed in last
4433	 * second, in order to have larger depth for async operations.
4434	 */
4435	cfqd->last_delayed_sync = jiffies - HZ;
4436	return 0;
4437
4438out_free:
4439	kfree(cfqd);
4440	return ret;
4441}
4442
4443/*
4444 * sysfs parts below -->
4445 */
4446static ssize_t
4447cfq_var_show(unsigned int var, char *page)
4448{
4449	return sprintf(page, "%d\n", var);
4450}
4451
4452static ssize_t
4453cfq_var_store(unsigned int *var, const char *page, size_t count)
4454{
4455	char *p = (char *) page;
4456
4457	*var = simple_strtoul(p, &p, 10);
4458	return count;
4459}
4460
4461#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
4462static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
4463{									\
4464	struct cfq_data *cfqd = e->elevator_data;			\
4465	unsigned int __data = __VAR;					\
4466	if (__CONV)							\
4467		__data = jiffies_to_msecs(__data);			\
4468	return cfq_var_show(__data, (page));				\
4469}
4470SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
4471SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
4472SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
4473SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
4474SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
4475SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
4476SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
4477SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4478SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4479SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
4480SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
4481SHOW_FUNCTION(cfq_target_latency_show, cfqd->cfq_target_latency, 1);
4482#undef SHOW_FUNCTION
4483
4484#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
4485static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
4486{									\
4487	struct cfq_data *cfqd = e->elevator_data;			\
4488	unsigned int __data;						\
4489	int ret = cfq_var_store(&__data, (page), count);		\
4490	if (__data < (MIN))						\
4491		__data = (MIN);						\
4492	else if (__data > (MAX))					\
4493		__data = (MAX);						\
4494	if (__CONV)							\
4495		*(__PTR) = msecs_to_jiffies(__data);			\
4496	else								\
4497		*(__PTR) = __data;					\
4498	return ret;							\
4499}
4500STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
4501STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4502		UINT_MAX, 1);
4503STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4504		UINT_MAX, 1);
4505STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
4506STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4507		UINT_MAX, 0);
4508STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
4509STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
4510STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4511STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
4512STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4513		UINT_MAX, 0);
4514STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
4515STORE_FUNCTION(cfq_target_latency_store, &cfqd->cfq_target_latency, 1, UINT_MAX, 1);
4516#undef STORE_FUNCTION
4517
4518#define CFQ_ATTR(name) \
4519	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4520
4521static struct elv_fs_entry cfq_attrs[] = {
4522	CFQ_ATTR(quantum),
4523	CFQ_ATTR(fifo_expire_sync),
4524	CFQ_ATTR(fifo_expire_async),
4525	CFQ_ATTR(back_seek_max),
4526	CFQ_ATTR(back_seek_penalty),
4527	CFQ_ATTR(slice_sync),
4528	CFQ_ATTR(slice_async),
4529	CFQ_ATTR(slice_async_rq),
4530	CFQ_ATTR(slice_idle),
4531	CFQ_ATTR(group_idle),
4532	CFQ_ATTR(low_latency),
4533	CFQ_ATTR(target_latency),
4534	__ATTR_NULL
4535};
4536
4537static struct elevator_type iosched_cfq = {
4538	.ops = {
4539		.elevator_merge_fn = 		cfq_merge,
4540		.elevator_merged_fn =		cfq_merged_request,
4541		.elevator_merge_req_fn =	cfq_merged_requests,
4542		.elevator_allow_merge_fn =	cfq_allow_merge,
4543		.elevator_bio_merged_fn =	cfq_bio_merged,
4544		.elevator_dispatch_fn =		cfq_dispatch_requests,
4545		.elevator_add_req_fn =		cfq_insert_request,
4546		.elevator_activate_req_fn =	cfq_activate_request,
4547		.elevator_deactivate_req_fn =	cfq_deactivate_request,
4548		.elevator_completed_req_fn =	cfq_completed_request,
4549		.elevator_former_req_fn =	elv_rb_former_request,
4550		.elevator_latter_req_fn =	elv_rb_latter_request,
4551		.elevator_init_icq_fn =		cfq_init_icq,
4552		.elevator_exit_icq_fn =		cfq_exit_icq,
4553		.elevator_set_req_fn =		cfq_set_request,
4554		.elevator_put_req_fn =		cfq_put_request,
4555		.elevator_may_queue_fn =	cfq_may_queue,
4556		.elevator_init_fn =		cfq_init_queue,
4557		.elevator_exit_fn =		cfq_exit_queue,
4558	},
4559	.icq_size	=	sizeof(struct cfq_io_cq),
4560	.icq_align	=	__alignof__(struct cfq_io_cq),
4561	.elevator_attrs =	cfq_attrs,
4562	.elevator_name	=	"cfq",
4563	.elevator_owner =	THIS_MODULE,
4564};
4565
4566#ifdef CONFIG_CFQ_GROUP_IOSCHED
4567static struct blkcg_policy blkcg_policy_cfq = {
4568	.pd_size		= sizeof(struct cfq_group),
4569	.cftypes		= cfq_blkcg_files,
4570
4571	.pd_init_fn		= cfq_pd_init,
4572	.pd_offline_fn		= cfq_pd_offline,
4573	.pd_reset_stats_fn	= cfq_pd_reset_stats,
4574};
4575#endif
4576
4577static int __init cfq_init(void)
4578{
4579	int ret;
4580
4581	/*
4582	 * could be 0 on HZ < 1000 setups
4583	 */
4584	if (!cfq_slice_async)
4585		cfq_slice_async = 1;
4586	if (!cfq_slice_idle)
4587		cfq_slice_idle = 1;
4588
4589#ifdef CONFIG_CFQ_GROUP_IOSCHED
4590	if (!cfq_group_idle)
4591		cfq_group_idle = 1;
4592
4593	ret = blkcg_policy_register(&blkcg_policy_cfq);
4594	if (ret)
4595		return ret;
4596#else
4597	cfq_group_idle = 0;
4598#endif
4599
4600	ret = -ENOMEM;
4601	cfq_pool = KMEM_CACHE(cfq_queue, 0);
4602	if (!cfq_pool)
4603		goto err_pol_unreg;
4604
4605	ret = elv_register(&iosched_cfq);
4606	if (ret)
4607		goto err_free_pool;
4608
4609	return 0;
4610
4611err_free_pool:
4612	kmem_cache_destroy(cfq_pool);
4613err_pol_unreg:
4614#ifdef CONFIG_CFQ_GROUP_IOSCHED
4615	blkcg_policy_unregister(&blkcg_policy_cfq);
4616#endif
4617	return ret;
4618}
4619
4620static void __exit cfq_exit(void)
4621{
4622#ifdef CONFIG_CFQ_GROUP_IOSCHED
4623	blkcg_policy_unregister(&blkcg_policy_cfq);
4624#endif
4625	elv_unregister(&iosched_cfq);
4626	kmem_cache_destroy(cfq_pool);
4627}
4628
4629module_init(cfq_init);
4630module_exit(cfq_exit);
4631
4632MODULE_AUTHOR("Jens Axboe");
4633MODULE_LICENSE("GPL");
4634MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
4635