cfq-iosched.c revision ae30c286553c91c49af5cbc0265a05a6543d0c52
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16#include "blk-cgroup.h"
17
18/*
19 * tunables
20 */
21/* max queue in one round of service */
22static const int cfq_quantum = 4;
23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
28static const int cfq_slice_sync = HZ / 10;
29static int cfq_slice_async = HZ / 25;
30static const int cfq_slice_async_rq = 2;
31static int cfq_slice_idle = HZ / 125;
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
34
35/*
36 * offset from end of service tree
37 */
38#define CFQ_IDLE_DELAY		(HZ / 5)
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT		(2)
44
45/*
46 * Allow merged cfqqs to perform this amount of seeky I/O before
47 * deciding to break the queues up again.
48 */
49#define CFQQ_COOP_TOUT		(HZ)
50
51#define CFQ_SLICE_SCALE		(5)
52#define CFQ_HW_QUEUE_MIN	(5)
53#define CFQ_SERVICE_SHIFT       12
54
55#define RQ_CIC(rq)		\
56	((struct cfq_io_context *) (rq)->elevator_private)
57#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
58
59static struct kmem_cache *cfq_pool;
60static struct kmem_cache *cfq_ioc_pool;
61
62static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63static struct completion *ioc_gone;
64static DEFINE_SPINLOCK(ioc_gone_lock);
65
66#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
67#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70#define sample_valid(samples)	((samples) > 80)
71#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
72
73/*
74 * Most of our rbtree usage is for sorting with min extraction, so
75 * if we cache the leftmost node we don't have to walk down the tree
76 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77 * move this into the elevator for the rq sorting as well.
78 */
79struct cfq_rb_root {
80	struct rb_root rb;
81	struct rb_node *left;
82	unsigned count;
83	u64 min_vdisktime;
84	struct rb_node *active;
85	unsigned total_weight;
86};
87#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93	/* reference count */
94	atomic_t ref;
95	/* various state flags, see below */
96	unsigned int flags;
97	/* parent cfq_data */
98	struct cfq_data *cfqd;
99	/* service_tree member */
100	struct rb_node rb_node;
101	/* service_tree key */
102	unsigned long rb_key;
103	/* prio tree member */
104	struct rb_node p_node;
105	/* prio tree root we belong to, if any */
106	struct rb_root *p_root;
107	/* sorted list of pending requests */
108	struct rb_root sort_list;
109	/* if fifo isn't expired, next request to serve */
110	struct request *next_rq;
111	/* requests queued in sort_list */
112	int queued[2];
113	/* currently allocated requests */
114	int allocated[2];
115	/* fifo list of requests in sort_list */
116	struct list_head fifo;
117
118	/* time when queue got scheduled in to dispatch first request. */
119	unsigned long dispatch_start;
120	unsigned int allocated_slice;
121	/* time when first request from queue completed and slice started. */
122	unsigned long slice_start;
123	unsigned long slice_end;
124	long slice_resid;
125	unsigned int slice_dispatch;
126
127	/* pending metadata requests */
128	int meta_pending;
129	/* number of requests that are on the dispatch list or inside driver */
130	int dispatched;
131
132	/* io prio of this group */
133	unsigned short ioprio, org_ioprio;
134	unsigned short ioprio_class, org_ioprio_class;
135
136	unsigned int seek_samples;
137	u64 seek_total;
138	sector_t seek_mean;
139	sector_t last_request_pos;
140	unsigned long seeky_start;
141
142	pid_t pid;
143
144	struct cfq_rb_root *service_tree;
145	struct cfq_queue *new_cfqq;
146	struct cfq_group *cfqg;
147	struct cfq_group *orig_cfqg;
148	/* Sectors dispatched in current dispatch round */
149	unsigned long nr_sectors;
150};
151
152/*
153 * First index in the service_trees.
154 * IDLE is handled separately, so it has negative index
155 */
156enum wl_prio_t {
157	BE_WORKLOAD = 0,
158	RT_WORKLOAD = 1,
159	IDLE_WORKLOAD = 2,
160};
161
162/*
163 * Second index in the service_trees.
164 */
165enum wl_type_t {
166	ASYNC_WORKLOAD = 0,
167	SYNC_NOIDLE_WORKLOAD = 1,
168	SYNC_WORKLOAD = 2
169};
170
171/* This is per cgroup per device grouping structure */
172struct cfq_group {
173	/* group service_tree member */
174	struct rb_node rb_node;
175
176	/* group service_tree key */
177	u64 vdisktime;
178	unsigned int weight;
179	bool on_st;
180
181	/* number of cfqq currently on this group */
182	int nr_cfqq;
183
184	/* Per group busy queus average. Useful for workload slice calc. */
185	unsigned int busy_queues_avg[2];
186	/*
187	 * rr lists of queues with requests, onle rr for each priority class.
188	 * Counts are embedded in the cfq_rb_root
189	 */
190	struct cfq_rb_root service_trees[2][3];
191	struct cfq_rb_root service_tree_idle;
192
193	unsigned long saved_workload_slice;
194	enum wl_type_t saved_workload;
195	enum wl_prio_t saved_serving_prio;
196	struct blkio_group blkg;
197#ifdef CONFIG_CFQ_GROUP_IOSCHED
198	struct hlist_node cfqd_node;
199	atomic_t ref;
200#endif
201};
202
203/*
204 * Per block device queue structure
205 */
206struct cfq_data {
207	struct request_queue *queue;
208	/* Root service tree for cfq_groups */
209	struct cfq_rb_root grp_service_tree;
210	struct cfq_group root_group;
211	/* Number of active cfq groups on group service tree */
212	int nr_groups;
213
214	/*
215	 * The priority currently being served
216	 */
217	enum wl_prio_t serving_prio;
218	enum wl_type_t serving_type;
219	unsigned long workload_expires;
220	struct cfq_group *serving_group;
221	bool noidle_tree_requires_idle;
222
223	/*
224	 * Each priority tree is sorted by next_request position.  These
225	 * trees are used when determining if two or more queues are
226	 * interleaving requests (see cfq_close_cooperator).
227	 */
228	struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
230	unsigned int busy_queues;
231
232	int rq_in_driver[2];
233	int sync_flight;
234
235	/*
236	 * queue-depth detection
237	 */
238	int rq_queued;
239	int hw_tag;
240	/*
241	 * hw_tag can be
242	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244	 *  0 => no NCQ
245	 */
246	int hw_tag_est_depth;
247	unsigned int hw_tag_samples;
248
249	/*
250	 * idle window management
251	 */
252	struct timer_list idle_slice_timer;
253	struct work_struct unplug_work;
254
255	struct cfq_queue *active_queue;
256	struct cfq_io_context *active_cic;
257
258	/*
259	 * async queue for each priority case
260	 */
261	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262	struct cfq_queue *async_idle_cfqq;
263
264	sector_t last_position;
265
266	/*
267	 * tunables, see top of file
268	 */
269	unsigned int cfq_quantum;
270	unsigned int cfq_fifo_expire[2];
271	unsigned int cfq_back_penalty;
272	unsigned int cfq_back_max;
273	unsigned int cfq_slice[2];
274	unsigned int cfq_slice_async_rq;
275	unsigned int cfq_slice_idle;
276	unsigned int cfq_latency;
277	unsigned int cfq_group_isolation;
278
279	struct list_head cic_list;
280
281	/*
282	 * Fallback dummy cfqq for extreme OOM conditions
283	 */
284	struct cfq_queue oom_cfqq;
285
286	unsigned long last_end_sync_rq;
287
288	/* List of cfq groups being managed on this device*/
289	struct hlist_head cfqg_list;
290};
291
292static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
293
294static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
295					    enum wl_prio_t prio,
296					    enum wl_type_t type,
297					    struct cfq_data *cfqd)
298{
299	if (!cfqg)
300		return NULL;
301
302	if (prio == IDLE_WORKLOAD)
303		return &cfqg->service_tree_idle;
304
305	return &cfqg->service_trees[prio][type];
306}
307
308enum cfqq_state_flags {
309	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
310	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
311	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
312	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
313	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
314	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
315	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
316	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
317	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
318	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
319	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
320	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
321	CFQ_CFQQ_FLAG_wait_busy_done,	/* Got new request. Expire the queue */
322};
323
324#define CFQ_CFQQ_FNS(name)						\
325static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
326{									\
327	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
328}									\
329static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
330{									\
331	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
332}									\
333static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
334{									\
335	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
336}
337
338CFQ_CFQQ_FNS(on_rr);
339CFQ_CFQQ_FNS(wait_request);
340CFQ_CFQQ_FNS(must_dispatch);
341CFQ_CFQQ_FNS(must_alloc_slice);
342CFQ_CFQQ_FNS(fifo_expire);
343CFQ_CFQQ_FNS(idle_window);
344CFQ_CFQQ_FNS(prio_changed);
345CFQ_CFQQ_FNS(slice_new);
346CFQ_CFQQ_FNS(sync);
347CFQ_CFQQ_FNS(coop);
348CFQ_CFQQ_FNS(deep);
349CFQ_CFQQ_FNS(wait_busy);
350CFQ_CFQQ_FNS(wait_busy_done);
351#undef CFQ_CFQQ_FNS
352
353#ifdef CONFIG_DEBUG_CFQ_IOSCHED
354#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
355	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
356			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
357			blkg_path(&(cfqq)->cfqg->blkg), ##args);
358
359#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
360	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
361				blkg_path(&(cfqg)->blkg), ##args);      \
362
363#else
364#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
365	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
366#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
367#endif
368#define cfq_log(cfqd, fmt, args...)	\
369	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
370
371/* Traverses through cfq group service trees */
372#define for_each_cfqg_st(cfqg, i, j, st) \
373	for (i = 0; i <= IDLE_WORKLOAD; i++) \
374		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
375			: &cfqg->service_tree_idle; \
376			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
377			(i == IDLE_WORKLOAD && j == 0); \
378			j++, st = i < IDLE_WORKLOAD ? \
379			&cfqg->service_trees[i][j]: NULL) \
380
381
382static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
383{
384	if (cfq_class_idle(cfqq))
385		return IDLE_WORKLOAD;
386	if (cfq_class_rt(cfqq))
387		return RT_WORKLOAD;
388	return BE_WORKLOAD;
389}
390
391
392static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
393{
394	if (!cfq_cfqq_sync(cfqq))
395		return ASYNC_WORKLOAD;
396	if (!cfq_cfqq_idle_window(cfqq))
397		return SYNC_NOIDLE_WORKLOAD;
398	return SYNC_WORKLOAD;
399}
400
401static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
402					struct cfq_data *cfqd,
403					struct cfq_group *cfqg)
404{
405	if (wl == IDLE_WORKLOAD)
406		return cfqg->service_tree_idle.count;
407
408	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
409		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
410		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
411}
412
413static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
414					struct cfq_group *cfqg)
415{
416	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
417		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
418}
419
420static void cfq_dispatch_insert(struct request_queue *, struct request *);
421static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
422				       struct io_context *, gfp_t);
423static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
424						struct io_context *);
425
426static inline int rq_in_driver(struct cfq_data *cfqd)
427{
428	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
429}
430
431static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
432					    bool is_sync)
433{
434	return cic->cfqq[is_sync];
435}
436
437static inline void cic_set_cfqq(struct cfq_io_context *cic,
438				struct cfq_queue *cfqq, bool is_sync)
439{
440	cic->cfqq[is_sync] = cfqq;
441}
442
443/*
444 * We regard a request as SYNC, if it's either a read or has the SYNC bit
445 * set (in which case it could also be direct WRITE).
446 */
447static inline bool cfq_bio_sync(struct bio *bio)
448{
449	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
450}
451
452/*
453 * scheduler run of queue, if there are requests pending and no one in the
454 * driver that will restart queueing
455 */
456static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
457{
458	if (cfqd->busy_queues) {
459		cfq_log(cfqd, "schedule dispatch");
460		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
461	}
462}
463
464static int cfq_queue_empty(struct request_queue *q)
465{
466	struct cfq_data *cfqd = q->elevator->elevator_data;
467
468	return !cfqd->rq_queued;
469}
470
471/*
472 * Scale schedule slice based on io priority. Use the sync time slice only
473 * if a queue is marked sync and has sync io queued. A sync queue with async
474 * io only, should not get full sync slice length.
475 */
476static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
477				 unsigned short prio)
478{
479	const int base_slice = cfqd->cfq_slice[sync];
480
481	WARN_ON(prio >= IOPRIO_BE_NR);
482
483	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
484}
485
486static inline int
487cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
488{
489	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
490}
491
492static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
493{
494	u64 d = delta << CFQ_SERVICE_SHIFT;
495
496	d = d * BLKIO_WEIGHT_DEFAULT;
497	do_div(d, cfqg->weight);
498	return d;
499}
500
501static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
502{
503	s64 delta = (s64)(vdisktime - min_vdisktime);
504	if (delta > 0)
505		min_vdisktime = vdisktime;
506
507	return min_vdisktime;
508}
509
510static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
511{
512	s64 delta = (s64)(vdisktime - min_vdisktime);
513	if (delta < 0)
514		min_vdisktime = vdisktime;
515
516	return min_vdisktime;
517}
518
519static void update_min_vdisktime(struct cfq_rb_root *st)
520{
521	u64 vdisktime = st->min_vdisktime;
522	struct cfq_group *cfqg;
523
524	if (st->active) {
525		cfqg = rb_entry_cfqg(st->active);
526		vdisktime = cfqg->vdisktime;
527	}
528
529	if (st->left) {
530		cfqg = rb_entry_cfqg(st->left);
531		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
532	}
533
534	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
535}
536
537/*
538 * get averaged number of queues of RT/BE priority.
539 * average is updated, with a formula that gives more weight to higher numbers,
540 * to quickly follows sudden increases and decrease slowly
541 */
542
543static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
544					struct cfq_group *cfqg, bool rt)
545{
546	unsigned min_q, max_q;
547	unsigned mult  = cfq_hist_divisor - 1;
548	unsigned round = cfq_hist_divisor / 2;
549	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
550
551	min_q = min(cfqg->busy_queues_avg[rt], busy);
552	max_q = max(cfqg->busy_queues_avg[rt], busy);
553	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
554		cfq_hist_divisor;
555	return cfqg->busy_queues_avg[rt];
556}
557
558static inline unsigned
559cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
560{
561	struct cfq_rb_root *st = &cfqd->grp_service_tree;
562
563	return cfq_target_latency * cfqg->weight / st->total_weight;
564}
565
566static inline void
567cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
568{
569	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
570	if (cfqd->cfq_latency) {
571		/*
572		 * interested queues (we consider only the ones with the same
573		 * priority class in the cfq group)
574		 */
575		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
576						cfq_class_rt(cfqq));
577		unsigned sync_slice = cfqd->cfq_slice[1];
578		unsigned expect_latency = sync_slice * iq;
579		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
580
581		if (expect_latency > group_slice) {
582			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
583			/* scale low_slice according to IO priority
584			 * and sync vs async */
585			unsigned low_slice =
586				min(slice, base_low_slice * slice / sync_slice);
587			/* the adapted slice value is scaled to fit all iqs
588			 * into the target latency */
589			slice = max(slice * group_slice / expect_latency,
590				    low_slice);
591		}
592	}
593	cfqq->slice_start = jiffies;
594	cfqq->slice_end = jiffies + slice;
595	cfqq->allocated_slice = slice;
596	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
597}
598
599/*
600 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
601 * isn't valid until the first request from the dispatch is activated
602 * and the slice time set.
603 */
604static inline bool cfq_slice_used(struct cfq_queue *cfqq)
605{
606	if (cfq_cfqq_slice_new(cfqq))
607		return 0;
608	if (time_before(jiffies, cfqq->slice_end))
609		return 0;
610
611	return 1;
612}
613
614/*
615 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
616 * We choose the request that is closest to the head right now. Distance
617 * behind the head is penalized and only allowed to a certain extent.
618 */
619static struct request *
620cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
621{
622	sector_t s1, s2, d1 = 0, d2 = 0;
623	unsigned long back_max;
624#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
625#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
626	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
627
628	if (rq1 == NULL || rq1 == rq2)
629		return rq2;
630	if (rq2 == NULL)
631		return rq1;
632
633	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
634		return rq1;
635	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
636		return rq2;
637	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
638		return rq1;
639	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
640		return rq2;
641
642	s1 = blk_rq_pos(rq1);
643	s2 = blk_rq_pos(rq2);
644
645	/*
646	 * by definition, 1KiB is 2 sectors
647	 */
648	back_max = cfqd->cfq_back_max * 2;
649
650	/*
651	 * Strict one way elevator _except_ in the case where we allow
652	 * short backward seeks which are biased as twice the cost of a
653	 * similar forward seek.
654	 */
655	if (s1 >= last)
656		d1 = s1 - last;
657	else if (s1 + back_max >= last)
658		d1 = (last - s1) * cfqd->cfq_back_penalty;
659	else
660		wrap |= CFQ_RQ1_WRAP;
661
662	if (s2 >= last)
663		d2 = s2 - last;
664	else if (s2 + back_max >= last)
665		d2 = (last - s2) * cfqd->cfq_back_penalty;
666	else
667		wrap |= CFQ_RQ2_WRAP;
668
669	/* Found required data */
670
671	/*
672	 * By doing switch() on the bit mask "wrap" we avoid having to
673	 * check two variables for all permutations: --> faster!
674	 */
675	switch (wrap) {
676	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
677		if (d1 < d2)
678			return rq1;
679		else if (d2 < d1)
680			return rq2;
681		else {
682			if (s1 >= s2)
683				return rq1;
684			else
685				return rq2;
686		}
687
688	case CFQ_RQ2_WRAP:
689		return rq1;
690	case CFQ_RQ1_WRAP:
691		return rq2;
692	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
693	default:
694		/*
695		 * Since both rqs are wrapped,
696		 * start with the one that's further behind head
697		 * (--> only *one* back seek required),
698		 * since back seek takes more time than forward.
699		 */
700		if (s1 <= s2)
701			return rq1;
702		else
703			return rq2;
704	}
705}
706
707/*
708 * The below is leftmost cache rbtree addon
709 */
710static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
711{
712	/* Service tree is empty */
713	if (!root->count)
714		return NULL;
715
716	if (!root->left)
717		root->left = rb_first(&root->rb);
718
719	if (root->left)
720		return rb_entry(root->left, struct cfq_queue, rb_node);
721
722	return NULL;
723}
724
725static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
726{
727	if (!root->left)
728		root->left = rb_first(&root->rb);
729
730	if (root->left)
731		return rb_entry_cfqg(root->left);
732
733	return NULL;
734}
735
736static void rb_erase_init(struct rb_node *n, struct rb_root *root)
737{
738	rb_erase(n, root);
739	RB_CLEAR_NODE(n);
740}
741
742static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
743{
744	if (root->left == n)
745		root->left = NULL;
746	rb_erase_init(n, &root->rb);
747	--root->count;
748}
749
750/*
751 * would be nice to take fifo expire time into account as well
752 */
753static struct request *
754cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755		  struct request *last)
756{
757	struct rb_node *rbnext = rb_next(&last->rb_node);
758	struct rb_node *rbprev = rb_prev(&last->rb_node);
759	struct request *next = NULL, *prev = NULL;
760
761	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
762
763	if (rbprev)
764		prev = rb_entry_rq(rbprev);
765
766	if (rbnext)
767		next = rb_entry_rq(rbnext);
768	else {
769		rbnext = rb_first(&cfqq->sort_list);
770		if (rbnext && rbnext != &last->rb_node)
771			next = rb_entry_rq(rbnext);
772	}
773
774	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
775}
776
777static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
778				      struct cfq_queue *cfqq)
779{
780	/*
781	 * just an approximation, should be ok.
782	 */
783	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
784		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
785}
786
787static inline s64
788cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
789{
790	return cfqg->vdisktime - st->min_vdisktime;
791}
792
793static void
794__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
795{
796	struct rb_node **node = &st->rb.rb_node;
797	struct rb_node *parent = NULL;
798	struct cfq_group *__cfqg;
799	s64 key = cfqg_key(st, cfqg);
800	int left = 1;
801
802	while (*node != NULL) {
803		parent = *node;
804		__cfqg = rb_entry_cfqg(parent);
805
806		if (key < cfqg_key(st, __cfqg))
807			node = &parent->rb_left;
808		else {
809			node = &parent->rb_right;
810			left = 0;
811		}
812	}
813
814	if (left)
815		st->left = &cfqg->rb_node;
816
817	rb_link_node(&cfqg->rb_node, parent, node);
818	rb_insert_color(&cfqg->rb_node, &st->rb);
819}
820
821static void
822cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
823{
824	struct cfq_rb_root *st = &cfqd->grp_service_tree;
825	struct cfq_group *__cfqg;
826	struct rb_node *n;
827
828	cfqg->nr_cfqq++;
829	if (cfqg->on_st)
830		return;
831
832	/*
833	 * Currently put the group at the end. Later implement something
834	 * so that groups get lesser vtime based on their weights, so that
835	 * if group does not loose all if it was not continously backlogged.
836	 */
837	n = rb_last(&st->rb);
838	if (n) {
839		__cfqg = rb_entry_cfqg(n);
840		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
841	} else
842		cfqg->vdisktime = st->min_vdisktime;
843
844	__cfq_group_service_tree_add(st, cfqg);
845	cfqg->on_st = true;
846	cfqd->nr_groups++;
847	st->total_weight += cfqg->weight;
848}
849
850static void
851cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
852{
853	struct cfq_rb_root *st = &cfqd->grp_service_tree;
854
855	if (st->active == &cfqg->rb_node)
856		st->active = NULL;
857
858	BUG_ON(cfqg->nr_cfqq < 1);
859	cfqg->nr_cfqq--;
860
861	/* If there are other cfq queues under this group, don't delete it */
862	if (cfqg->nr_cfqq)
863		return;
864
865	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
866	cfqg->on_st = false;
867	cfqd->nr_groups--;
868	st->total_weight -= cfqg->weight;
869	if (!RB_EMPTY_NODE(&cfqg->rb_node))
870		cfq_rb_erase(&cfqg->rb_node, st);
871	cfqg->saved_workload_slice = 0;
872	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
873}
874
875static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
876{
877	unsigned int slice_used;
878
879	/*
880	 * Queue got expired before even a single request completed or
881	 * got expired immediately after first request completion.
882	 */
883	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
884		/*
885		 * Also charge the seek time incurred to the group, otherwise
886		 * if there are mutiple queues in the group, each can dispatch
887		 * a single request on seeky media and cause lots of seek time
888		 * and group will never know it.
889		 */
890		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
891					1);
892	} else {
893		slice_used = jiffies - cfqq->slice_start;
894		if (slice_used > cfqq->allocated_slice)
895			slice_used = cfqq->allocated_slice;
896	}
897
898	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
899				cfqq->nr_sectors);
900	return slice_used;
901}
902
903static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
904				struct cfq_queue *cfqq)
905{
906	struct cfq_rb_root *st = &cfqd->grp_service_tree;
907	unsigned int used_sl, charge_sl;
908	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
909			- cfqg->service_tree_idle.count;
910
911	BUG_ON(nr_sync < 0);
912	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
913
914	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
915		charge_sl = cfqq->allocated_slice;
916
917	/* Can't update vdisktime while group is on service tree */
918	cfq_rb_erase(&cfqg->rb_node, st);
919	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
920	__cfq_group_service_tree_add(st, cfqg);
921
922	/* This group is being expired. Save the context */
923	if (time_after(cfqd->workload_expires, jiffies)) {
924		cfqg->saved_workload_slice = cfqd->workload_expires
925						- jiffies;
926		cfqg->saved_workload = cfqd->serving_type;
927		cfqg->saved_serving_prio = cfqd->serving_prio;
928	} else
929		cfqg->saved_workload_slice = 0;
930
931	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
932					st->min_vdisktime);
933	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
934						cfqq->nr_sectors);
935}
936
937#ifdef CONFIG_CFQ_GROUP_IOSCHED
938static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
939{
940	if (blkg)
941		return container_of(blkg, struct cfq_group, blkg);
942	return NULL;
943}
944
945void
946cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
947{
948	cfqg_of_blkg(blkg)->weight = weight;
949}
950
951static struct cfq_group *
952cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
953{
954	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
955	struct cfq_group *cfqg = NULL;
956	void *key = cfqd;
957	int i, j;
958	struct cfq_rb_root *st;
959	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
960	unsigned int major, minor;
961
962	/* Do we need to take this reference */
963	if (!css_tryget(&blkcg->css))
964		return NULL;;
965
966	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
967	if (cfqg || !create)
968		goto done;
969
970	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
971	if (!cfqg)
972		goto done;
973
974	cfqg->weight = blkcg->weight;
975	for_each_cfqg_st(cfqg, i, j, st)
976		*st = CFQ_RB_ROOT;
977	RB_CLEAR_NODE(&cfqg->rb_node);
978
979	/*
980	 * Take the initial reference that will be released on destroy
981	 * This can be thought of a joint reference by cgroup and
982	 * elevator which will be dropped by either elevator exit
983	 * or cgroup deletion path depending on who is exiting first.
984	 */
985	atomic_set(&cfqg->ref, 1);
986
987	/* Add group onto cgroup list */
988	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
989	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
990					MKDEV(major, minor));
991
992	/* Add group on cfqd list */
993	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
994
995done:
996	css_put(&blkcg->css);
997	return cfqg;
998}
999
1000/*
1001 * Search for the cfq group current task belongs to. If create = 1, then also
1002 * create the cfq group if it does not exist. request_queue lock must be held.
1003 */
1004static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1005{
1006	struct cgroup *cgroup;
1007	struct cfq_group *cfqg = NULL;
1008
1009	rcu_read_lock();
1010	cgroup = task_cgroup(current, blkio_subsys_id);
1011	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1012	if (!cfqg && create)
1013		cfqg = &cfqd->root_group;
1014	rcu_read_unlock();
1015	return cfqg;
1016}
1017
1018static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1019{
1020	/* Currently, all async queues are mapped to root group */
1021	if (!cfq_cfqq_sync(cfqq))
1022		cfqg = &cfqq->cfqd->root_group;
1023
1024	cfqq->cfqg = cfqg;
1025	/* cfqq reference on cfqg */
1026	atomic_inc(&cfqq->cfqg->ref);
1027}
1028
1029static void cfq_put_cfqg(struct cfq_group *cfqg)
1030{
1031	struct cfq_rb_root *st;
1032	int i, j;
1033
1034	BUG_ON(atomic_read(&cfqg->ref) <= 0);
1035	if (!atomic_dec_and_test(&cfqg->ref))
1036		return;
1037	for_each_cfqg_st(cfqg, i, j, st)
1038		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1039	kfree(cfqg);
1040}
1041
1042static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1043{
1044	/* Something wrong if we are trying to remove same group twice */
1045	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1046
1047	hlist_del_init(&cfqg->cfqd_node);
1048
1049	/*
1050	 * Put the reference taken at the time of creation so that when all
1051	 * queues are gone, group can be destroyed.
1052	 */
1053	cfq_put_cfqg(cfqg);
1054}
1055
1056static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1057{
1058	struct hlist_node *pos, *n;
1059	struct cfq_group *cfqg;
1060
1061	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1062		/*
1063		 * If cgroup removal path got to blk_group first and removed
1064		 * it from cgroup list, then it will take care of destroying
1065		 * cfqg also.
1066		 */
1067		if (!blkiocg_del_blkio_group(&cfqg->blkg))
1068			cfq_destroy_cfqg(cfqd, cfqg);
1069	}
1070}
1071
1072/*
1073 * Blk cgroup controller notification saying that blkio_group object is being
1074 * delinked as associated cgroup object is going away. That also means that
1075 * no new IO will come in this group. So get rid of this group as soon as
1076 * any pending IO in the group is finished.
1077 *
1078 * This function is called under rcu_read_lock(). key is the rcu protected
1079 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1080 * read lock.
1081 *
1082 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1083 * it should not be NULL as even if elevator was exiting, cgroup deltion
1084 * path got to it first.
1085 */
1086void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1087{
1088	unsigned long  flags;
1089	struct cfq_data *cfqd = key;
1090
1091	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1092	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1093	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1094}
1095
1096#else /* GROUP_IOSCHED */
1097static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1098{
1099	return &cfqd->root_group;
1100}
1101static inline void
1102cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1103	cfqq->cfqg = cfqg;
1104}
1105
1106static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1107static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1108
1109#endif /* GROUP_IOSCHED */
1110
1111/*
1112 * The cfqd->service_trees holds all pending cfq_queue's that have
1113 * requests waiting to be processed. It is sorted in the order that
1114 * we will service the queues.
1115 */
1116static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1117				 bool add_front)
1118{
1119	struct rb_node **p, *parent;
1120	struct cfq_queue *__cfqq;
1121	unsigned long rb_key;
1122	struct cfq_rb_root *service_tree;
1123	int left;
1124	int new_cfqq = 1;
1125	int group_changed = 0;
1126
1127#ifdef CONFIG_CFQ_GROUP_IOSCHED
1128	if (!cfqd->cfq_group_isolation
1129	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1130	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1131		/* Move this cfq to root group */
1132		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1133		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1134			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1135		cfqq->orig_cfqg = cfqq->cfqg;
1136		cfqq->cfqg = &cfqd->root_group;
1137		atomic_inc(&cfqd->root_group.ref);
1138		group_changed = 1;
1139	} else if (!cfqd->cfq_group_isolation
1140		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1141		/* cfqq is sequential now needs to go to its original group */
1142		BUG_ON(cfqq->cfqg != &cfqd->root_group);
1143		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1144			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1145		cfq_put_cfqg(cfqq->cfqg);
1146		cfqq->cfqg = cfqq->orig_cfqg;
1147		cfqq->orig_cfqg = NULL;
1148		group_changed = 1;
1149		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1150	}
1151#endif
1152
1153	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1154						cfqq_type(cfqq), cfqd);
1155	if (cfq_class_idle(cfqq)) {
1156		rb_key = CFQ_IDLE_DELAY;
1157		parent = rb_last(&service_tree->rb);
1158		if (parent && parent != &cfqq->rb_node) {
1159			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1160			rb_key += __cfqq->rb_key;
1161		} else
1162			rb_key += jiffies;
1163	} else if (!add_front) {
1164		/*
1165		 * Get our rb key offset. Subtract any residual slice
1166		 * value carried from last service. A negative resid
1167		 * count indicates slice overrun, and this should position
1168		 * the next service time further away in the tree.
1169		 */
1170		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1171		rb_key -= cfqq->slice_resid;
1172		cfqq->slice_resid = 0;
1173	} else {
1174		rb_key = -HZ;
1175		__cfqq = cfq_rb_first(service_tree);
1176		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1177	}
1178
1179	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1180		new_cfqq = 0;
1181		/*
1182		 * same position, nothing more to do
1183		 */
1184		if (rb_key == cfqq->rb_key &&
1185		    cfqq->service_tree == service_tree)
1186			return;
1187
1188		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1189		cfqq->service_tree = NULL;
1190	}
1191
1192	left = 1;
1193	parent = NULL;
1194	cfqq->service_tree = service_tree;
1195	p = &service_tree->rb.rb_node;
1196	while (*p) {
1197		struct rb_node **n;
1198
1199		parent = *p;
1200		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1201
1202		/*
1203		 * sort by key, that represents service time.
1204		 */
1205		if (time_before(rb_key, __cfqq->rb_key))
1206			n = &(*p)->rb_left;
1207		else {
1208			n = &(*p)->rb_right;
1209			left = 0;
1210		}
1211
1212		p = n;
1213	}
1214
1215	if (left)
1216		service_tree->left = &cfqq->rb_node;
1217
1218	cfqq->rb_key = rb_key;
1219	rb_link_node(&cfqq->rb_node, parent, p);
1220	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1221	service_tree->count++;
1222	if ((add_front || !new_cfqq) && !group_changed)
1223		return;
1224	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1225}
1226
1227static struct cfq_queue *
1228cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1229		     sector_t sector, struct rb_node **ret_parent,
1230		     struct rb_node ***rb_link)
1231{
1232	struct rb_node **p, *parent;
1233	struct cfq_queue *cfqq = NULL;
1234
1235	parent = NULL;
1236	p = &root->rb_node;
1237	while (*p) {
1238		struct rb_node **n;
1239
1240		parent = *p;
1241		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1242
1243		/*
1244		 * Sort strictly based on sector.  Smallest to the left,
1245		 * largest to the right.
1246		 */
1247		if (sector > blk_rq_pos(cfqq->next_rq))
1248			n = &(*p)->rb_right;
1249		else if (sector < blk_rq_pos(cfqq->next_rq))
1250			n = &(*p)->rb_left;
1251		else
1252			break;
1253		p = n;
1254		cfqq = NULL;
1255	}
1256
1257	*ret_parent = parent;
1258	if (rb_link)
1259		*rb_link = p;
1260	return cfqq;
1261}
1262
1263static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1264{
1265	struct rb_node **p, *parent;
1266	struct cfq_queue *__cfqq;
1267
1268	if (cfqq->p_root) {
1269		rb_erase(&cfqq->p_node, cfqq->p_root);
1270		cfqq->p_root = NULL;
1271	}
1272
1273	if (cfq_class_idle(cfqq))
1274		return;
1275	if (!cfqq->next_rq)
1276		return;
1277
1278	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1279	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1280				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1281	if (!__cfqq) {
1282		rb_link_node(&cfqq->p_node, parent, p);
1283		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1284	} else
1285		cfqq->p_root = NULL;
1286}
1287
1288/*
1289 * Update cfqq's position in the service tree.
1290 */
1291static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1292{
1293	/*
1294	 * Resorting requires the cfqq to be on the RR list already.
1295	 */
1296	if (cfq_cfqq_on_rr(cfqq)) {
1297		cfq_service_tree_add(cfqd, cfqq, 0);
1298		cfq_prio_tree_add(cfqd, cfqq);
1299	}
1300}
1301
1302/*
1303 * add to busy list of queues for service, trying to be fair in ordering
1304 * the pending list according to last request service
1305 */
1306static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1307{
1308	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1309	BUG_ON(cfq_cfqq_on_rr(cfqq));
1310	cfq_mark_cfqq_on_rr(cfqq);
1311	cfqd->busy_queues++;
1312
1313	cfq_resort_rr_list(cfqd, cfqq);
1314}
1315
1316/*
1317 * Called when the cfqq no longer has requests pending, remove it from
1318 * the service tree.
1319 */
1320static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1321{
1322	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1323	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1324	cfq_clear_cfqq_on_rr(cfqq);
1325
1326	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1327		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1328		cfqq->service_tree = NULL;
1329	}
1330	if (cfqq->p_root) {
1331		rb_erase(&cfqq->p_node, cfqq->p_root);
1332		cfqq->p_root = NULL;
1333	}
1334
1335	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1336	BUG_ON(!cfqd->busy_queues);
1337	cfqd->busy_queues--;
1338}
1339
1340/*
1341 * rb tree support functions
1342 */
1343static void cfq_del_rq_rb(struct request *rq)
1344{
1345	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1346	const int sync = rq_is_sync(rq);
1347
1348	BUG_ON(!cfqq->queued[sync]);
1349	cfqq->queued[sync]--;
1350
1351	elv_rb_del(&cfqq->sort_list, rq);
1352
1353	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1354		/*
1355		 * Queue will be deleted from service tree when we actually
1356		 * expire it later. Right now just remove it from prio tree
1357		 * as it is empty.
1358		 */
1359		if (cfqq->p_root) {
1360			rb_erase(&cfqq->p_node, cfqq->p_root);
1361			cfqq->p_root = NULL;
1362		}
1363	}
1364}
1365
1366static void cfq_add_rq_rb(struct request *rq)
1367{
1368	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1369	struct cfq_data *cfqd = cfqq->cfqd;
1370	struct request *__alias, *prev;
1371
1372	cfqq->queued[rq_is_sync(rq)]++;
1373
1374	/*
1375	 * looks a little odd, but the first insert might return an alias.
1376	 * if that happens, put the alias on the dispatch list
1377	 */
1378	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1379		cfq_dispatch_insert(cfqd->queue, __alias);
1380
1381	if (!cfq_cfqq_on_rr(cfqq))
1382		cfq_add_cfqq_rr(cfqd, cfqq);
1383
1384	/*
1385	 * check if this request is a better next-serve candidate
1386	 */
1387	prev = cfqq->next_rq;
1388	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1389
1390	/*
1391	 * adjust priority tree position, if ->next_rq changes
1392	 */
1393	if (prev != cfqq->next_rq)
1394		cfq_prio_tree_add(cfqd, cfqq);
1395
1396	BUG_ON(!cfqq->next_rq);
1397}
1398
1399static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1400{
1401	elv_rb_del(&cfqq->sort_list, rq);
1402	cfqq->queued[rq_is_sync(rq)]--;
1403	cfq_add_rq_rb(rq);
1404}
1405
1406static struct request *
1407cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1408{
1409	struct task_struct *tsk = current;
1410	struct cfq_io_context *cic;
1411	struct cfq_queue *cfqq;
1412
1413	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1414	if (!cic)
1415		return NULL;
1416
1417	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1418	if (cfqq) {
1419		sector_t sector = bio->bi_sector + bio_sectors(bio);
1420
1421		return elv_rb_find(&cfqq->sort_list, sector);
1422	}
1423
1424	return NULL;
1425}
1426
1427static void cfq_activate_request(struct request_queue *q, struct request *rq)
1428{
1429	struct cfq_data *cfqd = q->elevator->elevator_data;
1430
1431	cfqd->rq_in_driver[rq_is_sync(rq)]++;
1432	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1433						rq_in_driver(cfqd));
1434
1435	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1436}
1437
1438static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1439{
1440	struct cfq_data *cfqd = q->elevator->elevator_data;
1441	const int sync = rq_is_sync(rq);
1442
1443	WARN_ON(!cfqd->rq_in_driver[sync]);
1444	cfqd->rq_in_driver[sync]--;
1445	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1446						rq_in_driver(cfqd));
1447}
1448
1449static void cfq_remove_request(struct request *rq)
1450{
1451	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1452
1453	if (cfqq->next_rq == rq)
1454		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1455
1456	list_del_init(&rq->queuelist);
1457	cfq_del_rq_rb(rq);
1458
1459	cfqq->cfqd->rq_queued--;
1460	if (rq_is_meta(rq)) {
1461		WARN_ON(!cfqq->meta_pending);
1462		cfqq->meta_pending--;
1463	}
1464}
1465
1466static int cfq_merge(struct request_queue *q, struct request **req,
1467		     struct bio *bio)
1468{
1469	struct cfq_data *cfqd = q->elevator->elevator_data;
1470	struct request *__rq;
1471
1472	__rq = cfq_find_rq_fmerge(cfqd, bio);
1473	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1474		*req = __rq;
1475		return ELEVATOR_FRONT_MERGE;
1476	}
1477
1478	return ELEVATOR_NO_MERGE;
1479}
1480
1481static void cfq_merged_request(struct request_queue *q, struct request *req,
1482			       int type)
1483{
1484	if (type == ELEVATOR_FRONT_MERGE) {
1485		struct cfq_queue *cfqq = RQ_CFQQ(req);
1486
1487		cfq_reposition_rq_rb(cfqq, req);
1488	}
1489}
1490
1491static void
1492cfq_merged_requests(struct request_queue *q, struct request *rq,
1493		    struct request *next)
1494{
1495	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1496	/*
1497	 * reposition in fifo if next is older than rq
1498	 */
1499	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1500	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1501		list_move(&rq->queuelist, &next->queuelist);
1502		rq_set_fifo_time(rq, rq_fifo_time(next));
1503	}
1504
1505	if (cfqq->next_rq == next)
1506		cfqq->next_rq = rq;
1507	cfq_remove_request(next);
1508}
1509
1510static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1511			   struct bio *bio)
1512{
1513	struct cfq_data *cfqd = q->elevator->elevator_data;
1514	struct cfq_io_context *cic;
1515	struct cfq_queue *cfqq;
1516
1517	/* Deny merge if bio and rq don't belong to same cfq group */
1518	if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1519		return false;
1520	/*
1521	 * Disallow merge of a sync bio into an async request.
1522	 */
1523	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1524		return false;
1525
1526	/*
1527	 * Lookup the cfqq that this bio will be queued with. Allow
1528	 * merge only if rq is queued there.
1529	 */
1530	cic = cfq_cic_lookup(cfqd, current->io_context);
1531	if (!cic)
1532		return false;
1533
1534	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1535	return cfqq == RQ_CFQQ(rq);
1536}
1537
1538static void __cfq_set_active_queue(struct cfq_data *cfqd,
1539				   struct cfq_queue *cfqq)
1540{
1541	if (cfqq) {
1542		cfq_log_cfqq(cfqd, cfqq, "set_active");
1543		cfqq->slice_start = 0;
1544		cfqq->dispatch_start = jiffies;
1545		cfqq->allocated_slice = 0;
1546		cfqq->slice_end = 0;
1547		cfqq->slice_dispatch = 0;
1548		cfqq->nr_sectors = 0;
1549
1550		cfq_clear_cfqq_wait_request(cfqq);
1551		cfq_clear_cfqq_must_dispatch(cfqq);
1552		cfq_clear_cfqq_must_alloc_slice(cfqq);
1553		cfq_clear_cfqq_fifo_expire(cfqq);
1554		cfq_mark_cfqq_slice_new(cfqq);
1555
1556		del_timer(&cfqd->idle_slice_timer);
1557	}
1558
1559	cfqd->active_queue = cfqq;
1560}
1561
1562/*
1563 * current cfqq expired its slice (or was too idle), select new one
1564 */
1565static void
1566__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1567		    bool timed_out)
1568{
1569	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1570
1571	if (cfq_cfqq_wait_request(cfqq))
1572		del_timer(&cfqd->idle_slice_timer);
1573
1574	cfq_clear_cfqq_wait_request(cfqq);
1575	cfq_clear_cfqq_wait_busy(cfqq);
1576	cfq_clear_cfqq_wait_busy_done(cfqq);
1577
1578	/*
1579	 * store what was left of this slice, if the queue idled/timed out
1580	 */
1581	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1582		cfqq->slice_resid = cfqq->slice_end - jiffies;
1583		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1584	}
1585
1586	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1587
1588	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1589		cfq_del_cfqq_rr(cfqd, cfqq);
1590
1591	cfq_resort_rr_list(cfqd, cfqq);
1592
1593	if (cfqq == cfqd->active_queue)
1594		cfqd->active_queue = NULL;
1595
1596	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1597		cfqd->grp_service_tree.active = NULL;
1598
1599	if (cfqd->active_cic) {
1600		put_io_context(cfqd->active_cic->ioc);
1601		cfqd->active_cic = NULL;
1602	}
1603}
1604
1605static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1606{
1607	struct cfq_queue *cfqq = cfqd->active_queue;
1608
1609	if (cfqq)
1610		__cfq_slice_expired(cfqd, cfqq, timed_out);
1611}
1612
1613/*
1614 * Get next queue for service. Unless we have a queue preemption,
1615 * we'll simply select the first cfqq in the service tree.
1616 */
1617static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1618{
1619	struct cfq_rb_root *service_tree =
1620		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1621					cfqd->serving_type, cfqd);
1622
1623	if (!cfqd->rq_queued)
1624		return NULL;
1625
1626	/* There is nothing to dispatch */
1627	if (!service_tree)
1628		return NULL;
1629	if (RB_EMPTY_ROOT(&service_tree->rb))
1630		return NULL;
1631	return cfq_rb_first(service_tree);
1632}
1633
1634static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1635{
1636	struct cfq_group *cfqg;
1637	struct cfq_queue *cfqq;
1638	int i, j;
1639	struct cfq_rb_root *st;
1640
1641	if (!cfqd->rq_queued)
1642		return NULL;
1643
1644	cfqg = cfq_get_next_cfqg(cfqd);
1645	if (!cfqg)
1646		return NULL;
1647
1648	for_each_cfqg_st(cfqg, i, j, st)
1649		if ((cfqq = cfq_rb_first(st)) != NULL)
1650			return cfqq;
1651	return NULL;
1652}
1653
1654/*
1655 * Get and set a new active queue for service.
1656 */
1657static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1658					      struct cfq_queue *cfqq)
1659{
1660	if (!cfqq)
1661		cfqq = cfq_get_next_queue(cfqd);
1662
1663	__cfq_set_active_queue(cfqd, cfqq);
1664	return cfqq;
1665}
1666
1667static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1668					  struct request *rq)
1669{
1670	if (blk_rq_pos(rq) >= cfqd->last_position)
1671		return blk_rq_pos(rq) - cfqd->last_position;
1672	else
1673		return cfqd->last_position - blk_rq_pos(rq);
1674}
1675
1676#define CFQQ_SEEK_THR		8 * 1024
1677#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
1678
1679static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1680			       struct request *rq)
1681{
1682	sector_t sdist = cfqq->seek_mean;
1683
1684	if (!sample_valid(cfqq->seek_samples))
1685		sdist = CFQQ_SEEK_THR;
1686
1687	return cfq_dist_from_last(cfqd, rq) <= sdist;
1688}
1689
1690static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1691				    struct cfq_queue *cur_cfqq)
1692{
1693	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1694	struct rb_node *parent, *node;
1695	struct cfq_queue *__cfqq;
1696	sector_t sector = cfqd->last_position;
1697
1698	if (RB_EMPTY_ROOT(root))
1699		return NULL;
1700
1701	/*
1702	 * First, if we find a request starting at the end of the last
1703	 * request, choose it.
1704	 */
1705	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1706	if (__cfqq)
1707		return __cfqq;
1708
1709	/*
1710	 * If the exact sector wasn't found, the parent of the NULL leaf
1711	 * will contain the closest sector.
1712	 */
1713	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1714	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1715		return __cfqq;
1716
1717	if (blk_rq_pos(__cfqq->next_rq) < sector)
1718		node = rb_next(&__cfqq->p_node);
1719	else
1720		node = rb_prev(&__cfqq->p_node);
1721	if (!node)
1722		return NULL;
1723
1724	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1725	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1726		return __cfqq;
1727
1728	return NULL;
1729}
1730
1731/*
1732 * cfqd - obvious
1733 * cur_cfqq - passed in so that we don't decide that the current queue is
1734 * 	      closely cooperating with itself.
1735 *
1736 * So, basically we're assuming that that cur_cfqq has dispatched at least
1737 * one request, and that cfqd->last_position reflects a position on the disk
1738 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1739 * assumption.
1740 */
1741static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1742					      struct cfq_queue *cur_cfqq)
1743{
1744	struct cfq_queue *cfqq;
1745
1746	if (!cfq_cfqq_sync(cur_cfqq))
1747		return NULL;
1748	if (CFQQ_SEEKY(cur_cfqq))
1749		return NULL;
1750
1751	/*
1752	 * We should notice if some of the queues are cooperating, eg
1753	 * working closely on the same area of the disk. In that case,
1754	 * we can group them together and don't waste time idling.
1755	 */
1756	cfqq = cfqq_close(cfqd, cur_cfqq);
1757	if (!cfqq)
1758		return NULL;
1759
1760	/* If new queue belongs to different cfq_group, don't choose it */
1761	if (cur_cfqq->cfqg != cfqq->cfqg)
1762		return NULL;
1763
1764	/*
1765	 * It only makes sense to merge sync queues.
1766	 */
1767	if (!cfq_cfqq_sync(cfqq))
1768		return NULL;
1769	if (CFQQ_SEEKY(cfqq))
1770		return NULL;
1771
1772	/*
1773	 * Do not merge queues of different priority classes
1774	 */
1775	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1776		return NULL;
1777
1778	return cfqq;
1779}
1780
1781/*
1782 * Determine whether we should enforce idle window for this queue.
1783 */
1784
1785static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1786{
1787	enum wl_prio_t prio = cfqq_prio(cfqq);
1788	struct cfq_rb_root *service_tree = cfqq->service_tree;
1789
1790	BUG_ON(!service_tree);
1791	BUG_ON(!service_tree->count);
1792
1793	/* We never do for idle class queues. */
1794	if (prio == IDLE_WORKLOAD)
1795		return false;
1796
1797	/* We do for queues that were marked with idle window flag. */
1798	if (cfq_cfqq_idle_window(cfqq))
1799		return true;
1800
1801	/*
1802	 * Otherwise, we do only if they are the last ones
1803	 * in their service tree.
1804	 */
1805	return service_tree->count == 1;
1806}
1807
1808static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1809{
1810	struct cfq_queue *cfqq = cfqd->active_queue;
1811	struct cfq_io_context *cic;
1812	unsigned long sl;
1813
1814	/*
1815	 * SSD device without seek penalty, disable idling. But only do so
1816	 * for devices that support queuing, otherwise we still have a problem
1817	 * with sync vs async workloads.
1818	 */
1819	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1820		return;
1821
1822	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1823	WARN_ON(cfq_cfqq_slice_new(cfqq));
1824
1825	/*
1826	 * idle is disabled, either manually or by past process history
1827	 */
1828	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1829		return;
1830
1831	/*
1832	 * still active requests from this queue, don't idle
1833	 */
1834	if (cfqq->dispatched)
1835		return;
1836
1837	/*
1838	 * task has exited, don't wait
1839	 */
1840	cic = cfqd->active_cic;
1841	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1842		return;
1843
1844	/*
1845	 * If our average think time is larger than the remaining time
1846	 * slice, then don't idle. This avoids overrunning the allotted
1847	 * time slice.
1848	 */
1849	if (sample_valid(cic->ttime_samples) &&
1850	    (cfqq->slice_end - jiffies < cic->ttime_mean))
1851		return;
1852
1853	cfq_mark_cfqq_wait_request(cfqq);
1854
1855	sl = cfqd->cfq_slice_idle;
1856
1857	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1858	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1859}
1860
1861/*
1862 * Move request from internal lists to the request queue dispatch list.
1863 */
1864static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1865{
1866	struct cfq_data *cfqd = q->elevator->elevator_data;
1867	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1868
1869	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1870
1871	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1872	cfq_remove_request(rq);
1873	cfqq->dispatched++;
1874	elv_dispatch_sort(q, rq);
1875
1876	if (cfq_cfqq_sync(cfqq))
1877		cfqd->sync_flight++;
1878	cfqq->nr_sectors += blk_rq_sectors(rq);
1879}
1880
1881/*
1882 * return expired entry, or NULL to just start from scratch in rbtree
1883 */
1884static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1885{
1886	struct request *rq = NULL;
1887
1888	if (cfq_cfqq_fifo_expire(cfqq))
1889		return NULL;
1890
1891	cfq_mark_cfqq_fifo_expire(cfqq);
1892
1893	if (list_empty(&cfqq->fifo))
1894		return NULL;
1895
1896	rq = rq_entry_fifo(cfqq->fifo.next);
1897	if (time_before(jiffies, rq_fifo_time(rq)))
1898		rq = NULL;
1899
1900	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1901	return rq;
1902}
1903
1904static inline int
1905cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1906{
1907	const int base_rq = cfqd->cfq_slice_async_rq;
1908
1909	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1910
1911	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1912}
1913
1914/*
1915 * Must be called with the queue_lock held.
1916 */
1917static int cfqq_process_refs(struct cfq_queue *cfqq)
1918{
1919	int process_refs, io_refs;
1920
1921	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1922	process_refs = atomic_read(&cfqq->ref) - io_refs;
1923	BUG_ON(process_refs < 0);
1924	return process_refs;
1925}
1926
1927static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1928{
1929	int process_refs, new_process_refs;
1930	struct cfq_queue *__cfqq;
1931
1932	/* Avoid a circular list and skip interim queue merges */
1933	while ((__cfqq = new_cfqq->new_cfqq)) {
1934		if (__cfqq == cfqq)
1935			return;
1936		new_cfqq = __cfqq;
1937	}
1938
1939	process_refs = cfqq_process_refs(cfqq);
1940	/*
1941	 * If the process for the cfqq has gone away, there is no
1942	 * sense in merging the queues.
1943	 */
1944	if (process_refs == 0)
1945		return;
1946
1947	/*
1948	 * Merge in the direction of the lesser amount of work.
1949	 */
1950	new_process_refs = cfqq_process_refs(new_cfqq);
1951	if (new_process_refs >= process_refs) {
1952		cfqq->new_cfqq = new_cfqq;
1953		atomic_add(process_refs, &new_cfqq->ref);
1954	} else {
1955		new_cfqq->new_cfqq = cfqq;
1956		atomic_add(new_process_refs, &cfqq->ref);
1957	}
1958}
1959
1960static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1961				struct cfq_group *cfqg, enum wl_prio_t prio,
1962				bool prio_changed)
1963{
1964	struct cfq_queue *queue;
1965	int i;
1966	bool key_valid = false;
1967	unsigned long lowest_key = 0;
1968	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1969
1970	if (prio_changed) {
1971		/*
1972		 * When priorities switched, we prefer starting
1973		 * from SYNC_NOIDLE (first choice), or just SYNC
1974		 * over ASYNC
1975		 */
1976		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1977			return cur_best;
1978		cur_best = SYNC_WORKLOAD;
1979		if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1980			return cur_best;
1981
1982		return ASYNC_WORKLOAD;
1983	}
1984
1985	for (i = 0; i < 3; ++i) {
1986		/* otherwise, select the one with lowest rb_key */
1987		queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1988		if (queue &&
1989		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
1990			lowest_key = queue->rb_key;
1991			cur_best = i;
1992			key_valid = true;
1993		}
1994	}
1995
1996	return cur_best;
1997}
1998
1999static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2000{
2001	enum wl_prio_t previous_prio = cfqd->serving_prio;
2002	bool prio_changed;
2003	unsigned slice;
2004	unsigned count;
2005	struct cfq_rb_root *st;
2006	unsigned group_slice;
2007
2008	if (!cfqg) {
2009		cfqd->serving_prio = IDLE_WORKLOAD;
2010		cfqd->workload_expires = jiffies + 1;
2011		return;
2012	}
2013
2014	/* Choose next priority. RT > BE > IDLE */
2015	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2016		cfqd->serving_prio = RT_WORKLOAD;
2017	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2018		cfqd->serving_prio = BE_WORKLOAD;
2019	else {
2020		cfqd->serving_prio = IDLE_WORKLOAD;
2021		cfqd->workload_expires = jiffies + 1;
2022		return;
2023	}
2024
2025	/*
2026	 * For RT and BE, we have to choose also the type
2027	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2028	 * expiration time
2029	 */
2030	prio_changed = (cfqd->serving_prio != previous_prio);
2031	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2032				cfqd);
2033	count = st->count;
2034
2035	/*
2036	 * If priority didn't change, check workload expiration,
2037	 * and that we still have other queues ready
2038	 */
2039	if (!prio_changed && count &&
2040	    !time_after(jiffies, cfqd->workload_expires))
2041		return;
2042
2043	/* otherwise select new workload type */
2044	cfqd->serving_type =
2045		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2046	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2047				cfqd);
2048	count = st->count;
2049
2050	/*
2051	 * the workload slice is computed as a fraction of target latency
2052	 * proportional to the number of queues in that workload, over
2053	 * all the queues in the same priority class
2054	 */
2055	group_slice = cfq_group_slice(cfqd, cfqg);
2056
2057	slice = group_slice * count /
2058		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2059		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2060
2061	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2062		unsigned int tmp;
2063
2064		/*
2065		 * Async queues are currently system wide. Just taking
2066		 * proportion of queues with-in same group will lead to higher
2067		 * async ratio system wide as generally root group is going
2068		 * to have higher weight. A more accurate thing would be to
2069		 * calculate system wide asnc/sync ratio.
2070		 */
2071		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2072		tmp = tmp/cfqd->busy_queues;
2073		slice = min_t(unsigned, slice, tmp);
2074
2075		/* async workload slice is scaled down according to
2076		 * the sync/async slice ratio. */
2077		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2078	} else
2079		/* sync workload slice is at least 2 * cfq_slice_idle */
2080		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2081
2082	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2083	cfqd->workload_expires = jiffies + slice;
2084	cfqd->noidle_tree_requires_idle = false;
2085}
2086
2087static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2088{
2089	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2090	struct cfq_group *cfqg;
2091
2092	if (RB_EMPTY_ROOT(&st->rb))
2093		return NULL;
2094	cfqg = cfq_rb_first_group(st);
2095	st->active = &cfqg->rb_node;
2096	update_min_vdisktime(st);
2097	return cfqg;
2098}
2099
2100static void cfq_choose_cfqg(struct cfq_data *cfqd)
2101{
2102	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2103
2104	cfqd->serving_group = cfqg;
2105
2106	/* Restore the workload type data */
2107	if (cfqg->saved_workload_slice) {
2108		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2109		cfqd->serving_type = cfqg->saved_workload;
2110		cfqd->serving_prio = cfqg->saved_serving_prio;
2111	}
2112	choose_service_tree(cfqd, cfqg);
2113}
2114
2115/*
2116 * Select a queue for service. If we have a current active queue,
2117 * check whether to continue servicing it, or retrieve and set a new one.
2118 */
2119static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2120{
2121	struct cfq_queue *cfqq, *new_cfqq = NULL;
2122
2123	cfqq = cfqd->active_queue;
2124	if (!cfqq)
2125		goto new_queue;
2126
2127	if (!cfqd->rq_queued)
2128		return NULL;
2129	/*
2130	 * The active queue has run out of time, expire it and select new.
2131	 */
2132	if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2133	     && !cfq_cfqq_must_dispatch(cfqq))
2134		goto expire;
2135
2136	/*
2137	 * The active queue has requests and isn't expired, allow it to
2138	 * dispatch.
2139	 */
2140	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2141		goto keep_queue;
2142
2143	/*
2144	 * If another queue has a request waiting within our mean seek
2145	 * distance, let it run.  The expire code will check for close
2146	 * cooperators and put the close queue at the front of the service
2147	 * tree.  If possible, merge the expiring queue with the new cfqq.
2148	 */
2149	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2150	if (new_cfqq) {
2151		if (!cfqq->new_cfqq)
2152			cfq_setup_merge(cfqq, new_cfqq);
2153		goto expire;
2154	}
2155
2156	/*
2157	 * No requests pending. If the active queue still has requests in
2158	 * flight or is idling for a new request, allow either of these
2159	 * conditions to happen (or time out) before selecting a new queue.
2160	 */
2161	if (timer_pending(&cfqd->idle_slice_timer) ||
2162	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2163		cfqq = NULL;
2164		goto keep_queue;
2165	}
2166
2167expire:
2168	cfq_slice_expired(cfqd, 0);
2169new_queue:
2170	/*
2171	 * Current queue expired. Check if we have to switch to a new
2172	 * service tree
2173	 */
2174	if (!new_cfqq)
2175		cfq_choose_cfqg(cfqd);
2176
2177	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2178keep_queue:
2179	return cfqq;
2180}
2181
2182static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2183{
2184	int dispatched = 0;
2185
2186	while (cfqq->next_rq) {
2187		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2188		dispatched++;
2189	}
2190
2191	BUG_ON(!list_empty(&cfqq->fifo));
2192
2193	/* By default cfqq is not expired if it is empty. Do it explicitly */
2194	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2195	return dispatched;
2196}
2197
2198/*
2199 * Drain our current requests. Used for barriers and when switching
2200 * io schedulers on-the-fly.
2201 */
2202static int cfq_forced_dispatch(struct cfq_data *cfqd)
2203{
2204	struct cfq_queue *cfqq;
2205	int dispatched = 0;
2206
2207	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2208		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2209
2210	cfq_slice_expired(cfqd, 0);
2211	BUG_ON(cfqd->busy_queues);
2212
2213	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2214	return dispatched;
2215}
2216
2217static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2218{
2219	unsigned int max_dispatch;
2220
2221	/*
2222	 * Drain async requests before we start sync IO
2223	 */
2224	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2225		return false;
2226
2227	/*
2228	 * If this is an async queue and we have sync IO in flight, let it wait
2229	 */
2230	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2231		return false;
2232
2233	max_dispatch = cfqd->cfq_quantum;
2234	if (cfq_class_idle(cfqq))
2235		max_dispatch = 1;
2236
2237	/*
2238	 * Does this cfqq already have too much IO in flight?
2239	 */
2240	if (cfqq->dispatched >= max_dispatch) {
2241		/*
2242		 * idle queue must always only have a single IO in flight
2243		 */
2244		if (cfq_class_idle(cfqq))
2245			return false;
2246
2247		/*
2248		 * We have other queues, don't allow more IO from this one
2249		 */
2250		if (cfqd->busy_queues > 1)
2251			return false;
2252
2253		/*
2254		 * Sole queue user, no limit
2255		 */
2256		max_dispatch = -1;
2257	}
2258
2259	/*
2260	 * Async queues must wait a bit before being allowed dispatch.
2261	 * We also ramp up the dispatch depth gradually for async IO,
2262	 * based on the last sync IO we serviced
2263	 */
2264	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2265		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2266		unsigned int depth;
2267
2268		depth = last_sync / cfqd->cfq_slice[1];
2269		if (!depth && !cfqq->dispatched)
2270			depth = 1;
2271		if (depth < max_dispatch)
2272			max_dispatch = depth;
2273	}
2274
2275	/*
2276	 * If we're below the current max, allow a dispatch
2277	 */
2278	return cfqq->dispatched < max_dispatch;
2279}
2280
2281/*
2282 * Dispatch a request from cfqq, moving them to the request queue
2283 * dispatch list.
2284 */
2285static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2286{
2287	struct request *rq;
2288
2289	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2290
2291	if (!cfq_may_dispatch(cfqd, cfqq))
2292		return false;
2293
2294	/*
2295	 * follow expired path, else get first next available
2296	 */
2297	rq = cfq_check_fifo(cfqq);
2298	if (!rq)
2299		rq = cfqq->next_rq;
2300
2301	/*
2302	 * insert request into driver dispatch list
2303	 */
2304	cfq_dispatch_insert(cfqd->queue, rq);
2305
2306	if (!cfqd->active_cic) {
2307		struct cfq_io_context *cic = RQ_CIC(rq);
2308
2309		atomic_long_inc(&cic->ioc->refcount);
2310		cfqd->active_cic = cic;
2311	}
2312
2313	return true;
2314}
2315
2316/*
2317 * Find the cfqq that we need to service and move a request from that to the
2318 * dispatch list
2319 */
2320static int cfq_dispatch_requests(struct request_queue *q, int force)
2321{
2322	struct cfq_data *cfqd = q->elevator->elevator_data;
2323	struct cfq_queue *cfqq;
2324
2325	if (!cfqd->busy_queues)
2326		return 0;
2327
2328	if (unlikely(force))
2329		return cfq_forced_dispatch(cfqd);
2330
2331	cfqq = cfq_select_queue(cfqd);
2332	if (!cfqq)
2333		return 0;
2334
2335	/*
2336	 * Dispatch a request from this cfqq, if it is allowed
2337	 */
2338	if (!cfq_dispatch_request(cfqd, cfqq))
2339		return 0;
2340
2341	cfqq->slice_dispatch++;
2342	cfq_clear_cfqq_must_dispatch(cfqq);
2343
2344	/*
2345	 * expire an async queue immediately if it has used up its slice. idle
2346	 * queue always expire after 1 dispatch round.
2347	 */
2348	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2349	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2350	    cfq_class_idle(cfqq))) {
2351		cfqq->slice_end = jiffies + 1;
2352		cfq_slice_expired(cfqd, 0);
2353	}
2354
2355	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2356	return 1;
2357}
2358
2359/*
2360 * task holds one reference to the queue, dropped when task exits. each rq
2361 * in-flight on this queue also holds a reference, dropped when rq is freed.
2362 *
2363 * Each cfq queue took a reference on the parent group. Drop it now.
2364 * queue lock must be held here.
2365 */
2366static void cfq_put_queue(struct cfq_queue *cfqq)
2367{
2368	struct cfq_data *cfqd = cfqq->cfqd;
2369	struct cfq_group *cfqg;
2370
2371	BUG_ON(atomic_read(&cfqq->ref) <= 0);
2372
2373	if (!atomic_dec_and_test(&cfqq->ref))
2374		return;
2375
2376	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2377	BUG_ON(rb_first(&cfqq->sort_list));
2378	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2379	cfqg = cfqq->cfqg;
2380
2381	if (unlikely(cfqd->active_queue == cfqq)) {
2382		__cfq_slice_expired(cfqd, cfqq, 0);
2383		cfq_schedule_dispatch(cfqd);
2384	}
2385
2386	BUG_ON(cfq_cfqq_on_rr(cfqq));
2387	kmem_cache_free(cfq_pool, cfqq);
2388	cfq_put_cfqg(cfqg);
2389	if (cfqq->orig_cfqg)
2390		cfq_put_cfqg(cfqq->orig_cfqg);
2391}
2392
2393/*
2394 * Must always be called with the rcu_read_lock() held
2395 */
2396static void
2397__call_for_each_cic(struct io_context *ioc,
2398		    void (*func)(struct io_context *, struct cfq_io_context *))
2399{
2400	struct cfq_io_context *cic;
2401	struct hlist_node *n;
2402
2403	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2404		func(ioc, cic);
2405}
2406
2407/*
2408 * Call func for each cic attached to this ioc.
2409 */
2410static void
2411call_for_each_cic(struct io_context *ioc,
2412		  void (*func)(struct io_context *, struct cfq_io_context *))
2413{
2414	rcu_read_lock();
2415	__call_for_each_cic(ioc, func);
2416	rcu_read_unlock();
2417}
2418
2419static void cfq_cic_free_rcu(struct rcu_head *head)
2420{
2421	struct cfq_io_context *cic;
2422
2423	cic = container_of(head, struct cfq_io_context, rcu_head);
2424
2425	kmem_cache_free(cfq_ioc_pool, cic);
2426	elv_ioc_count_dec(cfq_ioc_count);
2427
2428	if (ioc_gone) {
2429		/*
2430		 * CFQ scheduler is exiting, grab exit lock and check
2431		 * the pending io context count. If it hits zero,
2432		 * complete ioc_gone and set it back to NULL
2433		 */
2434		spin_lock(&ioc_gone_lock);
2435		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2436			complete(ioc_gone);
2437			ioc_gone = NULL;
2438		}
2439		spin_unlock(&ioc_gone_lock);
2440	}
2441}
2442
2443static void cfq_cic_free(struct cfq_io_context *cic)
2444{
2445	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2446}
2447
2448static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2449{
2450	unsigned long flags;
2451
2452	BUG_ON(!cic->dead_key);
2453
2454	spin_lock_irqsave(&ioc->lock, flags);
2455	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2456	hlist_del_rcu(&cic->cic_list);
2457	spin_unlock_irqrestore(&ioc->lock, flags);
2458
2459	cfq_cic_free(cic);
2460}
2461
2462/*
2463 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2464 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2465 * and ->trim() which is called with the task lock held
2466 */
2467static void cfq_free_io_context(struct io_context *ioc)
2468{
2469	/*
2470	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2471	 * so no more cic's are allowed to be linked into this ioc.  So it
2472	 * should be ok to iterate over the known list, we will see all cic's
2473	 * since no new ones are added.
2474	 */
2475	__call_for_each_cic(ioc, cic_free_func);
2476}
2477
2478static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2479{
2480	struct cfq_queue *__cfqq, *next;
2481
2482	if (unlikely(cfqq == cfqd->active_queue)) {
2483		__cfq_slice_expired(cfqd, cfqq, 0);
2484		cfq_schedule_dispatch(cfqd);
2485	}
2486
2487	/*
2488	 * If this queue was scheduled to merge with another queue, be
2489	 * sure to drop the reference taken on that queue (and others in
2490	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2491	 */
2492	__cfqq = cfqq->new_cfqq;
2493	while (__cfqq) {
2494		if (__cfqq == cfqq) {
2495			WARN(1, "cfqq->new_cfqq loop detected\n");
2496			break;
2497		}
2498		next = __cfqq->new_cfqq;
2499		cfq_put_queue(__cfqq);
2500		__cfqq = next;
2501	}
2502
2503	cfq_put_queue(cfqq);
2504}
2505
2506static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2507					 struct cfq_io_context *cic)
2508{
2509	struct io_context *ioc = cic->ioc;
2510
2511	list_del_init(&cic->queue_list);
2512
2513	/*
2514	 * Make sure key == NULL is seen for dead queues
2515	 */
2516	smp_wmb();
2517	cic->dead_key = (unsigned long) cic->key;
2518	cic->key = NULL;
2519
2520	if (ioc->ioc_data == cic)
2521		rcu_assign_pointer(ioc->ioc_data, NULL);
2522
2523	if (cic->cfqq[BLK_RW_ASYNC]) {
2524		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2525		cic->cfqq[BLK_RW_ASYNC] = NULL;
2526	}
2527
2528	if (cic->cfqq[BLK_RW_SYNC]) {
2529		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2530		cic->cfqq[BLK_RW_SYNC] = NULL;
2531	}
2532}
2533
2534static void cfq_exit_single_io_context(struct io_context *ioc,
2535				       struct cfq_io_context *cic)
2536{
2537	struct cfq_data *cfqd = cic->key;
2538
2539	if (cfqd) {
2540		struct request_queue *q = cfqd->queue;
2541		unsigned long flags;
2542
2543		spin_lock_irqsave(q->queue_lock, flags);
2544
2545		/*
2546		 * Ensure we get a fresh copy of the ->key to prevent
2547		 * race between exiting task and queue
2548		 */
2549		smp_read_barrier_depends();
2550		if (cic->key)
2551			__cfq_exit_single_io_context(cfqd, cic);
2552
2553		spin_unlock_irqrestore(q->queue_lock, flags);
2554	}
2555}
2556
2557/*
2558 * The process that ioc belongs to has exited, we need to clean up
2559 * and put the internal structures we have that belongs to that process.
2560 */
2561static void cfq_exit_io_context(struct io_context *ioc)
2562{
2563	call_for_each_cic(ioc, cfq_exit_single_io_context);
2564}
2565
2566static struct cfq_io_context *
2567cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2568{
2569	struct cfq_io_context *cic;
2570
2571	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2572							cfqd->queue->node);
2573	if (cic) {
2574		cic->last_end_request = jiffies;
2575		INIT_LIST_HEAD(&cic->queue_list);
2576		INIT_HLIST_NODE(&cic->cic_list);
2577		cic->dtor = cfq_free_io_context;
2578		cic->exit = cfq_exit_io_context;
2579		elv_ioc_count_inc(cfq_ioc_count);
2580	}
2581
2582	return cic;
2583}
2584
2585static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2586{
2587	struct task_struct *tsk = current;
2588	int ioprio_class;
2589
2590	if (!cfq_cfqq_prio_changed(cfqq))
2591		return;
2592
2593	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2594	switch (ioprio_class) {
2595	default:
2596		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2597	case IOPRIO_CLASS_NONE:
2598		/*
2599		 * no prio set, inherit CPU scheduling settings
2600		 */
2601		cfqq->ioprio = task_nice_ioprio(tsk);
2602		cfqq->ioprio_class = task_nice_ioclass(tsk);
2603		break;
2604	case IOPRIO_CLASS_RT:
2605		cfqq->ioprio = task_ioprio(ioc);
2606		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2607		break;
2608	case IOPRIO_CLASS_BE:
2609		cfqq->ioprio = task_ioprio(ioc);
2610		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2611		break;
2612	case IOPRIO_CLASS_IDLE:
2613		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2614		cfqq->ioprio = 7;
2615		cfq_clear_cfqq_idle_window(cfqq);
2616		break;
2617	}
2618
2619	/*
2620	 * keep track of original prio settings in case we have to temporarily
2621	 * elevate the priority of this queue
2622	 */
2623	cfqq->org_ioprio = cfqq->ioprio;
2624	cfqq->org_ioprio_class = cfqq->ioprio_class;
2625	cfq_clear_cfqq_prio_changed(cfqq);
2626}
2627
2628static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2629{
2630	struct cfq_data *cfqd = cic->key;
2631	struct cfq_queue *cfqq;
2632	unsigned long flags;
2633
2634	if (unlikely(!cfqd))
2635		return;
2636
2637	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2638
2639	cfqq = cic->cfqq[BLK_RW_ASYNC];
2640	if (cfqq) {
2641		struct cfq_queue *new_cfqq;
2642		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2643						GFP_ATOMIC);
2644		if (new_cfqq) {
2645			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2646			cfq_put_queue(cfqq);
2647		}
2648	}
2649
2650	cfqq = cic->cfqq[BLK_RW_SYNC];
2651	if (cfqq)
2652		cfq_mark_cfqq_prio_changed(cfqq);
2653
2654	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2655}
2656
2657static void cfq_ioc_set_ioprio(struct io_context *ioc)
2658{
2659	call_for_each_cic(ioc, changed_ioprio);
2660	ioc->ioprio_changed = 0;
2661}
2662
2663static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2664			  pid_t pid, bool is_sync)
2665{
2666	RB_CLEAR_NODE(&cfqq->rb_node);
2667	RB_CLEAR_NODE(&cfqq->p_node);
2668	INIT_LIST_HEAD(&cfqq->fifo);
2669
2670	atomic_set(&cfqq->ref, 0);
2671	cfqq->cfqd = cfqd;
2672
2673	cfq_mark_cfqq_prio_changed(cfqq);
2674
2675	if (is_sync) {
2676		if (!cfq_class_idle(cfqq))
2677			cfq_mark_cfqq_idle_window(cfqq);
2678		cfq_mark_cfqq_sync(cfqq);
2679	}
2680	cfqq->pid = pid;
2681}
2682
2683#ifdef CONFIG_CFQ_GROUP_IOSCHED
2684static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2685{
2686	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2687	struct cfq_data *cfqd = cic->key;
2688	unsigned long flags;
2689	struct request_queue *q;
2690
2691	if (unlikely(!cfqd))
2692		return;
2693
2694	q = cfqd->queue;
2695
2696	spin_lock_irqsave(q->queue_lock, flags);
2697
2698	if (sync_cfqq) {
2699		/*
2700		 * Drop reference to sync queue. A new sync queue will be
2701		 * assigned in new group upon arrival of a fresh request.
2702		 */
2703		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2704		cic_set_cfqq(cic, NULL, 1);
2705		cfq_put_queue(sync_cfqq);
2706	}
2707
2708	spin_unlock_irqrestore(q->queue_lock, flags);
2709}
2710
2711static void cfq_ioc_set_cgroup(struct io_context *ioc)
2712{
2713	call_for_each_cic(ioc, changed_cgroup);
2714	ioc->cgroup_changed = 0;
2715}
2716#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2717
2718static struct cfq_queue *
2719cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2720		     struct io_context *ioc, gfp_t gfp_mask)
2721{
2722	struct cfq_queue *cfqq, *new_cfqq = NULL;
2723	struct cfq_io_context *cic;
2724	struct cfq_group *cfqg;
2725
2726retry:
2727	cfqg = cfq_get_cfqg(cfqd, 1);
2728	cic = cfq_cic_lookup(cfqd, ioc);
2729	/* cic always exists here */
2730	cfqq = cic_to_cfqq(cic, is_sync);
2731
2732	/*
2733	 * Always try a new alloc if we fell back to the OOM cfqq
2734	 * originally, since it should just be a temporary situation.
2735	 */
2736	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2737		cfqq = NULL;
2738		if (new_cfqq) {
2739			cfqq = new_cfqq;
2740			new_cfqq = NULL;
2741		} else if (gfp_mask & __GFP_WAIT) {
2742			spin_unlock_irq(cfqd->queue->queue_lock);
2743			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2744					gfp_mask | __GFP_ZERO,
2745					cfqd->queue->node);
2746			spin_lock_irq(cfqd->queue->queue_lock);
2747			if (new_cfqq)
2748				goto retry;
2749		} else {
2750			cfqq = kmem_cache_alloc_node(cfq_pool,
2751					gfp_mask | __GFP_ZERO,
2752					cfqd->queue->node);
2753		}
2754
2755		if (cfqq) {
2756			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2757			cfq_init_prio_data(cfqq, ioc);
2758			cfq_link_cfqq_cfqg(cfqq, cfqg);
2759			cfq_log_cfqq(cfqd, cfqq, "alloced");
2760		} else
2761			cfqq = &cfqd->oom_cfqq;
2762	}
2763
2764	if (new_cfqq)
2765		kmem_cache_free(cfq_pool, new_cfqq);
2766
2767	return cfqq;
2768}
2769
2770static struct cfq_queue **
2771cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2772{
2773	switch (ioprio_class) {
2774	case IOPRIO_CLASS_RT:
2775		return &cfqd->async_cfqq[0][ioprio];
2776	case IOPRIO_CLASS_BE:
2777		return &cfqd->async_cfqq[1][ioprio];
2778	case IOPRIO_CLASS_IDLE:
2779		return &cfqd->async_idle_cfqq;
2780	default:
2781		BUG();
2782	}
2783}
2784
2785static struct cfq_queue *
2786cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2787	      gfp_t gfp_mask)
2788{
2789	const int ioprio = task_ioprio(ioc);
2790	const int ioprio_class = task_ioprio_class(ioc);
2791	struct cfq_queue **async_cfqq = NULL;
2792	struct cfq_queue *cfqq = NULL;
2793
2794	if (!is_sync) {
2795		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2796		cfqq = *async_cfqq;
2797	}
2798
2799	if (!cfqq)
2800		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2801
2802	/*
2803	 * pin the queue now that it's allocated, scheduler exit will prune it
2804	 */
2805	if (!is_sync && !(*async_cfqq)) {
2806		atomic_inc(&cfqq->ref);
2807		*async_cfqq = cfqq;
2808	}
2809
2810	atomic_inc(&cfqq->ref);
2811	return cfqq;
2812}
2813
2814/*
2815 * We drop cfq io contexts lazily, so we may find a dead one.
2816 */
2817static void
2818cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2819		  struct cfq_io_context *cic)
2820{
2821	unsigned long flags;
2822
2823	WARN_ON(!list_empty(&cic->queue_list));
2824
2825	spin_lock_irqsave(&ioc->lock, flags);
2826
2827	BUG_ON(ioc->ioc_data == cic);
2828
2829	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2830	hlist_del_rcu(&cic->cic_list);
2831	spin_unlock_irqrestore(&ioc->lock, flags);
2832
2833	cfq_cic_free(cic);
2834}
2835
2836static struct cfq_io_context *
2837cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2838{
2839	struct cfq_io_context *cic;
2840	unsigned long flags;
2841	void *k;
2842
2843	if (unlikely(!ioc))
2844		return NULL;
2845
2846	rcu_read_lock();
2847
2848	/*
2849	 * we maintain a last-hit cache, to avoid browsing over the tree
2850	 */
2851	cic = rcu_dereference(ioc->ioc_data);
2852	if (cic && cic->key == cfqd) {
2853		rcu_read_unlock();
2854		return cic;
2855	}
2856
2857	do {
2858		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2859		rcu_read_unlock();
2860		if (!cic)
2861			break;
2862		/* ->key must be copied to avoid race with cfq_exit_queue() */
2863		k = cic->key;
2864		if (unlikely(!k)) {
2865			cfq_drop_dead_cic(cfqd, ioc, cic);
2866			rcu_read_lock();
2867			continue;
2868		}
2869
2870		spin_lock_irqsave(&ioc->lock, flags);
2871		rcu_assign_pointer(ioc->ioc_data, cic);
2872		spin_unlock_irqrestore(&ioc->lock, flags);
2873		break;
2874	} while (1);
2875
2876	return cic;
2877}
2878
2879/*
2880 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2881 * the process specific cfq io context when entered from the block layer.
2882 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2883 */
2884static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2885			struct cfq_io_context *cic, gfp_t gfp_mask)
2886{
2887	unsigned long flags;
2888	int ret;
2889
2890	ret = radix_tree_preload(gfp_mask);
2891	if (!ret) {
2892		cic->ioc = ioc;
2893		cic->key = cfqd;
2894
2895		spin_lock_irqsave(&ioc->lock, flags);
2896		ret = radix_tree_insert(&ioc->radix_root,
2897						(unsigned long) cfqd, cic);
2898		if (!ret)
2899			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2900		spin_unlock_irqrestore(&ioc->lock, flags);
2901
2902		radix_tree_preload_end();
2903
2904		if (!ret) {
2905			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2906			list_add(&cic->queue_list, &cfqd->cic_list);
2907			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2908		}
2909	}
2910
2911	if (ret)
2912		printk(KERN_ERR "cfq: cic link failed!\n");
2913
2914	return ret;
2915}
2916
2917/*
2918 * Setup general io context and cfq io context. There can be several cfq
2919 * io contexts per general io context, if this process is doing io to more
2920 * than one device managed by cfq.
2921 */
2922static struct cfq_io_context *
2923cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2924{
2925	struct io_context *ioc = NULL;
2926	struct cfq_io_context *cic;
2927
2928	might_sleep_if(gfp_mask & __GFP_WAIT);
2929
2930	ioc = get_io_context(gfp_mask, cfqd->queue->node);
2931	if (!ioc)
2932		return NULL;
2933
2934	cic = cfq_cic_lookup(cfqd, ioc);
2935	if (cic)
2936		goto out;
2937
2938	cic = cfq_alloc_io_context(cfqd, gfp_mask);
2939	if (cic == NULL)
2940		goto err;
2941
2942	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2943		goto err_free;
2944
2945out:
2946	smp_read_barrier_depends();
2947	if (unlikely(ioc->ioprio_changed))
2948		cfq_ioc_set_ioprio(ioc);
2949
2950#ifdef CONFIG_CFQ_GROUP_IOSCHED
2951	if (unlikely(ioc->cgroup_changed))
2952		cfq_ioc_set_cgroup(ioc);
2953#endif
2954	return cic;
2955err_free:
2956	cfq_cic_free(cic);
2957err:
2958	put_io_context(ioc);
2959	return NULL;
2960}
2961
2962static void
2963cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2964{
2965	unsigned long elapsed = jiffies - cic->last_end_request;
2966	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2967
2968	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2969	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2970	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2971}
2972
2973static void
2974cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2975		       struct request *rq)
2976{
2977	sector_t sdist;
2978	u64 total;
2979
2980	if (!cfqq->last_request_pos)
2981		sdist = 0;
2982	else if (cfqq->last_request_pos < blk_rq_pos(rq))
2983		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2984	else
2985		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2986
2987	/*
2988	 * Don't allow the seek distance to get too large from the
2989	 * odd fragment, pagein, etc
2990	 */
2991	if (cfqq->seek_samples <= 60) /* second&third seek */
2992		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2993	else
2994		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2995
2996	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2997	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2998	total = cfqq->seek_total + (cfqq->seek_samples/2);
2999	do_div(total, cfqq->seek_samples);
3000	cfqq->seek_mean = (sector_t)total;
3001
3002	/*
3003	 * If this cfqq is shared between multiple processes, check to
3004	 * make sure that those processes are still issuing I/Os within
3005	 * the mean seek distance.  If not, it may be time to break the
3006	 * queues apart again.
3007	 */
3008	if (cfq_cfqq_coop(cfqq)) {
3009		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3010			cfqq->seeky_start = jiffies;
3011		else if (!CFQQ_SEEKY(cfqq))
3012			cfqq->seeky_start = 0;
3013	}
3014}
3015
3016/*
3017 * Disable idle window if the process thinks too long or seeks so much that
3018 * it doesn't matter
3019 */
3020static void
3021cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3022		       struct cfq_io_context *cic)
3023{
3024	int old_idle, enable_idle;
3025
3026	/*
3027	 * Don't idle for async or idle io prio class
3028	 */
3029	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3030		return;
3031
3032	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3033
3034	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3035		cfq_mark_cfqq_deep(cfqq);
3036
3037	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3038	    (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3039	     && CFQQ_SEEKY(cfqq)))
3040		enable_idle = 0;
3041	else if (sample_valid(cic->ttime_samples)) {
3042		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3043			enable_idle = 0;
3044		else
3045			enable_idle = 1;
3046	}
3047
3048	if (old_idle != enable_idle) {
3049		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3050		if (enable_idle)
3051			cfq_mark_cfqq_idle_window(cfqq);
3052		else
3053			cfq_clear_cfqq_idle_window(cfqq);
3054	}
3055}
3056
3057/*
3058 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3059 * no or if we aren't sure, a 1 will cause a preempt.
3060 */
3061static bool
3062cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3063		   struct request *rq)
3064{
3065	struct cfq_queue *cfqq;
3066
3067	cfqq = cfqd->active_queue;
3068	if (!cfqq)
3069		return false;
3070
3071	if (cfq_class_idle(new_cfqq))
3072		return false;
3073
3074	if (cfq_class_idle(cfqq))
3075		return true;
3076
3077	/*
3078	 * if the new request is sync, but the currently running queue is
3079	 * not, let the sync request have priority.
3080	 */
3081	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3082		return true;
3083
3084	if (new_cfqq->cfqg != cfqq->cfqg)
3085		return false;
3086
3087	if (cfq_slice_used(cfqq))
3088		return true;
3089
3090	/* Allow preemption only if we are idling on sync-noidle tree */
3091	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3092	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3093	    new_cfqq->service_tree->count == 2 &&
3094	    RB_EMPTY_ROOT(&cfqq->sort_list))
3095		return true;
3096
3097	/*
3098	 * So both queues are sync. Let the new request get disk time if
3099	 * it's a metadata request and the current queue is doing regular IO.
3100	 */
3101	if (rq_is_meta(rq) && !cfqq->meta_pending)
3102		return true;
3103
3104	/*
3105	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3106	 */
3107	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3108		return true;
3109
3110	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3111		return false;
3112
3113	/*
3114	 * if this request is as-good as one we would expect from the
3115	 * current cfqq, let it preempt
3116	 */
3117	if (cfq_rq_close(cfqd, cfqq, rq))
3118		return true;
3119
3120	return false;
3121}
3122
3123/*
3124 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3125 * let it have half of its nominal slice.
3126 */
3127static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3128{
3129	cfq_log_cfqq(cfqd, cfqq, "preempt");
3130	cfq_slice_expired(cfqd, 1);
3131
3132	/*
3133	 * Put the new queue at the front of the of the current list,
3134	 * so we know that it will be selected next.
3135	 */
3136	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3137
3138	cfq_service_tree_add(cfqd, cfqq, 1);
3139
3140	cfqq->slice_end = 0;
3141	cfq_mark_cfqq_slice_new(cfqq);
3142}
3143
3144/*
3145 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3146 * something we should do about it
3147 */
3148static void
3149cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3150		struct request *rq)
3151{
3152	struct cfq_io_context *cic = RQ_CIC(rq);
3153
3154	cfqd->rq_queued++;
3155	if (rq_is_meta(rq))
3156		cfqq->meta_pending++;
3157
3158	cfq_update_io_thinktime(cfqd, cic);
3159	cfq_update_io_seektime(cfqd, cfqq, rq);
3160	cfq_update_idle_window(cfqd, cfqq, cic);
3161
3162	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3163
3164	if (cfqq == cfqd->active_queue) {
3165		if (cfq_cfqq_wait_busy(cfqq)) {
3166			cfq_clear_cfqq_wait_busy(cfqq);
3167			cfq_mark_cfqq_wait_busy_done(cfqq);
3168		}
3169		/*
3170		 * Remember that we saw a request from this process, but
3171		 * don't start queuing just yet. Otherwise we risk seeing lots
3172		 * of tiny requests, because we disrupt the normal plugging
3173		 * and merging. If the request is already larger than a single
3174		 * page, let it rip immediately. For that case we assume that
3175		 * merging is already done. Ditto for a busy system that
3176		 * has other work pending, don't risk delaying until the
3177		 * idle timer unplug to continue working.
3178		 */
3179		if (cfq_cfqq_wait_request(cfqq)) {
3180			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3181			    cfqd->busy_queues > 1) {
3182				del_timer(&cfqd->idle_slice_timer);
3183				__blk_run_queue(cfqd->queue);
3184			} else
3185				cfq_mark_cfqq_must_dispatch(cfqq);
3186		}
3187	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3188		/*
3189		 * not the active queue - expire current slice if it is
3190		 * idle and has expired it's mean thinktime or this new queue
3191		 * has some old slice time left and is of higher priority or
3192		 * this new queue is RT and the current one is BE
3193		 */
3194		cfq_preempt_queue(cfqd, cfqq);
3195		__blk_run_queue(cfqd->queue);
3196	}
3197}
3198
3199static void cfq_insert_request(struct request_queue *q, struct request *rq)
3200{
3201	struct cfq_data *cfqd = q->elevator->elevator_data;
3202	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3203
3204	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3205	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3206
3207	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3208	list_add_tail(&rq->queuelist, &cfqq->fifo);
3209	cfq_add_rq_rb(rq);
3210
3211	cfq_rq_enqueued(cfqd, cfqq, rq);
3212}
3213
3214/*
3215 * Update hw_tag based on peak queue depth over 50 samples under
3216 * sufficient load.
3217 */
3218static void cfq_update_hw_tag(struct cfq_data *cfqd)
3219{
3220	struct cfq_queue *cfqq = cfqd->active_queue;
3221
3222	if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3223		cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3224
3225	if (cfqd->hw_tag == 1)
3226		return;
3227
3228	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3229	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3230		return;
3231
3232	/*
3233	 * If active queue hasn't enough requests and can idle, cfq might not
3234	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3235	 * case
3236	 */
3237	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3238	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3239	    CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3240		return;
3241
3242	if (cfqd->hw_tag_samples++ < 50)
3243		return;
3244
3245	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3246		cfqd->hw_tag = 1;
3247	else
3248		cfqd->hw_tag = 0;
3249}
3250
3251static void cfq_completed_request(struct request_queue *q, struct request *rq)
3252{
3253	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3254	struct cfq_data *cfqd = cfqq->cfqd;
3255	const int sync = rq_is_sync(rq);
3256	unsigned long now;
3257
3258	now = jiffies;
3259	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3260
3261	cfq_update_hw_tag(cfqd);
3262
3263	WARN_ON(!cfqd->rq_in_driver[sync]);
3264	WARN_ON(!cfqq->dispatched);
3265	cfqd->rq_in_driver[sync]--;
3266	cfqq->dispatched--;
3267
3268	if (cfq_cfqq_sync(cfqq))
3269		cfqd->sync_flight--;
3270
3271	if (sync) {
3272		RQ_CIC(rq)->last_end_request = now;
3273		cfqd->last_end_sync_rq = now;
3274	}
3275
3276	/*
3277	 * If this is the active queue, check if it needs to be expired,
3278	 * or if we want to idle in case it has no pending requests.
3279	 */
3280	if (cfqd->active_queue == cfqq) {
3281		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3282
3283		if (cfq_cfqq_slice_new(cfqq)) {
3284			cfq_set_prio_slice(cfqd, cfqq);
3285			cfq_clear_cfqq_slice_new(cfqq);
3286		}
3287
3288		/*
3289		 * If this queue consumed its slice and this is last queue
3290		 * in the group, wait for next request before we expire
3291		 * the queue
3292		 */
3293		if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3294			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3295			cfq_mark_cfqq_wait_busy(cfqq);
3296		}
3297
3298		/*
3299		 * Idling is not enabled on:
3300		 * - expired queues
3301		 * - idle-priority queues
3302		 * - async queues
3303		 * - queues with still some requests queued
3304		 * - when there is a close cooperator
3305		 */
3306		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3307			cfq_slice_expired(cfqd, 1);
3308		else if (sync && cfqq_empty &&
3309			 !cfq_close_cooperator(cfqd, cfqq)) {
3310			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3311			/*
3312			 * Idling is enabled for SYNC_WORKLOAD.
3313			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3314			 * only if we processed at least one !rq_noidle request
3315			 */
3316			if (cfqd->serving_type == SYNC_WORKLOAD
3317			    || cfqd->noidle_tree_requires_idle)
3318				cfq_arm_slice_timer(cfqd);
3319		}
3320	}
3321
3322	if (!rq_in_driver(cfqd))
3323		cfq_schedule_dispatch(cfqd);
3324}
3325
3326/*
3327 * we temporarily boost lower priority queues if they are holding fs exclusive
3328 * resources. they are boosted to normal prio (CLASS_BE/4)
3329 */
3330static void cfq_prio_boost(struct cfq_queue *cfqq)
3331{
3332	if (has_fs_excl()) {
3333		/*
3334		 * boost idle prio on transactions that would lock out other
3335		 * users of the filesystem
3336		 */
3337		if (cfq_class_idle(cfqq))
3338			cfqq->ioprio_class = IOPRIO_CLASS_BE;
3339		if (cfqq->ioprio > IOPRIO_NORM)
3340			cfqq->ioprio = IOPRIO_NORM;
3341	} else {
3342		/*
3343		 * unboost the queue (if needed)
3344		 */
3345		cfqq->ioprio_class = cfqq->org_ioprio_class;
3346		cfqq->ioprio = cfqq->org_ioprio;
3347	}
3348}
3349
3350static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3351{
3352	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3353		cfq_mark_cfqq_must_alloc_slice(cfqq);
3354		return ELV_MQUEUE_MUST;
3355	}
3356
3357	return ELV_MQUEUE_MAY;
3358}
3359
3360static int cfq_may_queue(struct request_queue *q, int rw)
3361{
3362	struct cfq_data *cfqd = q->elevator->elevator_data;
3363	struct task_struct *tsk = current;
3364	struct cfq_io_context *cic;
3365	struct cfq_queue *cfqq;
3366
3367	/*
3368	 * don't force setup of a queue from here, as a call to may_queue
3369	 * does not necessarily imply that a request actually will be queued.
3370	 * so just lookup a possibly existing queue, or return 'may queue'
3371	 * if that fails
3372	 */
3373	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3374	if (!cic)
3375		return ELV_MQUEUE_MAY;
3376
3377	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3378	if (cfqq) {
3379		cfq_init_prio_data(cfqq, cic->ioc);
3380		cfq_prio_boost(cfqq);
3381
3382		return __cfq_may_queue(cfqq);
3383	}
3384
3385	return ELV_MQUEUE_MAY;
3386}
3387
3388/*
3389 * queue lock held here
3390 */
3391static void cfq_put_request(struct request *rq)
3392{
3393	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3394
3395	if (cfqq) {
3396		const int rw = rq_data_dir(rq);
3397
3398		BUG_ON(!cfqq->allocated[rw]);
3399		cfqq->allocated[rw]--;
3400
3401		put_io_context(RQ_CIC(rq)->ioc);
3402
3403		rq->elevator_private = NULL;
3404		rq->elevator_private2 = NULL;
3405
3406		cfq_put_queue(cfqq);
3407	}
3408}
3409
3410static struct cfq_queue *
3411cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3412		struct cfq_queue *cfqq)
3413{
3414	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3415	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3416	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3417	cfq_put_queue(cfqq);
3418	return cic_to_cfqq(cic, 1);
3419}
3420
3421static int should_split_cfqq(struct cfq_queue *cfqq)
3422{
3423	if (cfqq->seeky_start &&
3424	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3425		return 1;
3426	return 0;
3427}
3428
3429/*
3430 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3431 * was the last process referring to said cfqq.
3432 */
3433static struct cfq_queue *
3434split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3435{
3436	if (cfqq_process_refs(cfqq) == 1) {
3437		cfqq->seeky_start = 0;
3438		cfqq->pid = current->pid;
3439		cfq_clear_cfqq_coop(cfqq);
3440		return cfqq;
3441	}
3442
3443	cic_set_cfqq(cic, NULL, 1);
3444	cfq_put_queue(cfqq);
3445	return NULL;
3446}
3447/*
3448 * Allocate cfq data structures associated with this request.
3449 */
3450static int
3451cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3452{
3453	struct cfq_data *cfqd = q->elevator->elevator_data;
3454	struct cfq_io_context *cic;
3455	const int rw = rq_data_dir(rq);
3456	const bool is_sync = rq_is_sync(rq);
3457	struct cfq_queue *cfqq;
3458	unsigned long flags;
3459
3460	might_sleep_if(gfp_mask & __GFP_WAIT);
3461
3462	cic = cfq_get_io_context(cfqd, gfp_mask);
3463
3464	spin_lock_irqsave(q->queue_lock, flags);
3465
3466	if (!cic)
3467		goto queue_fail;
3468
3469new_queue:
3470	cfqq = cic_to_cfqq(cic, is_sync);
3471	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3472		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3473		cic_set_cfqq(cic, cfqq, is_sync);
3474	} else {
3475		/*
3476		 * If the queue was seeky for too long, break it apart.
3477		 */
3478		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3479			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3480			cfqq = split_cfqq(cic, cfqq);
3481			if (!cfqq)
3482				goto new_queue;
3483		}
3484
3485		/*
3486		 * Check to see if this queue is scheduled to merge with
3487		 * another, closely cooperating queue.  The merging of
3488		 * queues happens here as it must be done in process context.
3489		 * The reference on new_cfqq was taken in merge_cfqqs.
3490		 */
3491		if (cfqq->new_cfqq)
3492			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3493	}
3494
3495	cfqq->allocated[rw]++;
3496	atomic_inc(&cfqq->ref);
3497
3498	spin_unlock_irqrestore(q->queue_lock, flags);
3499
3500	rq->elevator_private = cic;
3501	rq->elevator_private2 = cfqq;
3502	return 0;
3503
3504queue_fail:
3505	if (cic)
3506		put_io_context(cic->ioc);
3507
3508	cfq_schedule_dispatch(cfqd);
3509	spin_unlock_irqrestore(q->queue_lock, flags);
3510	cfq_log(cfqd, "set_request fail");
3511	return 1;
3512}
3513
3514static void cfq_kick_queue(struct work_struct *work)
3515{
3516	struct cfq_data *cfqd =
3517		container_of(work, struct cfq_data, unplug_work);
3518	struct request_queue *q = cfqd->queue;
3519
3520	spin_lock_irq(q->queue_lock);
3521	__blk_run_queue(cfqd->queue);
3522	spin_unlock_irq(q->queue_lock);
3523}
3524
3525/*
3526 * Timer running if the active_queue is currently idling inside its time slice
3527 */
3528static void cfq_idle_slice_timer(unsigned long data)
3529{
3530	struct cfq_data *cfqd = (struct cfq_data *) data;
3531	struct cfq_queue *cfqq;
3532	unsigned long flags;
3533	int timed_out = 1;
3534
3535	cfq_log(cfqd, "idle timer fired");
3536
3537	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3538
3539	cfqq = cfqd->active_queue;
3540	if (cfqq) {
3541		timed_out = 0;
3542
3543		/*
3544		 * We saw a request before the queue expired, let it through
3545		 */
3546		if (cfq_cfqq_must_dispatch(cfqq))
3547			goto out_kick;
3548
3549		/*
3550		 * expired
3551		 */
3552		if (cfq_slice_used(cfqq))
3553			goto expire;
3554
3555		/*
3556		 * only expire and reinvoke request handler, if there are
3557		 * other queues with pending requests
3558		 */
3559		if (!cfqd->busy_queues)
3560			goto out_cont;
3561
3562		/*
3563		 * not expired and it has a request pending, let it dispatch
3564		 */
3565		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3566			goto out_kick;
3567
3568		/*
3569		 * Queue depth flag is reset only when the idle didn't succeed
3570		 */
3571		cfq_clear_cfqq_deep(cfqq);
3572	}
3573expire:
3574	cfq_slice_expired(cfqd, timed_out);
3575out_kick:
3576	cfq_schedule_dispatch(cfqd);
3577out_cont:
3578	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3579}
3580
3581static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3582{
3583	del_timer_sync(&cfqd->idle_slice_timer);
3584	cancel_work_sync(&cfqd->unplug_work);
3585}
3586
3587static void cfq_put_async_queues(struct cfq_data *cfqd)
3588{
3589	int i;
3590
3591	for (i = 0; i < IOPRIO_BE_NR; i++) {
3592		if (cfqd->async_cfqq[0][i])
3593			cfq_put_queue(cfqd->async_cfqq[0][i]);
3594		if (cfqd->async_cfqq[1][i])
3595			cfq_put_queue(cfqd->async_cfqq[1][i]);
3596	}
3597
3598	if (cfqd->async_idle_cfqq)
3599		cfq_put_queue(cfqd->async_idle_cfqq);
3600}
3601
3602static void cfq_exit_queue(struct elevator_queue *e)
3603{
3604	struct cfq_data *cfqd = e->elevator_data;
3605	struct request_queue *q = cfqd->queue;
3606
3607	cfq_shutdown_timer_wq(cfqd);
3608
3609	spin_lock_irq(q->queue_lock);
3610
3611	if (cfqd->active_queue)
3612		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3613
3614	while (!list_empty(&cfqd->cic_list)) {
3615		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3616							struct cfq_io_context,
3617							queue_list);
3618
3619		__cfq_exit_single_io_context(cfqd, cic);
3620	}
3621
3622	cfq_put_async_queues(cfqd);
3623	cfq_release_cfq_groups(cfqd);
3624	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3625
3626	spin_unlock_irq(q->queue_lock);
3627
3628	cfq_shutdown_timer_wq(cfqd);
3629
3630	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3631	synchronize_rcu();
3632	kfree(cfqd);
3633}
3634
3635static void *cfq_init_queue(struct request_queue *q)
3636{
3637	struct cfq_data *cfqd;
3638	int i, j;
3639	struct cfq_group *cfqg;
3640	struct cfq_rb_root *st;
3641
3642	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3643	if (!cfqd)
3644		return NULL;
3645
3646	/* Init root service tree */
3647	cfqd->grp_service_tree = CFQ_RB_ROOT;
3648
3649	/* Init root group */
3650	cfqg = &cfqd->root_group;
3651	for_each_cfqg_st(cfqg, i, j, st)
3652		*st = CFQ_RB_ROOT;
3653	RB_CLEAR_NODE(&cfqg->rb_node);
3654
3655	/* Give preference to root group over other groups */
3656	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3657
3658#ifdef CONFIG_CFQ_GROUP_IOSCHED
3659	/*
3660	 * Take a reference to root group which we never drop. This is just
3661	 * to make sure that cfq_put_cfqg() does not try to kfree root group
3662	 */
3663	atomic_set(&cfqg->ref, 1);
3664	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3665					0);
3666#endif
3667	/*
3668	 * Not strictly needed (since RB_ROOT just clears the node and we
3669	 * zeroed cfqd on alloc), but better be safe in case someone decides
3670	 * to add magic to the rb code
3671	 */
3672	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3673		cfqd->prio_trees[i] = RB_ROOT;
3674
3675	/*
3676	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3677	 * Grab a permanent reference to it, so that the normal code flow
3678	 * will not attempt to free it.
3679	 */
3680	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3681	atomic_inc(&cfqd->oom_cfqq.ref);
3682	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3683
3684	INIT_LIST_HEAD(&cfqd->cic_list);
3685
3686	cfqd->queue = q;
3687
3688	init_timer(&cfqd->idle_slice_timer);
3689	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3690	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3691
3692	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3693
3694	cfqd->cfq_quantum = cfq_quantum;
3695	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3696	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3697	cfqd->cfq_back_max = cfq_back_max;
3698	cfqd->cfq_back_penalty = cfq_back_penalty;
3699	cfqd->cfq_slice[0] = cfq_slice_async;
3700	cfqd->cfq_slice[1] = cfq_slice_sync;
3701	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3702	cfqd->cfq_slice_idle = cfq_slice_idle;
3703	cfqd->cfq_latency = 1;
3704	cfqd->cfq_group_isolation = 0;
3705	cfqd->hw_tag = -1;
3706	cfqd->last_end_sync_rq = jiffies;
3707	return cfqd;
3708}
3709
3710static void cfq_slab_kill(void)
3711{
3712	/*
3713	 * Caller already ensured that pending RCU callbacks are completed,
3714	 * so we should have no busy allocations at this point.
3715	 */
3716	if (cfq_pool)
3717		kmem_cache_destroy(cfq_pool);
3718	if (cfq_ioc_pool)
3719		kmem_cache_destroy(cfq_ioc_pool);
3720}
3721
3722static int __init cfq_slab_setup(void)
3723{
3724	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3725	if (!cfq_pool)
3726		goto fail;
3727
3728	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3729	if (!cfq_ioc_pool)
3730		goto fail;
3731
3732	return 0;
3733fail:
3734	cfq_slab_kill();
3735	return -ENOMEM;
3736}
3737
3738/*
3739 * sysfs parts below -->
3740 */
3741static ssize_t
3742cfq_var_show(unsigned int var, char *page)
3743{
3744	return sprintf(page, "%d\n", var);
3745}
3746
3747static ssize_t
3748cfq_var_store(unsigned int *var, const char *page, size_t count)
3749{
3750	char *p = (char *) page;
3751
3752	*var = simple_strtoul(p, &p, 10);
3753	return count;
3754}
3755
3756#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3757static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3758{									\
3759	struct cfq_data *cfqd = e->elevator_data;			\
3760	unsigned int __data = __VAR;					\
3761	if (__CONV)							\
3762		__data = jiffies_to_msecs(__data);			\
3763	return cfq_var_show(__data, (page));				\
3764}
3765SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3766SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3767SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3768SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3769SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3770SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3771SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3772SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3773SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3774SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3775SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3776#undef SHOW_FUNCTION
3777
3778#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3779static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3780{									\
3781	struct cfq_data *cfqd = e->elevator_data;			\
3782	unsigned int __data;						\
3783	int ret = cfq_var_store(&__data, (page), count);		\
3784	if (__data < (MIN))						\
3785		__data = (MIN);						\
3786	else if (__data > (MAX))					\
3787		__data = (MAX);						\
3788	if (__CONV)							\
3789		*(__PTR) = msecs_to_jiffies(__data);			\
3790	else								\
3791		*(__PTR) = __data;					\
3792	return ret;							\
3793}
3794STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3795STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3796		UINT_MAX, 1);
3797STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3798		UINT_MAX, 1);
3799STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3800STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3801		UINT_MAX, 0);
3802STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3803STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3804STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3805STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3806		UINT_MAX, 0);
3807STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3808STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3809#undef STORE_FUNCTION
3810
3811#define CFQ_ATTR(name) \
3812	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3813
3814static struct elv_fs_entry cfq_attrs[] = {
3815	CFQ_ATTR(quantum),
3816	CFQ_ATTR(fifo_expire_sync),
3817	CFQ_ATTR(fifo_expire_async),
3818	CFQ_ATTR(back_seek_max),
3819	CFQ_ATTR(back_seek_penalty),
3820	CFQ_ATTR(slice_sync),
3821	CFQ_ATTR(slice_async),
3822	CFQ_ATTR(slice_async_rq),
3823	CFQ_ATTR(slice_idle),
3824	CFQ_ATTR(low_latency),
3825	CFQ_ATTR(group_isolation),
3826	__ATTR_NULL
3827};
3828
3829static struct elevator_type iosched_cfq = {
3830	.ops = {
3831		.elevator_merge_fn = 		cfq_merge,
3832		.elevator_merged_fn =		cfq_merged_request,
3833		.elevator_merge_req_fn =	cfq_merged_requests,
3834		.elevator_allow_merge_fn =	cfq_allow_merge,
3835		.elevator_dispatch_fn =		cfq_dispatch_requests,
3836		.elevator_add_req_fn =		cfq_insert_request,
3837		.elevator_activate_req_fn =	cfq_activate_request,
3838		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3839		.elevator_queue_empty_fn =	cfq_queue_empty,
3840		.elevator_completed_req_fn =	cfq_completed_request,
3841		.elevator_former_req_fn =	elv_rb_former_request,
3842		.elevator_latter_req_fn =	elv_rb_latter_request,
3843		.elevator_set_req_fn =		cfq_set_request,
3844		.elevator_put_req_fn =		cfq_put_request,
3845		.elevator_may_queue_fn =	cfq_may_queue,
3846		.elevator_init_fn =		cfq_init_queue,
3847		.elevator_exit_fn =		cfq_exit_queue,
3848		.trim =				cfq_free_io_context,
3849	},
3850	.elevator_attrs =	cfq_attrs,
3851	.elevator_name =	"cfq",
3852	.elevator_owner =	THIS_MODULE,
3853};
3854
3855static int __init cfq_init(void)
3856{
3857	/*
3858	 * could be 0 on HZ < 1000 setups
3859	 */
3860	if (!cfq_slice_async)
3861		cfq_slice_async = 1;
3862	if (!cfq_slice_idle)
3863		cfq_slice_idle = 1;
3864
3865	if (cfq_slab_setup())
3866		return -ENOMEM;
3867
3868	elv_register(&iosched_cfq);
3869
3870	return 0;
3871}
3872
3873static void __exit cfq_exit(void)
3874{
3875	DECLARE_COMPLETION_ONSTACK(all_gone);
3876	elv_unregister(&iosched_cfq);
3877	ioc_gone = &all_gone;
3878	/* ioc_gone's update must be visible before reading ioc_count */
3879	smp_wmb();
3880
3881	/*
3882	 * this also protects us from entering cfq_slab_kill() with
3883	 * pending RCU callbacks
3884	 */
3885	if (elv_ioc_count_read(cfq_ioc_count))
3886		wait_for_completion(&all_gone);
3887	cfq_slab_kill();
3888}
3889
3890module_init(cfq_init);
3891module_exit(cfq_exit);
3892
3893MODULE_AUTHOR("Jens Axboe");
3894MODULE_LICENSE("GPL");
3895MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3896