cfq-iosched.c revision b1ffe737f5b743115ee46ffb59e338e580c54902
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/jiffies.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15#include <linux/blktrace_api.h>
16#include "blk-cgroup.h"
17
18/*
19 * tunables
20 */
21/* max queue in one round of service */
22static const int cfq_quantum = 8;
23static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24/* maximum backwards seek, in KiB */
25static const int cfq_back_max = 16 * 1024;
26/* penalty of a backwards seek */
27static const int cfq_back_penalty = 2;
28static const int cfq_slice_sync = HZ / 10;
29static int cfq_slice_async = HZ / 25;
30static const int cfq_slice_async_rq = 2;
31static int cfq_slice_idle = HZ / 125;
32static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33static const int cfq_hist_divisor = 4;
34
35/*
36 * offset from end of service tree
37 */
38#define CFQ_IDLE_DELAY		(HZ / 5)
39
40/*
41 * below this threshold, we consider thinktime immediate
42 */
43#define CFQ_MIN_TT		(2)
44
45#define CFQ_SLICE_SCALE		(5)
46#define CFQ_HW_QUEUE_MIN	(5)
47#define CFQ_SERVICE_SHIFT       12
48
49#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
50#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
51#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
52#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
53
54#define RQ_CIC(rq)		\
55	((struct cfq_io_context *) (rq)->elevator_private)
56#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
57
58static struct kmem_cache *cfq_pool;
59static struct kmem_cache *cfq_ioc_pool;
60
61static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
62static struct completion *ioc_gone;
63static DEFINE_SPINLOCK(ioc_gone_lock);
64
65#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
66#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
67#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
69#define sample_valid(samples)	((samples) > 80)
70#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
71
72/*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78struct cfq_rb_root {
79	struct rb_root rb;
80	struct rb_node *left;
81	unsigned count;
82	unsigned total_weight;
83	u64 min_vdisktime;
84	struct rb_node *active;
85};
86#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
87			.count = 0, .min_vdisktime = 0, }
88
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93	/* reference count */
94	atomic_t ref;
95	/* various state flags, see below */
96	unsigned int flags;
97	/* parent cfq_data */
98	struct cfq_data *cfqd;
99	/* service_tree member */
100	struct rb_node rb_node;
101	/* service_tree key */
102	unsigned long rb_key;
103	/* prio tree member */
104	struct rb_node p_node;
105	/* prio tree root we belong to, if any */
106	struct rb_root *p_root;
107	/* sorted list of pending requests */
108	struct rb_root sort_list;
109	/* if fifo isn't expired, next request to serve */
110	struct request *next_rq;
111	/* requests queued in sort_list */
112	int queued[2];
113	/* currently allocated requests */
114	int allocated[2];
115	/* fifo list of requests in sort_list */
116	struct list_head fifo;
117
118	/* time when queue got scheduled in to dispatch first request. */
119	unsigned long dispatch_start;
120	unsigned int allocated_slice;
121	unsigned int slice_dispatch;
122	/* time when first request from queue completed and slice started. */
123	unsigned long slice_start;
124	unsigned long slice_end;
125	long slice_resid;
126
127	/* pending metadata requests */
128	int meta_pending;
129	/* number of requests that are on the dispatch list or inside driver */
130	int dispatched;
131
132	/* io prio of this group */
133	unsigned short ioprio, org_ioprio;
134	unsigned short ioprio_class, org_ioprio_class;
135
136	pid_t pid;
137
138	u32 seek_history;
139	sector_t last_request_pos;
140
141	struct cfq_rb_root *service_tree;
142	struct cfq_queue *new_cfqq;
143	struct cfq_group *cfqg;
144	struct cfq_group *orig_cfqg;
145	/* Sectors dispatched in current dispatch round */
146	unsigned long nr_sectors;
147};
148
149/*
150 * First index in the service_trees.
151 * IDLE is handled separately, so it has negative index
152 */
153enum wl_prio_t {
154	BE_WORKLOAD = 0,
155	RT_WORKLOAD = 1,
156	IDLE_WORKLOAD = 2,
157};
158
159/*
160 * Second index in the service_trees.
161 */
162enum wl_type_t {
163	ASYNC_WORKLOAD = 0,
164	SYNC_NOIDLE_WORKLOAD = 1,
165	SYNC_WORKLOAD = 2
166};
167
168/* This is per cgroup per device grouping structure */
169struct cfq_group {
170	/* group service_tree member */
171	struct rb_node rb_node;
172
173	/* group service_tree key */
174	u64 vdisktime;
175	unsigned int weight;
176	bool on_st;
177
178	/* number of cfqq currently on this group */
179	int nr_cfqq;
180
181	/* Per group busy queus average. Useful for workload slice calc. */
182	unsigned int busy_queues_avg[2];
183	/*
184	 * rr lists of queues with requests, onle rr for each priority class.
185	 * Counts are embedded in the cfq_rb_root
186	 */
187	struct cfq_rb_root service_trees[2][3];
188	struct cfq_rb_root service_tree_idle;
189
190	unsigned long saved_workload_slice;
191	enum wl_type_t saved_workload;
192	enum wl_prio_t saved_serving_prio;
193	struct blkio_group blkg;
194#ifdef CONFIG_CFQ_GROUP_IOSCHED
195	struct hlist_node cfqd_node;
196	atomic_t ref;
197#endif
198};
199
200/*
201 * Per block device queue structure
202 */
203struct cfq_data {
204	struct request_queue *queue;
205	/* Root service tree for cfq_groups */
206	struct cfq_rb_root grp_service_tree;
207	struct cfq_group root_group;
208
209	/*
210	 * The priority currently being served
211	 */
212	enum wl_prio_t serving_prio;
213	enum wl_type_t serving_type;
214	unsigned long workload_expires;
215	struct cfq_group *serving_group;
216	bool noidle_tree_requires_idle;
217
218	/*
219	 * Each priority tree is sorted by next_request position.  These
220	 * trees are used when determining if two or more queues are
221	 * interleaving requests (see cfq_close_cooperator).
222	 */
223	struct rb_root prio_trees[CFQ_PRIO_LISTS];
224
225	unsigned int busy_queues;
226
227	int rq_in_driver;
228	int rq_in_flight[2];
229
230	/*
231	 * queue-depth detection
232	 */
233	int rq_queued;
234	int hw_tag;
235	/*
236	 * hw_tag can be
237	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
238	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
239	 *  0 => no NCQ
240	 */
241	int hw_tag_est_depth;
242	unsigned int hw_tag_samples;
243
244	/*
245	 * idle window management
246	 */
247	struct timer_list idle_slice_timer;
248	struct work_struct unplug_work;
249
250	struct cfq_queue *active_queue;
251	struct cfq_io_context *active_cic;
252
253	/*
254	 * async queue for each priority case
255	 */
256	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
257	struct cfq_queue *async_idle_cfqq;
258
259	sector_t last_position;
260
261	/*
262	 * tunables, see top of file
263	 */
264	unsigned int cfq_quantum;
265	unsigned int cfq_fifo_expire[2];
266	unsigned int cfq_back_penalty;
267	unsigned int cfq_back_max;
268	unsigned int cfq_slice[2];
269	unsigned int cfq_slice_async_rq;
270	unsigned int cfq_slice_idle;
271	unsigned int cfq_latency;
272	unsigned int cfq_group_isolation;
273
274	struct list_head cic_list;
275
276	/*
277	 * Fallback dummy cfqq for extreme OOM conditions
278	 */
279	struct cfq_queue oom_cfqq;
280
281	unsigned long last_delayed_sync;
282
283	/* List of cfq groups being managed on this device*/
284	struct hlist_head cfqg_list;
285	struct rcu_head rcu;
286};
287
288static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
289
290static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
291					    enum wl_prio_t prio,
292					    enum wl_type_t type)
293{
294	if (!cfqg)
295		return NULL;
296
297	if (prio == IDLE_WORKLOAD)
298		return &cfqg->service_tree_idle;
299
300	return &cfqg->service_trees[prio][type];
301}
302
303enum cfqq_state_flags {
304	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
305	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
306	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
307	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
308	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
309	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
310	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
311	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
312	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
313	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
314	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
315	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
316	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
317};
318
319#define CFQ_CFQQ_FNS(name)						\
320static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
321{									\
322	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
323}									\
324static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
325{									\
326	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
327}									\
328static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
329{									\
330	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
331}
332
333CFQ_CFQQ_FNS(on_rr);
334CFQ_CFQQ_FNS(wait_request);
335CFQ_CFQQ_FNS(must_dispatch);
336CFQ_CFQQ_FNS(must_alloc_slice);
337CFQ_CFQQ_FNS(fifo_expire);
338CFQ_CFQQ_FNS(idle_window);
339CFQ_CFQQ_FNS(prio_changed);
340CFQ_CFQQ_FNS(slice_new);
341CFQ_CFQQ_FNS(sync);
342CFQ_CFQQ_FNS(coop);
343CFQ_CFQQ_FNS(split_coop);
344CFQ_CFQQ_FNS(deep);
345CFQ_CFQQ_FNS(wait_busy);
346#undef CFQ_CFQQ_FNS
347
348#ifdef CONFIG_DEBUG_CFQ_IOSCHED
349#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
350	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
351			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
352			blkg_path(&(cfqq)->cfqg->blkg), ##args);
353
354#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
355	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
356				blkg_path(&(cfqg)->blkg), ##args);      \
357
358#else
359#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
360	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
361#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0);
362#endif
363#define cfq_log(cfqd, fmt, args...)	\
364	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
365
366/* Traverses through cfq group service trees */
367#define for_each_cfqg_st(cfqg, i, j, st) \
368	for (i = 0; i <= IDLE_WORKLOAD; i++) \
369		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
370			: &cfqg->service_tree_idle; \
371			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
372			(i == IDLE_WORKLOAD && j == 0); \
373			j++, st = i < IDLE_WORKLOAD ? \
374			&cfqg->service_trees[i][j]: NULL) \
375
376
377static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
378{
379	if (cfq_class_idle(cfqq))
380		return IDLE_WORKLOAD;
381	if (cfq_class_rt(cfqq))
382		return RT_WORKLOAD;
383	return BE_WORKLOAD;
384}
385
386
387static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
388{
389	if (!cfq_cfqq_sync(cfqq))
390		return ASYNC_WORKLOAD;
391	if (!cfq_cfqq_idle_window(cfqq))
392		return SYNC_NOIDLE_WORKLOAD;
393	return SYNC_WORKLOAD;
394}
395
396static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
397					struct cfq_data *cfqd,
398					struct cfq_group *cfqg)
399{
400	if (wl == IDLE_WORKLOAD)
401		return cfqg->service_tree_idle.count;
402
403	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
404		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
405		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
406}
407
408static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
409					struct cfq_group *cfqg)
410{
411	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
412		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
413}
414
415static void cfq_dispatch_insert(struct request_queue *, struct request *);
416static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
417				       struct io_context *, gfp_t);
418static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
419						struct io_context *);
420
421static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
422					    bool is_sync)
423{
424	return cic->cfqq[is_sync];
425}
426
427static inline void cic_set_cfqq(struct cfq_io_context *cic,
428				struct cfq_queue *cfqq, bool is_sync)
429{
430	cic->cfqq[is_sync] = cfqq;
431}
432
433/*
434 * We regard a request as SYNC, if it's either a read or has the SYNC bit
435 * set (in which case it could also be direct WRITE).
436 */
437static inline bool cfq_bio_sync(struct bio *bio)
438{
439	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
440}
441
442/*
443 * scheduler run of queue, if there are requests pending and no one in the
444 * driver that will restart queueing
445 */
446static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
447{
448	if (cfqd->busy_queues) {
449		cfq_log(cfqd, "schedule dispatch");
450		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
451	}
452}
453
454static int cfq_queue_empty(struct request_queue *q)
455{
456	struct cfq_data *cfqd = q->elevator->elevator_data;
457
458	return !cfqd->rq_queued;
459}
460
461/*
462 * Scale schedule slice based on io priority. Use the sync time slice only
463 * if a queue is marked sync and has sync io queued. A sync queue with async
464 * io only, should not get full sync slice length.
465 */
466static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
467				 unsigned short prio)
468{
469	const int base_slice = cfqd->cfq_slice[sync];
470
471	WARN_ON(prio >= IOPRIO_BE_NR);
472
473	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
474}
475
476static inline int
477cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
478{
479	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
480}
481
482static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
483{
484	u64 d = delta << CFQ_SERVICE_SHIFT;
485
486	d = d * BLKIO_WEIGHT_DEFAULT;
487	do_div(d, cfqg->weight);
488	return d;
489}
490
491static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
492{
493	s64 delta = (s64)(vdisktime - min_vdisktime);
494	if (delta > 0)
495		min_vdisktime = vdisktime;
496
497	return min_vdisktime;
498}
499
500static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
501{
502	s64 delta = (s64)(vdisktime - min_vdisktime);
503	if (delta < 0)
504		min_vdisktime = vdisktime;
505
506	return min_vdisktime;
507}
508
509static void update_min_vdisktime(struct cfq_rb_root *st)
510{
511	u64 vdisktime = st->min_vdisktime;
512	struct cfq_group *cfqg;
513
514	if (st->active) {
515		cfqg = rb_entry_cfqg(st->active);
516		vdisktime = cfqg->vdisktime;
517	}
518
519	if (st->left) {
520		cfqg = rb_entry_cfqg(st->left);
521		vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
522	}
523
524	st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
525}
526
527/*
528 * get averaged number of queues of RT/BE priority.
529 * average is updated, with a formula that gives more weight to higher numbers,
530 * to quickly follows sudden increases and decrease slowly
531 */
532
533static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
534					struct cfq_group *cfqg, bool rt)
535{
536	unsigned min_q, max_q;
537	unsigned mult  = cfq_hist_divisor - 1;
538	unsigned round = cfq_hist_divisor / 2;
539	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
540
541	min_q = min(cfqg->busy_queues_avg[rt], busy);
542	max_q = max(cfqg->busy_queues_avg[rt], busy);
543	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
544		cfq_hist_divisor;
545	return cfqg->busy_queues_avg[rt];
546}
547
548static inline unsigned
549cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
550{
551	struct cfq_rb_root *st = &cfqd->grp_service_tree;
552
553	return cfq_target_latency * cfqg->weight / st->total_weight;
554}
555
556static inline void
557cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
558{
559	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
560	if (cfqd->cfq_latency) {
561		/*
562		 * interested queues (we consider only the ones with the same
563		 * priority class in the cfq group)
564		 */
565		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
566						cfq_class_rt(cfqq));
567		unsigned sync_slice = cfqd->cfq_slice[1];
568		unsigned expect_latency = sync_slice * iq;
569		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
570
571		if (expect_latency > group_slice) {
572			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
573			/* scale low_slice according to IO priority
574			 * and sync vs async */
575			unsigned low_slice =
576				min(slice, base_low_slice * slice / sync_slice);
577			/* the adapted slice value is scaled to fit all iqs
578			 * into the target latency */
579			slice = max(slice * group_slice / expect_latency,
580				    low_slice);
581		}
582	}
583	cfqq->slice_start = jiffies;
584	cfqq->slice_end = jiffies + slice;
585	cfqq->allocated_slice = slice;
586	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
587}
588
589/*
590 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
591 * isn't valid until the first request from the dispatch is activated
592 * and the slice time set.
593 */
594static inline bool cfq_slice_used(struct cfq_queue *cfqq)
595{
596	if (cfq_cfqq_slice_new(cfqq))
597		return 0;
598	if (time_before(jiffies, cfqq->slice_end))
599		return 0;
600
601	return 1;
602}
603
604/*
605 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
606 * We choose the request that is closest to the head right now. Distance
607 * behind the head is penalized and only allowed to a certain extent.
608 */
609static struct request *
610cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
611{
612	sector_t s1, s2, d1 = 0, d2 = 0;
613	unsigned long back_max;
614#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
615#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
616	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
617
618	if (rq1 == NULL || rq1 == rq2)
619		return rq2;
620	if (rq2 == NULL)
621		return rq1;
622
623	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
624		return rq1;
625	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
626		return rq2;
627	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
628		return rq1;
629	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
630		return rq2;
631
632	s1 = blk_rq_pos(rq1);
633	s2 = blk_rq_pos(rq2);
634
635	/*
636	 * by definition, 1KiB is 2 sectors
637	 */
638	back_max = cfqd->cfq_back_max * 2;
639
640	/*
641	 * Strict one way elevator _except_ in the case where we allow
642	 * short backward seeks which are biased as twice the cost of a
643	 * similar forward seek.
644	 */
645	if (s1 >= last)
646		d1 = s1 - last;
647	else if (s1 + back_max >= last)
648		d1 = (last - s1) * cfqd->cfq_back_penalty;
649	else
650		wrap |= CFQ_RQ1_WRAP;
651
652	if (s2 >= last)
653		d2 = s2 - last;
654	else if (s2 + back_max >= last)
655		d2 = (last - s2) * cfqd->cfq_back_penalty;
656	else
657		wrap |= CFQ_RQ2_WRAP;
658
659	/* Found required data */
660
661	/*
662	 * By doing switch() on the bit mask "wrap" we avoid having to
663	 * check two variables for all permutations: --> faster!
664	 */
665	switch (wrap) {
666	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
667		if (d1 < d2)
668			return rq1;
669		else if (d2 < d1)
670			return rq2;
671		else {
672			if (s1 >= s2)
673				return rq1;
674			else
675				return rq2;
676		}
677
678	case CFQ_RQ2_WRAP:
679		return rq1;
680	case CFQ_RQ1_WRAP:
681		return rq2;
682	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
683	default:
684		/*
685		 * Since both rqs are wrapped,
686		 * start with the one that's further behind head
687		 * (--> only *one* back seek required),
688		 * since back seek takes more time than forward.
689		 */
690		if (s1 <= s2)
691			return rq1;
692		else
693			return rq2;
694	}
695}
696
697/*
698 * The below is leftmost cache rbtree addon
699 */
700static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
701{
702	/* Service tree is empty */
703	if (!root->count)
704		return NULL;
705
706	if (!root->left)
707		root->left = rb_first(&root->rb);
708
709	if (root->left)
710		return rb_entry(root->left, struct cfq_queue, rb_node);
711
712	return NULL;
713}
714
715static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
716{
717	if (!root->left)
718		root->left = rb_first(&root->rb);
719
720	if (root->left)
721		return rb_entry_cfqg(root->left);
722
723	return NULL;
724}
725
726static void rb_erase_init(struct rb_node *n, struct rb_root *root)
727{
728	rb_erase(n, root);
729	RB_CLEAR_NODE(n);
730}
731
732static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
733{
734	if (root->left == n)
735		root->left = NULL;
736	rb_erase_init(n, &root->rb);
737	--root->count;
738}
739
740/*
741 * would be nice to take fifo expire time into account as well
742 */
743static struct request *
744cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745		  struct request *last)
746{
747	struct rb_node *rbnext = rb_next(&last->rb_node);
748	struct rb_node *rbprev = rb_prev(&last->rb_node);
749	struct request *next = NULL, *prev = NULL;
750
751	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
752
753	if (rbprev)
754		prev = rb_entry_rq(rbprev);
755
756	if (rbnext)
757		next = rb_entry_rq(rbnext);
758	else {
759		rbnext = rb_first(&cfqq->sort_list);
760		if (rbnext && rbnext != &last->rb_node)
761			next = rb_entry_rq(rbnext);
762	}
763
764	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
765}
766
767static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
768				      struct cfq_queue *cfqq)
769{
770	/*
771	 * just an approximation, should be ok.
772	 */
773	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
774		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
775}
776
777static inline s64
778cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
779{
780	return cfqg->vdisktime - st->min_vdisktime;
781}
782
783static void
784__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
785{
786	struct rb_node **node = &st->rb.rb_node;
787	struct rb_node *parent = NULL;
788	struct cfq_group *__cfqg;
789	s64 key = cfqg_key(st, cfqg);
790	int left = 1;
791
792	while (*node != NULL) {
793		parent = *node;
794		__cfqg = rb_entry_cfqg(parent);
795
796		if (key < cfqg_key(st, __cfqg))
797			node = &parent->rb_left;
798		else {
799			node = &parent->rb_right;
800			left = 0;
801		}
802	}
803
804	if (left)
805		st->left = &cfqg->rb_node;
806
807	rb_link_node(&cfqg->rb_node, parent, node);
808	rb_insert_color(&cfqg->rb_node, &st->rb);
809}
810
811static void
812cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
813{
814	struct cfq_rb_root *st = &cfqd->grp_service_tree;
815	struct cfq_group *__cfqg;
816	struct rb_node *n;
817
818	cfqg->nr_cfqq++;
819	if (cfqg->on_st)
820		return;
821
822	/*
823	 * Currently put the group at the end. Later implement something
824	 * so that groups get lesser vtime based on their weights, so that
825	 * if group does not loose all if it was not continously backlogged.
826	 */
827	n = rb_last(&st->rb);
828	if (n) {
829		__cfqg = rb_entry_cfqg(n);
830		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
831	} else
832		cfqg->vdisktime = st->min_vdisktime;
833
834	__cfq_group_service_tree_add(st, cfqg);
835	cfqg->on_st = true;
836	st->total_weight += cfqg->weight;
837}
838
839static void
840cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
841{
842	struct cfq_rb_root *st = &cfqd->grp_service_tree;
843
844	if (st->active == &cfqg->rb_node)
845		st->active = NULL;
846
847	BUG_ON(cfqg->nr_cfqq < 1);
848	cfqg->nr_cfqq--;
849
850	/* If there are other cfq queues under this group, don't delete it */
851	if (cfqg->nr_cfqq)
852		return;
853
854	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
855	cfqg->on_st = false;
856	st->total_weight -= cfqg->weight;
857	if (!RB_EMPTY_NODE(&cfqg->rb_node))
858		cfq_rb_erase(&cfqg->rb_node, st);
859	cfqg->saved_workload_slice = 0;
860	blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
861}
862
863static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
864{
865	unsigned int slice_used;
866
867	/*
868	 * Queue got expired before even a single request completed or
869	 * got expired immediately after first request completion.
870	 */
871	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
872		/*
873		 * Also charge the seek time incurred to the group, otherwise
874		 * if there are mutiple queues in the group, each can dispatch
875		 * a single request on seeky media and cause lots of seek time
876		 * and group will never know it.
877		 */
878		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
879					1);
880	} else {
881		slice_used = jiffies - cfqq->slice_start;
882		if (slice_used > cfqq->allocated_slice)
883			slice_used = cfqq->allocated_slice;
884	}
885
886	cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
887				cfqq->nr_sectors);
888	return slice_used;
889}
890
891static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
892				struct cfq_queue *cfqq)
893{
894	struct cfq_rb_root *st = &cfqd->grp_service_tree;
895	unsigned int used_sl, charge_sl;
896	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
897			- cfqg->service_tree_idle.count;
898
899	BUG_ON(nr_sync < 0);
900	used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
901
902	if (!cfq_cfqq_sync(cfqq) && !nr_sync)
903		charge_sl = cfqq->allocated_slice;
904
905	/* Can't update vdisktime while group is on service tree */
906	cfq_rb_erase(&cfqg->rb_node, st);
907	cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
908	__cfq_group_service_tree_add(st, cfqg);
909
910	/* This group is being expired. Save the context */
911	if (time_after(cfqd->workload_expires, jiffies)) {
912		cfqg->saved_workload_slice = cfqd->workload_expires
913						- jiffies;
914		cfqg->saved_workload = cfqd->serving_type;
915		cfqg->saved_serving_prio = cfqd->serving_prio;
916	} else
917		cfqg->saved_workload_slice = 0;
918
919	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
920					st->min_vdisktime);
921	blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
922						cfqq->nr_sectors);
923}
924
925#ifdef CONFIG_CFQ_GROUP_IOSCHED
926static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
927{
928	if (blkg)
929		return container_of(blkg, struct cfq_group, blkg);
930	return NULL;
931}
932
933void
934cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
935{
936	cfqg_of_blkg(blkg)->weight = weight;
937}
938
939static struct cfq_group *
940cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
941{
942	struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
943	struct cfq_group *cfqg = NULL;
944	void *key = cfqd;
945	int i, j;
946	struct cfq_rb_root *st;
947	struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
948	unsigned int major, minor;
949
950	cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
951	if (cfqg || !create)
952		goto done;
953
954	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
955	if (!cfqg)
956		goto done;
957
958	cfqg->weight = blkcg->weight;
959	for_each_cfqg_st(cfqg, i, j, st)
960		*st = CFQ_RB_ROOT;
961	RB_CLEAR_NODE(&cfqg->rb_node);
962
963	/*
964	 * Take the initial reference that will be released on destroy
965	 * This can be thought of a joint reference by cgroup and
966	 * elevator which will be dropped by either elevator exit
967	 * or cgroup deletion path depending on who is exiting first.
968	 */
969	atomic_set(&cfqg->ref, 1);
970
971	/* Add group onto cgroup list */
972	sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
973	blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
974					MKDEV(major, minor));
975
976	/* Add group on cfqd list */
977	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
978
979done:
980	return cfqg;
981}
982
983/*
984 * Search for the cfq group current task belongs to. If create = 1, then also
985 * create the cfq group if it does not exist. request_queue lock must be held.
986 */
987static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
988{
989	struct cgroup *cgroup;
990	struct cfq_group *cfqg = NULL;
991
992	rcu_read_lock();
993	cgroup = task_cgroup(current, blkio_subsys_id);
994	cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
995	if (!cfqg && create)
996		cfqg = &cfqd->root_group;
997	rcu_read_unlock();
998	return cfqg;
999}
1000
1001static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1002{
1003	/* Currently, all async queues are mapped to root group */
1004	if (!cfq_cfqq_sync(cfqq))
1005		cfqg = &cfqq->cfqd->root_group;
1006
1007	cfqq->cfqg = cfqg;
1008	/* cfqq reference on cfqg */
1009	atomic_inc(&cfqq->cfqg->ref);
1010}
1011
1012static void cfq_put_cfqg(struct cfq_group *cfqg)
1013{
1014	struct cfq_rb_root *st;
1015	int i, j;
1016
1017	BUG_ON(atomic_read(&cfqg->ref) <= 0);
1018	if (!atomic_dec_and_test(&cfqg->ref))
1019		return;
1020	for_each_cfqg_st(cfqg, i, j, st)
1021		BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1022	kfree(cfqg);
1023}
1024
1025static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1026{
1027	/* Something wrong if we are trying to remove same group twice */
1028	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1029
1030	hlist_del_init(&cfqg->cfqd_node);
1031
1032	/*
1033	 * Put the reference taken at the time of creation so that when all
1034	 * queues are gone, group can be destroyed.
1035	 */
1036	cfq_put_cfqg(cfqg);
1037}
1038
1039static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1040{
1041	struct hlist_node *pos, *n;
1042	struct cfq_group *cfqg;
1043
1044	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1045		/*
1046		 * If cgroup removal path got to blk_group first and removed
1047		 * it from cgroup list, then it will take care of destroying
1048		 * cfqg also.
1049		 */
1050		if (!blkiocg_del_blkio_group(&cfqg->blkg))
1051			cfq_destroy_cfqg(cfqd, cfqg);
1052	}
1053}
1054
1055/*
1056 * Blk cgroup controller notification saying that blkio_group object is being
1057 * delinked as associated cgroup object is going away. That also means that
1058 * no new IO will come in this group. So get rid of this group as soon as
1059 * any pending IO in the group is finished.
1060 *
1061 * This function is called under rcu_read_lock(). key is the rcu protected
1062 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1063 * read lock.
1064 *
1065 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1066 * it should not be NULL as even if elevator was exiting, cgroup deltion
1067 * path got to it first.
1068 */
1069void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1070{
1071	unsigned long  flags;
1072	struct cfq_data *cfqd = key;
1073
1074	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1075	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1076	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1077}
1078
1079#else /* GROUP_IOSCHED */
1080static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1081{
1082	return &cfqd->root_group;
1083}
1084static inline void
1085cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1086	cfqq->cfqg = cfqg;
1087}
1088
1089static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1090static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1091
1092#endif /* GROUP_IOSCHED */
1093
1094/*
1095 * The cfqd->service_trees holds all pending cfq_queue's that have
1096 * requests waiting to be processed. It is sorted in the order that
1097 * we will service the queues.
1098 */
1099static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1100				 bool add_front)
1101{
1102	struct rb_node **p, *parent;
1103	struct cfq_queue *__cfqq;
1104	unsigned long rb_key;
1105	struct cfq_rb_root *service_tree;
1106	int left;
1107	int new_cfqq = 1;
1108	int group_changed = 0;
1109
1110#ifdef CONFIG_CFQ_GROUP_IOSCHED
1111	if (!cfqd->cfq_group_isolation
1112	    && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1113	    && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1114		/* Move this cfq to root group */
1115		cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1116		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1117			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1118		cfqq->orig_cfqg = cfqq->cfqg;
1119		cfqq->cfqg = &cfqd->root_group;
1120		atomic_inc(&cfqd->root_group.ref);
1121		group_changed = 1;
1122	} else if (!cfqd->cfq_group_isolation
1123		   && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1124		/* cfqq is sequential now needs to go to its original group */
1125		BUG_ON(cfqq->cfqg != &cfqd->root_group);
1126		if (!RB_EMPTY_NODE(&cfqq->rb_node))
1127			cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1128		cfq_put_cfqg(cfqq->cfqg);
1129		cfqq->cfqg = cfqq->orig_cfqg;
1130		cfqq->orig_cfqg = NULL;
1131		group_changed = 1;
1132		cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1133	}
1134#endif
1135
1136	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1137						cfqq_type(cfqq));
1138	if (cfq_class_idle(cfqq)) {
1139		rb_key = CFQ_IDLE_DELAY;
1140		parent = rb_last(&service_tree->rb);
1141		if (parent && parent != &cfqq->rb_node) {
1142			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1143			rb_key += __cfqq->rb_key;
1144		} else
1145			rb_key += jiffies;
1146	} else if (!add_front) {
1147		/*
1148		 * Get our rb key offset. Subtract any residual slice
1149		 * value carried from last service. A negative resid
1150		 * count indicates slice overrun, and this should position
1151		 * the next service time further away in the tree.
1152		 */
1153		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1154		rb_key -= cfqq->slice_resid;
1155		cfqq->slice_resid = 0;
1156	} else {
1157		rb_key = -HZ;
1158		__cfqq = cfq_rb_first(service_tree);
1159		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1160	}
1161
1162	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1163		new_cfqq = 0;
1164		/*
1165		 * same position, nothing more to do
1166		 */
1167		if (rb_key == cfqq->rb_key &&
1168		    cfqq->service_tree == service_tree)
1169			return;
1170
1171		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1172		cfqq->service_tree = NULL;
1173	}
1174
1175	left = 1;
1176	parent = NULL;
1177	cfqq->service_tree = service_tree;
1178	p = &service_tree->rb.rb_node;
1179	while (*p) {
1180		struct rb_node **n;
1181
1182		parent = *p;
1183		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1184
1185		/*
1186		 * sort by key, that represents service time.
1187		 */
1188		if (time_before(rb_key, __cfqq->rb_key))
1189			n = &(*p)->rb_left;
1190		else {
1191			n = &(*p)->rb_right;
1192			left = 0;
1193		}
1194
1195		p = n;
1196	}
1197
1198	if (left)
1199		service_tree->left = &cfqq->rb_node;
1200
1201	cfqq->rb_key = rb_key;
1202	rb_link_node(&cfqq->rb_node, parent, p);
1203	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1204	service_tree->count++;
1205	if ((add_front || !new_cfqq) && !group_changed)
1206		return;
1207	cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1208}
1209
1210static struct cfq_queue *
1211cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1212		     sector_t sector, struct rb_node **ret_parent,
1213		     struct rb_node ***rb_link)
1214{
1215	struct rb_node **p, *parent;
1216	struct cfq_queue *cfqq = NULL;
1217
1218	parent = NULL;
1219	p = &root->rb_node;
1220	while (*p) {
1221		struct rb_node **n;
1222
1223		parent = *p;
1224		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1225
1226		/*
1227		 * Sort strictly based on sector.  Smallest to the left,
1228		 * largest to the right.
1229		 */
1230		if (sector > blk_rq_pos(cfqq->next_rq))
1231			n = &(*p)->rb_right;
1232		else if (sector < blk_rq_pos(cfqq->next_rq))
1233			n = &(*p)->rb_left;
1234		else
1235			break;
1236		p = n;
1237		cfqq = NULL;
1238	}
1239
1240	*ret_parent = parent;
1241	if (rb_link)
1242		*rb_link = p;
1243	return cfqq;
1244}
1245
1246static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1247{
1248	struct rb_node **p, *parent;
1249	struct cfq_queue *__cfqq;
1250
1251	if (cfqq->p_root) {
1252		rb_erase(&cfqq->p_node, cfqq->p_root);
1253		cfqq->p_root = NULL;
1254	}
1255
1256	if (cfq_class_idle(cfqq))
1257		return;
1258	if (!cfqq->next_rq)
1259		return;
1260
1261	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1262	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1263				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1264	if (!__cfqq) {
1265		rb_link_node(&cfqq->p_node, parent, p);
1266		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1267	} else
1268		cfqq->p_root = NULL;
1269}
1270
1271/*
1272 * Update cfqq's position in the service tree.
1273 */
1274static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1275{
1276	/*
1277	 * Resorting requires the cfqq to be on the RR list already.
1278	 */
1279	if (cfq_cfqq_on_rr(cfqq)) {
1280		cfq_service_tree_add(cfqd, cfqq, 0);
1281		cfq_prio_tree_add(cfqd, cfqq);
1282	}
1283}
1284
1285/*
1286 * add to busy list of queues for service, trying to be fair in ordering
1287 * the pending list according to last request service
1288 */
1289static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1290{
1291	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1292	BUG_ON(cfq_cfqq_on_rr(cfqq));
1293	cfq_mark_cfqq_on_rr(cfqq);
1294	cfqd->busy_queues++;
1295
1296	cfq_resort_rr_list(cfqd, cfqq);
1297}
1298
1299/*
1300 * Called when the cfqq no longer has requests pending, remove it from
1301 * the service tree.
1302 */
1303static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1304{
1305	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1306	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1307	cfq_clear_cfqq_on_rr(cfqq);
1308
1309	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1310		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1311		cfqq->service_tree = NULL;
1312	}
1313	if (cfqq->p_root) {
1314		rb_erase(&cfqq->p_node, cfqq->p_root);
1315		cfqq->p_root = NULL;
1316	}
1317
1318	cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1319	BUG_ON(!cfqd->busy_queues);
1320	cfqd->busy_queues--;
1321}
1322
1323/*
1324 * rb tree support functions
1325 */
1326static void cfq_del_rq_rb(struct request *rq)
1327{
1328	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1329	const int sync = rq_is_sync(rq);
1330
1331	BUG_ON(!cfqq->queued[sync]);
1332	cfqq->queued[sync]--;
1333
1334	elv_rb_del(&cfqq->sort_list, rq);
1335
1336	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1337		/*
1338		 * Queue will be deleted from service tree when we actually
1339		 * expire it later. Right now just remove it from prio tree
1340		 * as it is empty.
1341		 */
1342		if (cfqq->p_root) {
1343			rb_erase(&cfqq->p_node, cfqq->p_root);
1344			cfqq->p_root = NULL;
1345		}
1346	}
1347}
1348
1349static void cfq_add_rq_rb(struct request *rq)
1350{
1351	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1352	struct cfq_data *cfqd = cfqq->cfqd;
1353	struct request *__alias, *prev;
1354
1355	cfqq->queued[rq_is_sync(rq)]++;
1356
1357	/*
1358	 * looks a little odd, but the first insert might return an alias.
1359	 * if that happens, put the alias on the dispatch list
1360	 */
1361	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1362		cfq_dispatch_insert(cfqd->queue, __alias);
1363
1364	if (!cfq_cfqq_on_rr(cfqq))
1365		cfq_add_cfqq_rr(cfqd, cfqq);
1366
1367	/*
1368	 * check if this request is a better next-serve candidate
1369	 */
1370	prev = cfqq->next_rq;
1371	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1372
1373	/*
1374	 * adjust priority tree position, if ->next_rq changes
1375	 */
1376	if (prev != cfqq->next_rq)
1377		cfq_prio_tree_add(cfqd, cfqq);
1378
1379	BUG_ON(!cfqq->next_rq);
1380}
1381
1382static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1383{
1384	elv_rb_del(&cfqq->sort_list, rq);
1385	cfqq->queued[rq_is_sync(rq)]--;
1386	cfq_add_rq_rb(rq);
1387}
1388
1389static struct request *
1390cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1391{
1392	struct task_struct *tsk = current;
1393	struct cfq_io_context *cic;
1394	struct cfq_queue *cfqq;
1395
1396	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1397	if (!cic)
1398		return NULL;
1399
1400	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1401	if (cfqq) {
1402		sector_t sector = bio->bi_sector + bio_sectors(bio);
1403
1404		return elv_rb_find(&cfqq->sort_list, sector);
1405	}
1406
1407	return NULL;
1408}
1409
1410static void cfq_activate_request(struct request_queue *q, struct request *rq)
1411{
1412	struct cfq_data *cfqd = q->elevator->elevator_data;
1413
1414	cfqd->rq_in_driver++;
1415	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1416						cfqd->rq_in_driver);
1417
1418	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1419}
1420
1421static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1422{
1423	struct cfq_data *cfqd = q->elevator->elevator_data;
1424
1425	WARN_ON(!cfqd->rq_in_driver);
1426	cfqd->rq_in_driver--;
1427	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1428						cfqd->rq_in_driver);
1429}
1430
1431static void cfq_remove_request(struct request *rq)
1432{
1433	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1434
1435	if (cfqq->next_rq == rq)
1436		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1437
1438	list_del_init(&rq->queuelist);
1439	cfq_del_rq_rb(rq);
1440
1441	cfqq->cfqd->rq_queued--;
1442	if (rq_is_meta(rq)) {
1443		WARN_ON(!cfqq->meta_pending);
1444		cfqq->meta_pending--;
1445	}
1446}
1447
1448static int cfq_merge(struct request_queue *q, struct request **req,
1449		     struct bio *bio)
1450{
1451	struct cfq_data *cfqd = q->elevator->elevator_data;
1452	struct request *__rq;
1453
1454	__rq = cfq_find_rq_fmerge(cfqd, bio);
1455	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1456		*req = __rq;
1457		return ELEVATOR_FRONT_MERGE;
1458	}
1459
1460	return ELEVATOR_NO_MERGE;
1461}
1462
1463static void cfq_merged_request(struct request_queue *q, struct request *req,
1464			       int type)
1465{
1466	if (type == ELEVATOR_FRONT_MERGE) {
1467		struct cfq_queue *cfqq = RQ_CFQQ(req);
1468
1469		cfq_reposition_rq_rb(cfqq, req);
1470	}
1471}
1472
1473static void
1474cfq_merged_requests(struct request_queue *q, struct request *rq,
1475		    struct request *next)
1476{
1477	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1478	/*
1479	 * reposition in fifo if next is older than rq
1480	 */
1481	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1482	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1483		list_move(&rq->queuelist, &next->queuelist);
1484		rq_set_fifo_time(rq, rq_fifo_time(next));
1485	}
1486
1487	if (cfqq->next_rq == next)
1488		cfqq->next_rq = rq;
1489	cfq_remove_request(next);
1490}
1491
1492static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1493			   struct bio *bio)
1494{
1495	struct cfq_data *cfqd = q->elevator->elevator_data;
1496	struct cfq_io_context *cic;
1497	struct cfq_queue *cfqq;
1498
1499	/*
1500	 * Disallow merge of a sync bio into an async request.
1501	 */
1502	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1503		return false;
1504
1505	/*
1506	 * Lookup the cfqq that this bio will be queued with. Allow
1507	 * merge only if rq is queued there.
1508	 */
1509	cic = cfq_cic_lookup(cfqd, current->io_context);
1510	if (!cic)
1511		return false;
1512
1513	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1514	return cfqq == RQ_CFQQ(rq);
1515}
1516
1517static void __cfq_set_active_queue(struct cfq_data *cfqd,
1518				   struct cfq_queue *cfqq)
1519{
1520	if (cfqq) {
1521		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1522				cfqd->serving_prio, cfqd->serving_type);
1523		cfqq->slice_start = 0;
1524		cfqq->dispatch_start = jiffies;
1525		cfqq->allocated_slice = 0;
1526		cfqq->slice_end = 0;
1527		cfqq->slice_dispatch = 0;
1528		cfqq->nr_sectors = 0;
1529
1530		cfq_clear_cfqq_wait_request(cfqq);
1531		cfq_clear_cfqq_must_dispatch(cfqq);
1532		cfq_clear_cfqq_must_alloc_slice(cfqq);
1533		cfq_clear_cfqq_fifo_expire(cfqq);
1534		cfq_mark_cfqq_slice_new(cfqq);
1535
1536		del_timer(&cfqd->idle_slice_timer);
1537	}
1538
1539	cfqd->active_queue = cfqq;
1540}
1541
1542/*
1543 * current cfqq expired its slice (or was too idle), select new one
1544 */
1545static void
1546__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547		    bool timed_out)
1548{
1549	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1550
1551	if (cfq_cfqq_wait_request(cfqq))
1552		del_timer(&cfqd->idle_slice_timer);
1553
1554	cfq_clear_cfqq_wait_request(cfqq);
1555	cfq_clear_cfqq_wait_busy(cfqq);
1556
1557	/*
1558	 * If this cfqq is shared between multiple processes, check to
1559	 * make sure that those processes are still issuing I/Os within
1560	 * the mean seek distance.  If not, it may be time to break the
1561	 * queues apart again.
1562	 */
1563	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1564		cfq_mark_cfqq_split_coop(cfqq);
1565
1566	/*
1567	 * store what was left of this slice, if the queue idled/timed out
1568	 */
1569	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1570		cfqq->slice_resid = cfqq->slice_end - jiffies;
1571		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1572	}
1573
1574	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1575
1576	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1577		cfq_del_cfqq_rr(cfqd, cfqq);
1578
1579	cfq_resort_rr_list(cfqd, cfqq);
1580
1581	if (cfqq == cfqd->active_queue)
1582		cfqd->active_queue = NULL;
1583
1584	if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1585		cfqd->grp_service_tree.active = NULL;
1586
1587	if (cfqd->active_cic) {
1588		put_io_context(cfqd->active_cic->ioc);
1589		cfqd->active_cic = NULL;
1590	}
1591}
1592
1593static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1594{
1595	struct cfq_queue *cfqq = cfqd->active_queue;
1596
1597	if (cfqq)
1598		__cfq_slice_expired(cfqd, cfqq, timed_out);
1599}
1600
1601/*
1602 * Get next queue for service. Unless we have a queue preemption,
1603 * we'll simply select the first cfqq in the service tree.
1604 */
1605static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1606{
1607	struct cfq_rb_root *service_tree =
1608		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1609					cfqd->serving_type);
1610
1611	if (!cfqd->rq_queued)
1612		return NULL;
1613
1614	/* There is nothing to dispatch */
1615	if (!service_tree)
1616		return NULL;
1617	if (RB_EMPTY_ROOT(&service_tree->rb))
1618		return NULL;
1619	return cfq_rb_first(service_tree);
1620}
1621
1622static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1623{
1624	struct cfq_group *cfqg;
1625	struct cfq_queue *cfqq;
1626	int i, j;
1627	struct cfq_rb_root *st;
1628
1629	if (!cfqd->rq_queued)
1630		return NULL;
1631
1632	cfqg = cfq_get_next_cfqg(cfqd);
1633	if (!cfqg)
1634		return NULL;
1635
1636	for_each_cfqg_st(cfqg, i, j, st)
1637		if ((cfqq = cfq_rb_first(st)) != NULL)
1638			return cfqq;
1639	return NULL;
1640}
1641
1642/*
1643 * Get and set a new active queue for service.
1644 */
1645static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1646					      struct cfq_queue *cfqq)
1647{
1648	if (!cfqq)
1649		cfqq = cfq_get_next_queue(cfqd);
1650
1651	__cfq_set_active_queue(cfqd, cfqq);
1652	return cfqq;
1653}
1654
1655static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1656					  struct request *rq)
1657{
1658	if (blk_rq_pos(rq) >= cfqd->last_position)
1659		return blk_rq_pos(rq) - cfqd->last_position;
1660	else
1661		return cfqd->last_position - blk_rq_pos(rq);
1662}
1663
1664static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1665			       struct request *rq)
1666{
1667	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1668}
1669
1670static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1671				    struct cfq_queue *cur_cfqq)
1672{
1673	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1674	struct rb_node *parent, *node;
1675	struct cfq_queue *__cfqq;
1676	sector_t sector = cfqd->last_position;
1677
1678	if (RB_EMPTY_ROOT(root))
1679		return NULL;
1680
1681	/*
1682	 * First, if we find a request starting at the end of the last
1683	 * request, choose it.
1684	 */
1685	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1686	if (__cfqq)
1687		return __cfqq;
1688
1689	/*
1690	 * If the exact sector wasn't found, the parent of the NULL leaf
1691	 * will contain the closest sector.
1692	 */
1693	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1694	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1695		return __cfqq;
1696
1697	if (blk_rq_pos(__cfqq->next_rq) < sector)
1698		node = rb_next(&__cfqq->p_node);
1699	else
1700		node = rb_prev(&__cfqq->p_node);
1701	if (!node)
1702		return NULL;
1703
1704	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1705	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1706		return __cfqq;
1707
1708	return NULL;
1709}
1710
1711/*
1712 * cfqd - obvious
1713 * cur_cfqq - passed in so that we don't decide that the current queue is
1714 * 	      closely cooperating with itself.
1715 *
1716 * So, basically we're assuming that that cur_cfqq has dispatched at least
1717 * one request, and that cfqd->last_position reflects a position on the disk
1718 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1719 * assumption.
1720 */
1721static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1722					      struct cfq_queue *cur_cfqq)
1723{
1724	struct cfq_queue *cfqq;
1725
1726	if (!cfq_cfqq_sync(cur_cfqq))
1727		return NULL;
1728	if (CFQQ_SEEKY(cur_cfqq))
1729		return NULL;
1730
1731	/*
1732	 * Don't search priority tree if it's the only queue in the group.
1733	 */
1734	if (cur_cfqq->cfqg->nr_cfqq == 1)
1735		return NULL;
1736
1737	/*
1738	 * We should notice if some of the queues are cooperating, eg
1739	 * working closely on the same area of the disk. In that case,
1740	 * we can group them together and don't waste time idling.
1741	 */
1742	cfqq = cfqq_close(cfqd, cur_cfqq);
1743	if (!cfqq)
1744		return NULL;
1745
1746	/* If new queue belongs to different cfq_group, don't choose it */
1747	if (cur_cfqq->cfqg != cfqq->cfqg)
1748		return NULL;
1749
1750	/*
1751	 * It only makes sense to merge sync queues.
1752	 */
1753	if (!cfq_cfqq_sync(cfqq))
1754		return NULL;
1755	if (CFQQ_SEEKY(cfqq))
1756		return NULL;
1757
1758	/*
1759	 * Do not merge queues of different priority classes
1760	 */
1761	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1762		return NULL;
1763
1764	return cfqq;
1765}
1766
1767/*
1768 * Determine whether we should enforce idle window for this queue.
1769 */
1770
1771static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1772{
1773	enum wl_prio_t prio = cfqq_prio(cfqq);
1774	struct cfq_rb_root *service_tree = cfqq->service_tree;
1775
1776	BUG_ON(!service_tree);
1777	BUG_ON(!service_tree->count);
1778
1779	/* We never do for idle class queues. */
1780	if (prio == IDLE_WORKLOAD)
1781		return false;
1782
1783	/* We do for queues that were marked with idle window flag. */
1784	if (cfq_cfqq_idle_window(cfqq) &&
1785	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1786		return true;
1787
1788	/*
1789	 * Otherwise, we do only if they are the last ones
1790	 * in their service tree.
1791	 */
1792	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
1793		return 1;
1794	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1795			service_tree->count);
1796	return 0;
1797}
1798
1799static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1800{
1801	struct cfq_queue *cfqq = cfqd->active_queue;
1802	struct cfq_io_context *cic;
1803	unsigned long sl;
1804
1805	/*
1806	 * SSD device without seek penalty, disable idling. But only do so
1807	 * for devices that support queuing, otherwise we still have a problem
1808	 * with sync vs async workloads.
1809	 */
1810	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1811		return;
1812
1813	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1814	WARN_ON(cfq_cfqq_slice_new(cfqq));
1815
1816	/*
1817	 * idle is disabled, either manually or by past process history
1818	 */
1819	if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1820		return;
1821
1822	/*
1823	 * still active requests from this queue, don't idle
1824	 */
1825	if (cfqq->dispatched)
1826		return;
1827
1828	/*
1829	 * task has exited, don't wait
1830	 */
1831	cic = cfqd->active_cic;
1832	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1833		return;
1834
1835	/*
1836	 * If our average think time is larger than the remaining time
1837	 * slice, then don't idle. This avoids overrunning the allotted
1838	 * time slice.
1839	 */
1840	if (sample_valid(cic->ttime_samples) &&
1841	    (cfqq->slice_end - jiffies < cic->ttime_mean)) {
1842		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%d",
1843				cic->ttime_mean);
1844		return;
1845	}
1846
1847	cfq_mark_cfqq_wait_request(cfqq);
1848
1849	sl = cfqd->cfq_slice_idle;
1850
1851	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1852	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1853}
1854
1855/*
1856 * Move request from internal lists to the request queue dispatch list.
1857 */
1858static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1859{
1860	struct cfq_data *cfqd = q->elevator->elevator_data;
1861	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1862
1863	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1864
1865	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1866	cfq_remove_request(rq);
1867	cfqq->dispatched++;
1868	elv_dispatch_sort(q, rq);
1869
1870	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
1871	cfqq->nr_sectors += blk_rq_sectors(rq);
1872}
1873
1874/*
1875 * return expired entry, or NULL to just start from scratch in rbtree
1876 */
1877static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1878{
1879	struct request *rq = NULL;
1880
1881	if (cfq_cfqq_fifo_expire(cfqq))
1882		return NULL;
1883
1884	cfq_mark_cfqq_fifo_expire(cfqq);
1885
1886	if (list_empty(&cfqq->fifo))
1887		return NULL;
1888
1889	rq = rq_entry_fifo(cfqq->fifo.next);
1890	if (time_before(jiffies, rq_fifo_time(rq)))
1891		rq = NULL;
1892
1893	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1894	return rq;
1895}
1896
1897static inline int
1898cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1899{
1900	const int base_rq = cfqd->cfq_slice_async_rq;
1901
1902	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1903
1904	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1905}
1906
1907/*
1908 * Must be called with the queue_lock held.
1909 */
1910static int cfqq_process_refs(struct cfq_queue *cfqq)
1911{
1912	int process_refs, io_refs;
1913
1914	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1915	process_refs = atomic_read(&cfqq->ref) - io_refs;
1916	BUG_ON(process_refs < 0);
1917	return process_refs;
1918}
1919
1920static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1921{
1922	int process_refs, new_process_refs;
1923	struct cfq_queue *__cfqq;
1924
1925	/* Avoid a circular list and skip interim queue merges */
1926	while ((__cfqq = new_cfqq->new_cfqq)) {
1927		if (__cfqq == cfqq)
1928			return;
1929		new_cfqq = __cfqq;
1930	}
1931
1932	process_refs = cfqq_process_refs(cfqq);
1933	/*
1934	 * If the process for the cfqq has gone away, there is no
1935	 * sense in merging the queues.
1936	 */
1937	if (process_refs == 0)
1938		return;
1939
1940	/*
1941	 * Merge in the direction of the lesser amount of work.
1942	 */
1943	new_process_refs = cfqq_process_refs(new_cfqq);
1944	if (new_process_refs >= process_refs) {
1945		cfqq->new_cfqq = new_cfqq;
1946		atomic_add(process_refs, &new_cfqq->ref);
1947	} else {
1948		new_cfqq->new_cfqq = cfqq;
1949		atomic_add(new_process_refs, &cfqq->ref);
1950	}
1951}
1952
1953static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1954				struct cfq_group *cfqg, enum wl_prio_t prio)
1955{
1956	struct cfq_queue *queue;
1957	int i;
1958	bool key_valid = false;
1959	unsigned long lowest_key = 0;
1960	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1961
1962	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
1963		/* select the one with lowest rb_key */
1964		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
1965		if (queue &&
1966		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
1967			lowest_key = queue->rb_key;
1968			cur_best = i;
1969			key_valid = true;
1970		}
1971	}
1972
1973	return cur_best;
1974}
1975
1976static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1977{
1978	unsigned slice;
1979	unsigned count;
1980	struct cfq_rb_root *st;
1981	unsigned group_slice;
1982
1983	if (!cfqg) {
1984		cfqd->serving_prio = IDLE_WORKLOAD;
1985		cfqd->workload_expires = jiffies + 1;
1986		return;
1987	}
1988
1989	/* Choose next priority. RT > BE > IDLE */
1990	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1991		cfqd->serving_prio = RT_WORKLOAD;
1992	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1993		cfqd->serving_prio = BE_WORKLOAD;
1994	else {
1995		cfqd->serving_prio = IDLE_WORKLOAD;
1996		cfqd->workload_expires = jiffies + 1;
1997		return;
1998	}
1999
2000	/*
2001	 * For RT and BE, we have to choose also the type
2002	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2003	 * expiration time
2004	 */
2005	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2006	count = st->count;
2007
2008	/*
2009	 * check workload expiration, and that we still have other queues ready
2010	 */
2011	if (count && !time_after(jiffies, cfqd->workload_expires))
2012		return;
2013
2014	/* otherwise select new workload type */
2015	cfqd->serving_type =
2016		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2017	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2018	count = st->count;
2019
2020	/*
2021	 * the workload slice is computed as a fraction of target latency
2022	 * proportional to the number of queues in that workload, over
2023	 * all the queues in the same priority class
2024	 */
2025	group_slice = cfq_group_slice(cfqd, cfqg);
2026
2027	slice = group_slice * count /
2028		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2029		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2030
2031	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2032		unsigned int tmp;
2033
2034		/*
2035		 * Async queues are currently system wide. Just taking
2036		 * proportion of queues with-in same group will lead to higher
2037		 * async ratio system wide as generally root group is going
2038		 * to have higher weight. A more accurate thing would be to
2039		 * calculate system wide asnc/sync ratio.
2040		 */
2041		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2042		tmp = tmp/cfqd->busy_queues;
2043		slice = min_t(unsigned, slice, tmp);
2044
2045		/* async workload slice is scaled down according to
2046		 * the sync/async slice ratio. */
2047		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2048	} else
2049		/* sync workload slice is at least 2 * cfq_slice_idle */
2050		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2051
2052	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2053	cfq_log(cfqd, "workload slice:%d", slice);
2054	cfqd->workload_expires = jiffies + slice;
2055	cfqd->noidle_tree_requires_idle = false;
2056}
2057
2058static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2059{
2060	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2061	struct cfq_group *cfqg;
2062
2063	if (RB_EMPTY_ROOT(&st->rb))
2064		return NULL;
2065	cfqg = cfq_rb_first_group(st);
2066	st->active = &cfqg->rb_node;
2067	update_min_vdisktime(st);
2068	return cfqg;
2069}
2070
2071static void cfq_choose_cfqg(struct cfq_data *cfqd)
2072{
2073	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2074
2075	cfqd->serving_group = cfqg;
2076
2077	/* Restore the workload type data */
2078	if (cfqg->saved_workload_slice) {
2079		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2080		cfqd->serving_type = cfqg->saved_workload;
2081		cfqd->serving_prio = cfqg->saved_serving_prio;
2082	} else
2083		cfqd->workload_expires = jiffies - 1;
2084
2085	choose_service_tree(cfqd, cfqg);
2086}
2087
2088/*
2089 * Select a queue for service. If we have a current active queue,
2090 * check whether to continue servicing it, or retrieve and set a new one.
2091 */
2092static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2093{
2094	struct cfq_queue *cfqq, *new_cfqq = NULL;
2095
2096	cfqq = cfqd->active_queue;
2097	if (!cfqq)
2098		goto new_queue;
2099
2100	if (!cfqd->rq_queued)
2101		return NULL;
2102
2103	/*
2104	 * We were waiting for group to get backlogged. Expire the queue
2105	 */
2106	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2107		goto expire;
2108
2109	/*
2110	 * The active queue has run out of time, expire it and select new.
2111	 */
2112	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2113		/*
2114		 * If slice had not expired at the completion of last request
2115		 * we might not have turned on wait_busy flag. Don't expire
2116		 * the queue yet. Allow the group to get backlogged.
2117		 *
2118		 * The very fact that we have used the slice, that means we
2119		 * have been idling all along on this queue and it should be
2120		 * ok to wait for this request to complete.
2121		 */
2122		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2123		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2124			cfqq = NULL;
2125			goto keep_queue;
2126		} else
2127			goto expire;
2128	}
2129
2130	/*
2131	 * The active queue has requests and isn't expired, allow it to
2132	 * dispatch.
2133	 */
2134	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2135		goto keep_queue;
2136
2137	/*
2138	 * If another queue has a request waiting within our mean seek
2139	 * distance, let it run.  The expire code will check for close
2140	 * cooperators and put the close queue at the front of the service
2141	 * tree.  If possible, merge the expiring queue with the new cfqq.
2142	 */
2143	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2144	if (new_cfqq) {
2145		if (!cfqq->new_cfqq)
2146			cfq_setup_merge(cfqq, new_cfqq);
2147		goto expire;
2148	}
2149
2150	/*
2151	 * No requests pending. If the active queue still has requests in
2152	 * flight or is idling for a new request, allow either of these
2153	 * conditions to happen (or time out) before selecting a new queue.
2154	 */
2155	if (timer_pending(&cfqd->idle_slice_timer) ||
2156	    (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2157		cfqq = NULL;
2158		goto keep_queue;
2159	}
2160
2161expire:
2162	cfq_slice_expired(cfqd, 0);
2163new_queue:
2164	/*
2165	 * Current queue expired. Check if we have to switch to a new
2166	 * service tree
2167	 */
2168	if (!new_cfqq)
2169		cfq_choose_cfqg(cfqd);
2170
2171	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2172keep_queue:
2173	return cfqq;
2174}
2175
2176static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2177{
2178	int dispatched = 0;
2179
2180	while (cfqq->next_rq) {
2181		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2182		dispatched++;
2183	}
2184
2185	BUG_ON(!list_empty(&cfqq->fifo));
2186
2187	/* By default cfqq is not expired if it is empty. Do it explicitly */
2188	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2189	return dispatched;
2190}
2191
2192/*
2193 * Drain our current requests. Used for barriers and when switching
2194 * io schedulers on-the-fly.
2195 */
2196static int cfq_forced_dispatch(struct cfq_data *cfqd)
2197{
2198	struct cfq_queue *cfqq;
2199	int dispatched = 0;
2200
2201	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2202		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2203
2204	cfq_slice_expired(cfqd, 0);
2205	BUG_ON(cfqd->busy_queues);
2206
2207	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2208	return dispatched;
2209}
2210
2211static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2212	struct cfq_queue *cfqq)
2213{
2214	/* the queue hasn't finished any request, can't estimate */
2215	if (cfq_cfqq_slice_new(cfqq))
2216		return 1;
2217	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2218		cfqq->slice_end))
2219		return 1;
2220
2221	return 0;
2222}
2223
2224static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2225{
2226	unsigned int max_dispatch;
2227
2228	/*
2229	 * Drain async requests before we start sync IO
2230	 */
2231	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2232		return false;
2233
2234	/*
2235	 * If this is an async queue and we have sync IO in flight, let it wait
2236	 */
2237	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2238		return false;
2239
2240	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2241	if (cfq_class_idle(cfqq))
2242		max_dispatch = 1;
2243
2244	/*
2245	 * Does this cfqq already have too much IO in flight?
2246	 */
2247	if (cfqq->dispatched >= max_dispatch) {
2248		/*
2249		 * idle queue must always only have a single IO in flight
2250		 */
2251		if (cfq_class_idle(cfqq))
2252			return false;
2253
2254		/*
2255		 * We have other queues, don't allow more IO from this one
2256		 */
2257		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq))
2258			return false;
2259
2260		/*
2261		 * Sole queue user, no limit
2262		 */
2263		if (cfqd->busy_queues == 1)
2264			max_dispatch = -1;
2265		else
2266			/*
2267			 * Normally we start throttling cfqq when cfq_quantum/2
2268			 * requests have been dispatched. But we can drive
2269			 * deeper queue depths at the beginning of slice
2270			 * subjected to upper limit of cfq_quantum.
2271			 * */
2272			max_dispatch = cfqd->cfq_quantum;
2273	}
2274
2275	/*
2276	 * Async queues must wait a bit before being allowed dispatch.
2277	 * We also ramp up the dispatch depth gradually for async IO,
2278	 * based on the last sync IO we serviced
2279	 */
2280	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2281		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2282		unsigned int depth;
2283
2284		depth = last_sync / cfqd->cfq_slice[1];
2285		if (!depth && !cfqq->dispatched)
2286			depth = 1;
2287		if (depth < max_dispatch)
2288			max_dispatch = depth;
2289	}
2290
2291	/*
2292	 * If we're below the current max, allow a dispatch
2293	 */
2294	return cfqq->dispatched < max_dispatch;
2295}
2296
2297/*
2298 * Dispatch a request from cfqq, moving them to the request queue
2299 * dispatch list.
2300 */
2301static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2302{
2303	struct request *rq;
2304
2305	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2306
2307	if (!cfq_may_dispatch(cfqd, cfqq))
2308		return false;
2309
2310	/*
2311	 * follow expired path, else get first next available
2312	 */
2313	rq = cfq_check_fifo(cfqq);
2314	if (!rq)
2315		rq = cfqq->next_rq;
2316
2317	/*
2318	 * insert request into driver dispatch list
2319	 */
2320	cfq_dispatch_insert(cfqd->queue, rq);
2321
2322	if (!cfqd->active_cic) {
2323		struct cfq_io_context *cic = RQ_CIC(rq);
2324
2325		atomic_long_inc(&cic->ioc->refcount);
2326		cfqd->active_cic = cic;
2327	}
2328
2329	return true;
2330}
2331
2332/*
2333 * Find the cfqq that we need to service and move a request from that to the
2334 * dispatch list
2335 */
2336static int cfq_dispatch_requests(struct request_queue *q, int force)
2337{
2338	struct cfq_data *cfqd = q->elevator->elevator_data;
2339	struct cfq_queue *cfqq;
2340
2341	if (!cfqd->busy_queues)
2342		return 0;
2343
2344	if (unlikely(force))
2345		return cfq_forced_dispatch(cfqd);
2346
2347	cfqq = cfq_select_queue(cfqd);
2348	if (!cfqq)
2349		return 0;
2350
2351	/*
2352	 * Dispatch a request from this cfqq, if it is allowed
2353	 */
2354	if (!cfq_dispatch_request(cfqd, cfqq))
2355		return 0;
2356
2357	cfqq->slice_dispatch++;
2358	cfq_clear_cfqq_must_dispatch(cfqq);
2359
2360	/*
2361	 * expire an async queue immediately if it has used up its slice. idle
2362	 * queue always expire after 1 dispatch round.
2363	 */
2364	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2365	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2366	    cfq_class_idle(cfqq))) {
2367		cfqq->slice_end = jiffies + 1;
2368		cfq_slice_expired(cfqd, 0);
2369	}
2370
2371	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2372	return 1;
2373}
2374
2375/*
2376 * task holds one reference to the queue, dropped when task exits. each rq
2377 * in-flight on this queue also holds a reference, dropped when rq is freed.
2378 *
2379 * Each cfq queue took a reference on the parent group. Drop it now.
2380 * queue lock must be held here.
2381 */
2382static void cfq_put_queue(struct cfq_queue *cfqq)
2383{
2384	struct cfq_data *cfqd = cfqq->cfqd;
2385	struct cfq_group *cfqg, *orig_cfqg;
2386
2387	BUG_ON(atomic_read(&cfqq->ref) <= 0);
2388
2389	if (!atomic_dec_and_test(&cfqq->ref))
2390		return;
2391
2392	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2393	BUG_ON(rb_first(&cfqq->sort_list));
2394	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2395	cfqg = cfqq->cfqg;
2396	orig_cfqg = cfqq->orig_cfqg;
2397
2398	if (unlikely(cfqd->active_queue == cfqq)) {
2399		__cfq_slice_expired(cfqd, cfqq, 0);
2400		cfq_schedule_dispatch(cfqd);
2401	}
2402
2403	BUG_ON(cfq_cfqq_on_rr(cfqq));
2404	kmem_cache_free(cfq_pool, cfqq);
2405	cfq_put_cfqg(cfqg);
2406	if (orig_cfqg)
2407		cfq_put_cfqg(orig_cfqg);
2408}
2409
2410/*
2411 * Must always be called with the rcu_read_lock() held
2412 */
2413static void
2414__call_for_each_cic(struct io_context *ioc,
2415		    void (*func)(struct io_context *, struct cfq_io_context *))
2416{
2417	struct cfq_io_context *cic;
2418	struct hlist_node *n;
2419
2420	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2421		func(ioc, cic);
2422}
2423
2424/*
2425 * Call func for each cic attached to this ioc.
2426 */
2427static void
2428call_for_each_cic(struct io_context *ioc,
2429		  void (*func)(struct io_context *, struct cfq_io_context *))
2430{
2431	rcu_read_lock();
2432	__call_for_each_cic(ioc, func);
2433	rcu_read_unlock();
2434}
2435
2436static void cfq_cic_free_rcu(struct rcu_head *head)
2437{
2438	struct cfq_io_context *cic;
2439
2440	cic = container_of(head, struct cfq_io_context, rcu_head);
2441
2442	kmem_cache_free(cfq_ioc_pool, cic);
2443	elv_ioc_count_dec(cfq_ioc_count);
2444
2445	if (ioc_gone) {
2446		/*
2447		 * CFQ scheduler is exiting, grab exit lock and check
2448		 * the pending io context count. If it hits zero,
2449		 * complete ioc_gone and set it back to NULL
2450		 */
2451		spin_lock(&ioc_gone_lock);
2452		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2453			complete(ioc_gone);
2454			ioc_gone = NULL;
2455		}
2456		spin_unlock(&ioc_gone_lock);
2457	}
2458}
2459
2460static void cfq_cic_free(struct cfq_io_context *cic)
2461{
2462	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2463}
2464
2465static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2466{
2467	unsigned long flags;
2468
2469	BUG_ON(!cic->dead_key);
2470
2471	spin_lock_irqsave(&ioc->lock, flags);
2472	radix_tree_delete(&ioc->radix_root, cic->dead_key);
2473	hlist_del_rcu(&cic->cic_list);
2474	spin_unlock_irqrestore(&ioc->lock, flags);
2475
2476	cfq_cic_free(cic);
2477}
2478
2479/*
2480 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2481 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2482 * and ->trim() which is called with the task lock held
2483 */
2484static void cfq_free_io_context(struct io_context *ioc)
2485{
2486	/*
2487	 * ioc->refcount is zero here, or we are called from elv_unregister(),
2488	 * so no more cic's are allowed to be linked into this ioc.  So it
2489	 * should be ok to iterate over the known list, we will see all cic's
2490	 * since no new ones are added.
2491	 */
2492	__call_for_each_cic(ioc, cic_free_func);
2493}
2494
2495static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2496{
2497	struct cfq_queue *__cfqq, *next;
2498
2499	if (unlikely(cfqq == cfqd->active_queue)) {
2500		__cfq_slice_expired(cfqd, cfqq, 0);
2501		cfq_schedule_dispatch(cfqd);
2502	}
2503
2504	/*
2505	 * If this queue was scheduled to merge with another queue, be
2506	 * sure to drop the reference taken on that queue (and others in
2507	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2508	 */
2509	__cfqq = cfqq->new_cfqq;
2510	while (__cfqq) {
2511		if (__cfqq == cfqq) {
2512			WARN(1, "cfqq->new_cfqq loop detected\n");
2513			break;
2514		}
2515		next = __cfqq->new_cfqq;
2516		cfq_put_queue(__cfqq);
2517		__cfqq = next;
2518	}
2519
2520	cfq_put_queue(cfqq);
2521}
2522
2523static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2524					 struct cfq_io_context *cic)
2525{
2526	struct io_context *ioc = cic->ioc;
2527
2528	list_del_init(&cic->queue_list);
2529
2530	/*
2531	 * Make sure key == NULL is seen for dead queues
2532	 */
2533	smp_wmb();
2534	cic->dead_key = (unsigned long) cic->key;
2535	cic->key = NULL;
2536
2537	if (ioc->ioc_data == cic)
2538		rcu_assign_pointer(ioc->ioc_data, NULL);
2539
2540	if (cic->cfqq[BLK_RW_ASYNC]) {
2541		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2542		cic->cfqq[BLK_RW_ASYNC] = NULL;
2543	}
2544
2545	if (cic->cfqq[BLK_RW_SYNC]) {
2546		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2547		cic->cfqq[BLK_RW_SYNC] = NULL;
2548	}
2549}
2550
2551static void cfq_exit_single_io_context(struct io_context *ioc,
2552				       struct cfq_io_context *cic)
2553{
2554	struct cfq_data *cfqd = cic->key;
2555
2556	if (cfqd) {
2557		struct request_queue *q = cfqd->queue;
2558		unsigned long flags;
2559
2560		spin_lock_irqsave(q->queue_lock, flags);
2561
2562		/*
2563		 * Ensure we get a fresh copy of the ->key to prevent
2564		 * race between exiting task and queue
2565		 */
2566		smp_read_barrier_depends();
2567		if (cic->key)
2568			__cfq_exit_single_io_context(cfqd, cic);
2569
2570		spin_unlock_irqrestore(q->queue_lock, flags);
2571	}
2572}
2573
2574/*
2575 * The process that ioc belongs to has exited, we need to clean up
2576 * and put the internal structures we have that belongs to that process.
2577 */
2578static void cfq_exit_io_context(struct io_context *ioc)
2579{
2580	call_for_each_cic(ioc, cfq_exit_single_io_context);
2581}
2582
2583static struct cfq_io_context *
2584cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2585{
2586	struct cfq_io_context *cic;
2587
2588	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2589							cfqd->queue->node);
2590	if (cic) {
2591		cic->last_end_request = jiffies;
2592		INIT_LIST_HEAD(&cic->queue_list);
2593		INIT_HLIST_NODE(&cic->cic_list);
2594		cic->dtor = cfq_free_io_context;
2595		cic->exit = cfq_exit_io_context;
2596		elv_ioc_count_inc(cfq_ioc_count);
2597	}
2598
2599	return cic;
2600}
2601
2602static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2603{
2604	struct task_struct *tsk = current;
2605	int ioprio_class;
2606
2607	if (!cfq_cfqq_prio_changed(cfqq))
2608		return;
2609
2610	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2611	switch (ioprio_class) {
2612	default:
2613		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2614	case IOPRIO_CLASS_NONE:
2615		/*
2616		 * no prio set, inherit CPU scheduling settings
2617		 */
2618		cfqq->ioprio = task_nice_ioprio(tsk);
2619		cfqq->ioprio_class = task_nice_ioclass(tsk);
2620		break;
2621	case IOPRIO_CLASS_RT:
2622		cfqq->ioprio = task_ioprio(ioc);
2623		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2624		break;
2625	case IOPRIO_CLASS_BE:
2626		cfqq->ioprio = task_ioprio(ioc);
2627		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2628		break;
2629	case IOPRIO_CLASS_IDLE:
2630		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2631		cfqq->ioprio = 7;
2632		cfq_clear_cfqq_idle_window(cfqq);
2633		break;
2634	}
2635
2636	/*
2637	 * keep track of original prio settings in case we have to temporarily
2638	 * elevate the priority of this queue
2639	 */
2640	cfqq->org_ioprio = cfqq->ioprio;
2641	cfqq->org_ioprio_class = cfqq->ioprio_class;
2642	cfq_clear_cfqq_prio_changed(cfqq);
2643}
2644
2645static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2646{
2647	struct cfq_data *cfqd = cic->key;
2648	struct cfq_queue *cfqq;
2649	unsigned long flags;
2650
2651	if (unlikely(!cfqd))
2652		return;
2653
2654	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2655
2656	cfqq = cic->cfqq[BLK_RW_ASYNC];
2657	if (cfqq) {
2658		struct cfq_queue *new_cfqq;
2659		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2660						GFP_ATOMIC);
2661		if (new_cfqq) {
2662			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2663			cfq_put_queue(cfqq);
2664		}
2665	}
2666
2667	cfqq = cic->cfqq[BLK_RW_SYNC];
2668	if (cfqq)
2669		cfq_mark_cfqq_prio_changed(cfqq);
2670
2671	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2672}
2673
2674static void cfq_ioc_set_ioprio(struct io_context *ioc)
2675{
2676	call_for_each_cic(ioc, changed_ioprio);
2677	ioc->ioprio_changed = 0;
2678}
2679
2680static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2681			  pid_t pid, bool is_sync)
2682{
2683	RB_CLEAR_NODE(&cfqq->rb_node);
2684	RB_CLEAR_NODE(&cfqq->p_node);
2685	INIT_LIST_HEAD(&cfqq->fifo);
2686
2687	atomic_set(&cfqq->ref, 0);
2688	cfqq->cfqd = cfqd;
2689
2690	cfq_mark_cfqq_prio_changed(cfqq);
2691
2692	if (is_sync) {
2693		if (!cfq_class_idle(cfqq))
2694			cfq_mark_cfqq_idle_window(cfqq);
2695		cfq_mark_cfqq_sync(cfqq);
2696	}
2697	cfqq->pid = pid;
2698}
2699
2700#ifdef CONFIG_CFQ_GROUP_IOSCHED
2701static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2702{
2703	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2704	struct cfq_data *cfqd = cic->key;
2705	unsigned long flags;
2706	struct request_queue *q;
2707
2708	if (unlikely(!cfqd))
2709		return;
2710
2711	q = cfqd->queue;
2712
2713	spin_lock_irqsave(q->queue_lock, flags);
2714
2715	if (sync_cfqq) {
2716		/*
2717		 * Drop reference to sync queue. A new sync queue will be
2718		 * assigned in new group upon arrival of a fresh request.
2719		 */
2720		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2721		cic_set_cfqq(cic, NULL, 1);
2722		cfq_put_queue(sync_cfqq);
2723	}
2724
2725	spin_unlock_irqrestore(q->queue_lock, flags);
2726}
2727
2728static void cfq_ioc_set_cgroup(struct io_context *ioc)
2729{
2730	call_for_each_cic(ioc, changed_cgroup);
2731	ioc->cgroup_changed = 0;
2732}
2733#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2734
2735static struct cfq_queue *
2736cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2737		     struct io_context *ioc, gfp_t gfp_mask)
2738{
2739	struct cfq_queue *cfqq, *new_cfqq = NULL;
2740	struct cfq_io_context *cic;
2741	struct cfq_group *cfqg;
2742
2743retry:
2744	cfqg = cfq_get_cfqg(cfqd, 1);
2745	cic = cfq_cic_lookup(cfqd, ioc);
2746	/* cic always exists here */
2747	cfqq = cic_to_cfqq(cic, is_sync);
2748
2749	/*
2750	 * Always try a new alloc if we fell back to the OOM cfqq
2751	 * originally, since it should just be a temporary situation.
2752	 */
2753	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2754		cfqq = NULL;
2755		if (new_cfqq) {
2756			cfqq = new_cfqq;
2757			new_cfqq = NULL;
2758		} else if (gfp_mask & __GFP_WAIT) {
2759			spin_unlock_irq(cfqd->queue->queue_lock);
2760			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2761					gfp_mask | __GFP_ZERO,
2762					cfqd->queue->node);
2763			spin_lock_irq(cfqd->queue->queue_lock);
2764			if (new_cfqq)
2765				goto retry;
2766		} else {
2767			cfqq = kmem_cache_alloc_node(cfq_pool,
2768					gfp_mask | __GFP_ZERO,
2769					cfqd->queue->node);
2770		}
2771
2772		if (cfqq) {
2773			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2774			cfq_init_prio_data(cfqq, ioc);
2775			cfq_link_cfqq_cfqg(cfqq, cfqg);
2776			cfq_log_cfqq(cfqd, cfqq, "alloced");
2777		} else
2778			cfqq = &cfqd->oom_cfqq;
2779	}
2780
2781	if (new_cfqq)
2782		kmem_cache_free(cfq_pool, new_cfqq);
2783
2784	return cfqq;
2785}
2786
2787static struct cfq_queue **
2788cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2789{
2790	switch (ioprio_class) {
2791	case IOPRIO_CLASS_RT:
2792		return &cfqd->async_cfqq[0][ioprio];
2793	case IOPRIO_CLASS_BE:
2794		return &cfqd->async_cfqq[1][ioprio];
2795	case IOPRIO_CLASS_IDLE:
2796		return &cfqd->async_idle_cfqq;
2797	default:
2798		BUG();
2799	}
2800}
2801
2802static struct cfq_queue *
2803cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2804	      gfp_t gfp_mask)
2805{
2806	const int ioprio = task_ioprio(ioc);
2807	const int ioprio_class = task_ioprio_class(ioc);
2808	struct cfq_queue **async_cfqq = NULL;
2809	struct cfq_queue *cfqq = NULL;
2810
2811	if (!is_sync) {
2812		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2813		cfqq = *async_cfqq;
2814	}
2815
2816	if (!cfqq)
2817		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2818
2819	/*
2820	 * pin the queue now that it's allocated, scheduler exit will prune it
2821	 */
2822	if (!is_sync && !(*async_cfqq)) {
2823		atomic_inc(&cfqq->ref);
2824		*async_cfqq = cfqq;
2825	}
2826
2827	atomic_inc(&cfqq->ref);
2828	return cfqq;
2829}
2830
2831/*
2832 * We drop cfq io contexts lazily, so we may find a dead one.
2833 */
2834static void
2835cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2836		  struct cfq_io_context *cic)
2837{
2838	unsigned long flags;
2839
2840	WARN_ON(!list_empty(&cic->queue_list));
2841
2842	spin_lock_irqsave(&ioc->lock, flags);
2843
2844	BUG_ON(ioc->ioc_data == cic);
2845
2846	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2847	hlist_del_rcu(&cic->cic_list);
2848	spin_unlock_irqrestore(&ioc->lock, flags);
2849
2850	cfq_cic_free(cic);
2851}
2852
2853static struct cfq_io_context *
2854cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2855{
2856	struct cfq_io_context *cic;
2857	unsigned long flags;
2858	void *k;
2859
2860	if (unlikely(!ioc))
2861		return NULL;
2862
2863	rcu_read_lock();
2864
2865	/*
2866	 * we maintain a last-hit cache, to avoid browsing over the tree
2867	 */
2868	cic = rcu_dereference(ioc->ioc_data);
2869	if (cic && cic->key == cfqd) {
2870		rcu_read_unlock();
2871		return cic;
2872	}
2873
2874	do {
2875		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2876		rcu_read_unlock();
2877		if (!cic)
2878			break;
2879		/* ->key must be copied to avoid race with cfq_exit_queue() */
2880		k = cic->key;
2881		if (unlikely(!k)) {
2882			cfq_drop_dead_cic(cfqd, ioc, cic);
2883			rcu_read_lock();
2884			continue;
2885		}
2886
2887		spin_lock_irqsave(&ioc->lock, flags);
2888		rcu_assign_pointer(ioc->ioc_data, cic);
2889		spin_unlock_irqrestore(&ioc->lock, flags);
2890		break;
2891	} while (1);
2892
2893	return cic;
2894}
2895
2896/*
2897 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2898 * the process specific cfq io context when entered from the block layer.
2899 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2900 */
2901static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2902			struct cfq_io_context *cic, gfp_t gfp_mask)
2903{
2904	unsigned long flags;
2905	int ret;
2906
2907	ret = radix_tree_preload(gfp_mask);
2908	if (!ret) {
2909		cic->ioc = ioc;
2910		cic->key = cfqd;
2911
2912		spin_lock_irqsave(&ioc->lock, flags);
2913		ret = radix_tree_insert(&ioc->radix_root,
2914						(unsigned long) cfqd, cic);
2915		if (!ret)
2916			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2917		spin_unlock_irqrestore(&ioc->lock, flags);
2918
2919		radix_tree_preload_end();
2920
2921		if (!ret) {
2922			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2923			list_add(&cic->queue_list, &cfqd->cic_list);
2924			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2925		}
2926	}
2927
2928	if (ret)
2929		printk(KERN_ERR "cfq: cic link failed!\n");
2930
2931	return ret;
2932}
2933
2934/*
2935 * Setup general io context and cfq io context. There can be several cfq
2936 * io contexts per general io context, if this process is doing io to more
2937 * than one device managed by cfq.
2938 */
2939static struct cfq_io_context *
2940cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2941{
2942	struct io_context *ioc = NULL;
2943	struct cfq_io_context *cic;
2944
2945	might_sleep_if(gfp_mask & __GFP_WAIT);
2946
2947	ioc = get_io_context(gfp_mask, cfqd->queue->node);
2948	if (!ioc)
2949		return NULL;
2950
2951	cic = cfq_cic_lookup(cfqd, ioc);
2952	if (cic)
2953		goto out;
2954
2955	cic = cfq_alloc_io_context(cfqd, gfp_mask);
2956	if (cic == NULL)
2957		goto err;
2958
2959	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2960		goto err_free;
2961
2962out:
2963	smp_read_barrier_depends();
2964	if (unlikely(ioc->ioprio_changed))
2965		cfq_ioc_set_ioprio(ioc);
2966
2967#ifdef CONFIG_CFQ_GROUP_IOSCHED
2968	if (unlikely(ioc->cgroup_changed))
2969		cfq_ioc_set_cgroup(ioc);
2970#endif
2971	return cic;
2972err_free:
2973	cfq_cic_free(cic);
2974err:
2975	put_io_context(ioc);
2976	return NULL;
2977}
2978
2979static void
2980cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2981{
2982	unsigned long elapsed = jiffies - cic->last_end_request;
2983	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2984
2985	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2986	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2987	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2988}
2989
2990static void
2991cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2992		       struct request *rq)
2993{
2994	sector_t sdist = 0;
2995	sector_t n_sec = blk_rq_sectors(rq);
2996	if (cfqq->last_request_pos) {
2997		if (cfqq->last_request_pos < blk_rq_pos(rq))
2998			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2999		else
3000			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3001	}
3002
3003	cfqq->seek_history <<= 1;
3004	if (blk_queue_nonrot(cfqd->queue))
3005		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3006	else
3007		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
3008}
3009
3010/*
3011 * Disable idle window if the process thinks too long or seeks so much that
3012 * it doesn't matter
3013 */
3014static void
3015cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3016		       struct cfq_io_context *cic)
3017{
3018	int old_idle, enable_idle;
3019
3020	/*
3021	 * Don't idle for async or idle io prio class
3022	 */
3023	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3024		return;
3025
3026	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3027
3028	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3029		cfq_mark_cfqq_deep(cfqq);
3030
3031	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3032	    (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
3033		enable_idle = 0;
3034	else if (sample_valid(cic->ttime_samples)) {
3035		if (cic->ttime_mean > cfqd->cfq_slice_idle)
3036			enable_idle = 0;
3037		else
3038			enable_idle = 1;
3039	}
3040
3041	if (old_idle != enable_idle) {
3042		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3043		if (enable_idle)
3044			cfq_mark_cfqq_idle_window(cfqq);
3045		else
3046			cfq_clear_cfqq_idle_window(cfqq);
3047	}
3048}
3049
3050/*
3051 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3052 * no or if we aren't sure, a 1 will cause a preempt.
3053 */
3054static bool
3055cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3056		   struct request *rq)
3057{
3058	struct cfq_queue *cfqq;
3059
3060	cfqq = cfqd->active_queue;
3061	if (!cfqq)
3062		return false;
3063
3064	if (cfq_class_idle(new_cfqq))
3065		return false;
3066
3067	if (cfq_class_idle(cfqq))
3068		return true;
3069
3070	/*
3071	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3072	 */
3073	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3074		return false;
3075
3076	/*
3077	 * if the new request is sync, but the currently running queue is
3078	 * not, let the sync request have priority.
3079	 */
3080	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3081		return true;
3082
3083	if (new_cfqq->cfqg != cfqq->cfqg)
3084		return false;
3085
3086	if (cfq_slice_used(cfqq))
3087		return true;
3088
3089	/* Allow preemption only if we are idling on sync-noidle tree */
3090	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3091	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3092	    new_cfqq->service_tree->count == 2 &&
3093	    RB_EMPTY_ROOT(&cfqq->sort_list))
3094		return true;
3095
3096	/*
3097	 * So both queues are sync. Let the new request get disk time if
3098	 * it's a metadata request and the current queue is doing regular IO.
3099	 */
3100	if (rq_is_meta(rq) && !cfqq->meta_pending)
3101		return true;
3102
3103	/*
3104	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3105	 */
3106	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3107		return true;
3108
3109	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3110		return false;
3111
3112	/*
3113	 * if this request is as-good as one we would expect from the
3114	 * current cfqq, let it preempt
3115	 */
3116	if (cfq_rq_close(cfqd, cfqq, rq))
3117		return true;
3118
3119	return false;
3120}
3121
3122/*
3123 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3124 * let it have half of its nominal slice.
3125 */
3126static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3127{
3128	cfq_log_cfqq(cfqd, cfqq, "preempt");
3129	cfq_slice_expired(cfqd, 1);
3130
3131	/*
3132	 * Put the new queue at the front of the of the current list,
3133	 * so we know that it will be selected next.
3134	 */
3135	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3136
3137	cfq_service_tree_add(cfqd, cfqq, 1);
3138
3139	cfqq->slice_end = 0;
3140	cfq_mark_cfqq_slice_new(cfqq);
3141}
3142
3143/*
3144 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3145 * something we should do about it
3146 */
3147static void
3148cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3149		struct request *rq)
3150{
3151	struct cfq_io_context *cic = RQ_CIC(rq);
3152
3153	cfqd->rq_queued++;
3154	if (rq_is_meta(rq))
3155		cfqq->meta_pending++;
3156
3157	cfq_update_io_thinktime(cfqd, cic);
3158	cfq_update_io_seektime(cfqd, cfqq, rq);
3159	cfq_update_idle_window(cfqd, cfqq, cic);
3160
3161	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3162
3163	if (cfqq == cfqd->active_queue) {
3164		/*
3165		 * Remember that we saw a request from this process, but
3166		 * don't start queuing just yet. Otherwise we risk seeing lots
3167		 * of tiny requests, because we disrupt the normal plugging
3168		 * and merging. If the request is already larger than a single
3169		 * page, let it rip immediately. For that case we assume that
3170		 * merging is already done. Ditto for a busy system that
3171		 * has other work pending, don't risk delaying until the
3172		 * idle timer unplug to continue working.
3173		 */
3174		if (cfq_cfqq_wait_request(cfqq)) {
3175			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3176			    cfqd->busy_queues > 1) {
3177				del_timer(&cfqd->idle_slice_timer);
3178				cfq_clear_cfqq_wait_request(cfqq);
3179				__blk_run_queue(cfqd->queue);
3180			} else
3181				cfq_mark_cfqq_must_dispatch(cfqq);
3182		}
3183	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3184		/*
3185		 * not the active queue - expire current slice if it is
3186		 * idle and has expired it's mean thinktime or this new queue
3187		 * has some old slice time left and is of higher priority or
3188		 * this new queue is RT and the current one is BE
3189		 */
3190		cfq_preempt_queue(cfqd, cfqq);
3191		__blk_run_queue(cfqd->queue);
3192	}
3193}
3194
3195static void cfq_insert_request(struct request_queue *q, struct request *rq)
3196{
3197	struct cfq_data *cfqd = q->elevator->elevator_data;
3198	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3199
3200	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3201	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3202
3203	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3204	list_add_tail(&rq->queuelist, &cfqq->fifo);
3205	cfq_add_rq_rb(rq);
3206
3207	cfq_rq_enqueued(cfqd, cfqq, rq);
3208}
3209
3210/*
3211 * Update hw_tag based on peak queue depth over 50 samples under
3212 * sufficient load.
3213 */
3214static void cfq_update_hw_tag(struct cfq_data *cfqd)
3215{
3216	struct cfq_queue *cfqq = cfqd->active_queue;
3217
3218	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3219		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3220
3221	if (cfqd->hw_tag == 1)
3222		return;
3223
3224	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3225	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3226		return;
3227
3228	/*
3229	 * If active queue hasn't enough requests and can idle, cfq might not
3230	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3231	 * case
3232	 */
3233	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3234	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3235	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3236		return;
3237
3238	if (cfqd->hw_tag_samples++ < 50)
3239		return;
3240
3241	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3242		cfqd->hw_tag = 1;
3243	else
3244		cfqd->hw_tag = 0;
3245}
3246
3247static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3248{
3249	struct cfq_io_context *cic = cfqd->active_cic;
3250
3251	/* If there are other queues in the group, don't wait */
3252	if (cfqq->cfqg->nr_cfqq > 1)
3253		return false;
3254
3255	if (cfq_slice_used(cfqq))
3256		return true;
3257
3258	/* if slice left is less than think time, wait busy */
3259	if (cic && sample_valid(cic->ttime_samples)
3260	    && (cfqq->slice_end - jiffies < cic->ttime_mean))
3261		return true;
3262
3263	/*
3264	 * If think times is less than a jiffy than ttime_mean=0 and above
3265	 * will not be true. It might happen that slice has not expired yet
3266	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3267	 * case where think time is less than a jiffy, mark the queue wait
3268	 * busy if only 1 jiffy is left in the slice.
3269	 */
3270	if (cfqq->slice_end - jiffies == 1)
3271		return true;
3272
3273	return false;
3274}
3275
3276static void cfq_completed_request(struct request_queue *q, struct request *rq)
3277{
3278	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3279	struct cfq_data *cfqd = cfqq->cfqd;
3280	const int sync = rq_is_sync(rq);
3281	unsigned long now;
3282
3283	now = jiffies;
3284	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3285
3286	cfq_update_hw_tag(cfqd);
3287
3288	WARN_ON(!cfqd->rq_in_driver);
3289	WARN_ON(!cfqq->dispatched);
3290	cfqd->rq_in_driver--;
3291	cfqq->dispatched--;
3292
3293	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3294
3295	if (sync) {
3296		RQ_CIC(rq)->last_end_request = now;
3297		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3298			cfqd->last_delayed_sync = now;
3299	}
3300
3301	/*
3302	 * If this is the active queue, check if it needs to be expired,
3303	 * or if we want to idle in case it has no pending requests.
3304	 */
3305	if (cfqd->active_queue == cfqq) {
3306		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3307
3308		if (cfq_cfqq_slice_new(cfqq)) {
3309			cfq_set_prio_slice(cfqd, cfqq);
3310			cfq_clear_cfqq_slice_new(cfqq);
3311		}
3312
3313		/*
3314		 * Should we wait for next request to come in before we expire
3315		 * the queue.
3316		 */
3317		if (cfq_should_wait_busy(cfqd, cfqq)) {
3318			cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3319			cfq_mark_cfqq_wait_busy(cfqq);
3320			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3321		}
3322
3323		/*
3324		 * Idling is not enabled on:
3325		 * - expired queues
3326		 * - idle-priority queues
3327		 * - async queues
3328		 * - queues with still some requests queued
3329		 * - when there is a close cooperator
3330		 */
3331		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3332			cfq_slice_expired(cfqd, 1);
3333		else if (sync && cfqq_empty &&
3334			 !cfq_close_cooperator(cfqd, cfqq)) {
3335			cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3336			/*
3337			 * Idling is enabled for SYNC_WORKLOAD.
3338			 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3339			 * only if we processed at least one !rq_noidle request
3340			 */
3341			if (cfqd->serving_type == SYNC_WORKLOAD
3342			    || cfqd->noidle_tree_requires_idle
3343			    || cfqq->cfqg->nr_cfqq == 1)
3344				cfq_arm_slice_timer(cfqd);
3345		}
3346	}
3347
3348	if (!cfqd->rq_in_driver)
3349		cfq_schedule_dispatch(cfqd);
3350}
3351
3352/*
3353 * we temporarily boost lower priority queues if they are holding fs exclusive
3354 * resources. they are boosted to normal prio (CLASS_BE/4)
3355 */
3356static void cfq_prio_boost(struct cfq_queue *cfqq)
3357{
3358	if (has_fs_excl()) {
3359		/*
3360		 * boost idle prio on transactions that would lock out other
3361		 * users of the filesystem
3362		 */
3363		if (cfq_class_idle(cfqq))
3364			cfqq->ioprio_class = IOPRIO_CLASS_BE;
3365		if (cfqq->ioprio > IOPRIO_NORM)
3366			cfqq->ioprio = IOPRIO_NORM;
3367	} else {
3368		/*
3369		 * unboost the queue (if needed)
3370		 */
3371		cfqq->ioprio_class = cfqq->org_ioprio_class;
3372		cfqq->ioprio = cfqq->org_ioprio;
3373	}
3374}
3375
3376static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3377{
3378	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3379		cfq_mark_cfqq_must_alloc_slice(cfqq);
3380		return ELV_MQUEUE_MUST;
3381	}
3382
3383	return ELV_MQUEUE_MAY;
3384}
3385
3386static int cfq_may_queue(struct request_queue *q, int rw)
3387{
3388	struct cfq_data *cfqd = q->elevator->elevator_data;
3389	struct task_struct *tsk = current;
3390	struct cfq_io_context *cic;
3391	struct cfq_queue *cfqq;
3392
3393	/*
3394	 * don't force setup of a queue from here, as a call to may_queue
3395	 * does not necessarily imply that a request actually will be queued.
3396	 * so just lookup a possibly existing queue, or return 'may queue'
3397	 * if that fails
3398	 */
3399	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3400	if (!cic)
3401		return ELV_MQUEUE_MAY;
3402
3403	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3404	if (cfqq) {
3405		cfq_init_prio_data(cfqq, cic->ioc);
3406		cfq_prio_boost(cfqq);
3407
3408		return __cfq_may_queue(cfqq);
3409	}
3410
3411	return ELV_MQUEUE_MAY;
3412}
3413
3414/*
3415 * queue lock held here
3416 */
3417static void cfq_put_request(struct request *rq)
3418{
3419	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3420
3421	if (cfqq) {
3422		const int rw = rq_data_dir(rq);
3423
3424		BUG_ON(!cfqq->allocated[rw]);
3425		cfqq->allocated[rw]--;
3426
3427		put_io_context(RQ_CIC(rq)->ioc);
3428
3429		rq->elevator_private = NULL;
3430		rq->elevator_private2 = NULL;
3431
3432		cfq_put_queue(cfqq);
3433	}
3434}
3435
3436static struct cfq_queue *
3437cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3438		struct cfq_queue *cfqq)
3439{
3440	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3441	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3442	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3443	cfq_put_queue(cfqq);
3444	return cic_to_cfqq(cic, 1);
3445}
3446
3447/*
3448 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3449 * was the last process referring to said cfqq.
3450 */
3451static struct cfq_queue *
3452split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3453{
3454	if (cfqq_process_refs(cfqq) == 1) {
3455		cfqq->pid = current->pid;
3456		cfq_clear_cfqq_coop(cfqq);
3457		cfq_clear_cfqq_split_coop(cfqq);
3458		return cfqq;
3459	}
3460
3461	cic_set_cfqq(cic, NULL, 1);
3462	cfq_put_queue(cfqq);
3463	return NULL;
3464}
3465/*
3466 * Allocate cfq data structures associated with this request.
3467 */
3468static int
3469cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3470{
3471	struct cfq_data *cfqd = q->elevator->elevator_data;
3472	struct cfq_io_context *cic;
3473	const int rw = rq_data_dir(rq);
3474	const bool is_sync = rq_is_sync(rq);
3475	struct cfq_queue *cfqq;
3476	unsigned long flags;
3477
3478	might_sleep_if(gfp_mask & __GFP_WAIT);
3479
3480	cic = cfq_get_io_context(cfqd, gfp_mask);
3481
3482	spin_lock_irqsave(q->queue_lock, flags);
3483
3484	if (!cic)
3485		goto queue_fail;
3486
3487new_queue:
3488	cfqq = cic_to_cfqq(cic, is_sync);
3489	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3490		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3491		cic_set_cfqq(cic, cfqq, is_sync);
3492	} else {
3493		/*
3494		 * If the queue was seeky for too long, break it apart.
3495		 */
3496		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3497			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3498			cfqq = split_cfqq(cic, cfqq);
3499			if (!cfqq)
3500				goto new_queue;
3501		}
3502
3503		/*
3504		 * Check to see if this queue is scheduled to merge with
3505		 * another, closely cooperating queue.  The merging of
3506		 * queues happens here as it must be done in process context.
3507		 * The reference on new_cfqq was taken in merge_cfqqs.
3508		 */
3509		if (cfqq->new_cfqq)
3510			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3511	}
3512
3513	cfqq->allocated[rw]++;
3514	atomic_inc(&cfqq->ref);
3515
3516	spin_unlock_irqrestore(q->queue_lock, flags);
3517
3518	rq->elevator_private = cic;
3519	rq->elevator_private2 = cfqq;
3520	return 0;
3521
3522queue_fail:
3523	if (cic)
3524		put_io_context(cic->ioc);
3525
3526	cfq_schedule_dispatch(cfqd);
3527	spin_unlock_irqrestore(q->queue_lock, flags);
3528	cfq_log(cfqd, "set_request fail");
3529	return 1;
3530}
3531
3532static void cfq_kick_queue(struct work_struct *work)
3533{
3534	struct cfq_data *cfqd =
3535		container_of(work, struct cfq_data, unplug_work);
3536	struct request_queue *q = cfqd->queue;
3537
3538	spin_lock_irq(q->queue_lock);
3539	__blk_run_queue(cfqd->queue);
3540	spin_unlock_irq(q->queue_lock);
3541}
3542
3543/*
3544 * Timer running if the active_queue is currently idling inside its time slice
3545 */
3546static void cfq_idle_slice_timer(unsigned long data)
3547{
3548	struct cfq_data *cfqd = (struct cfq_data *) data;
3549	struct cfq_queue *cfqq;
3550	unsigned long flags;
3551	int timed_out = 1;
3552
3553	cfq_log(cfqd, "idle timer fired");
3554
3555	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3556
3557	cfqq = cfqd->active_queue;
3558	if (cfqq) {
3559		timed_out = 0;
3560
3561		/*
3562		 * We saw a request before the queue expired, let it through
3563		 */
3564		if (cfq_cfqq_must_dispatch(cfqq))
3565			goto out_kick;
3566
3567		/*
3568		 * expired
3569		 */
3570		if (cfq_slice_used(cfqq))
3571			goto expire;
3572
3573		/*
3574		 * only expire and reinvoke request handler, if there are
3575		 * other queues with pending requests
3576		 */
3577		if (!cfqd->busy_queues)
3578			goto out_cont;
3579
3580		/*
3581		 * not expired and it has a request pending, let it dispatch
3582		 */
3583		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3584			goto out_kick;
3585
3586		/*
3587		 * Queue depth flag is reset only when the idle didn't succeed
3588		 */
3589		cfq_clear_cfqq_deep(cfqq);
3590	}
3591expire:
3592	cfq_slice_expired(cfqd, timed_out);
3593out_kick:
3594	cfq_schedule_dispatch(cfqd);
3595out_cont:
3596	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3597}
3598
3599static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3600{
3601	del_timer_sync(&cfqd->idle_slice_timer);
3602	cancel_work_sync(&cfqd->unplug_work);
3603}
3604
3605static void cfq_put_async_queues(struct cfq_data *cfqd)
3606{
3607	int i;
3608
3609	for (i = 0; i < IOPRIO_BE_NR; i++) {
3610		if (cfqd->async_cfqq[0][i])
3611			cfq_put_queue(cfqd->async_cfqq[0][i]);
3612		if (cfqd->async_cfqq[1][i])
3613			cfq_put_queue(cfqd->async_cfqq[1][i]);
3614	}
3615
3616	if (cfqd->async_idle_cfqq)
3617		cfq_put_queue(cfqd->async_idle_cfqq);
3618}
3619
3620static void cfq_cfqd_free(struct rcu_head *head)
3621{
3622	kfree(container_of(head, struct cfq_data, rcu));
3623}
3624
3625static void cfq_exit_queue(struct elevator_queue *e)
3626{
3627	struct cfq_data *cfqd = e->elevator_data;
3628	struct request_queue *q = cfqd->queue;
3629
3630	cfq_shutdown_timer_wq(cfqd);
3631
3632	spin_lock_irq(q->queue_lock);
3633
3634	if (cfqd->active_queue)
3635		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3636
3637	while (!list_empty(&cfqd->cic_list)) {
3638		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3639							struct cfq_io_context,
3640							queue_list);
3641
3642		__cfq_exit_single_io_context(cfqd, cic);
3643	}
3644
3645	cfq_put_async_queues(cfqd);
3646	cfq_release_cfq_groups(cfqd);
3647	blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3648
3649	spin_unlock_irq(q->queue_lock);
3650
3651	cfq_shutdown_timer_wq(cfqd);
3652
3653	/* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3654	call_rcu(&cfqd->rcu, cfq_cfqd_free);
3655}
3656
3657static void *cfq_init_queue(struct request_queue *q)
3658{
3659	struct cfq_data *cfqd;
3660	int i, j;
3661	struct cfq_group *cfqg;
3662	struct cfq_rb_root *st;
3663
3664	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3665	if (!cfqd)
3666		return NULL;
3667
3668	/* Init root service tree */
3669	cfqd->grp_service_tree = CFQ_RB_ROOT;
3670
3671	/* Init root group */
3672	cfqg = &cfqd->root_group;
3673	for_each_cfqg_st(cfqg, i, j, st)
3674		*st = CFQ_RB_ROOT;
3675	RB_CLEAR_NODE(&cfqg->rb_node);
3676
3677	/* Give preference to root group over other groups */
3678	cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3679
3680#ifdef CONFIG_CFQ_GROUP_IOSCHED
3681	/*
3682	 * Take a reference to root group which we never drop. This is just
3683	 * to make sure that cfq_put_cfqg() does not try to kfree root group
3684	 */
3685	atomic_set(&cfqg->ref, 1);
3686	blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3687					0);
3688#endif
3689	/*
3690	 * Not strictly needed (since RB_ROOT just clears the node and we
3691	 * zeroed cfqd on alloc), but better be safe in case someone decides
3692	 * to add magic to the rb code
3693	 */
3694	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3695		cfqd->prio_trees[i] = RB_ROOT;
3696
3697	/*
3698	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3699	 * Grab a permanent reference to it, so that the normal code flow
3700	 * will not attempt to free it.
3701	 */
3702	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3703	atomic_inc(&cfqd->oom_cfqq.ref);
3704	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3705
3706	INIT_LIST_HEAD(&cfqd->cic_list);
3707
3708	cfqd->queue = q;
3709
3710	init_timer(&cfqd->idle_slice_timer);
3711	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3712	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3713
3714	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3715
3716	cfqd->cfq_quantum = cfq_quantum;
3717	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3718	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3719	cfqd->cfq_back_max = cfq_back_max;
3720	cfqd->cfq_back_penalty = cfq_back_penalty;
3721	cfqd->cfq_slice[0] = cfq_slice_async;
3722	cfqd->cfq_slice[1] = cfq_slice_sync;
3723	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3724	cfqd->cfq_slice_idle = cfq_slice_idle;
3725	cfqd->cfq_latency = 1;
3726	cfqd->cfq_group_isolation = 0;
3727	cfqd->hw_tag = -1;
3728	/*
3729	 * we optimistically start assuming sync ops weren't delayed in last
3730	 * second, in order to have larger depth for async operations.
3731	 */
3732	cfqd->last_delayed_sync = jiffies - HZ;
3733	INIT_RCU_HEAD(&cfqd->rcu);
3734	return cfqd;
3735}
3736
3737static void cfq_slab_kill(void)
3738{
3739	/*
3740	 * Caller already ensured that pending RCU callbacks are completed,
3741	 * so we should have no busy allocations at this point.
3742	 */
3743	if (cfq_pool)
3744		kmem_cache_destroy(cfq_pool);
3745	if (cfq_ioc_pool)
3746		kmem_cache_destroy(cfq_ioc_pool);
3747}
3748
3749static int __init cfq_slab_setup(void)
3750{
3751	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3752	if (!cfq_pool)
3753		goto fail;
3754
3755	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3756	if (!cfq_ioc_pool)
3757		goto fail;
3758
3759	return 0;
3760fail:
3761	cfq_slab_kill();
3762	return -ENOMEM;
3763}
3764
3765/*
3766 * sysfs parts below -->
3767 */
3768static ssize_t
3769cfq_var_show(unsigned int var, char *page)
3770{
3771	return sprintf(page, "%d\n", var);
3772}
3773
3774static ssize_t
3775cfq_var_store(unsigned int *var, const char *page, size_t count)
3776{
3777	char *p = (char *) page;
3778
3779	*var = simple_strtoul(p, &p, 10);
3780	return count;
3781}
3782
3783#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3784static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3785{									\
3786	struct cfq_data *cfqd = e->elevator_data;			\
3787	unsigned int __data = __VAR;					\
3788	if (__CONV)							\
3789		__data = jiffies_to_msecs(__data);			\
3790	return cfq_var_show(__data, (page));				\
3791}
3792SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3793SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3794SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3795SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3796SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3797SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3798SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3799SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3800SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3801SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3802SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3803#undef SHOW_FUNCTION
3804
3805#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3806static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3807{									\
3808	struct cfq_data *cfqd = e->elevator_data;			\
3809	unsigned int __data;						\
3810	int ret = cfq_var_store(&__data, (page), count);		\
3811	if (__data < (MIN))						\
3812		__data = (MIN);						\
3813	else if (__data > (MAX))					\
3814		__data = (MAX);						\
3815	if (__CONV)							\
3816		*(__PTR) = msecs_to_jiffies(__data);			\
3817	else								\
3818		*(__PTR) = __data;					\
3819	return ret;							\
3820}
3821STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3822STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3823		UINT_MAX, 1);
3824STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3825		UINT_MAX, 1);
3826STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3827STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3828		UINT_MAX, 0);
3829STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3830STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3831STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3832STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3833		UINT_MAX, 0);
3834STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3835STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3836#undef STORE_FUNCTION
3837
3838#define CFQ_ATTR(name) \
3839	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3840
3841static struct elv_fs_entry cfq_attrs[] = {
3842	CFQ_ATTR(quantum),
3843	CFQ_ATTR(fifo_expire_sync),
3844	CFQ_ATTR(fifo_expire_async),
3845	CFQ_ATTR(back_seek_max),
3846	CFQ_ATTR(back_seek_penalty),
3847	CFQ_ATTR(slice_sync),
3848	CFQ_ATTR(slice_async),
3849	CFQ_ATTR(slice_async_rq),
3850	CFQ_ATTR(slice_idle),
3851	CFQ_ATTR(low_latency),
3852	CFQ_ATTR(group_isolation),
3853	__ATTR_NULL
3854};
3855
3856static struct elevator_type iosched_cfq = {
3857	.ops = {
3858		.elevator_merge_fn = 		cfq_merge,
3859		.elevator_merged_fn =		cfq_merged_request,
3860		.elevator_merge_req_fn =	cfq_merged_requests,
3861		.elevator_allow_merge_fn =	cfq_allow_merge,
3862		.elevator_dispatch_fn =		cfq_dispatch_requests,
3863		.elevator_add_req_fn =		cfq_insert_request,
3864		.elevator_activate_req_fn =	cfq_activate_request,
3865		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3866		.elevator_queue_empty_fn =	cfq_queue_empty,
3867		.elevator_completed_req_fn =	cfq_completed_request,
3868		.elevator_former_req_fn =	elv_rb_former_request,
3869		.elevator_latter_req_fn =	elv_rb_latter_request,
3870		.elevator_set_req_fn =		cfq_set_request,
3871		.elevator_put_req_fn =		cfq_put_request,
3872		.elevator_may_queue_fn =	cfq_may_queue,
3873		.elevator_init_fn =		cfq_init_queue,
3874		.elevator_exit_fn =		cfq_exit_queue,
3875		.trim =				cfq_free_io_context,
3876	},
3877	.elevator_attrs =	cfq_attrs,
3878	.elevator_name =	"cfq",
3879	.elevator_owner =	THIS_MODULE,
3880};
3881
3882#ifdef CONFIG_CFQ_GROUP_IOSCHED
3883static struct blkio_policy_type blkio_policy_cfq = {
3884	.ops = {
3885		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
3886		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
3887	},
3888};
3889#else
3890static struct blkio_policy_type blkio_policy_cfq;
3891#endif
3892
3893static int __init cfq_init(void)
3894{
3895	/*
3896	 * could be 0 on HZ < 1000 setups
3897	 */
3898	if (!cfq_slice_async)
3899		cfq_slice_async = 1;
3900	if (!cfq_slice_idle)
3901		cfq_slice_idle = 1;
3902
3903	if (cfq_slab_setup())
3904		return -ENOMEM;
3905
3906	elv_register(&iosched_cfq);
3907	blkio_policy_register(&blkio_policy_cfq);
3908
3909	return 0;
3910}
3911
3912static void __exit cfq_exit(void)
3913{
3914	DECLARE_COMPLETION_ONSTACK(all_gone);
3915	blkio_policy_unregister(&blkio_policy_cfq);
3916	elv_unregister(&iosched_cfq);
3917	ioc_gone = &all_gone;
3918	/* ioc_gone's update must be visible before reading ioc_count */
3919	smp_wmb();
3920
3921	/*
3922	 * this also protects us from entering cfq_slab_kill() with
3923	 * pending RCU callbacks
3924	 */
3925	if (elv_ioc_count_read(cfq_ioc_count))
3926		wait_for_completion(&all_gone);
3927	cfq_slab_kill();
3928}
3929
3930module_init(cfq_init);
3931module_exit(cfq_exit);
3932
3933MODULE_AUTHOR("Jens Axboe");
3934MODULE_LICENSE("GPL");
3935MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3936