cfq-iosched.c revision b217a903ab6581cba04f88c44284dcdd2a752561
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY		(HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT		(2)
40
41#define CFQ_SLICE_SCALE		(5)
42#define CFQ_HW_QUEUE_MIN	(5)
43
44#define RQ_CIC(rq)		\
45	((struct cfq_io_context *) (rq)->elevator_private)
46#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
47
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
50
51static DEFINE_PER_CPU(unsigned long, ioc_count);
52static struct completion *ioc_gone;
53static DEFINE_SPINLOCK(ioc_gone_lock);
54
55#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
56#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59#define sample_valid(samples)	((samples) > 80)
60
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68	struct rb_root rb;
69	struct rb_node *left;
70};
71#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
72
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77	/* reference count */
78	atomic_t ref;
79	/* various state flags, see below */
80	unsigned int flags;
81	/* parent cfq_data */
82	struct cfq_data *cfqd;
83	/* service_tree member */
84	struct rb_node rb_node;
85	/* service_tree key */
86	unsigned long rb_key;
87	/* prio tree member */
88	struct rb_node p_node;
89	/* prio tree root we belong to, if any */
90	struct rb_root *p_root;
91	/* sorted list of pending requests */
92	struct rb_root sort_list;
93	/* if fifo isn't expired, next request to serve */
94	struct request *next_rq;
95	/* requests queued in sort_list */
96	int queued[2];
97	/* currently allocated requests */
98	int allocated[2];
99	/* fifo list of requests in sort_list */
100	struct list_head fifo;
101
102	unsigned long slice_end;
103	long slice_resid;
104	unsigned int slice_dispatch;
105
106	/* pending metadata requests */
107	int meta_pending;
108	/* number of requests that are on the dispatch list or inside driver */
109	int dispatched;
110
111	/* io prio of this group */
112	unsigned short ioprio, org_ioprio;
113	unsigned short ioprio_class, org_ioprio_class;
114
115	pid_t pid;
116};
117
118/*
119 * Per block device queue structure
120 */
121struct cfq_data {
122	struct request_queue *queue;
123
124	/*
125	 * rr list of queues with requests and the count of them
126	 */
127	struct cfq_rb_root service_tree;
128
129	/*
130	 * Each priority tree is sorted by next_request position.  These
131	 * trees are used when determining if two or more queues are
132	 * interleaving requests (see cfq_close_cooperator).
133	 */
134	struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136	unsigned int busy_queues;
137
138	int rq_in_driver[2];
139	int sync_flight;
140
141	/*
142	 * queue-depth detection
143	 */
144	int rq_queued;
145	int hw_tag;
146	int hw_tag_samples;
147	int rq_in_driver_peak;
148
149	/*
150	 * idle window management
151	 */
152	struct timer_list idle_slice_timer;
153	struct work_struct unplug_work;
154
155	struct cfq_queue *active_queue;
156	struct cfq_io_context *active_cic;
157
158	/*
159	 * async queue for each priority case
160	 */
161	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162	struct cfq_queue *async_idle_cfqq;
163
164	sector_t last_position;
165
166	/*
167	 * tunables, see top of file
168	 */
169	unsigned int cfq_quantum;
170	unsigned int cfq_fifo_expire[2];
171	unsigned int cfq_back_penalty;
172	unsigned int cfq_back_max;
173	unsigned int cfq_slice[2];
174	unsigned int cfq_slice_async_rq;
175	unsigned int cfq_slice_idle;
176
177	struct list_head cic_list;
178
179	/*
180	 * Fallback dummy cfqq for extreme OOM conditions
181	 */
182	struct cfq_queue oom_cfqq;
183};
184
185enum cfqq_state_flags {
186	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
187	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
188	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
189	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
190	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
191	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
192	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
193	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
194	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
195	CFQ_CFQQ_FLAG_coop,		/* has done a coop jump of the queue */
196};
197
198#define CFQ_CFQQ_FNS(name)						\
199static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
200{									\
201	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
202}									\
203static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
204{									\
205	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
206}									\
207static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
208{									\
209	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
210}
211
212CFQ_CFQQ_FNS(on_rr);
213CFQ_CFQQ_FNS(wait_request);
214CFQ_CFQQ_FNS(must_dispatch);
215CFQ_CFQQ_FNS(must_alloc_slice);
216CFQ_CFQQ_FNS(fifo_expire);
217CFQ_CFQQ_FNS(idle_window);
218CFQ_CFQQ_FNS(prio_changed);
219CFQ_CFQQ_FNS(slice_new);
220CFQ_CFQQ_FNS(sync);
221CFQ_CFQQ_FNS(coop);
222#undef CFQ_CFQQ_FNS
223
224#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
225	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
226#define cfq_log(cfqd, fmt, args...)	\
227	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
228
229static void cfq_dispatch_insert(struct request_queue *, struct request *);
230static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
231				       struct io_context *, gfp_t);
232static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
233						struct io_context *);
234
235static inline int rq_in_driver(struct cfq_data *cfqd)
236{
237	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
238}
239
240static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
241					    int is_sync)
242{
243	return cic->cfqq[!!is_sync];
244}
245
246static inline void cic_set_cfqq(struct cfq_io_context *cic,
247				struct cfq_queue *cfqq, int is_sync)
248{
249	cic->cfqq[!!is_sync] = cfqq;
250}
251
252/*
253 * We regard a request as SYNC, if it's either a read or has the SYNC bit
254 * set (in which case it could also be direct WRITE).
255 */
256static inline int cfq_bio_sync(struct bio *bio)
257{
258	if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
259		return 1;
260
261	return 0;
262}
263
264/*
265 * scheduler run of queue, if there are requests pending and no one in the
266 * driver that will restart queueing
267 */
268static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
269{
270	if (cfqd->busy_queues) {
271		cfq_log(cfqd, "schedule dispatch");
272		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
273	}
274}
275
276static int cfq_queue_empty(struct request_queue *q)
277{
278	struct cfq_data *cfqd = q->elevator->elevator_data;
279
280	return !cfqd->busy_queues;
281}
282
283/*
284 * Scale schedule slice based on io priority. Use the sync time slice only
285 * if a queue is marked sync and has sync io queued. A sync queue with async
286 * io only, should not get full sync slice length.
287 */
288static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
289				 unsigned short prio)
290{
291	const int base_slice = cfqd->cfq_slice[sync];
292
293	WARN_ON(prio >= IOPRIO_BE_NR);
294
295	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
296}
297
298static inline int
299cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
300{
301	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
302}
303
304static inline void
305cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
306{
307	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
308	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
309}
310
311/*
312 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
313 * isn't valid until the first request from the dispatch is activated
314 * and the slice time set.
315 */
316static inline int cfq_slice_used(struct cfq_queue *cfqq)
317{
318	if (cfq_cfqq_slice_new(cfqq))
319		return 0;
320	if (time_before(jiffies, cfqq->slice_end))
321		return 0;
322
323	return 1;
324}
325
326/*
327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328 * We choose the request that is closest to the head right now. Distance
329 * behind the head is penalized and only allowed to a certain extent.
330 */
331static struct request *
332cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
333{
334	sector_t last, s1, s2, d1 = 0, d2 = 0;
335	unsigned long back_max;
336#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
337#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
338	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
339
340	if (rq1 == NULL || rq1 == rq2)
341		return rq2;
342	if (rq2 == NULL)
343		return rq1;
344
345	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
346		return rq1;
347	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
348		return rq2;
349	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
350		return rq1;
351	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
352		return rq2;
353
354	s1 = blk_rq_pos(rq1);
355	s2 = blk_rq_pos(rq2);
356
357	last = cfqd->last_position;
358
359	/*
360	 * by definition, 1KiB is 2 sectors
361	 */
362	back_max = cfqd->cfq_back_max * 2;
363
364	/*
365	 * Strict one way elevator _except_ in the case where we allow
366	 * short backward seeks which are biased as twice the cost of a
367	 * similar forward seek.
368	 */
369	if (s1 >= last)
370		d1 = s1 - last;
371	else if (s1 + back_max >= last)
372		d1 = (last - s1) * cfqd->cfq_back_penalty;
373	else
374		wrap |= CFQ_RQ1_WRAP;
375
376	if (s2 >= last)
377		d2 = s2 - last;
378	else if (s2 + back_max >= last)
379		d2 = (last - s2) * cfqd->cfq_back_penalty;
380	else
381		wrap |= CFQ_RQ2_WRAP;
382
383	/* Found required data */
384
385	/*
386	 * By doing switch() on the bit mask "wrap" we avoid having to
387	 * check two variables for all permutations: --> faster!
388	 */
389	switch (wrap) {
390	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
391		if (d1 < d2)
392			return rq1;
393		else if (d2 < d1)
394			return rq2;
395		else {
396			if (s1 >= s2)
397				return rq1;
398			else
399				return rq2;
400		}
401
402	case CFQ_RQ2_WRAP:
403		return rq1;
404	case CFQ_RQ1_WRAP:
405		return rq2;
406	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
407	default:
408		/*
409		 * Since both rqs are wrapped,
410		 * start with the one that's further behind head
411		 * (--> only *one* back seek required),
412		 * since back seek takes more time than forward.
413		 */
414		if (s1 <= s2)
415			return rq1;
416		else
417			return rq2;
418	}
419}
420
421/*
422 * The below is leftmost cache rbtree addon
423 */
424static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
425{
426	if (!root->left)
427		root->left = rb_first(&root->rb);
428
429	if (root->left)
430		return rb_entry(root->left, struct cfq_queue, rb_node);
431
432	return NULL;
433}
434
435static void rb_erase_init(struct rb_node *n, struct rb_root *root)
436{
437	rb_erase(n, root);
438	RB_CLEAR_NODE(n);
439}
440
441static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
442{
443	if (root->left == n)
444		root->left = NULL;
445	rb_erase_init(n, &root->rb);
446}
447
448/*
449 * would be nice to take fifo expire time into account as well
450 */
451static struct request *
452cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
453		  struct request *last)
454{
455	struct rb_node *rbnext = rb_next(&last->rb_node);
456	struct rb_node *rbprev = rb_prev(&last->rb_node);
457	struct request *next = NULL, *prev = NULL;
458
459	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
460
461	if (rbprev)
462		prev = rb_entry_rq(rbprev);
463
464	if (rbnext)
465		next = rb_entry_rq(rbnext);
466	else {
467		rbnext = rb_first(&cfqq->sort_list);
468		if (rbnext && rbnext != &last->rb_node)
469			next = rb_entry_rq(rbnext);
470	}
471
472	return cfq_choose_req(cfqd, next, prev);
473}
474
475static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
476				      struct cfq_queue *cfqq)
477{
478	/*
479	 * just an approximation, should be ok.
480	 */
481	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
482		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
483}
484
485/*
486 * The cfqd->service_tree holds all pending cfq_queue's that have
487 * requests waiting to be processed. It is sorted in the order that
488 * we will service the queues.
489 */
490static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
491				 int add_front)
492{
493	struct rb_node **p, *parent;
494	struct cfq_queue *__cfqq;
495	unsigned long rb_key;
496	int left;
497
498	if (cfq_class_idle(cfqq)) {
499		rb_key = CFQ_IDLE_DELAY;
500		parent = rb_last(&cfqd->service_tree.rb);
501		if (parent && parent != &cfqq->rb_node) {
502			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
503			rb_key += __cfqq->rb_key;
504		} else
505			rb_key += jiffies;
506	} else if (!add_front) {
507		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
508		rb_key += cfqq->slice_resid;
509		cfqq->slice_resid = 0;
510	} else
511		rb_key = 0;
512
513	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
514		/*
515		 * same position, nothing more to do
516		 */
517		if (rb_key == cfqq->rb_key)
518			return;
519
520		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
521	}
522
523	left = 1;
524	parent = NULL;
525	p = &cfqd->service_tree.rb.rb_node;
526	while (*p) {
527		struct rb_node **n;
528
529		parent = *p;
530		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
531
532		/*
533		 * sort RT queues first, we always want to give
534		 * preference to them. IDLE queues goes to the back.
535		 * after that, sort on the next service time.
536		 */
537		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
538			n = &(*p)->rb_left;
539		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
540			n = &(*p)->rb_right;
541		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
542			n = &(*p)->rb_left;
543		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
544			n = &(*p)->rb_right;
545		else if (rb_key < __cfqq->rb_key)
546			n = &(*p)->rb_left;
547		else
548			n = &(*p)->rb_right;
549
550		if (n == &(*p)->rb_right)
551			left = 0;
552
553		p = n;
554	}
555
556	if (left)
557		cfqd->service_tree.left = &cfqq->rb_node;
558
559	cfqq->rb_key = rb_key;
560	rb_link_node(&cfqq->rb_node, parent, p);
561	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
562}
563
564static struct cfq_queue *
565cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
566		     sector_t sector, struct rb_node **ret_parent,
567		     struct rb_node ***rb_link)
568{
569	struct rb_node **p, *parent;
570	struct cfq_queue *cfqq = NULL;
571
572	parent = NULL;
573	p = &root->rb_node;
574	while (*p) {
575		struct rb_node **n;
576
577		parent = *p;
578		cfqq = rb_entry(parent, struct cfq_queue, p_node);
579
580		/*
581		 * Sort strictly based on sector.  Smallest to the left,
582		 * largest to the right.
583		 */
584		if (sector > blk_rq_pos(cfqq->next_rq))
585			n = &(*p)->rb_right;
586		else if (sector < blk_rq_pos(cfqq->next_rq))
587			n = &(*p)->rb_left;
588		else
589			break;
590		p = n;
591		cfqq = NULL;
592	}
593
594	*ret_parent = parent;
595	if (rb_link)
596		*rb_link = p;
597	return cfqq;
598}
599
600static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
601{
602	struct rb_node **p, *parent;
603	struct cfq_queue *__cfqq;
604
605	if (cfqq->p_root) {
606		rb_erase(&cfqq->p_node, cfqq->p_root);
607		cfqq->p_root = NULL;
608	}
609
610	if (cfq_class_idle(cfqq))
611		return;
612	if (!cfqq->next_rq)
613		return;
614
615	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
616	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
617				      blk_rq_pos(cfqq->next_rq), &parent, &p);
618	if (!__cfqq) {
619		rb_link_node(&cfqq->p_node, parent, p);
620		rb_insert_color(&cfqq->p_node, cfqq->p_root);
621	} else
622		cfqq->p_root = NULL;
623}
624
625/*
626 * Update cfqq's position in the service tree.
627 */
628static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
629{
630	/*
631	 * Resorting requires the cfqq to be on the RR list already.
632	 */
633	if (cfq_cfqq_on_rr(cfqq)) {
634		cfq_service_tree_add(cfqd, cfqq, 0);
635		cfq_prio_tree_add(cfqd, cfqq);
636	}
637}
638
639/*
640 * add to busy list of queues for service, trying to be fair in ordering
641 * the pending list according to last request service
642 */
643static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
644{
645	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
646	BUG_ON(cfq_cfqq_on_rr(cfqq));
647	cfq_mark_cfqq_on_rr(cfqq);
648	cfqd->busy_queues++;
649
650	cfq_resort_rr_list(cfqd, cfqq);
651}
652
653/*
654 * Called when the cfqq no longer has requests pending, remove it from
655 * the service tree.
656 */
657static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
658{
659	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
660	BUG_ON(!cfq_cfqq_on_rr(cfqq));
661	cfq_clear_cfqq_on_rr(cfqq);
662
663	if (!RB_EMPTY_NODE(&cfqq->rb_node))
664		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
665	if (cfqq->p_root) {
666		rb_erase(&cfqq->p_node, cfqq->p_root);
667		cfqq->p_root = NULL;
668	}
669
670	BUG_ON(!cfqd->busy_queues);
671	cfqd->busy_queues--;
672}
673
674/*
675 * rb tree support functions
676 */
677static void cfq_del_rq_rb(struct request *rq)
678{
679	struct cfq_queue *cfqq = RQ_CFQQ(rq);
680	struct cfq_data *cfqd = cfqq->cfqd;
681	const int sync = rq_is_sync(rq);
682
683	BUG_ON(!cfqq->queued[sync]);
684	cfqq->queued[sync]--;
685
686	elv_rb_del(&cfqq->sort_list, rq);
687
688	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
689		cfq_del_cfqq_rr(cfqd, cfqq);
690}
691
692static void cfq_add_rq_rb(struct request *rq)
693{
694	struct cfq_queue *cfqq = RQ_CFQQ(rq);
695	struct cfq_data *cfqd = cfqq->cfqd;
696	struct request *__alias, *prev;
697
698	cfqq->queued[rq_is_sync(rq)]++;
699
700	/*
701	 * looks a little odd, but the first insert might return an alias.
702	 * if that happens, put the alias on the dispatch list
703	 */
704	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
705		cfq_dispatch_insert(cfqd->queue, __alias);
706
707	if (!cfq_cfqq_on_rr(cfqq))
708		cfq_add_cfqq_rr(cfqd, cfqq);
709
710	/*
711	 * check if this request is a better next-serve candidate
712	 */
713	prev = cfqq->next_rq;
714	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
715
716	/*
717	 * adjust priority tree position, if ->next_rq changes
718	 */
719	if (prev != cfqq->next_rq)
720		cfq_prio_tree_add(cfqd, cfqq);
721
722	BUG_ON(!cfqq->next_rq);
723}
724
725static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
726{
727	elv_rb_del(&cfqq->sort_list, rq);
728	cfqq->queued[rq_is_sync(rq)]--;
729	cfq_add_rq_rb(rq);
730}
731
732static struct request *
733cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
734{
735	struct task_struct *tsk = current;
736	struct cfq_io_context *cic;
737	struct cfq_queue *cfqq;
738
739	cic = cfq_cic_lookup(cfqd, tsk->io_context);
740	if (!cic)
741		return NULL;
742
743	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
744	if (cfqq) {
745		sector_t sector = bio->bi_sector + bio_sectors(bio);
746
747		return elv_rb_find(&cfqq->sort_list, sector);
748	}
749
750	return NULL;
751}
752
753static void cfq_activate_request(struct request_queue *q, struct request *rq)
754{
755	struct cfq_data *cfqd = q->elevator->elevator_data;
756
757	cfqd->rq_in_driver[rq_is_sync(rq)]++;
758	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
759						rq_in_driver(cfqd));
760
761	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
762}
763
764static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
765{
766	struct cfq_data *cfqd = q->elevator->elevator_data;
767	const int sync = rq_is_sync(rq);
768
769	WARN_ON(!cfqd->rq_in_driver[sync]);
770	cfqd->rq_in_driver[sync]--;
771	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
772						rq_in_driver(cfqd));
773}
774
775static void cfq_remove_request(struct request *rq)
776{
777	struct cfq_queue *cfqq = RQ_CFQQ(rq);
778
779	if (cfqq->next_rq == rq)
780		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
781
782	list_del_init(&rq->queuelist);
783	cfq_del_rq_rb(rq);
784
785	cfqq->cfqd->rq_queued--;
786	if (rq_is_meta(rq)) {
787		WARN_ON(!cfqq->meta_pending);
788		cfqq->meta_pending--;
789	}
790}
791
792static int cfq_merge(struct request_queue *q, struct request **req,
793		     struct bio *bio)
794{
795	struct cfq_data *cfqd = q->elevator->elevator_data;
796	struct request *__rq;
797
798	__rq = cfq_find_rq_fmerge(cfqd, bio);
799	if (__rq && elv_rq_merge_ok(__rq, bio)) {
800		*req = __rq;
801		return ELEVATOR_FRONT_MERGE;
802	}
803
804	return ELEVATOR_NO_MERGE;
805}
806
807static void cfq_merged_request(struct request_queue *q, struct request *req,
808			       int type)
809{
810	if (type == ELEVATOR_FRONT_MERGE) {
811		struct cfq_queue *cfqq = RQ_CFQQ(req);
812
813		cfq_reposition_rq_rb(cfqq, req);
814	}
815}
816
817static void
818cfq_merged_requests(struct request_queue *q, struct request *rq,
819		    struct request *next)
820{
821	/*
822	 * reposition in fifo if next is older than rq
823	 */
824	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
825	    time_before(next->start_time, rq->start_time))
826		list_move(&rq->queuelist, &next->queuelist);
827
828	cfq_remove_request(next);
829}
830
831static int cfq_allow_merge(struct request_queue *q, struct request *rq,
832			   struct bio *bio)
833{
834	struct cfq_data *cfqd = q->elevator->elevator_data;
835	struct cfq_io_context *cic;
836	struct cfq_queue *cfqq;
837
838	/*
839	 * Disallow merge of a sync bio into an async request.
840	 */
841	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
842		return 0;
843
844	/*
845	 * Lookup the cfqq that this bio will be queued with. Allow
846	 * merge only if rq is queued there.
847	 */
848	cic = cfq_cic_lookup(cfqd, current->io_context);
849	if (!cic)
850		return 0;
851
852	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
853	if (cfqq == RQ_CFQQ(rq))
854		return 1;
855
856	return 0;
857}
858
859static void __cfq_set_active_queue(struct cfq_data *cfqd,
860				   struct cfq_queue *cfqq)
861{
862	if (cfqq) {
863		cfq_log_cfqq(cfqd, cfqq, "set_active");
864		cfqq->slice_end = 0;
865		cfqq->slice_dispatch = 0;
866
867		cfq_clear_cfqq_wait_request(cfqq);
868		cfq_clear_cfqq_must_dispatch(cfqq);
869		cfq_clear_cfqq_must_alloc_slice(cfqq);
870		cfq_clear_cfqq_fifo_expire(cfqq);
871		cfq_mark_cfqq_slice_new(cfqq);
872
873		del_timer(&cfqd->idle_slice_timer);
874	}
875
876	cfqd->active_queue = cfqq;
877}
878
879/*
880 * current cfqq expired its slice (or was too idle), select new one
881 */
882static void
883__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
884		    int timed_out)
885{
886	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
887
888	if (cfq_cfqq_wait_request(cfqq))
889		del_timer(&cfqd->idle_slice_timer);
890
891	cfq_clear_cfqq_wait_request(cfqq);
892
893	/*
894	 * store what was left of this slice, if the queue idled/timed out
895	 */
896	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
897		cfqq->slice_resid = cfqq->slice_end - jiffies;
898		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
899	}
900
901	cfq_resort_rr_list(cfqd, cfqq);
902
903	if (cfqq == cfqd->active_queue)
904		cfqd->active_queue = NULL;
905
906	if (cfqd->active_cic) {
907		put_io_context(cfqd->active_cic->ioc);
908		cfqd->active_cic = NULL;
909	}
910}
911
912static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
913{
914	struct cfq_queue *cfqq = cfqd->active_queue;
915
916	if (cfqq)
917		__cfq_slice_expired(cfqd, cfqq, timed_out);
918}
919
920/*
921 * Get next queue for service. Unless we have a queue preemption,
922 * we'll simply select the first cfqq in the service tree.
923 */
924static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
925{
926	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
927		return NULL;
928
929	return cfq_rb_first(&cfqd->service_tree);
930}
931
932/*
933 * Get and set a new active queue for service.
934 */
935static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
936					      struct cfq_queue *cfqq)
937{
938	if (!cfqq) {
939		cfqq = cfq_get_next_queue(cfqd);
940		if (cfqq)
941			cfq_clear_cfqq_coop(cfqq);
942	}
943
944	__cfq_set_active_queue(cfqd, cfqq);
945	return cfqq;
946}
947
948static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
949					  struct request *rq)
950{
951	if (blk_rq_pos(rq) >= cfqd->last_position)
952		return blk_rq_pos(rq) - cfqd->last_position;
953	else
954		return cfqd->last_position - blk_rq_pos(rq);
955}
956
957#define CIC_SEEK_THR	8 * 1024
958#define CIC_SEEKY(cic)	((cic)->seek_mean > CIC_SEEK_THR)
959
960static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
961{
962	struct cfq_io_context *cic = cfqd->active_cic;
963	sector_t sdist = cic->seek_mean;
964
965	if (!sample_valid(cic->seek_samples))
966		sdist = CIC_SEEK_THR;
967
968	return cfq_dist_from_last(cfqd, rq) <= sdist;
969}
970
971static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
972				    struct cfq_queue *cur_cfqq)
973{
974	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
975	struct rb_node *parent, *node;
976	struct cfq_queue *__cfqq;
977	sector_t sector = cfqd->last_position;
978
979	if (RB_EMPTY_ROOT(root))
980		return NULL;
981
982	/*
983	 * First, if we find a request starting at the end of the last
984	 * request, choose it.
985	 */
986	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
987	if (__cfqq)
988		return __cfqq;
989
990	/*
991	 * If the exact sector wasn't found, the parent of the NULL leaf
992	 * will contain the closest sector.
993	 */
994	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
995	if (cfq_rq_close(cfqd, __cfqq->next_rq))
996		return __cfqq;
997
998	if (blk_rq_pos(__cfqq->next_rq) < sector)
999		node = rb_next(&__cfqq->p_node);
1000	else
1001		node = rb_prev(&__cfqq->p_node);
1002	if (!node)
1003		return NULL;
1004
1005	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1006	if (cfq_rq_close(cfqd, __cfqq->next_rq))
1007		return __cfqq;
1008
1009	return NULL;
1010}
1011
1012/*
1013 * cfqd - obvious
1014 * cur_cfqq - passed in so that we don't decide that the current queue is
1015 * 	      closely cooperating with itself.
1016 *
1017 * So, basically we're assuming that that cur_cfqq has dispatched at least
1018 * one request, and that cfqd->last_position reflects a position on the disk
1019 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1020 * assumption.
1021 */
1022static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1023					      struct cfq_queue *cur_cfqq,
1024					      int probe)
1025{
1026	struct cfq_queue *cfqq;
1027
1028	/*
1029	 * A valid cfq_io_context is necessary to compare requests against
1030	 * the seek_mean of the current cfqq.
1031	 */
1032	if (!cfqd->active_cic)
1033		return NULL;
1034
1035	/*
1036	 * We should notice if some of the queues are cooperating, eg
1037	 * working closely on the same area of the disk. In that case,
1038	 * we can group them together and don't waste time idling.
1039	 */
1040	cfqq = cfqq_close(cfqd, cur_cfqq);
1041	if (!cfqq)
1042		return NULL;
1043
1044	if (cfq_cfqq_coop(cfqq))
1045		return NULL;
1046
1047	if (!probe)
1048		cfq_mark_cfqq_coop(cfqq);
1049	return cfqq;
1050}
1051
1052static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1053{
1054	struct cfq_queue *cfqq = cfqd->active_queue;
1055	struct cfq_io_context *cic;
1056	unsigned long sl;
1057
1058	/*
1059	 * SSD device without seek penalty, disable idling. But only do so
1060	 * for devices that support queuing, otherwise we still have a problem
1061	 * with sync vs async workloads.
1062	 */
1063	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1064		return;
1065
1066	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1067	WARN_ON(cfq_cfqq_slice_new(cfqq));
1068
1069	/*
1070	 * idle is disabled, either manually or by past process history
1071	 */
1072	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1073		return;
1074
1075	/*
1076	 * still requests with the driver, don't idle
1077	 */
1078	if (rq_in_driver(cfqd))
1079		return;
1080
1081	/*
1082	 * task has exited, don't wait
1083	 */
1084	cic = cfqd->active_cic;
1085	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1086		return;
1087
1088	cfq_mark_cfqq_wait_request(cfqq);
1089
1090	/*
1091	 * we don't want to idle for seeks, but we do want to allow
1092	 * fair distribution of slice time for a process doing back-to-back
1093	 * seeks. so allow a little bit of time for him to submit a new rq
1094	 */
1095	sl = cfqd->cfq_slice_idle;
1096	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1097		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1098
1099	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1100	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1101}
1102
1103/*
1104 * Move request from internal lists to the request queue dispatch list.
1105 */
1106static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1107{
1108	struct cfq_data *cfqd = q->elevator->elevator_data;
1109	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1110
1111	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1112
1113	cfq_remove_request(rq);
1114	cfqq->dispatched++;
1115	elv_dispatch_sort(q, rq);
1116
1117	if (cfq_cfqq_sync(cfqq))
1118		cfqd->sync_flight++;
1119}
1120
1121/*
1122 * return expired entry, or NULL to just start from scratch in rbtree
1123 */
1124static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1125{
1126	struct cfq_data *cfqd = cfqq->cfqd;
1127	struct request *rq;
1128	int fifo;
1129
1130	if (cfq_cfqq_fifo_expire(cfqq))
1131		return NULL;
1132
1133	cfq_mark_cfqq_fifo_expire(cfqq);
1134
1135	if (list_empty(&cfqq->fifo))
1136		return NULL;
1137
1138	fifo = cfq_cfqq_sync(cfqq);
1139	rq = rq_entry_fifo(cfqq->fifo.next);
1140
1141	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1142		rq = NULL;
1143
1144	cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1145	return rq;
1146}
1147
1148static inline int
1149cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1150{
1151	const int base_rq = cfqd->cfq_slice_async_rq;
1152
1153	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1154
1155	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1156}
1157
1158/*
1159 * Select a queue for service. If we have a current active queue,
1160 * check whether to continue servicing it, or retrieve and set a new one.
1161 */
1162static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1163{
1164	struct cfq_queue *cfqq, *new_cfqq = NULL;
1165
1166	cfqq = cfqd->active_queue;
1167	if (!cfqq)
1168		goto new_queue;
1169
1170	/*
1171	 * The active queue has run out of time, expire it and select new.
1172	 */
1173	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1174		goto expire;
1175
1176	/*
1177	 * The active queue has requests and isn't expired, allow it to
1178	 * dispatch.
1179	 */
1180	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1181		goto keep_queue;
1182
1183	/*
1184	 * If another queue has a request waiting within our mean seek
1185	 * distance, let it run.  The expire code will check for close
1186	 * cooperators and put the close queue at the front of the service
1187	 * tree.
1188	 */
1189	new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1190	if (new_cfqq)
1191		goto expire;
1192
1193	/*
1194	 * No requests pending. If the active queue still has requests in
1195	 * flight or is idling for a new request, allow either of these
1196	 * conditions to happen (or time out) before selecting a new queue.
1197	 */
1198	if (timer_pending(&cfqd->idle_slice_timer) ||
1199	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1200		cfqq = NULL;
1201		goto keep_queue;
1202	}
1203
1204expire:
1205	cfq_slice_expired(cfqd, 0);
1206new_queue:
1207	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1208keep_queue:
1209	return cfqq;
1210}
1211
1212static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1213{
1214	int dispatched = 0;
1215
1216	while (cfqq->next_rq) {
1217		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1218		dispatched++;
1219	}
1220
1221	BUG_ON(!list_empty(&cfqq->fifo));
1222	return dispatched;
1223}
1224
1225/*
1226 * Drain our current requests. Used for barriers and when switching
1227 * io schedulers on-the-fly.
1228 */
1229static int cfq_forced_dispatch(struct cfq_data *cfqd)
1230{
1231	struct cfq_queue *cfqq;
1232	int dispatched = 0;
1233
1234	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1235		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1236
1237	cfq_slice_expired(cfqd, 0);
1238
1239	BUG_ON(cfqd->busy_queues);
1240
1241	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1242	return dispatched;
1243}
1244
1245/*
1246 * Dispatch a request from cfqq, moving them to the request queue
1247 * dispatch list.
1248 */
1249static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1250{
1251	struct request *rq;
1252
1253	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1254
1255	/*
1256	 * follow expired path, else get first next available
1257	 */
1258	rq = cfq_check_fifo(cfqq);
1259	if (!rq)
1260		rq = cfqq->next_rq;
1261
1262	/*
1263	 * insert request into driver dispatch list
1264	 */
1265	cfq_dispatch_insert(cfqd->queue, rq);
1266
1267	if (!cfqd->active_cic) {
1268		struct cfq_io_context *cic = RQ_CIC(rq);
1269
1270		atomic_long_inc(&cic->ioc->refcount);
1271		cfqd->active_cic = cic;
1272	}
1273}
1274
1275/*
1276 * Find the cfqq that we need to service and move a request from that to the
1277 * dispatch list
1278 */
1279static int cfq_dispatch_requests(struct request_queue *q, int force)
1280{
1281	struct cfq_data *cfqd = q->elevator->elevator_data;
1282	struct cfq_queue *cfqq;
1283	unsigned int max_dispatch;
1284
1285	if (!cfqd->busy_queues)
1286		return 0;
1287
1288	if (unlikely(force))
1289		return cfq_forced_dispatch(cfqd);
1290
1291	cfqq = cfq_select_queue(cfqd);
1292	if (!cfqq)
1293		return 0;
1294
1295	/*
1296	 * Drain async requests before we start sync IO
1297	 */
1298	if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1299		return 0;
1300
1301	/*
1302	 * If this is an async queue and we have sync IO in flight, let it wait
1303	 */
1304	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1305		return 0;
1306
1307	max_dispatch = cfqd->cfq_quantum;
1308	if (cfq_class_idle(cfqq))
1309		max_dispatch = 1;
1310
1311	/*
1312	 * Does this cfqq already have too much IO in flight?
1313	 */
1314	if (cfqq->dispatched >= max_dispatch) {
1315		/*
1316		 * idle queue must always only have a single IO in flight
1317		 */
1318		if (cfq_class_idle(cfqq))
1319			return 0;
1320
1321		/*
1322		 * We have other queues, don't allow more IO from this one
1323		 */
1324		if (cfqd->busy_queues > 1)
1325			return 0;
1326
1327		/*
1328		 * we are the only queue, allow up to 4 times of 'quantum'
1329		 */
1330		if (cfqq->dispatched >= 4 * max_dispatch)
1331			return 0;
1332	}
1333
1334	/*
1335	 * Dispatch a request from this cfqq
1336	 */
1337	cfq_dispatch_request(cfqd, cfqq);
1338	cfqq->slice_dispatch++;
1339	cfq_clear_cfqq_must_dispatch(cfqq);
1340
1341	/*
1342	 * expire an async queue immediately if it has used up its slice. idle
1343	 * queue always expire after 1 dispatch round.
1344	 */
1345	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1346	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1347	    cfq_class_idle(cfqq))) {
1348		cfqq->slice_end = jiffies + 1;
1349		cfq_slice_expired(cfqd, 0);
1350	}
1351
1352	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1353	return 1;
1354}
1355
1356/*
1357 * task holds one reference to the queue, dropped when task exits. each rq
1358 * in-flight on this queue also holds a reference, dropped when rq is freed.
1359 *
1360 * queue lock must be held here.
1361 */
1362static void cfq_put_queue(struct cfq_queue *cfqq)
1363{
1364	struct cfq_data *cfqd = cfqq->cfqd;
1365
1366	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1367
1368	if (!atomic_dec_and_test(&cfqq->ref))
1369		return;
1370
1371	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1372	BUG_ON(rb_first(&cfqq->sort_list));
1373	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1374	BUG_ON(cfq_cfqq_on_rr(cfqq));
1375
1376	if (unlikely(cfqd->active_queue == cfqq)) {
1377		__cfq_slice_expired(cfqd, cfqq, 0);
1378		cfq_schedule_dispatch(cfqd);
1379	}
1380
1381	kmem_cache_free(cfq_pool, cfqq);
1382}
1383
1384/*
1385 * Must always be called with the rcu_read_lock() held
1386 */
1387static void
1388__call_for_each_cic(struct io_context *ioc,
1389		    void (*func)(struct io_context *, struct cfq_io_context *))
1390{
1391	struct cfq_io_context *cic;
1392	struct hlist_node *n;
1393
1394	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1395		func(ioc, cic);
1396}
1397
1398/*
1399 * Call func for each cic attached to this ioc.
1400 */
1401static void
1402call_for_each_cic(struct io_context *ioc,
1403		  void (*func)(struct io_context *, struct cfq_io_context *))
1404{
1405	rcu_read_lock();
1406	__call_for_each_cic(ioc, func);
1407	rcu_read_unlock();
1408}
1409
1410static void cfq_cic_free_rcu(struct rcu_head *head)
1411{
1412	struct cfq_io_context *cic;
1413
1414	cic = container_of(head, struct cfq_io_context, rcu_head);
1415
1416	kmem_cache_free(cfq_ioc_pool, cic);
1417	elv_ioc_count_dec(ioc_count);
1418
1419	if (ioc_gone) {
1420		/*
1421		 * CFQ scheduler is exiting, grab exit lock and check
1422		 * the pending io context count. If it hits zero,
1423		 * complete ioc_gone and set it back to NULL
1424		 */
1425		spin_lock(&ioc_gone_lock);
1426		if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1427			complete(ioc_gone);
1428			ioc_gone = NULL;
1429		}
1430		spin_unlock(&ioc_gone_lock);
1431	}
1432}
1433
1434static void cfq_cic_free(struct cfq_io_context *cic)
1435{
1436	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1437}
1438
1439static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1440{
1441	unsigned long flags;
1442
1443	BUG_ON(!cic->dead_key);
1444
1445	spin_lock_irqsave(&ioc->lock, flags);
1446	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1447	hlist_del_rcu(&cic->cic_list);
1448	spin_unlock_irqrestore(&ioc->lock, flags);
1449
1450	cfq_cic_free(cic);
1451}
1452
1453/*
1454 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1455 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1456 * and ->trim() which is called with the task lock held
1457 */
1458static void cfq_free_io_context(struct io_context *ioc)
1459{
1460	/*
1461	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1462	 * so no more cic's are allowed to be linked into this ioc.  So it
1463	 * should be ok to iterate over the known list, we will see all cic's
1464	 * since no new ones are added.
1465	 */
1466	__call_for_each_cic(ioc, cic_free_func);
1467}
1468
1469static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1470{
1471	if (unlikely(cfqq == cfqd->active_queue)) {
1472		__cfq_slice_expired(cfqd, cfqq, 0);
1473		cfq_schedule_dispatch(cfqd);
1474	}
1475
1476	cfq_put_queue(cfqq);
1477}
1478
1479static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1480					 struct cfq_io_context *cic)
1481{
1482	struct io_context *ioc = cic->ioc;
1483
1484	list_del_init(&cic->queue_list);
1485
1486	/*
1487	 * Make sure key == NULL is seen for dead queues
1488	 */
1489	smp_wmb();
1490	cic->dead_key = (unsigned long) cic->key;
1491	cic->key = NULL;
1492
1493	if (ioc->ioc_data == cic)
1494		rcu_assign_pointer(ioc->ioc_data, NULL);
1495
1496	if (cic->cfqq[BLK_RW_ASYNC]) {
1497		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1498		cic->cfqq[BLK_RW_ASYNC] = NULL;
1499	}
1500
1501	if (cic->cfqq[BLK_RW_SYNC]) {
1502		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1503		cic->cfqq[BLK_RW_SYNC] = NULL;
1504	}
1505}
1506
1507static void cfq_exit_single_io_context(struct io_context *ioc,
1508				       struct cfq_io_context *cic)
1509{
1510	struct cfq_data *cfqd = cic->key;
1511
1512	if (cfqd) {
1513		struct request_queue *q = cfqd->queue;
1514		unsigned long flags;
1515
1516		spin_lock_irqsave(q->queue_lock, flags);
1517
1518		/*
1519		 * Ensure we get a fresh copy of the ->key to prevent
1520		 * race between exiting task and queue
1521		 */
1522		smp_read_barrier_depends();
1523		if (cic->key)
1524			__cfq_exit_single_io_context(cfqd, cic);
1525
1526		spin_unlock_irqrestore(q->queue_lock, flags);
1527	}
1528}
1529
1530/*
1531 * The process that ioc belongs to has exited, we need to clean up
1532 * and put the internal structures we have that belongs to that process.
1533 */
1534static void cfq_exit_io_context(struct io_context *ioc)
1535{
1536	call_for_each_cic(ioc, cfq_exit_single_io_context);
1537}
1538
1539static struct cfq_io_context *
1540cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1541{
1542	struct cfq_io_context *cic;
1543
1544	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1545							cfqd->queue->node);
1546	if (cic) {
1547		cic->last_end_request = jiffies;
1548		INIT_LIST_HEAD(&cic->queue_list);
1549		INIT_HLIST_NODE(&cic->cic_list);
1550		cic->dtor = cfq_free_io_context;
1551		cic->exit = cfq_exit_io_context;
1552		elv_ioc_count_inc(ioc_count);
1553	}
1554
1555	return cic;
1556}
1557
1558static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1559{
1560	struct task_struct *tsk = current;
1561	int ioprio_class;
1562
1563	if (!cfq_cfqq_prio_changed(cfqq))
1564		return;
1565
1566	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1567	switch (ioprio_class) {
1568	default:
1569		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1570	case IOPRIO_CLASS_NONE:
1571		/*
1572		 * no prio set, inherit CPU scheduling settings
1573		 */
1574		cfqq->ioprio = task_nice_ioprio(tsk);
1575		cfqq->ioprio_class = task_nice_ioclass(tsk);
1576		break;
1577	case IOPRIO_CLASS_RT:
1578		cfqq->ioprio = task_ioprio(ioc);
1579		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1580		break;
1581	case IOPRIO_CLASS_BE:
1582		cfqq->ioprio = task_ioprio(ioc);
1583		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1584		break;
1585	case IOPRIO_CLASS_IDLE:
1586		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1587		cfqq->ioprio = 7;
1588		cfq_clear_cfqq_idle_window(cfqq);
1589		break;
1590	}
1591
1592	/*
1593	 * keep track of original prio settings in case we have to temporarily
1594	 * elevate the priority of this queue
1595	 */
1596	cfqq->org_ioprio = cfqq->ioprio;
1597	cfqq->org_ioprio_class = cfqq->ioprio_class;
1598	cfq_clear_cfqq_prio_changed(cfqq);
1599}
1600
1601static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1602{
1603	struct cfq_data *cfqd = cic->key;
1604	struct cfq_queue *cfqq;
1605	unsigned long flags;
1606
1607	if (unlikely(!cfqd))
1608		return;
1609
1610	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1611
1612	cfqq = cic->cfqq[BLK_RW_ASYNC];
1613	if (cfqq) {
1614		struct cfq_queue *new_cfqq;
1615		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1616						GFP_ATOMIC);
1617		if (new_cfqq) {
1618			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1619			cfq_put_queue(cfqq);
1620		}
1621	}
1622
1623	cfqq = cic->cfqq[BLK_RW_SYNC];
1624	if (cfqq)
1625		cfq_mark_cfqq_prio_changed(cfqq);
1626
1627	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1628}
1629
1630static void cfq_ioc_set_ioprio(struct io_context *ioc)
1631{
1632	call_for_each_cic(ioc, changed_ioprio);
1633	ioc->ioprio_changed = 0;
1634}
1635
1636static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1637			  pid_t pid, int is_sync)
1638{
1639	RB_CLEAR_NODE(&cfqq->rb_node);
1640	RB_CLEAR_NODE(&cfqq->p_node);
1641	INIT_LIST_HEAD(&cfqq->fifo);
1642
1643	atomic_set(&cfqq->ref, 0);
1644	cfqq->cfqd = cfqd;
1645
1646	cfq_mark_cfqq_prio_changed(cfqq);
1647
1648	if (is_sync) {
1649		if (!cfq_class_idle(cfqq))
1650			cfq_mark_cfqq_idle_window(cfqq);
1651		cfq_mark_cfqq_sync(cfqq);
1652	}
1653	cfqq->pid = pid;
1654}
1655
1656static struct cfq_queue *
1657cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1658		     struct io_context *ioc, gfp_t gfp_mask)
1659{
1660	struct cfq_queue *cfqq, *new_cfqq = NULL;
1661	struct cfq_io_context *cic;
1662
1663retry:
1664	cic = cfq_cic_lookup(cfqd, ioc);
1665	/* cic always exists here */
1666	cfqq = cic_to_cfqq(cic, is_sync);
1667
1668	/*
1669	 * Always try a new alloc if we fell back to the OOM cfqq
1670	 * originally, since it should just be a temporary situation.
1671	 */
1672	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1673		cfqq = NULL;
1674		if (new_cfqq) {
1675			cfqq = new_cfqq;
1676			new_cfqq = NULL;
1677		} else if (gfp_mask & __GFP_WAIT) {
1678			spin_unlock_irq(cfqd->queue->queue_lock);
1679			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1680					gfp_mask | __GFP_ZERO,
1681					cfqd->queue->node);
1682			spin_lock_irq(cfqd->queue->queue_lock);
1683			if (new_cfqq)
1684				goto retry;
1685		} else {
1686			cfqq = kmem_cache_alloc_node(cfq_pool,
1687					gfp_mask | __GFP_ZERO,
1688					cfqd->queue->node);
1689		}
1690
1691		if (cfqq) {
1692			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1693			cfq_init_prio_data(cfqq, ioc);
1694			cfq_log_cfqq(cfqd, cfqq, "alloced");
1695		} else
1696			cfqq = &cfqd->oom_cfqq;
1697	}
1698
1699	if (new_cfqq)
1700		kmem_cache_free(cfq_pool, new_cfqq);
1701
1702	return cfqq;
1703}
1704
1705static struct cfq_queue **
1706cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1707{
1708	switch (ioprio_class) {
1709	case IOPRIO_CLASS_RT:
1710		return &cfqd->async_cfqq[0][ioprio];
1711	case IOPRIO_CLASS_BE:
1712		return &cfqd->async_cfqq[1][ioprio];
1713	case IOPRIO_CLASS_IDLE:
1714		return &cfqd->async_idle_cfqq;
1715	default:
1716		BUG();
1717	}
1718}
1719
1720static struct cfq_queue *
1721cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1722	      gfp_t gfp_mask)
1723{
1724	const int ioprio = task_ioprio(ioc);
1725	const int ioprio_class = task_ioprio_class(ioc);
1726	struct cfq_queue **async_cfqq = NULL;
1727	struct cfq_queue *cfqq = NULL;
1728
1729	if (!is_sync) {
1730		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1731		cfqq = *async_cfqq;
1732	}
1733
1734	if (!cfqq)
1735		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1736
1737	/*
1738	 * pin the queue now that it's allocated, scheduler exit will prune it
1739	 */
1740	if (!is_sync && !(*async_cfqq)) {
1741		atomic_inc(&cfqq->ref);
1742		*async_cfqq = cfqq;
1743	}
1744
1745	atomic_inc(&cfqq->ref);
1746	return cfqq;
1747}
1748
1749/*
1750 * We drop cfq io contexts lazily, so we may find a dead one.
1751 */
1752static void
1753cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1754		  struct cfq_io_context *cic)
1755{
1756	unsigned long flags;
1757
1758	WARN_ON(!list_empty(&cic->queue_list));
1759
1760	spin_lock_irqsave(&ioc->lock, flags);
1761
1762	BUG_ON(ioc->ioc_data == cic);
1763
1764	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1765	hlist_del_rcu(&cic->cic_list);
1766	spin_unlock_irqrestore(&ioc->lock, flags);
1767
1768	cfq_cic_free(cic);
1769}
1770
1771static struct cfq_io_context *
1772cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1773{
1774	struct cfq_io_context *cic;
1775	unsigned long flags;
1776	void *k;
1777
1778	if (unlikely(!ioc))
1779		return NULL;
1780
1781	rcu_read_lock();
1782
1783	/*
1784	 * we maintain a last-hit cache, to avoid browsing over the tree
1785	 */
1786	cic = rcu_dereference(ioc->ioc_data);
1787	if (cic && cic->key == cfqd) {
1788		rcu_read_unlock();
1789		return cic;
1790	}
1791
1792	do {
1793		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1794		rcu_read_unlock();
1795		if (!cic)
1796			break;
1797		/* ->key must be copied to avoid race with cfq_exit_queue() */
1798		k = cic->key;
1799		if (unlikely(!k)) {
1800			cfq_drop_dead_cic(cfqd, ioc, cic);
1801			rcu_read_lock();
1802			continue;
1803		}
1804
1805		spin_lock_irqsave(&ioc->lock, flags);
1806		rcu_assign_pointer(ioc->ioc_data, cic);
1807		spin_unlock_irqrestore(&ioc->lock, flags);
1808		break;
1809	} while (1);
1810
1811	return cic;
1812}
1813
1814/*
1815 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1816 * the process specific cfq io context when entered from the block layer.
1817 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1818 */
1819static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1820			struct cfq_io_context *cic, gfp_t gfp_mask)
1821{
1822	unsigned long flags;
1823	int ret;
1824
1825	ret = radix_tree_preload(gfp_mask);
1826	if (!ret) {
1827		cic->ioc = ioc;
1828		cic->key = cfqd;
1829
1830		spin_lock_irqsave(&ioc->lock, flags);
1831		ret = radix_tree_insert(&ioc->radix_root,
1832						(unsigned long) cfqd, cic);
1833		if (!ret)
1834			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1835		spin_unlock_irqrestore(&ioc->lock, flags);
1836
1837		radix_tree_preload_end();
1838
1839		if (!ret) {
1840			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1841			list_add(&cic->queue_list, &cfqd->cic_list);
1842			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1843		}
1844	}
1845
1846	if (ret)
1847		printk(KERN_ERR "cfq: cic link failed!\n");
1848
1849	return ret;
1850}
1851
1852/*
1853 * Setup general io context and cfq io context. There can be several cfq
1854 * io contexts per general io context, if this process is doing io to more
1855 * than one device managed by cfq.
1856 */
1857static struct cfq_io_context *
1858cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1859{
1860	struct io_context *ioc = NULL;
1861	struct cfq_io_context *cic;
1862
1863	might_sleep_if(gfp_mask & __GFP_WAIT);
1864
1865	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1866	if (!ioc)
1867		return NULL;
1868
1869	cic = cfq_cic_lookup(cfqd, ioc);
1870	if (cic)
1871		goto out;
1872
1873	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1874	if (cic == NULL)
1875		goto err;
1876
1877	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1878		goto err_free;
1879
1880out:
1881	smp_read_barrier_depends();
1882	if (unlikely(ioc->ioprio_changed))
1883		cfq_ioc_set_ioprio(ioc);
1884
1885	return cic;
1886err_free:
1887	cfq_cic_free(cic);
1888err:
1889	put_io_context(ioc);
1890	return NULL;
1891}
1892
1893static void
1894cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1895{
1896	unsigned long elapsed = jiffies - cic->last_end_request;
1897	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1898
1899	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1900	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1901	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1902}
1903
1904static void
1905cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1906		       struct request *rq)
1907{
1908	sector_t sdist;
1909	u64 total;
1910
1911	if (!cic->last_request_pos)
1912		sdist = 0;
1913	else if (cic->last_request_pos < blk_rq_pos(rq))
1914		sdist = blk_rq_pos(rq) - cic->last_request_pos;
1915	else
1916		sdist = cic->last_request_pos - blk_rq_pos(rq);
1917
1918	/*
1919	 * Don't allow the seek distance to get too large from the
1920	 * odd fragment, pagein, etc
1921	 */
1922	if (cic->seek_samples <= 60) /* second&third seek */
1923		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1924	else
1925		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1926
1927	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1928	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1929	total = cic->seek_total + (cic->seek_samples/2);
1930	do_div(total, cic->seek_samples);
1931	cic->seek_mean = (sector_t)total;
1932}
1933
1934/*
1935 * Disable idle window if the process thinks too long or seeks so much that
1936 * it doesn't matter
1937 */
1938static void
1939cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1940		       struct cfq_io_context *cic)
1941{
1942	int old_idle, enable_idle;
1943
1944	/*
1945	 * Don't idle for async or idle io prio class
1946	 */
1947	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1948		return;
1949
1950	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1951
1952	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1953	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1954		enable_idle = 0;
1955	else if (sample_valid(cic->ttime_samples)) {
1956		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1957			enable_idle = 0;
1958		else
1959			enable_idle = 1;
1960	}
1961
1962	if (old_idle != enable_idle) {
1963		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1964		if (enable_idle)
1965			cfq_mark_cfqq_idle_window(cfqq);
1966		else
1967			cfq_clear_cfqq_idle_window(cfqq);
1968	}
1969}
1970
1971/*
1972 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1973 * no or if we aren't sure, a 1 will cause a preempt.
1974 */
1975static int
1976cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1977		   struct request *rq)
1978{
1979	struct cfq_queue *cfqq;
1980
1981	cfqq = cfqd->active_queue;
1982	if (!cfqq)
1983		return 0;
1984
1985	if (cfq_slice_used(cfqq))
1986		return 1;
1987
1988	if (cfq_class_idle(new_cfqq))
1989		return 0;
1990
1991	if (cfq_class_idle(cfqq))
1992		return 1;
1993
1994	/*
1995	 * if the new request is sync, but the currently running queue is
1996	 * not, let the sync request have priority.
1997	 */
1998	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1999		return 1;
2000
2001	/*
2002	 * So both queues are sync. Let the new request get disk time if
2003	 * it's a metadata request and the current queue is doing regular IO.
2004	 */
2005	if (rq_is_meta(rq) && !cfqq->meta_pending)
2006		return 1;
2007
2008	/*
2009	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2010	 */
2011	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2012		return 1;
2013
2014	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2015		return 0;
2016
2017	/*
2018	 * if this request is as-good as one we would expect from the
2019	 * current cfqq, let it preempt
2020	 */
2021	if (cfq_rq_close(cfqd, rq))
2022		return 1;
2023
2024	return 0;
2025}
2026
2027/*
2028 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2029 * let it have half of its nominal slice.
2030 */
2031static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2032{
2033	cfq_log_cfqq(cfqd, cfqq, "preempt");
2034	cfq_slice_expired(cfqd, 1);
2035
2036	/*
2037	 * Put the new queue at the front of the of the current list,
2038	 * so we know that it will be selected next.
2039	 */
2040	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2041
2042	cfq_service_tree_add(cfqd, cfqq, 1);
2043
2044	cfqq->slice_end = 0;
2045	cfq_mark_cfqq_slice_new(cfqq);
2046}
2047
2048/*
2049 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2050 * something we should do about it
2051 */
2052static void
2053cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2054		struct request *rq)
2055{
2056	struct cfq_io_context *cic = RQ_CIC(rq);
2057
2058	cfqd->rq_queued++;
2059	if (rq_is_meta(rq))
2060		cfqq->meta_pending++;
2061
2062	cfq_update_io_thinktime(cfqd, cic);
2063	cfq_update_io_seektime(cfqd, cic, rq);
2064	cfq_update_idle_window(cfqd, cfqq, cic);
2065
2066	cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2067
2068	if (cfqq == cfqd->active_queue) {
2069		/*
2070		 * Remember that we saw a request from this process, but
2071		 * don't start queuing just yet. Otherwise we risk seeing lots
2072		 * of tiny requests, because we disrupt the normal plugging
2073		 * and merging. If the request is already larger than a single
2074		 * page, let it rip immediately. For that case we assume that
2075		 * merging is already done. Ditto for a busy system that
2076		 * has other work pending, don't risk delaying until the
2077		 * idle timer unplug to continue working.
2078		 */
2079		if (cfq_cfqq_wait_request(cfqq)) {
2080			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2081			    cfqd->busy_queues > 1) {
2082				del_timer(&cfqd->idle_slice_timer);
2083			__blk_run_queue(cfqd->queue);
2084			}
2085			cfq_mark_cfqq_must_dispatch(cfqq);
2086		}
2087	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2088		/*
2089		 * not the active queue - expire current slice if it is
2090		 * idle and has expired it's mean thinktime or this new queue
2091		 * has some old slice time left and is of higher priority or
2092		 * this new queue is RT and the current one is BE
2093		 */
2094		cfq_preempt_queue(cfqd, cfqq);
2095		__blk_run_queue(cfqd->queue);
2096	}
2097}
2098
2099static void cfq_insert_request(struct request_queue *q, struct request *rq)
2100{
2101	struct cfq_data *cfqd = q->elevator->elevator_data;
2102	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2103
2104	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2105	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2106
2107	cfq_add_rq_rb(rq);
2108
2109	list_add_tail(&rq->queuelist, &cfqq->fifo);
2110
2111	cfq_rq_enqueued(cfqd, cfqq, rq);
2112}
2113
2114/*
2115 * Update hw_tag based on peak queue depth over 50 samples under
2116 * sufficient load.
2117 */
2118static void cfq_update_hw_tag(struct cfq_data *cfqd)
2119{
2120	if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2121		cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2122
2123	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2124	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2125		return;
2126
2127	if (cfqd->hw_tag_samples++ < 50)
2128		return;
2129
2130	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2131		cfqd->hw_tag = 1;
2132	else
2133		cfqd->hw_tag = 0;
2134
2135	cfqd->hw_tag_samples = 0;
2136	cfqd->rq_in_driver_peak = 0;
2137}
2138
2139static void cfq_completed_request(struct request_queue *q, struct request *rq)
2140{
2141	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2142	struct cfq_data *cfqd = cfqq->cfqd;
2143	const int sync = rq_is_sync(rq);
2144	unsigned long now;
2145
2146	now = jiffies;
2147	cfq_log_cfqq(cfqd, cfqq, "complete");
2148
2149	cfq_update_hw_tag(cfqd);
2150
2151	WARN_ON(!cfqd->rq_in_driver[sync]);
2152	WARN_ON(!cfqq->dispatched);
2153	cfqd->rq_in_driver[sync]--;
2154	cfqq->dispatched--;
2155
2156	if (cfq_cfqq_sync(cfqq))
2157		cfqd->sync_flight--;
2158
2159	if (sync)
2160		RQ_CIC(rq)->last_end_request = now;
2161
2162	/*
2163	 * If this is the active queue, check if it needs to be expired,
2164	 * or if we want to idle in case it has no pending requests.
2165	 */
2166	if (cfqd->active_queue == cfqq) {
2167		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2168
2169		if (cfq_cfqq_slice_new(cfqq)) {
2170			cfq_set_prio_slice(cfqd, cfqq);
2171			cfq_clear_cfqq_slice_new(cfqq);
2172		}
2173		/*
2174		 * If there are no requests waiting in this queue, and
2175		 * there are other queues ready to issue requests, AND
2176		 * those other queues are issuing requests within our
2177		 * mean seek distance, give them a chance to run instead
2178		 * of idling.
2179		 */
2180		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2181			cfq_slice_expired(cfqd, 1);
2182		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2183			 sync && !rq_noidle(rq))
2184			cfq_arm_slice_timer(cfqd);
2185	}
2186
2187	if (!rq_in_driver(cfqd))
2188		cfq_schedule_dispatch(cfqd);
2189}
2190
2191/*
2192 * we temporarily boost lower priority queues if they are holding fs exclusive
2193 * resources. they are boosted to normal prio (CLASS_BE/4)
2194 */
2195static void cfq_prio_boost(struct cfq_queue *cfqq)
2196{
2197	if (has_fs_excl()) {
2198		/*
2199		 * boost idle prio on transactions that would lock out other
2200		 * users of the filesystem
2201		 */
2202		if (cfq_class_idle(cfqq))
2203			cfqq->ioprio_class = IOPRIO_CLASS_BE;
2204		if (cfqq->ioprio > IOPRIO_NORM)
2205			cfqq->ioprio = IOPRIO_NORM;
2206	} else {
2207		/*
2208		 * check if we need to unboost the queue
2209		 */
2210		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2211			cfqq->ioprio_class = cfqq->org_ioprio_class;
2212		if (cfqq->ioprio != cfqq->org_ioprio)
2213			cfqq->ioprio = cfqq->org_ioprio;
2214	}
2215}
2216
2217static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2218{
2219	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2220		cfq_mark_cfqq_must_alloc_slice(cfqq);
2221		return ELV_MQUEUE_MUST;
2222	}
2223
2224	return ELV_MQUEUE_MAY;
2225}
2226
2227static int cfq_may_queue(struct request_queue *q, int rw)
2228{
2229	struct cfq_data *cfqd = q->elevator->elevator_data;
2230	struct task_struct *tsk = current;
2231	struct cfq_io_context *cic;
2232	struct cfq_queue *cfqq;
2233
2234	/*
2235	 * don't force setup of a queue from here, as a call to may_queue
2236	 * does not necessarily imply that a request actually will be queued.
2237	 * so just lookup a possibly existing queue, or return 'may queue'
2238	 * if that fails
2239	 */
2240	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2241	if (!cic)
2242		return ELV_MQUEUE_MAY;
2243
2244	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2245	if (cfqq) {
2246		cfq_init_prio_data(cfqq, cic->ioc);
2247		cfq_prio_boost(cfqq);
2248
2249		return __cfq_may_queue(cfqq);
2250	}
2251
2252	return ELV_MQUEUE_MAY;
2253}
2254
2255/*
2256 * queue lock held here
2257 */
2258static void cfq_put_request(struct request *rq)
2259{
2260	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2261
2262	if (cfqq) {
2263		const int rw = rq_data_dir(rq);
2264
2265		BUG_ON(!cfqq->allocated[rw]);
2266		cfqq->allocated[rw]--;
2267
2268		put_io_context(RQ_CIC(rq)->ioc);
2269
2270		rq->elevator_private = NULL;
2271		rq->elevator_private2 = NULL;
2272
2273		cfq_put_queue(cfqq);
2274	}
2275}
2276
2277/*
2278 * Allocate cfq data structures associated with this request.
2279 */
2280static int
2281cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2282{
2283	struct cfq_data *cfqd = q->elevator->elevator_data;
2284	struct cfq_io_context *cic;
2285	const int rw = rq_data_dir(rq);
2286	const int is_sync = rq_is_sync(rq);
2287	struct cfq_queue *cfqq;
2288	unsigned long flags;
2289
2290	might_sleep_if(gfp_mask & __GFP_WAIT);
2291
2292	cic = cfq_get_io_context(cfqd, gfp_mask);
2293
2294	spin_lock_irqsave(q->queue_lock, flags);
2295
2296	if (!cic)
2297		goto queue_fail;
2298
2299	cfqq = cic_to_cfqq(cic, is_sync);
2300	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2301		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2302		cic_set_cfqq(cic, cfqq, is_sync);
2303	}
2304
2305	cfqq->allocated[rw]++;
2306	atomic_inc(&cfqq->ref);
2307
2308	spin_unlock_irqrestore(q->queue_lock, flags);
2309
2310	rq->elevator_private = cic;
2311	rq->elevator_private2 = cfqq;
2312	return 0;
2313
2314queue_fail:
2315	if (cic)
2316		put_io_context(cic->ioc);
2317
2318	cfq_schedule_dispatch(cfqd);
2319	spin_unlock_irqrestore(q->queue_lock, flags);
2320	cfq_log(cfqd, "set_request fail");
2321	return 1;
2322}
2323
2324static void cfq_kick_queue(struct work_struct *work)
2325{
2326	struct cfq_data *cfqd =
2327		container_of(work, struct cfq_data, unplug_work);
2328	struct request_queue *q = cfqd->queue;
2329
2330	spin_lock_irq(q->queue_lock);
2331	__blk_run_queue(cfqd->queue);
2332	spin_unlock_irq(q->queue_lock);
2333}
2334
2335/*
2336 * Timer running if the active_queue is currently idling inside its time slice
2337 */
2338static void cfq_idle_slice_timer(unsigned long data)
2339{
2340	struct cfq_data *cfqd = (struct cfq_data *) data;
2341	struct cfq_queue *cfqq;
2342	unsigned long flags;
2343	int timed_out = 1;
2344
2345	cfq_log(cfqd, "idle timer fired");
2346
2347	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2348
2349	cfqq = cfqd->active_queue;
2350	if (cfqq) {
2351		timed_out = 0;
2352
2353		/*
2354		 * We saw a request before the queue expired, let it through
2355		 */
2356		if (cfq_cfqq_must_dispatch(cfqq))
2357			goto out_kick;
2358
2359		/*
2360		 * expired
2361		 */
2362		if (cfq_slice_used(cfqq))
2363			goto expire;
2364
2365		/*
2366		 * only expire and reinvoke request handler, if there are
2367		 * other queues with pending requests
2368		 */
2369		if (!cfqd->busy_queues)
2370			goto out_cont;
2371
2372		/*
2373		 * not expired and it has a request pending, let it dispatch
2374		 */
2375		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2376			goto out_kick;
2377	}
2378expire:
2379	cfq_slice_expired(cfqd, timed_out);
2380out_kick:
2381	cfq_schedule_dispatch(cfqd);
2382out_cont:
2383	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2384}
2385
2386static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2387{
2388	del_timer_sync(&cfqd->idle_slice_timer);
2389	cancel_work_sync(&cfqd->unplug_work);
2390}
2391
2392static void cfq_put_async_queues(struct cfq_data *cfqd)
2393{
2394	int i;
2395
2396	for (i = 0; i < IOPRIO_BE_NR; i++) {
2397		if (cfqd->async_cfqq[0][i])
2398			cfq_put_queue(cfqd->async_cfqq[0][i]);
2399		if (cfqd->async_cfqq[1][i])
2400			cfq_put_queue(cfqd->async_cfqq[1][i]);
2401	}
2402
2403	if (cfqd->async_idle_cfqq)
2404		cfq_put_queue(cfqd->async_idle_cfqq);
2405}
2406
2407static void cfq_exit_queue(struct elevator_queue *e)
2408{
2409	struct cfq_data *cfqd = e->elevator_data;
2410	struct request_queue *q = cfqd->queue;
2411
2412	cfq_shutdown_timer_wq(cfqd);
2413
2414	spin_lock_irq(q->queue_lock);
2415
2416	if (cfqd->active_queue)
2417		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2418
2419	while (!list_empty(&cfqd->cic_list)) {
2420		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2421							struct cfq_io_context,
2422							queue_list);
2423
2424		__cfq_exit_single_io_context(cfqd, cic);
2425	}
2426
2427	cfq_put_async_queues(cfqd);
2428
2429	spin_unlock_irq(q->queue_lock);
2430
2431	cfq_shutdown_timer_wq(cfqd);
2432
2433	kfree(cfqd);
2434}
2435
2436static void *cfq_init_queue(struct request_queue *q)
2437{
2438	struct cfq_data *cfqd;
2439	int i;
2440
2441	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2442	if (!cfqd)
2443		return NULL;
2444
2445	cfqd->service_tree = CFQ_RB_ROOT;
2446
2447	/*
2448	 * Not strictly needed (since RB_ROOT just clears the node and we
2449	 * zeroed cfqd on alloc), but better be safe in case someone decides
2450	 * to add magic to the rb code
2451	 */
2452	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2453		cfqd->prio_trees[i] = RB_ROOT;
2454
2455	/*
2456	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2457	 * Grab a permanent reference to it, so that the normal code flow
2458	 * will not attempt to free it.
2459	 */
2460	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2461	atomic_inc(&cfqd->oom_cfqq.ref);
2462
2463	INIT_LIST_HEAD(&cfqd->cic_list);
2464
2465	cfqd->queue = q;
2466
2467	init_timer(&cfqd->idle_slice_timer);
2468	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2469	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2470
2471	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2472
2473	cfqd->cfq_quantum = cfq_quantum;
2474	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2475	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2476	cfqd->cfq_back_max = cfq_back_max;
2477	cfqd->cfq_back_penalty = cfq_back_penalty;
2478	cfqd->cfq_slice[0] = cfq_slice_async;
2479	cfqd->cfq_slice[1] = cfq_slice_sync;
2480	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2481	cfqd->cfq_slice_idle = cfq_slice_idle;
2482	cfqd->hw_tag = 1;
2483
2484	return cfqd;
2485}
2486
2487static void cfq_slab_kill(void)
2488{
2489	/*
2490	 * Caller already ensured that pending RCU callbacks are completed,
2491	 * so we should have no busy allocations at this point.
2492	 */
2493	if (cfq_pool)
2494		kmem_cache_destroy(cfq_pool);
2495	if (cfq_ioc_pool)
2496		kmem_cache_destroy(cfq_ioc_pool);
2497}
2498
2499static int __init cfq_slab_setup(void)
2500{
2501	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2502	if (!cfq_pool)
2503		goto fail;
2504
2505	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2506	if (!cfq_ioc_pool)
2507		goto fail;
2508
2509	return 0;
2510fail:
2511	cfq_slab_kill();
2512	return -ENOMEM;
2513}
2514
2515/*
2516 * sysfs parts below -->
2517 */
2518static ssize_t
2519cfq_var_show(unsigned int var, char *page)
2520{
2521	return sprintf(page, "%d\n", var);
2522}
2523
2524static ssize_t
2525cfq_var_store(unsigned int *var, const char *page, size_t count)
2526{
2527	char *p = (char *) page;
2528
2529	*var = simple_strtoul(p, &p, 10);
2530	return count;
2531}
2532
2533#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2534static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
2535{									\
2536	struct cfq_data *cfqd = e->elevator_data;			\
2537	unsigned int __data = __VAR;					\
2538	if (__CONV)							\
2539		__data = jiffies_to_msecs(__data);			\
2540	return cfq_var_show(__data, (page));				\
2541}
2542SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2543SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2544SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2545SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2546SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2547SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2548SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2549SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2550SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2551#undef SHOW_FUNCTION
2552
2553#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2554static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
2555{									\
2556	struct cfq_data *cfqd = e->elevator_data;			\
2557	unsigned int __data;						\
2558	int ret = cfq_var_store(&__data, (page), count);		\
2559	if (__data < (MIN))						\
2560		__data = (MIN);						\
2561	else if (__data > (MAX))					\
2562		__data = (MAX);						\
2563	if (__CONV)							\
2564		*(__PTR) = msecs_to_jiffies(__data);			\
2565	else								\
2566		*(__PTR) = __data;					\
2567	return ret;							\
2568}
2569STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2570STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2571		UINT_MAX, 1);
2572STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2573		UINT_MAX, 1);
2574STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2575STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2576		UINT_MAX, 0);
2577STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2578STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2579STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2580STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2581		UINT_MAX, 0);
2582#undef STORE_FUNCTION
2583
2584#define CFQ_ATTR(name) \
2585	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2586
2587static struct elv_fs_entry cfq_attrs[] = {
2588	CFQ_ATTR(quantum),
2589	CFQ_ATTR(fifo_expire_sync),
2590	CFQ_ATTR(fifo_expire_async),
2591	CFQ_ATTR(back_seek_max),
2592	CFQ_ATTR(back_seek_penalty),
2593	CFQ_ATTR(slice_sync),
2594	CFQ_ATTR(slice_async),
2595	CFQ_ATTR(slice_async_rq),
2596	CFQ_ATTR(slice_idle),
2597	__ATTR_NULL
2598};
2599
2600static struct elevator_type iosched_cfq = {
2601	.ops = {
2602		.elevator_merge_fn = 		cfq_merge,
2603		.elevator_merged_fn =		cfq_merged_request,
2604		.elevator_merge_req_fn =	cfq_merged_requests,
2605		.elevator_allow_merge_fn =	cfq_allow_merge,
2606		.elevator_dispatch_fn =		cfq_dispatch_requests,
2607		.elevator_add_req_fn =		cfq_insert_request,
2608		.elevator_activate_req_fn =	cfq_activate_request,
2609		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2610		.elevator_queue_empty_fn =	cfq_queue_empty,
2611		.elevator_completed_req_fn =	cfq_completed_request,
2612		.elevator_former_req_fn =	elv_rb_former_request,
2613		.elevator_latter_req_fn =	elv_rb_latter_request,
2614		.elevator_set_req_fn =		cfq_set_request,
2615		.elevator_put_req_fn =		cfq_put_request,
2616		.elevator_may_queue_fn =	cfq_may_queue,
2617		.elevator_init_fn =		cfq_init_queue,
2618		.elevator_exit_fn =		cfq_exit_queue,
2619		.trim =				cfq_free_io_context,
2620	},
2621	.elevator_attrs =	cfq_attrs,
2622	.elevator_name =	"cfq",
2623	.elevator_owner =	THIS_MODULE,
2624};
2625
2626static int __init cfq_init(void)
2627{
2628	/*
2629	 * could be 0 on HZ < 1000 setups
2630	 */
2631	if (!cfq_slice_async)
2632		cfq_slice_async = 1;
2633	if (!cfq_slice_idle)
2634		cfq_slice_idle = 1;
2635
2636	if (cfq_slab_setup())
2637		return -ENOMEM;
2638
2639	elv_register(&iosched_cfq);
2640
2641	return 0;
2642}
2643
2644static void __exit cfq_exit(void)
2645{
2646	DECLARE_COMPLETION_ONSTACK(all_gone);
2647	elv_unregister(&iosched_cfq);
2648	ioc_gone = &all_gone;
2649	/* ioc_gone's update must be visible before reading ioc_count */
2650	smp_wmb();
2651
2652	/*
2653	 * this also protects us from entering cfq_slab_kill() with
2654	 * pending RCU callbacks
2655	 */
2656	if (elv_ioc_count_read(ioc_count))
2657		wait_for_completion(&all_gone);
2658	cfq_slab_kill();
2659}
2660
2661module_init(cfq_init);
2662module_exit(cfq_exit);
2663
2664MODULE_AUTHOR("Jens Axboe");
2665MODULE_LICENSE("GPL");
2666MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2667