cfq-iosched.c revision b706f64281b24d8b1fdc8ae883700131d365c412
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY		(HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT		(2)
40
41#define CFQ_SLICE_SCALE		(5)
42#define CFQ_HW_QUEUE_MIN	(5)
43
44#define RQ_CIC(rq)		\
45	((struct cfq_io_context *) (rq)->elevator_private)
46#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
47
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
50
51static DEFINE_PER_CPU(unsigned long, ioc_count);
52static struct completion *ioc_gone;
53static DEFINE_SPINLOCK(ioc_gone_lock);
54
55#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
56#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59#define sample_valid(samples)	((samples) > 80)
60
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68	struct rb_root rb;
69	struct rb_node *left;
70};
71#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
72
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77	/* reference count */
78	atomic_t ref;
79	/* various state flags, see below */
80	unsigned int flags;
81	/* parent cfq_data */
82	struct cfq_data *cfqd;
83	/* service_tree member */
84	struct rb_node rb_node;
85	/* service_tree key */
86	unsigned long rb_key;
87	/* prio tree member */
88	struct rb_node p_node;
89	/* prio tree root we belong to, if any */
90	struct rb_root *p_root;
91	/* sorted list of pending requests */
92	struct rb_root sort_list;
93	/* if fifo isn't expired, next request to serve */
94	struct request *next_rq;
95	/* requests queued in sort_list */
96	int queued[2];
97	/* currently allocated requests */
98	int allocated[2];
99	/* fifo list of requests in sort_list */
100	struct list_head fifo;
101
102	unsigned long slice_end;
103	long slice_resid;
104	unsigned int slice_dispatch;
105
106	/* pending metadata requests */
107	int meta_pending;
108	/* number of requests that are on the dispatch list or inside driver */
109	int dispatched;
110
111	/* io prio of this group */
112	unsigned short ioprio, org_ioprio;
113	unsigned short ioprio_class, org_ioprio_class;
114
115	pid_t pid;
116};
117
118/*
119 * Per block device queue structure
120 */
121struct cfq_data {
122	struct request_queue *queue;
123
124	/*
125	 * rr list of queues with requests and the count of them
126	 */
127	struct cfq_rb_root service_tree;
128
129	/*
130	 * Each priority tree is sorted by next_request position.  These
131	 * trees are used when determining if two or more queues are
132	 * interleaving requests (see cfq_close_cooperator).
133	 */
134	struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136	unsigned int busy_queues;
137	/*
138	 * Used to track any pending rt requests so we can pre-empt current
139	 * non-RT cfqq in service when this value is non-zero.
140	 */
141	unsigned int busy_rt_queues;
142
143	int rq_in_driver;
144	int sync_flight;
145
146	/*
147	 * queue-depth detection
148	 */
149	int rq_queued;
150	int hw_tag;
151	int hw_tag_samples;
152	int rq_in_driver_peak;
153
154	/*
155	 * idle window management
156	 */
157	struct timer_list idle_slice_timer;
158	struct work_struct unplug_work;
159
160	struct cfq_queue *active_queue;
161	struct cfq_io_context *active_cic;
162
163	/*
164	 * async queue for each priority case
165	 */
166	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
167	struct cfq_queue *async_idle_cfqq;
168
169	sector_t last_position;
170
171	/*
172	 * tunables, see top of file
173	 */
174	unsigned int cfq_quantum;
175	unsigned int cfq_fifo_expire[2];
176	unsigned int cfq_back_penalty;
177	unsigned int cfq_back_max;
178	unsigned int cfq_slice[2];
179	unsigned int cfq_slice_async_rq;
180	unsigned int cfq_slice_idle;
181
182	struct list_head cic_list;
183
184	/*
185	 * Fallback dummy cfqq for extreme OOM conditions
186	 */
187	struct cfq_queue oom_cfqq;
188};
189
190enum cfqq_state_flags {
191	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
192	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
193	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
194	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
195	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
196	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
197	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
198	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
199	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
200	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
201	CFQ_CFQQ_FLAG_coop,		/* has done a coop jump of the queue */
202};
203
204#define CFQ_CFQQ_FNS(name)						\
205static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
206{									\
207	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
208}									\
209static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
210{									\
211	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
212}									\
213static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
214{									\
215	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
216}
217
218CFQ_CFQQ_FNS(on_rr);
219CFQ_CFQQ_FNS(wait_request);
220CFQ_CFQQ_FNS(must_dispatch);
221CFQ_CFQQ_FNS(must_alloc);
222CFQ_CFQQ_FNS(must_alloc_slice);
223CFQ_CFQQ_FNS(fifo_expire);
224CFQ_CFQQ_FNS(idle_window);
225CFQ_CFQQ_FNS(prio_changed);
226CFQ_CFQQ_FNS(slice_new);
227CFQ_CFQQ_FNS(sync);
228CFQ_CFQQ_FNS(coop);
229#undef CFQ_CFQQ_FNS
230
231#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
232	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
233#define cfq_log(cfqd, fmt, args...)	\
234	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
235
236static void cfq_dispatch_insert(struct request_queue *, struct request *);
237static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
238				       struct io_context *, gfp_t);
239static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
240						struct io_context *);
241
242static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
243					    int is_sync)
244{
245	return cic->cfqq[!!is_sync];
246}
247
248static inline void cic_set_cfqq(struct cfq_io_context *cic,
249				struct cfq_queue *cfqq, int is_sync)
250{
251	cic->cfqq[!!is_sync] = cfqq;
252}
253
254/*
255 * We regard a request as SYNC, if it's either a read or has the SYNC bit
256 * set (in which case it could also be direct WRITE).
257 */
258static inline int cfq_bio_sync(struct bio *bio)
259{
260	if (bio_data_dir(bio) == READ || bio_sync(bio))
261		return 1;
262
263	return 0;
264}
265
266/*
267 * scheduler run of queue, if there are requests pending and no one in the
268 * driver that will restart queueing
269 */
270static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
271{
272	if (cfqd->busy_queues) {
273		cfq_log(cfqd, "schedule dispatch");
274		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
275	}
276}
277
278static int cfq_queue_empty(struct request_queue *q)
279{
280	struct cfq_data *cfqd = q->elevator->elevator_data;
281
282	return !cfqd->busy_queues;
283}
284
285/*
286 * Scale schedule slice based on io priority. Use the sync time slice only
287 * if a queue is marked sync and has sync io queued. A sync queue with async
288 * io only, should not get full sync slice length.
289 */
290static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
291				 unsigned short prio)
292{
293	const int base_slice = cfqd->cfq_slice[sync];
294
295	WARN_ON(prio >= IOPRIO_BE_NR);
296
297	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
298}
299
300static inline int
301cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
302{
303	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
304}
305
306static inline void
307cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
308{
309	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
310	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
311}
312
313/*
314 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
315 * isn't valid until the first request from the dispatch is activated
316 * and the slice time set.
317 */
318static inline int cfq_slice_used(struct cfq_queue *cfqq)
319{
320	if (cfq_cfqq_slice_new(cfqq))
321		return 0;
322	if (time_before(jiffies, cfqq->slice_end))
323		return 0;
324
325	return 1;
326}
327
328/*
329 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
330 * We choose the request that is closest to the head right now. Distance
331 * behind the head is penalized and only allowed to a certain extent.
332 */
333static struct request *
334cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
335{
336	sector_t last, s1, s2, d1 = 0, d2 = 0;
337	unsigned long back_max;
338#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
339#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
340	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
341
342	if (rq1 == NULL || rq1 == rq2)
343		return rq2;
344	if (rq2 == NULL)
345		return rq1;
346
347	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
348		return rq1;
349	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
350		return rq2;
351	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
352		return rq1;
353	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
354		return rq2;
355
356	s1 = blk_rq_pos(rq1);
357	s2 = blk_rq_pos(rq2);
358
359	last = cfqd->last_position;
360
361	/*
362	 * by definition, 1KiB is 2 sectors
363	 */
364	back_max = cfqd->cfq_back_max * 2;
365
366	/*
367	 * Strict one way elevator _except_ in the case where we allow
368	 * short backward seeks which are biased as twice the cost of a
369	 * similar forward seek.
370	 */
371	if (s1 >= last)
372		d1 = s1 - last;
373	else if (s1 + back_max >= last)
374		d1 = (last - s1) * cfqd->cfq_back_penalty;
375	else
376		wrap |= CFQ_RQ1_WRAP;
377
378	if (s2 >= last)
379		d2 = s2 - last;
380	else if (s2 + back_max >= last)
381		d2 = (last - s2) * cfqd->cfq_back_penalty;
382	else
383		wrap |= CFQ_RQ2_WRAP;
384
385	/* Found required data */
386
387	/*
388	 * By doing switch() on the bit mask "wrap" we avoid having to
389	 * check two variables for all permutations: --> faster!
390	 */
391	switch (wrap) {
392	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
393		if (d1 < d2)
394			return rq1;
395		else if (d2 < d1)
396			return rq2;
397		else {
398			if (s1 >= s2)
399				return rq1;
400			else
401				return rq2;
402		}
403
404	case CFQ_RQ2_WRAP:
405		return rq1;
406	case CFQ_RQ1_WRAP:
407		return rq2;
408	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
409	default:
410		/*
411		 * Since both rqs are wrapped,
412		 * start with the one that's further behind head
413		 * (--> only *one* back seek required),
414		 * since back seek takes more time than forward.
415		 */
416		if (s1 <= s2)
417			return rq1;
418		else
419			return rq2;
420	}
421}
422
423/*
424 * The below is leftmost cache rbtree addon
425 */
426static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
427{
428	if (!root->left)
429		root->left = rb_first(&root->rb);
430
431	if (root->left)
432		return rb_entry(root->left, struct cfq_queue, rb_node);
433
434	return NULL;
435}
436
437static void rb_erase_init(struct rb_node *n, struct rb_root *root)
438{
439	rb_erase(n, root);
440	RB_CLEAR_NODE(n);
441}
442
443static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
444{
445	if (root->left == n)
446		root->left = NULL;
447	rb_erase_init(n, &root->rb);
448}
449
450/*
451 * would be nice to take fifo expire time into account as well
452 */
453static struct request *
454cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
455		  struct request *last)
456{
457	struct rb_node *rbnext = rb_next(&last->rb_node);
458	struct rb_node *rbprev = rb_prev(&last->rb_node);
459	struct request *next = NULL, *prev = NULL;
460
461	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
462
463	if (rbprev)
464		prev = rb_entry_rq(rbprev);
465
466	if (rbnext)
467		next = rb_entry_rq(rbnext);
468	else {
469		rbnext = rb_first(&cfqq->sort_list);
470		if (rbnext && rbnext != &last->rb_node)
471			next = rb_entry_rq(rbnext);
472	}
473
474	return cfq_choose_req(cfqd, next, prev);
475}
476
477static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
478				      struct cfq_queue *cfqq)
479{
480	/*
481	 * just an approximation, should be ok.
482	 */
483	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
484		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
485}
486
487/*
488 * The cfqd->service_tree holds all pending cfq_queue's that have
489 * requests waiting to be processed. It is sorted in the order that
490 * we will service the queues.
491 */
492static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
493				 int add_front)
494{
495	struct rb_node **p, *parent;
496	struct cfq_queue *__cfqq;
497	unsigned long rb_key;
498	int left;
499
500	if (cfq_class_idle(cfqq)) {
501		rb_key = CFQ_IDLE_DELAY;
502		parent = rb_last(&cfqd->service_tree.rb);
503		if (parent && parent != &cfqq->rb_node) {
504			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
505			rb_key += __cfqq->rb_key;
506		} else
507			rb_key += jiffies;
508	} else if (!add_front) {
509		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
510		rb_key += cfqq->slice_resid;
511		cfqq->slice_resid = 0;
512	} else
513		rb_key = 0;
514
515	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
516		/*
517		 * same position, nothing more to do
518		 */
519		if (rb_key == cfqq->rb_key)
520			return;
521
522		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
523	}
524
525	left = 1;
526	parent = NULL;
527	p = &cfqd->service_tree.rb.rb_node;
528	while (*p) {
529		struct rb_node **n;
530
531		parent = *p;
532		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
533
534		/*
535		 * sort RT queues first, we always want to give
536		 * preference to them. IDLE queues goes to the back.
537		 * after that, sort on the next service time.
538		 */
539		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
540			n = &(*p)->rb_left;
541		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
542			n = &(*p)->rb_right;
543		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
544			n = &(*p)->rb_left;
545		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
546			n = &(*p)->rb_right;
547		else if (rb_key < __cfqq->rb_key)
548			n = &(*p)->rb_left;
549		else
550			n = &(*p)->rb_right;
551
552		if (n == &(*p)->rb_right)
553			left = 0;
554
555		p = n;
556	}
557
558	if (left)
559		cfqd->service_tree.left = &cfqq->rb_node;
560
561	cfqq->rb_key = rb_key;
562	rb_link_node(&cfqq->rb_node, parent, p);
563	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
564}
565
566static struct cfq_queue *
567cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
568		     sector_t sector, struct rb_node **ret_parent,
569		     struct rb_node ***rb_link)
570{
571	struct rb_node **p, *parent;
572	struct cfq_queue *cfqq = NULL;
573
574	parent = NULL;
575	p = &root->rb_node;
576	while (*p) {
577		struct rb_node **n;
578
579		parent = *p;
580		cfqq = rb_entry(parent, struct cfq_queue, p_node);
581
582		/*
583		 * Sort strictly based on sector.  Smallest to the left,
584		 * largest to the right.
585		 */
586		if (sector > blk_rq_pos(cfqq->next_rq))
587			n = &(*p)->rb_right;
588		else if (sector < blk_rq_pos(cfqq->next_rq))
589			n = &(*p)->rb_left;
590		else
591			break;
592		p = n;
593		cfqq = NULL;
594	}
595
596	*ret_parent = parent;
597	if (rb_link)
598		*rb_link = p;
599	return cfqq;
600}
601
602static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
603{
604	struct rb_node **p, *parent;
605	struct cfq_queue *__cfqq;
606
607	if (cfqq->p_root) {
608		rb_erase(&cfqq->p_node, cfqq->p_root);
609		cfqq->p_root = NULL;
610	}
611
612	if (cfq_class_idle(cfqq))
613		return;
614	if (!cfqq->next_rq)
615		return;
616
617	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
618	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
619				      blk_rq_pos(cfqq->next_rq), &parent, &p);
620	if (!__cfqq) {
621		rb_link_node(&cfqq->p_node, parent, p);
622		rb_insert_color(&cfqq->p_node, cfqq->p_root);
623	} else
624		cfqq->p_root = NULL;
625}
626
627/*
628 * Update cfqq's position in the service tree.
629 */
630static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
631{
632	/*
633	 * Resorting requires the cfqq to be on the RR list already.
634	 */
635	if (cfq_cfqq_on_rr(cfqq)) {
636		cfq_service_tree_add(cfqd, cfqq, 0);
637		cfq_prio_tree_add(cfqd, cfqq);
638	}
639}
640
641/*
642 * add to busy list of queues for service, trying to be fair in ordering
643 * the pending list according to last request service
644 */
645static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
646{
647	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
648	BUG_ON(cfq_cfqq_on_rr(cfqq));
649	cfq_mark_cfqq_on_rr(cfqq);
650	cfqd->busy_queues++;
651	if (cfq_class_rt(cfqq))
652		cfqd->busy_rt_queues++;
653
654	cfq_resort_rr_list(cfqd, cfqq);
655}
656
657/*
658 * Called when the cfqq no longer has requests pending, remove it from
659 * the service tree.
660 */
661static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
662{
663	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
664	BUG_ON(!cfq_cfqq_on_rr(cfqq));
665	cfq_clear_cfqq_on_rr(cfqq);
666
667	if (!RB_EMPTY_NODE(&cfqq->rb_node))
668		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
669	if (cfqq->p_root) {
670		rb_erase(&cfqq->p_node, cfqq->p_root);
671		cfqq->p_root = NULL;
672	}
673
674	BUG_ON(!cfqd->busy_queues);
675	cfqd->busy_queues--;
676	if (cfq_class_rt(cfqq))
677		cfqd->busy_rt_queues--;
678}
679
680/*
681 * rb tree support functions
682 */
683static void cfq_del_rq_rb(struct request *rq)
684{
685	struct cfq_queue *cfqq = RQ_CFQQ(rq);
686	struct cfq_data *cfqd = cfqq->cfqd;
687	const int sync = rq_is_sync(rq);
688
689	BUG_ON(!cfqq->queued[sync]);
690	cfqq->queued[sync]--;
691
692	elv_rb_del(&cfqq->sort_list, rq);
693
694	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
695		cfq_del_cfqq_rr(cfqd, cfqq);
696}
697
698static void cfq_add_rq_rb(struct request *rq)
699{
700	struct cfq_queue *cfqq = RQ_CFQQ(rq);
701	struct cfq_data *cfqd = cfqq->cfqd;
702	struct request *__alias, *prev;
703
704	cfqq->queued[rq_is_sync(rq)]++;
705
706	/*
707	 * looks a little odd, but the first insert might return an alias.
708	 * if that happens, put the alias on the dispatch list
709	 */
710	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
711		cfq_dispatch_insert(cfqd->queue, __alias);
712
713	if (!cfq_cfqq_on_rr(cfqq))
714		cfq_add_cfqq_rr(cfqd, cfqq);
715
716	/*
717	 * check if this request is a better next-serve candidate
718	 */
719	prev = cfqq->next_rq;
720	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
721
722	/*
723	 * adjust priority tree position, if ->next_rq changes
724	 */
725	if (prev != cfqq->next_rq)
726		cfq_prio_tree_add(cfqd, cfqq);
727
728	BUG_ON(!cfqq->next_rq);
729}
730
731static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
732{
733	elv_rb_del(&cfqq->sort_list, rq);
734	cfqq->queued[rq_is_sync(rq)]--;
735	cfq_add_rq_rb(rq);
736}
737
738static struct request *
739cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
740{
741	struct task_struct *tsk = current;
742	struct cfq_io_context *cic;
743	struct cfq_queue *cfqq;
744
745	cic = cfq_cic_lookup(cfqd, tsk->io_context);
746	if (!cic)
747		return NULL;
748
749	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
750	if (cfqq) {
751		sector_t sector = bio->bi_sector + bio_sectors(bio);
752
753		return elv_rb_find(&cfqq->sort_list, sector);
754	}
755
756	return NULL;
757}
758
759static void cfq_activate_request(struct request_queue *q, struct request *rq)
760{
761	struct cfq_data *cfqd = q->elevator->elevator_data;
762
763	cfqd->rq_in_driver++;
764	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
765						cfqd->rq_in_driver);
766
767	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
768}
769
770static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
771{
772	struct cfq_data *cfqd = q->elevator->elevator_data;
773
774	WARN_ON(!cfqd->rq_in_driver);
775	cfqd->rq_in_driver--;
776	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
777						cfqd->rq_in_driver);
778}
779
780static void cfq_remove_request(struct request *rq)
781{
782	struct cfq_queue *cfqq = RQ_CFQQ(rq);
783
784	if (cfqq->next_rq == rq)
785		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
786
787	list_del_init(&rq->queuelist);
788	cfq_del_rq_rb(rq);
789
790	cfqq->cfqd->rq_queued--;
791	if (rq_is_meta(rq)) {
792		WARN_ON(!cfqq->meta_pending);
793		cfqq->meta_pending--;
794	}
795}
796
797static int cfq_merge(struct request_queue *q, struct request **req,
798		     struct bio *bio)
799{
800	struct cfq_data *cfqd = q->elevator->elevator_data;
801	struct request *__rq;
802
803	__rq = cfq_find_rq_fmerge(cfqd, bio);
804	if (__rq && elv_rq_merge_ok(__rq, bio)) {
805		*req = __rq;
806		return ELEVATOR_FRONT_MERGE;
807	}
808
809	return ELEVATOR_NO_MERGE;
810}
811
812static void cfq_merged_request(struct request_queue *q, struct request *req,
813			       int type)
814{
815	if (type == ELEVATOR_FRONT_MERGE) {
816		struct cfq_queue *cfqq = RQ_CFQQ(req);
817
818		cfq_reposition_rq_rb(cfqq, req);
819	}
820}
821
822static void
823cfq_merged_requests(struct request_queue *q, struct request *rq,
824		    struct request *next)
825{
826	/*
827	 * reposition in fifo if next is older than rq
828	 */
829	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
830	    time_before(next->start_time, rq->start_time))
831		list_move(&rq->queuelist, &next->queuelist);
832
833	cfq_remove_request(next);
834}
835
836static int cfq_allow_merge(struct request_queue *q, struct request *rq,
837			   struct bio *bio)
838{
839	struct cfq_data *cfqd = q->elevator->elevator_data;
840	struct cfq_io_context *cic;
841	struct cfq_queue *cfqq;
842
843	/*
844	 * Disallow merge of a sync bio into an async request.
845	 */
846	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
847		return 0;
848
849	/*
850	 * Lookup the cfqq that this bio will be queued with. Allow
851	 * merge only if rq is queued there.
852	 */
853	cic = cfq_cic_lookup(cfqd, current->io_context);
854	if (!cic)
855		return 0;
856
857	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
858	if (cfqq == RQ_CFQQ(rq))
859		return 1;
860
861	return 0;
862}
863
864static void __cfq_set_active_queue(struct cfq_data *cfqd,
865				   struct cfq_queue *cfqq)
866{
867	if (cfqq) {
868		cfq_log_cfqq(cfqd, cfqq, "set_active");
869		cfqq->slice_end = 0;
870		cfqq->slice_dispatch = 0;
871
872		cfq_clear_cfqq_wait_request(cfqq);
873		cfq_clear_cfqq_must_dispatch(cfqq);
874		cfq_clear_cfqq_must_alloc_slice(cfqq);
875		cfq_clear_cfqq_fifo_expire(cfqq);
876		cfq_mark_cfqq_slice_new(cfqq);
877
878		del_timer(&cfqd->idle_slice_timer);
879	}
880
881	cfqd->active_queue = cfqq;
882}
883
884/*
885 * current cfqq expired its slice (or was too idle), select new one
886 */
887static void
888__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
889		    int timed_out)
890{
891	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
892
893	if (cfq_cfqq_wait_request(cfqq))
894		del_timer(&cfqd->idle_slice_timer);
895
896	cfq_clear_cfqq_wait_request(cfqq);
897
898	/*
899	 * store what was left of this slice, if the queue idled/timed out
900	 */
901	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
902		cfqq->slice_resid = cfqq->slice_end - jiffies;
903		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
904	}
905
906	cfq_resort_rr_list(cfqd, cfqq);
907
908	if (cfqq == cfqd->active_queue)
909		cfqd->active_queue = NULL;
910
911	if (cfqd->active_cic) {
912		put_io_context(cfqd->active_cic->ioc);
913		cfqd->active_cic = NULL;
914	}
915}
916
917static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
918{
919	struct cfq_queue *cfqq = cfqd->active_queue;
920
921	if (cfqq)
922		__cfq_slice_expired(cfqd, cfqq, timed_out);
923}
924
925/*
926 * Get next queue for service. Unless we have a queue preemption,
927 * we'll simply select the first cfqq in the service tree.
928 */
929static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
930{
931	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
932		return NULL;
933
934	return cfq_rb_first(&cfqd->service_tree);
935}
936
937/*
938 * Get and set a new active queue for service.
939 */
940static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
941					      struct cfq_queue *cfqq)
942{
943	if (!cfqq) {
944		cfqq = cfq_get_next_queue(cfqd);
945		if (cfqq)
946			cfq_clear_cfqq_coop(cfqq);
947	}
948
949	__cfq_set_active_queue(cfqd, cfqq);
950	return cfqq;
951}
952
953static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
954					  struct request *rq)
955{
956	if (blk_rq_pos(rq) >= cfqd->last_position)
957		return blk_rq_pos(rq) - cfqd->last_position;
958	else
959		return cfqd->last_position - blk_rq_pos(rq);
960}
961
962#define CIC_SEEK_THR	8 * 1024
963#define CIC_SEEKY(cic)	((cic)->seek_mean > CIC_SEEK_THR)
964
965static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
966{
967	struct cfq_io_context *cic = cfqd->active_cic;
968	sector_t sdist = cic->seek_mean;
969
970	if (!sample_valid(cic->seek_samples))
971		sdist = CIC_SEEK_THR;
972
973	return cfq_dist_from_last(cfqd, rq) <= sdist;
974}
975
976static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
977				    struct cfq_queue *cur_cfqq)
978{
979	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
980	struct rb_node *parent, *node;
981	struct cfq_queue *__cfqq;
982	sector_t sector = cfqd->last_position;
983
984	if (RB_EMPTY_ROOT(root))
985		return NULL;
986
987	/*
988	 * First, if we find a request starting at the end of the last
989	 * request, choose it.
990	 */
991	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
992	if (__cfqq)
993		return __cfqq;
994
995	/*
996	 * If the exact sector wasn't found, the parent of the NULL leaf
997	 * will contain the closest sector.
998	 */
999	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1000	if (cfq_rq_close(cfqd, __cfqq->next_rq))
1001		return __cfqq;
1002
1003	if (blk_rq_pos(__cfqq->next_rq) < sector)
1004		node = rb_next(&__cfqq->p_node);
1005	else
1006		node = rb_prev(&__cfqq->p_node);
1007	if (!node)
1008		return NULL;
1009
1010	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1011	if (cfq_rq_close(cfqd, __cfqq->next_rq))
1012		return __cfqq;
1013
1014	return NULL;
1015}
1016
1017/*
1018 * cfqd - obvious
1019 * cur_cfqq - passed in so that we don't decide that the current queue is
1020 * 	      closely cooperating with itself.
1021 *
1022 * So, basically we're assuming that that cur_cfqq has dispatched at least
1023 * one request, and that cfqd->last_position reflects a position on the disk
1024 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1025 * assumption.
1026 */
1027static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1028					      struct cfq_queue *cur_cfqq,
1029					      int probe)
1030{
1031	struct cfq_queue *cfqq;
1032
1033	/*
1034	 * A valid cfq_io_context is necessary to compare requests against
1035	 * the seek_mean of the current cfqq.
1036	 */
1037	if (!cfqd->active_cic)
1038		return NULL;
1039
1040	/*
1041	 * We should notice if some of the queues are cooperating, eg
1042	 * working closely on the same area of the disk. In that case,
1043	 * we can group them together and don't waste time idling.
1044	 */
1045	cfqq = cfqq_close(cfqd, cur_cfqq);
1046	if (!cfqq)
1047		return NULL;
1048
1049	if (cfq_cfqq_coop(cfqq))
1050		return NULL;
1051
1052	if (!probe)
1053		cfq_mark_cfqq_coop(cfqq);
1054	return cfqq;
1055}
1056
1057static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1058{
1059	struct cfq_queue *cfqq = cfqd->active_queue;
1060	struct cfq_io_context *cic;
1061	unsigned long sl;
1062
1063	/*
1064	 * SSD device without seek penalty, disable idling. But only do so
1065	 * for devices that support queuing, otherwise we still have a problem
1066	 * with sync vs async workloads.
1067	 */
1068	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1069		return;
1070
1071	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1072	WARN_ON(cfq_cfqq_slice_new(cfqq));
1073
1074	/*
1075	 * idle is disabled, either manually or by past process history
1076	 */
1077	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1078		return;
1079
1080	/*
1081	 * still requests with the driver, don't idle
1082	 */
1083	if (cfqd->rq_in_driver)
1084		return;
1085
1086	/*
1087	 * task has exited, don't wait
1088	 */
1089	cic = cfqd->active_cic;
1090	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1091		return;
1092
1093	cfq_mark_cfqq_wait_request(cfqq);
1094
1095	/*
1096	 * we don't want to idle for seeks, but we do want to allow
1097	 * fair distribution of slice time for a process doing back-to-back
1098	 * seeks. so allow a little bit of time for him to submit a new rq
1099	 */
1100	sl = cfqd->cfq_slice_idle;
1101	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1102		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1103
1104	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1105	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1106}
1107
1108/*
1109 * Move request from internal lists to the request queue dispatch list.
1110 */
1111static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1112{
1113	struct cfq_data *cfqd = q->elevator->elevator_data;
1114	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1115
1116	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1117
1118	cfq_remove_request(rq);
1119	cfqq->dispatched++;
1120	elv_dispatch_sort(q, rq);
1121
1122	if (cfq_cfqq_sync(cfqq))
1123		cfqd->sync_flight++;
1124}
1125
1126/*
1127 * return expired entry, or NULL to just start from scratch in rbtree
1128 */
1129static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1130{
1131	struct cfq_data *cfqd = cfqq->cfqd;
1132	struct request *rq;
1133	int fifo;
1134
1135	if (cfq_cfqq_fifo_expire(cfqq))
1136		return NULL;
1137
1138	cfq_mark_cfqq_fifo_expire(cfqq);
1139
1140	if (list_empty(&cfqq->fifo))
1141		return NULL;
1142
1143	fifo = cfq_cfqq_sync(cfqq);
1144	rq = rq_entry_fifo(cfqq->fifo.next);
1145
1146	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1147		rq = NULL;
1148
1149	cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1150	return rq;
1151}
1152
1153static inline int
1154cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1155{
1156	const int base_rq = cfqd->cfq_slice_async_rq;
1157
1158	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1159
1160	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1161}
1162
1163/*
1164 * Select a queue for service. If we have a current active queue,
1165 * check whether to continue servicing it, or retrieve and set a new one.
1166 */
1167static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1168{
1169	struct cfq_queue *cfqq, *new_cfqq = NULL;
1170
1171	cfqq = cfqd->active_queue;
1172	if (!cfqq)
1173		goto new_queue;
1174
1175	/*
1176	 * The active queue has run out of time, expire it and select new.
1177	 */
1178	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1179		goto expire;
1180
1181	/*
1182	 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1183	 * cfqq.
1184	 */
1185	if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1186		/*
1187		 * We simulate this as cfqq timed out so that it gets to bank
1188		 * the remaining of its time slice.
1189		 */
1190		cfq_log_cfqq(cfqd, cfqq, "preempt");
1191		cfq_slice_expired(cfqd, 1);
1192		goto new_queue;
1193	}
1194
1195	/*
1196	 * The active queue has requests and isn't expired, allow it to
1197	 * dispatch.
1198	 */
1199	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1200		goto keep_queue;
1201
1202	/*
1203	 * If another queue has a request waiting within our mean seek
1204	 * distance, let it run.  The expire code will check for close
1205	 * cooperators and put the close queue at the front of the service
1206	 * tree.
1207	 */
1208	new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1209	if (new_cfqq)
1210		goto expire;
1211
1212	/*
1213	 * No requests pending. If the active queue still has requests in
1214	 * flight or is idling for a new request, allow either of these
1215	 * conditions to happen (or time out) before selecting a new queue.
1216	 */
1217	if (timer_pending(&cfqd->idle_slice_timer) ||
1218	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1219		cfqq = NULL;
1220		goto keep_queue;
1221	}
1222
1223expire:
1224	cfq_slice_expired(cfqd, 0);
1225new_queue:
1226	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1227keep_queue:
1228	return cfqq;
1229}
1230
1231static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1232{
1233	int dispatched = 0;
1234
1235	while (cfqq->next_rq) {
1236		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1237		dispatched++;
1238	}
1239
1240	BUG_ON(!list_empty(&cfqq->fifo));
1241	return dispatched;
1242}
1243
1244/*
1245 * Drain our current requests. Used for barriers and when switching
1246 * io schedulers on-the-fly.
1247 */
1248static int cfq_forced_dispatch(struct cfq_data *cfqd)
1249{
1250	struct cfq_queue *cfqq;
1251	int dispatched = 0;
1252
1253	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1254		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1255
1256	cfq_slice_expired(cfqd, 0);
1257
1258	BUG_ON(cfqd->busy_queues);
1259
1260	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1261	return dispatched;
1262}
1263
1264/*
1265 * Dispatch a request from cfqq, moving them to the request queue
1266 * dispatch list.
1267 */
1268static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1269{
1270	struct request *rq;
1271
1272	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1273
1274	/*
1275	 * follow expired path, else get first next available
1276	 */
1277	rq = cfq_check_fifo(cfqq);
1278	if (!rq)
1279		rq = cfqq->next_rq;
1280
1281	/*
1282	 * insert request into driver dispatch list
1283	 */
1284	cfq_dispatch_insert(cfqd->queue, rq);
1285
1286	if (!cfqd->active_cic) {
1287		struct cfq_io_context *cic = RQ_CIC(rq);
1288
1289		atomic_long_inc(&cic->ioc->refcount);
1290		cfqd->active_cic = cic;
1291	}
1292}
1293
1294/*
1295 * Find the cfqq that we need to service and move a request from that to the
1296 * dispatch list
1297 */
1298static int cfq_dispatch_requests(struct request_queue *q, int force)
1299{
1300	struct cfq_data *cfqd = q->elevator->elevator_data;
1301	struct cfq_queue *cfqq;
1302	unsigned int max_dispatch;
1303
1304	if (!cfqd->busy_queues)
1305		return 0;
1306
1307	if (unlikely(force))
1308		return cfq_forced_dispatch(cfqd);
1309
1310	cfqq = cfq_select_queue(cfqd);
1311	if (!cfqq)
1312		return 0;
1313
1314	/*
1315	 * If this is an async queue and we have sync IO in flight, let it wait
1316	 */
1317	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1318		return 0;
1319
1320	max_dispatch = cfqd->cfq_quantum;
1321	if (cfq_class_idle(cfqq))
1322		max_dispatch = 1;
1323
1324	/*
1325	 * Does this cfqq already have too much IO in flight?
1326	 */
1327	if (cfqq->dispatched >= max_dispatch) {
1328		/*
1329		 * idle queue must always only have a single IO in flight
1330		 */
1331		if (cfq_class_idle(cfqq))
1332			return 0;
1333
1334		/*
1335		 * We have other queues, don't allow more IO from this one
1336		 */
1337		if (cfqd->busy_queues > 1)
1338			return 0;
1339
1340		/*
1341		 * we are the only queue, allow up to 4 times of 'quantum'
1342		 */
1343		if (cfqq->dispatched >= 4 * max_dispatch)
1344			return 0;
1345	}
1346
1347	/*
1348	 * Dispatch a request from this cfqq
1349	 */
1350	cfq_dispatch_request(cfqd, cfqq);
1351	cfqq->slice_dispatch++;
1352	cfq_clear_cfqq_must_dispatch(cfqq);
1353
1354	/*
1355	 * expire an async queue immediately if it has used up its slice. idle
1356	 * queue always expire after 1 dispatch round.
1357	 */
1358	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1359	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1360	    cfq_class_idle(cfqq))) {
1361		cfqq->slice_end = jiffies + 1;
1362		cfq_slice_expired(cfqd, 0);
1363	}
1364
1365	cfq_log(cfqd, "dispatched a request");
1366	return 1;
1367}
1368
1369/*
1370 * task holds one reference to the queue, dropped when task exits. each rq
1371 * in-flight on this queue also holds a reference, dropped when rq is freed.
1372 *
1373 * queue lock must be held here.
1374 */
1375static void cfq_put_queue(struct cfq_queue *cfqq)
1376{
1377	struct cfq_data *cfqd = cfqq->cfqd;
1378
1379	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1380
1381	if (!atomic_dec_and_test(&cfqq->ref))
1382		return;
1383
1384	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1385	BUG_ON(rb_first(&cfqq->sort_list));
1386	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1387	BUG_ON(cfq_cfqq_on_rr(cfqq));
1388
1389	if (unlikely(cfqd->active_queue == cfqq)) {
1390		__cfq_slice_expired(cfqd, cfqq, 0);
1391		cfq_schedule_dispatch(cfqd);
1392	}
1393
1394	kmem_cache_free(cfq_pool, cfqq);
1395}
1396
1397/*
1398 * Must always be called with the rcu_read_lock() held
1399 */
1400static void
1401__call_for_each_cic(struct io_context *ioc,
1402		    void (*func)(struct io_context *, struct cfq_io_context *))
1403{
1404	struct cfq_io_context *cic;
1405	struct hlist_node *n;
1406
1407	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1408		func(ioc, cic);
1409}
1410
1411/*
1412 * Call func for each cic attached to this ioc.
1413 */
1414static void
1415call_for_each_cic(struct io_context *ioc,
1416		  void (*func)(struct io_context *, struct cfq_io_context *))
1417{
1418	rcu_read_lock();
1419	__call_for_each_cic(ioc, func);
1420	rcu_read_unlock();
1421}
1422
1423static void cfq_cic_free_rcu(struct rcu_head *head)
1424{
1425	struct cfq_io_context *cic;
1426
1427	cic = container_of(head, struct cfq_io_context, rcu_head);
1428
1429	kmem_cache_free(cfq_ioc_pool, cic);
1430	elv_ioc_count_dec(ioc_count);
1431
1432	if (ioc_gone) {
1433		/*
1434		 * CFQ scheduler is exiting, grab exit lock and check
1435		 * the pending io context count. If it hits zero,
1436		 * complete ioc_gone and set it back to NULL
1437		 */
1438		spin_lock(&ioc_gone_lock);
1439		if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1440			complete(ioc_gone);
1441			ioc_gone = NULL;
1442		}
1443		spin_unlock(&ioc_gone_lock);
1444	}
1445}
1446
1447static void cfq_cic_free(struct cfq_io_context *cic)
1448{
1449	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1450}
1451
1452static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1453{
1454	unsigned long flags;
1455
1456	BUG_ON(!cic->dead_key);
1457
1458	spin_lock_irqsave(&ioc->lock, flags);
1459	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1460	hlist_del_rcu(&cic->cic_list);
1461	spin_unlock_irqrestore(&ioc->lock, flags);
1462
1463	cfq_cic_free(cic);
1464}
1465
1466/*
1467 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1468 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1469 * and ->trim() which is called with the task lock held
1470 */
1471static void cfq_free_io_context(struct io_context *ioc)
1472{
1473	/*
1474	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1475	 * so no more cic's are allowed to be linked into this ioc.  So it
1476	 * should be ok to iterate over the known list, we will see all cic's
1477	 * since no new ones are added.
1478	 */
1479	__call_for_each_cic(ioc, cic_free_func);
1480}
1481
1482static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1483{
1484	if (unlikely(cfqq == cfqd->active_queue)) {
1485		__cfq_slice_expired(cfqd, cfqq, 0);
1486		cfq_schedule_dispatch(cfqd);
1487	}
1488
1489	cfq_put_queue(cfqq);
1490}
1491
1492static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1493					 struct cfq_io_context *cic)
1494{
1495	struct io_context *ioc = cic->ioc;
1496
1497	list_del_init(&cic->queue_list);
1498
1499	/*
1500	 * Make sure key == NULL is seen for dead queues
1501	 */
1502	smp_wmb();
1503	cic->dead_key = (unsigned long) cic->key;
1504	cic->key = NULL;
1505
1506	if (ioc->ioc_data == cic)
1507		rcu_assign_pointer(ioc->ioc_data, NULL);
1508
1509	if (cic->cfqq[BLK_RW_ASYNC]) {
1510		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1511		cic->cfqq[BLK_RW_ASYNC] = NULL;
1512	}
1513
1514	if (cic->cfqq[BLK_RW_SYNC]) {
1515		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1516		cic->cfqq[BLK_RW_SYNC] = NULL;
1517	}
1518}
1519
1520static void cfq_exit_single_io_context(struct io_context *ioc,
1521				       struct cfq_io_context *cic)
1522{
1523	struct cfq_data *cfqd = cic->key;
1524
1525	if (cfqd) {
1526		struct request_queue *q = cfqd->queue;
1527		unsigned long flags;
1528
1529		spin_lock_irqsave(q->queue_lock, flags);
1530
1531		/*
1532		 * Ensure we get a fresh copy of the ->key to prevent
1533		 * race between exiting task and queue
1534		 */
1535		smp_read_barrier_depends();
1536		if (cic->key)
1537			__cfq_exit_single_io_context(cfqd, cic);
1538
1539		spin_unlock_irqrestore(q->queue_lock, flags);
1540	}
1541}
1542
1543/*
1544 * The process that ioc belongs to has exited, we need to clean up
1545 * and put the internal structures we have that belongs to that process.
1546 */
1547static void cfq_exit_io_context(struct io_context *ioc)
1548{
1549	call_for_each_cic(ioc, cfq_exit_single_io_context);
1550}
1551
1552static struct cfq_io_context *
1553cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1554{
1555	struct cfq_io_context *cic;
1556
1557	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1558							cfqd->queue->node);
1559	if (cic) {
1560		cic->last_end_request = jiffies;
1561		INIT_LIST_HEAD(&cic->queue_list);
1562		INIT_HLIST_NODE(&cic->cic_list);
1563		cic->dtor = cfq_free_io_context;
1564		cic->exit = cfq_exit_io_context;
1565		elv_ioc_count_inc(ioc_count);
1566	}
1567
1568	return cic;
1569}
1570
1571static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1572{
1573	struct task_struct *tsk = current;
1574	int ioprio_class;
1575
1576	if (!cfq_cfqq_prio_changed(cfqq))
1577		return;
1578
1579	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1580	switch (ioprio_class) {
1581	default:
1582		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1583	case IOPRIO_CLASS_NONE:
1584		/*
1585		 * no prio set, inherit CPU scheduling settings
1586		 */
1587		cfqq->ioprio = task_nice_ioprio(tsk);
1588		cfqq->ioprio_class = task_nice_ioclass(tsk);
1589		break;
1590	case IOPRIO_CLASS_RT:
1591		cfqq->ioprio = task_ioprio(ioc);
1592		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1593		break;
1594	case IOPRIO_CLASS_BE:
1595		cfqq->ioprio = task_ioprio(ioc);
1596		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1597		break;
1598	case IOPRIO_CLASS_IDLE:
1599		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1600		cfqq->ioprio = 7;
1601		cfq_clear_cfqq_idle_window(cfqq);
1602		break;
1603	}
1604
1605	/*
1606	 * keep track of original prio settings in case we have to temporarily
1607	 * elevate the priority of this queue
1608	 */
1609	cfqq->org_ioprio = cfqq->ioprio;
1610	cfqq->org_ioprio_class = cfqq->ioprio_class;
1611	cfq_clear_cfqq_prio_changed(cfqq);
1612}
1613
1614static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1615{
1616	struct cfq_data *cfqd = cic->key;
1617	struct cfq_queue *cfqq;
1618	unsigned long flags;
1619
1620	if (unlikely(!cfqd))
1621		return;
1622
1623	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1624
1625	cfqq = cic->cfqq[BLK_RW_ASYNC];
1626	if (cfqq) {
1627		struct cfq_queue *new_cfqq;
1628		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1629						GFP_ATOMIC);
1630		if (new_cfqq) {
1631			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1632			cfq_put_queue(cfqq);
1633		}
1634	}
1635
1636	cfqq = cic->cfqq[BLK_RW_SYNC];
1637	if (cfqq)
1638		cfq_mark_cfqq_prio_changed(cfqq);
1639
1640	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1641}
1642
1643static void cfq_ioc_set_ioprio(struct io_context *ioc)
1644{
1645	call_for_each_cic(ioc, changed_ioprio);
1646	ioc->ioprio_changed = 0;
1647}
1648
1649static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1650			  pid_t pid, int is_sync)
1651{
1652	RB_CLEAR_NODE(&cfqq->rb_node);
1653	RB_CLEAR_NODE(&cfqq->p_node);
1654	INIT_LIST_HEAD(&cfqq->fifo);
1655
1656	atomic_set(&cfqq->ref, 0);
1657	cfqq->cfqd = cfqd;
1658
1659	cfq_mark_cfqq_prio_changed(cfqq);
1660
1661	if (is_sync) {
1662		if (!cfq_class_idle(cfqq))
1663			cfq_mark_cfqq_idle_window(cfqq);
1664		cfq_mark_cfqq_sync(cfqq);
1665	}
1666	cfqq->pid = pid;
1667}
1668
1669static struct cfq_queue *
1670cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1671		     struct io_context *ioc, gfp_t gfp_mask)
1672{
1673	struct cfq_queue *cfqq, *new_cfqq = NULL;
1674	struct cfq_io_context *cic;
1675
1676retry:
1677	cic = cfq_cic_lookup(cfqd, ioc);
1678	/* cic always exists here */
1679	cfqq = cic_to_cfqq(cic, is_sync);
1680
1681	/*
1682	 * Always try a new alloc if we fell back to the OOM cfqq
1683	 * originally, since it should just be a temporary situation.
1684	 */
1685	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1686		cfqq = NULL;
1687		if (new_cfqq) {
1688			cfqq = new_cfqq;
1689			new_cfqq = NULL;
1690		} else if (gfp_mask & __GFP_WAIT) {
1691			spin_unlock_irq(cfqd->queue->queue_lock);
1692			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1693					gfp_mask | __GFP_ZERO,
1694					cfqd->queue->node);
1695			spin_lock_irq(cfqd->queue->queue_lock);
1696			if (new_cfqq)
1697				goto retry;
1698		} else {
1699			cfqq = kmem_cache_alloc_node(cfq_pool,
1700					gfp_mask | __GFP_ZERO,
1701					cfqd->queue->node);
1702		}
1703
1704		if (cfqq) {
1705			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1706			cfq_init_prio_data(cfqq, ioc);
1707			cfq_log_cfqq(cfqd, cfqq, "alloced");
1708		} else
1709			cfqq = &cfqd->oom_cfqq;
1710	}
1711
1712	if (new_cfqq)
1713		kmem_cache_free(cfq_pool, new_cfqq);
1714
1715	return cfqq;
1716}
1717
1718static struct cfq_queue **
1719cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1720{
1721	switch (ioprio_class) {
1722	case IOPRIO_CLASS_RT:
1723		return &cfqd->async_cfqq[0][ioprio];
1724	case IOPRIO_CLASS_BE:
1725		return &cfqd->async_cfqq[1][ioprio];
1726	case IOPRIO_CLASS_IDLE:
1727		return &cfqd->async_idle_cfqq;
1728	default:
1729		BUG();
1730	}
1731}
1732
1733static struct cfq_queue *
1734cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1735	      gfp_t gfp_mask)
1736{
1737	const int ioprio = task_ioprio(ioc);
1738	const int ioprio_class = task_ioprio_class(ioc);
1739	struct cfq_queue **async_cfqq = NULL;
1740	struct cfq_queue *cfqq = NULL;
1741
1742	if (!is_sync) {
1743		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1744		cfqq = *async_cfqq;
1745	}
1746
1747	if (!cfqq)
1748		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1749
1750	/*
1751	 * pin the queue now that it's allocated, scheduler exit will prune it
1752	 */
1753	if (!is_sync && !(*async_cfqq)) {
1754		atomic_inc(&cfqq->ref);
1755		*async_cfqq = cfqq;
1756	}
1757
1758	atomic_inc(&cfqq->ref);
1759	return cfqq;
1760}
1761
1762/*
1763 * We drop cfq io contexts lazily, so we may find a dead one.
1764 */
1765static void
1766cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1767		  struct cfq_io_context *cic)
1768{
1769	unsigned long flags;
1770
1771	WARN_ON(!list_empty(&cic->queue_list));
1772
1773	spin_lock_irqsave(&ioc->lock, flags);
1774
1775	BUG_ON(ioc->ioc_data == cic);
1776
1777	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1778	hlist_del_rcu(&cic->cic_list);
1779	spin_unlock_irqrestore(&ioc->lock, flags);
1780
1781	cfq_cic_free(cic);
1782}
1783
1784static struct cfq_io_context *
1785cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1786{
1787	struct cfq_io_context *cic;
1788	unsigned long flags;
1789	void *k;
1790
1791	if (unlikely(!ioc))
1792		return NULL;
1793
1794	rcu_read_lock();
1795
1796	/*
1797	 * we maintain a last-hit cache, to avoid browsing over the tree
1798	 */
1799	cic = rcu_dereference(ioc->ioc_data);
1800	if (cic && cic->key == cfqd) {
1801		rcu_read_unlock();
1802		return cic;
1803	}
1804
1805	do {
1806		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1807		rcu_read_unlock();
1808		if (!cic)
1809			break;
1810		/* ->key must be copied to avoid race with cfq_exit_queue() */
1811		k = cic->key;
1812		if (unlikely(!k)) {
1813			cfq_drop_dead_cic(cfqd, ioc, cic);
1814			rcu_read_lock();
1815			continue;
1816		}
1817
1818		spin_lock_irqsave(&ioc->lock, flags);
1819		rcu_assign_pointer(ioc->ioc_data, cic);
1820		spin_unlock_irqrestore(&ioc->lock, flags);
1821		break;
1822	} while (1);
1823
1824	return cic;
1825}
1826
1827/*
1828 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1829 * the process specific cfq io context when entered from the block layer.
1830 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1831 */
1832static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1833			struct cfq_io_context *cic, gfp_t gfp_mask)
1834{
1835	unsigned long flags;
1836	int ret;
1837
1838	ret = radix_tree_preload(gfp_mask);
1839	if (!ret) {
1840		cic->ioc = ioc;
1841		cic->key = cfqd;
1842
1843		spin_lock_irqsave(&ioc->lock, flags);
1844		ret = radix_tree_insert(&ioc->radix_root,
1845						(unsigned long) cfqd, cic);
1846		if (!ret)
1847			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1848		spin_unlock_irqrestore(&ioc->lock, flags);
1849
1850		radix_tree_preload_end();
1851
1852		if (!ret) {
1853			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1854			list_add(&cic->queue_list, &cfqd->cic_list);
1855			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1856		}
1857	}
1858
1859	if (ret)
1860		printk(KERN_ERR "cfq: cic link failed!\n");
1861
1862	return ret;
1863}
1864
1865/*
1866 * Setup general io context and cfq io context. There can be several cfq
1867 * io contexts per general io context, if this process is doing io to more
1868 * than one device managed by cfq.
1869 */
1870static struct cfq_io_context *
1871cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1872{
1873	struct io_context *ioc = NULL;
1874	struct cfq_io_context *cic;
1875
1876	might_sleep_if(gfp_mask & __GFP_WAIT);
1877
1878	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1879	if (!ioc)
1880		return NULL;
1881
1882	cic = cfq_cic_lookup(cfqd, ioc);
1883	if (cic)
1884		goto out;
1885
1886	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1887	if (cic == NULL)
1888		goto err;
1889
1890	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1891		goto err_free;
1892
1893out:
1894	smp_read_barrier_depends();
1895	if (unlikely(ioc->ioprio_changed))
1896		cfq_ioc_set_ioprio(ioc);
1897
1898	return cic;
1899err_free:
1900	cfq_cic_free(cic);
1901err:
1902	put_io_context(ioc);
1903	return NULL;
1904}
1905
1906static void
1907cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1908{
1909	unsigned long elapsed = jiffies - cic->last_end_request;
1910	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1911
1912	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1913	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1914	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1915}
1916
1917static void
1918cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1919		       struct request *rq)
1920{
1921	sector_t sdist;
1922	u64 total;
1923
1924	if (!cic->last_request_pos)
1925		sdist = 0;
1926	else if (cic->last_request_pos < blk_rq_pos(rq))
1927		sdist = blk_rq_pos(rq) - cic->last_request_pos;
1928	else
1929		sdist = cic->last_request_pos - blk_rq_pos(rq);
1930
1931	/*
1932	 * Don't allow the seek distance to get too large from the
1933	 * odd fragment, pagein, etc
1934	 */
1935	if (cic->seek_samples <= 60) /* second&third seek */
1936		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1937	else
1938		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1939
1940	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1941	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1942	total = cic->seek_total + (cic->seek_samples/2);
1943	do_div(total, cic->seek_samples);
1944	cic->seek_mean = (sector_t)total;
1945}
1946
1947/*
1948 * Disable idle window if the process thinks too long or seeks so much that
1949 * it doesn't matter
1950 */
1951static void
1952cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1953		       struct cfq_io_context *cic)
1954{
1955	int old_idle, enable_idle;
1956
1957	/*
1958	 * Don't idle for async or idle io prio class
1959	 */
1960	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1961		return;
1962
1963	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1964
1965	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1966	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1967		enable_idle = 0;
1968	else if (sample_valid(cic->ttime_samples)) {
1969		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1970			enable_idle = 0;
1971		else
1972			enable_idle = 1;
1973	}
1974
1975	if (old_idle != enable_idle) {
1976		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1977		if (enable_idle)
1978			cfq_mark_cfqq_idle_window(cfqq);
1979		else
1980			cfq_clear_cfqq_idle_window(cfqq);
1981	}
1982}
1983
1984/*
1985 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1986 * no or if we aren't sure, a 1 will cause a preempt.
1987 */
1988static int
1989cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1990		   struct request *rq)
1991{
1992	struct cfq_queue *cfqq;
1993
1994	cfqq = cfqd->active_queue;
1995	if (!cfqq)
1996		return 0;
1997
1998	if (cfq_slice_used(cfqq))
1999		return 1;
2000
2001	if (cfq_class_idle(new_cfqq))
2002		return 0;
2003
2004	if (cfq_class_idle(cfqq))
2005		return 1;
2006
2007	/*
2008	 * if the new request is sync, but the currently running queue is
2009	 * not, let the sync request have priority.
2010	 */
2011	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2012		return 1;
2013
2014	/*
2015	 * So both queues are sync. Let the new request get disk time if
2016	 * it's a metadata request and the current queue is doing regular IO.
2017	 */
2018	if (rq_is_meta(rq) && !cfqq->meta_pending)
2019		return 1;
2020
2021	/*
2022	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2023	 */
2024	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2025		return 1;
2026
2027	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2028		return 0;
2029
2030	/*
2031	 * if this request is as-good as one we would expect from the
2032	 * current cfqq, let it preempt
2033	 */
2034	if (cfq_rq_close(cfqd, rq))
2035		return 1;
2036
2037	return 0;
2038}
2039
2040/*
2041 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2042 * let it have half of its nominal slice.
2043 */
2044static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2045{
2046	cfq_log_cfqq(cfqd, cfqq, "preempt");
2047	cfq_slice_expired(cfqd, 1);
2048
2049	/*
2050	 * Put the new queue at the front of the of the current list,
2051	 * so we know that it will be selected next.
2052	 */
2053	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2054
2055	cfq_service_tree_add(cfqd, cfqq, 1);
2056
2057	cfqq->slice_end = 0;
2058	cfq_mark_cfqq_slice_new(cfqq);
2059}
2060
2061/*
2062 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2063 * something we should do about it
2064 */
2065static void
2066cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2067		struct request *rq)
2068{
2069	struct cfq_io_context *cic = RQ_CIC(rq);
2070
2071	cfqd->rq_queued++;
2072	if (rq_is_meta(rq))
2073		cfqq->meta_pending++;
2074
2075	cfq_update_io_thinktime(cfqd, cic);
2076	cfq_update_io_seektime(cfqd, cic, rq);
2077	cfq_update_idle_window(cfqd, cfqq, cic);
2078
2079	cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2080
2081	if (cfqq == cfqd->active_queue) {
2082		/*
2083		 * Remember that we saw a request from this process, but
2084		 * don't start queuing just yet. Otherwise we risk seeing lots
2085		 * of tiny requests, because we disrupt the normal plugging
2086		 * and merging. If the request is already larger than a single
2087		 * page, let it rip immediately. For that case we assume that
2088		 * merging is already done. Ditto for a busy system that
2089		 * has other work pending, don't risk delaying until the
2090		 * idle timer unplug to continue working.
2091		 */
2092		if (cfq_cfqq_wait_request(cfqq)) {
2093			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2094			    cfqd->busy_queues > 1) {
2095				del_timer(&cfqd->idle_slice_timer);
2096			__blk_run_queue(cfqd->queue);
2097			}
2098			cfq_mark_cfqq_must_dispatch(cfqq);
2099		}
2100	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2101		/*
2102		 * not the active queue - expire current slice if it is
2103		 * idle and has expired it's mean thinktime or this new queue
2104		 * has some old slice time left and is of higher priority or
2105		 * this new queue is RT and the current one is BE
2106		 */
2107		cfq_preempt_queue(cfqd, cfqq);
2108		__blk_run_queue(cfqd->queue);
2109	}
2110}
2111
2112static void cfq_insert_request(struct request_queue *q, struct request *rq)
2113{
2114	struct cfq_data *cfqd = q->elevator->elevator_data;
2115	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2116
2117	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2118	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2119
2120	cfq_add_rq_rb(rq);
2121
2122	list_add_tail(&rq->queuelist, &cfqq->fifo);
2123
2124	cfq_rq_enqueued(cfqd, cfqq, rq);
2125}
2126
2127/*
2128 * Update hw_tag based on peak queue depth over 50 samples under
2129 * sufficient load.
2130 */
2131static void cfq_update_hw_tag(struct cfq_data *cfqd)
2132{
2133	if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2134		cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2135
2136	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2137	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2138		return;
2139
2140	if (cfqd->hw_tag_samples++ < 50)
2141		return;
2142
2143	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2144		cfqd->hw_tag = 1;
2145	else
2146		cfqd->hw_tag = 0;
2147
2148	cfqd->hw_tag_samples = 0;
2149	cfqd->rq_in_driver_peak = 0;
2150}
2151
2152static void cfq_completed_request(struct request_queue *q, struct request *rq)
2153{
2154	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2155	struct cfq_data *cfqd = cfqq->cfqd;
2156	const int sync = rq_is_sync(rq);
2157	unsigned long now;
2158
2159	now = jiffies;
2160	cfq_log_cfqq(cfqd, cfqq, "complete");
2161
2162	cfq_update_hw_tag(cfqd);
2163
2164	WARN_ON(!cfqd->rq_in_driver);
2165	WARN_ON(!cfqq->dispatched);
2166	cfqd->rq_in_driver--;
2167	cfqq->dispatched--;
2168
2169	if (cfq_cfqq_sync(cfqq))
2170		cfqd->sync_flight--;
2171
2172	if (sync)
2173		RQ_CIC(rq)->last_end_request = now;
2174
2175	/*
2176	 * If this is the active queue, check if it needs to be expired,
2177	 * or if we want to idle in case it has no pending requests.
2178	 */
2179	if (cfqd->active_queue == cfqq) {
2180		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2181
2182		if (cfq_cfqq_slice_new(cfqq)) {
2183			cfq_set_prio_slice(cfqd, cfqq);
2184			cfq_clear_cfqq_slice_new(cfqq);
2185		}
2186		/*
2187		 * If there are no requests waiting in this queue, and
2188		 * there are other queues ready to issue requests, AND
2189		 * those other queues are issuing requests within our
2190		 * mean seek distance, give them a chance to run instead
2191		 * of idling.
2192		 */
2193		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2194			cfq_slice_expired(cfqd, 1);
2195		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2196			 sync && !rq_noidle(rq))
2197			cfq_arm_slice_timer(cfqd);
2198	}
2199
2200	if (!cfqd->rq_in_driver)
2201		cfq_schedule_dispatch(cfqd);
2202}
2203
2204/*
2205 * we temporarily boost lower priority queues if they are holding fs exclusive
2206 * resources. they are boosted to normal prio (CLASS_BE/4)
2207 */
2208static void cfq_prio_boost(struct cfq_queue *cfqq)
2209{
2210	if (has_fs_excl()) {
2211		/*
2212		 * boost idle prio on transactions that would lock out other
2213		 * users of the filesystem
2214		 */
2215		if (cfq_class_idle(cfqq))
2216			cfqq->ioprio_class = IOPRIO_CLASS_BE;
2217		if (cfqq->ioprio > IOPRIO_NORM)
2218			cfqq->ioprio = IOPRIO_NORM;
2219	} else {
2220		/*
2221		 * check if we need to unboost the queue
2222		 */
2223		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2224			cfqq->ioprio_class = cfqq->org_ioprio_class;
2225		if (cfqq->ioprio != cfqq->org_ioprio)
2226			cfqq->ioprio = cfqq->org_ioprio;
2227	}
2228}
2229
2230static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2231{
2232	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2233	    !cfq_cfqq_must_alloc_slice(cfqq)) {
2234		cfq_mark_cfqq_must_alloc_slice(cfqq);
2235		return ELV_MQUEUE_MUST;
2236	}
2237
2238	return ELV_MQUEUE_MAY;
2239}
2240
2241static int cfq_may_queue(struct request_queue *q, int rw)
2242{
2243	struct cfq_data *cfqd = q->elevator->elevator_data;
2244	struct task_struct *tsk = current;
2245	struct cfq_io_context *cic;
2246	struct cfq_queue *cfqq;
2247
2248	/*
2249	 * don't force setup of a queue from here, as a call to may_queue
2250	 * does not necessarily imply that a request actually will be queued.
2251	 * so just lookup a possibly existing queue, or return 'may queue'
2252	 * if that fails
2253	 */
2254	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2255	if (!cic)
2256		return ELV_MQUEUE_MAY;
2257
2258	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2259	if (cfqq) {
2260		cfq_init_prio_data(cfqq, cic->ioc);
2261		cfq_prio_boost(cfqq);
2262
2263		return __cfq_may_queue(cfqq);
2264	}
2265
2266	return ELV_MQUEUE_MAY;
2267}
2268
2269/*
2270 * queue lock held here
2271 */
2272static void cfq_put_request(struct request *rq)
2273{
2274	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2275
2276	if (cfqq) {
2277		const int rw = rq_data_dir(rq);
2278
2279		BUG_ON(!cfqq->allocated[rw]);
2280		cfqq->allocated[rw]--;
2281
2282		put_io_context(RQ_CIC(rq)->ioc);
2283
2284		rq->elevator_private = NULL;
2285		rq->elevator_private2 = NULL;
2286
2287		cfq_put_queue(cfqq);
2288	}
2289}
2290
2291/*
2292 * Allocate cfq data structures associated with this request.
2293 */
2294static int
2295cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2296{
2297	struct cfq_data *cfqd = q->elevator->elevator_data;
2298	struct cfq_io_context *cic;
2299	const int rw = rq_data_dir(rq);
2300	const int is_sync = rq_is_sync(rq);
2301	struct cfq_queue *cfqq;
2302	unsigned long flags;
2303
2304	might_sleep_if(gfp_mask & __GFP_WAIT);
2305
2306	cic = cfq_get_io_context(cfqd, gfp_mask);
2307
2308	spin_lock_irqsave(q->queue_lock, flags);
2309
2310	if (!cic)
2311		goto queue_fail;
2312
2313	cfqq = cic_to_cfqq(cic, is_sync);
2314	if (!cfqq) {
2315		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2316		cic_set_cfqq(cic, cfqq, is_sync);
2317	}
2318
2319	cfqq->allocated[rw]++;
2320	cfq_clear_cfqq_must_alloc(cfqq);
2321	atomic_inc(&cfqq->ref);
2322
2323	spin_unlock_irqrestore(q->queue_lock, flags);
2324
2325	rq->elevator_private = cic;
2326	rq->elevator_private2 = cfqq;
2327	return 0;
2328
2329queue_fail:
2330	if (cic)
2331		put_io_context(cic->ioc);
2332
2333	cfq_schedule_dispatch(cfqd);
2334	spin_unlock_irqrestore(q->queue_lock, flags);
2335	cfq_log(cfqd, "set_request fail");
2336	return 1;
2337}
2338
2339static void cfq_kick_queue(struct work_struct *work)
2340{
2341	struct cfq_data *cfqd =
2342		container_of(work, struct cfq_data, unplug_work);
2343	struct request_queue *q = cfqd->queue;
2344
2345	spin_lock_irq(q->queue_lock);
2346	__blk_run_queue(cfqd->queue);
2347	spin_unlock_irq(q->queue_lock);
2348}
2349
2350/*
2351 * Timer running if the active_queue is currently idling inside its time slice
2352 */
2353static void cfq_idle_slice_timer(unsigned long data)
2354{
2355	struct cfq_data *cfqd = (struct cfq_data *) data;
2356	struct cfq_queue *cfqq;
2357	unsigned long flags;
2358	int timed_out = 1;
2359
2360	cfq_log(cfqd, "idle timer fired");
2361
2362	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2363
2364	cfqq = cfqd->active_queue;
2365	if (cfqq) {
2366		timed_out = 0;
2367
2368		/*
2369		 * We saw a request before the queue expired, let it through
2370		 */
2371		if (cfq_cfqq_must_dispatch(cfqq))
2372			goto out_kick;
2373
2374		/*
2375		 * expired
2376		 */
2377		if (cfq_slice_used(cfqq))
2378			goto expire;
2379
2380		/*
2381		 * only expire and reinvoke request handler, if there are
2382		 * other queues with pending requests
2383		 */
2384		if (!cfqd->busy_queues)
2385			goto out_cont;
2386
2387		/*
2388		 * not expired and it has a request pending, let it dispatch
2389		 */
2390		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2391			goto out_kick;
2392	}
2393expire:
2394	cfq_slice_expired(cfqd, timed_out);
2395out_kick:
2396	cfq_schedule_dispatch(cfqd);
2397out_cont:
2398	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2399}
2400
2401static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2402{
2403	del_timer_sync(&cfqd->idle_slice_timer);
2404	cancel_work_sync(&cfqd->unplug_work);
2405}
2406
2407static void cfq_put_async_queues(struct cfq_data *cfqd)
2408{
2409	int i;
2410
2411	for (i = 0; i < IOPRIO_BE_NR; i++) {
2412		if (cfqd->async_cfqq[0][i])
2413			cfq_put_queue(cfqd->async_cfqq[0][i]);
2414		if (cfqd->async_cfqq[1][i])
2415			cfq_put_queue(cfqd->async_cfqq[1][i]);
2416	}
2417
2418	if (cfqd->async_idle_cfqq)
2419		cfq_put_queue(cfqd->async_idle_cfqq);
2420}
2421
2422static void cfq_exit_queue(struct elevator_queue *e)
2423{
2424	struct cfq_data *cfqd = e->elevator_data;
2425	struct request_queue *q = cfqd->queue;
2426
2427	cfq_shutdown_timer_wq(cfqd);
2428
2429	spin_lock_irq(q->queue_lock);
2430
2431	if (cfqd->active_queue)
2432		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2433
2434	while (!list_empty(&cfqd->cic_list)) {
2435		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2436							struct cfq_io_context,
2437							queue_list);
2438
2439		__cfq_exit_single_io_context(cfqd, cic);
2440	}
2441
2442	cfq_put_async_queues(cfqd);
2443
2444	spin_unlock_irq(q->queue_lock);
2445
2446	cfq_shutdown_timer_wq(cfqd);
2447
2448	kfree(cfqd);
2449}
2450
2451static void *cfq_init_queue(struct request_queue *q)
2452{
2453	struct cfq_data *cfqd;
2454	int i;
2455
2456	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2457	if (!cfqd)
2458		return NULL;
2459
2460	cfqd->service_tree = CFQ_RB_ROOT;
2461
2462	/*
2463	 * Not strictly needed (since RB_ROOT just clears the node and we
2464	 * zeroed cfqd on alloc), but better be safe in case someone decides
2465	 * to add magic to the rb code
2466	 */
2467	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2468		cfqd->prio_trees[i] = RB_ROOT;
2469
2470	/*
2471	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2472	 * Grab a permanent reference to it, so that the normal code flow
2473	 * will not attempt to free it.
2474	 */
2475	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2476	atomic_inc(&cfqd->oom_cfqq.ref);
2477
2478	INIT_LIST_HEAD(&cfqd->cic_list);
2479
2480	cfqd->queue = q;
2481
2482	init_timer(&cfqd->idle_slice_timer);
2483	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2484	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2485
2486	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2487
2488	cfqd->cfq_quantum = cfq_quantum;
2489	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2490	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2491	cfqd->cfq_back_max = cfq_back_max;
2492	cfqd->cfq_back_penalty = cfq_back_penalty;
2493	cfqd->cfq_slice[0] = cfq_slice_async;
2494	cfqd->cfq_slice[1] = cfq_slice_sync;
2495	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2496	cfqd->cfq_slice_idle = cfq_slice_idle;
2497	cfqd->hw_tag = 1;
2498
2499	return cfqd;
2500}
2501
2502static void cfq_slab_kill(void)
2503{
2504	/*
2505	 * Caller already ensured that pending RCU callbacks are completed,
2506	 * so we should have no busy allocations at this point.
2507	 */
2508	if (cfq_pool)
2509		kmem_cache_destroy(cfq_pool);
2510	if (cfq_ioc_pool)
2511		kmem_cache_destroy(cfq_ioc_pool);
2512}
2513
2514static int __init cfq_slab_setup(void)
2515{
2516	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2517	if (!cfq_pool)
2518		goto fail;
2519
2520	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2521	if (!cfq_ioc_pool)
2522		goto fail;
2523
2524	return 0;
2525fail:
2526	cfq_slab_kill();
2527	return -ENOMEM;
2528}
2529
2530/*
2531 * sysfs parts below -->
2532 */
2533static ssize_t
2534cfq_var_show(unsigned int var, char *page)
2535{
2536	return sprintf(page, "%d\n", var);
2537}
2538
2539static ssize_t
2540cfq_var_store(unsigned int *var, const char *page, size_t count)
2541{
2542	char *p = (char *) page;
2543
2544	*var = simple_strtoul(p, &p, 10);
2545	return count;
2546}
2547
2548#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2549static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
2550{									\
2551	struct cfq_data *cfqd = e->elevator_data;			\
2552	unsigned int __data = __VAR;					\
2553	if (__CONV)							\
2554		__data = jiffies_to_msecs(__data);			\
2555	return cfq_var_show(__data, (page));				\
2556}
2557SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2558SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2559SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2560SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2561SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2562SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2563SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2564SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2565SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2566#undef SHOW_FUNCTION
2567
2568#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2569static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
2570{									\
2571	struct cfq_data *cfqd = e->elevator_data;			\
2572	unsigned int __data;						\
2573	int ret = cfq_var_store(&__data, (page), count);		\
2574	if (__data < (MIN))						\
2575		__data = (MIN);						\
2576	else if (__data > (MAX))					\
2577		__data = (MAX);						\
2578	if (__CONV)							\
2579		*(__PTR) = msecs_to_jiffies(__data);			\
2580	else								\
2581		*(__PTR) = __data;					\
2582	return ret;							\
2583}
2584STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2585STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2586		UINT_MAX, 1);
2587STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2588		UINT_MAX, 1);
2589STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2590STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2591		UINT_MAX, 0);
2592STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2593STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2594STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2595STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2596		UINT_MAX, 0);
2597#undef STORE_FUNCTION
2598
2599#define CFQ_ATTR(name) \
2600	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2601
2602static struct elv_fs_entry cfq_attrs[] = {
2603	CFQ_ATTR(quantum),
2604	CFQ_ATTR(fifo_expire_sync),
2605	CFQ_ATTR(fifo_expire_async),
2606	CFQ_ATTR(back_seek_max),
2607	CFQ_ATTR(back_seek_penalty),
2608	CFQ_ATTR(slice_sync),
2609	CFQ_ATTR(slice_async),
2610	CFQ_ATTR(slice_async_rq),
2611	CFQ_ATTR(slice_idle),
2612	__ATTR_NULL
2613};
2614
2615static struct elevator_type iosched_cfq = {
2616	.ops = {
2617		.elevator_merge_fn = 		cfq_merge,
2618		.elevator_merged_fn =		cfq_merged_request,
2619		.elevator_merge_req_fn =	cfq_merged_requests,
2620		.elevator_allow_merge_fn =	cfq_allow_merge,
2621		.elevator_dispatch_fn =		cfq_dispatch_requests,
2622		.elevator_add_req_fn =		cfq_insert_request,
2623		.elevator_activate_req_fn =	cfq_activate_request,
2624		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2625		.elevator_queue_empty_fn =	cfq_queue_empty,
2626		.elevator_completed_req_fn =	cfq_completed_request,
2627		.elevator_former_req_fn =	elv_rb_former_request,
2628		.elevator_latter_req_fn =	elv_rb_latter_request,
2629		.elevator_set_req_fn =		cfq_set_request,
2630		.elevator_put_req_fn =		cfq_put_request,
2631		.elevator_may_queue_fn =	cfq_may_queue,
2632		.elevator_init_fn =		cfq_init_queue,
2633		.elevator_exit_fn =		cfq_exit_queue,
2634		.trim =				cfq_free_io_context,
2635	},
2636	.elevator_attrs =	cfq_attrs,
2637	.elevator_name =	"cfq",
2638	.elevator_owner =	THIS_MODULE,
2639};
2640
2641static int __init cfq_init(void)
2642{
2643	/*
2644	 * could be 0 on HZ < 1000 setups
2645	 */
2646	if (!cfq_slice_async)
2647		cfq_slice_async = 1;
2648	if (!cfq_slice_idle)
2649		cfq_slice_idle = 1;
2650
2651	if (cfq_slab_setup())
2652		return -ENOMEM;
2653
2654	elv_register(&iosched_cfq);
2655
2656	return 0;
2657}
2658
2659static void __exit cfq_exit(void)
2660{
2661	DECLARE_COMPLETION_ONSTACK(all_gone);
2662	elv_unregister(&iosched_cfq);
2663	ioc_gone = &all_gone;
2664	/* ioc_gone's update must be visible before reading ioc_count */
2665	smp_wmb();
2666
2667	/*
2668	 * this also protects us from entering cfq_slab_kill() with
2669	 * pending RCU callbacks
2670	 */
2671	if (elv_ioc_count_read(ioc_count))
2672		wait_for_completion(&all_gone);
2673	cfq_slab_kill();
2674}
2675
2676module_init(cfq_init);
2677module_exit(cfq_exit);
2678
2679MODULE_AUTHOR("Jens Axboe");
2680MODULE_LICENSE("GPL");
2681MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2682