cfq-iosched.c revision b740d98f5614e34b4cff2e1e67826f007c8d4f30
1/*
2 *  linux/drivers/block/cfq-iosched.c
3 *
4 *  CFQ, or complete fairness queueing, disk scheduler.
5 *
6 *  Based on ideas from a previously unfinished io
7 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
8 *
9 *  Copyright (C) 2003 Jens Axboe <axboe@suse.de>
10 */
11#include <linux/kernel.h>
12#include <linux/fs.h>
13#include <linux/blkdev.h>
14#include <linux/elevator.h>
15#include <linux/bio.h>
16#include <linux/config.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/init.h>
20#include <linux/compiler.h>
21#include <linux/hash.h>
22#include <linux/rbtree.h>
23#include <linux/mempool.h>
24#include <linux/ioprio.h>
25#include <linux/writeback.h>
26
27/*
28 * tunables
29 */
30static int cfq_quantum = 4;		/* max queue in one round of service */
31static int cfq_queued = 8;		/* minimum rq allocate limit per-queue*/
32static int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
33static int cfq_back_max = 16 * 1024;	/* maximum backwards seek, in KiB */
34static int cfq_back_penalty = 2;	/* penalty of a backwards seek */
35
36static int cfq_slice_sync = HZ / 10;
37static int cfq_slice_async = HZ / 25;
38static int cfq_slice_async_rq = 2;
39static int cfq_slice_idle = HZ / 100;
40
41#define CFQ_IDLE_GRACE		(HZ / 10)
42#define CFQ_SLICE_SCALE		(5)
43
44#define CFQ_KEY_ASYNC		(0)
45#define CFQ_KEY_ANY		(0xffff)
46
47/*
48 * disable queueing at the driver/hardware level
49 */
50static int cfq_max_depth = 2;
51
52/*
53 * for the hash of cfqq inside the cfqd
54 */
55#define CFQ_QHASH_SHIFT		6
56#define CFQ_QHASH_ENTRIES	(1 << CFQ_QHASH_SHIFT)
57#define list_entry_qhash(entry)	hlist_entry((entry), struct cfq_queue, cfq_hash)
58
59/*
60 * for the hash of crq inside the cfqq
61 */
62#define CFQ_MHASH_SHIFT		6
63#define CFQ_MHASH_BLOCK(sec)	((sec) >> 3)
64#define CFQ_MHASH_ENTRIES	(1 << CFQ_MHASH_SHIFT)
65#define CFQ_MHASH_FN(sec)	hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
66#define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
67#define list_entry_hash(ptr)	hlist_entry((ptr), struct cfq_rq, hash)
68
69#define list_entry_cfqq(ptr)	list_entry((ptr), struct cfq_queue, cfq_list)
70#define list_entry_fifo(ptr)	list_entry((ptr), struct request, queuelist)
71
72#define RQ_DATA(rq)		(rq)->elevator_private
73
74/*
75 * rb-tree defines
76 */
77#define RB_NONE			(2)
78#define RB_EMPTY(node)		((node)->rb_node == NULL)
79#define RB_CLEAR_COLOR(node)	(node)->rb_color = RB_NONE
80#define RB_CLEAR(node)		do {	\
81	(node)->rb_parent = NULL;	\
82	RB_CLEAR_COLOR((node));		\
83	(node)->rb_right = NULL;	\
84	(node)->rb_left = NULL;		\
85} while (0)
86#define RB_CLEAR_ROOT(root)	((root)->rb_node = NULL)
87#define rb_entry_crq(node)	rb_entry((node), struct cfq_rq, rb_node)
88#define rq_rb_key(rq)		(rq)->sector
89
90static kmem_cache_t *crq_pool;
91static kmem_cache_t *cfq_pool;
92static kmem_cache_t *cfq_ioc_pool;
93
94#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
95#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
96#define cfq_class_be(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
97#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
98
99#define ASYNC			(0)
100#define SYNC			(1)
101
102#define cfq_cfqq_dispatched(cfqq)	\
103	((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
104
105#define cfq_cfqq_class_sync(cfqq)	((cfqq)->key != CFQ_KEY_ASYNC)
106
107#define cfq_cfqq_sync(cfqq)		\
108	(cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
109
110/*
111 * Per block device queue structure
112 */
113struct cfq_data {
114	atomic_t ref;
115	request_queue_t *queue;
116
117	/*
118	 * rr list of queues with requests and the count of them
119	 */
120	struct list_head rr_list[CFQ_PRIO_LISTS];
121	struct list_head busy_rr;
122	struct list_head cur_rr;
123	struct list_head idle_rr;
124	unsigned int busy_queues;
125
126	/*
127	 * non-ordered list of empty cfqq's
128	 */
129	struct list_head empty_list;
130
131	/*
132	 * cfqq lookup hash
133	 */
134	struct hlist_head *cfq_hash;
135
136	/*
137	 * global crq hash for all queues
138	 */
139	struct hlist_head *crq_hash;
140
141	unsigned int max_queued;
142
143	mempool_t *crq_pool;
144
145	int rq_in_driver;
146
147	/*
148	 * schedule slice state info
149	 */
150	/*
151	 * idle window management
152	 */
153	struct timer_list idle_slice_timer;
154	struct work_struct unplug_work;
155
156	struct cfq_queue *active_queue;
157	struct cfq_io_context *active_cic;
158	int cur_prio, cur_end_prio;
159	unsigned int dispatch_slice;
160
161	struct timer_list idle_class_timer;
162
163	sector_t last_sector;
164	unsigned long last_end_request;
165
166	unsigned int rq_starved;
167
168	/*
169	 * tunables, see top of file
170	 */
171	unsigned int cfq_quantum;
172	unsigned int cfq_queued;
173	unsigned int cfq_fifo_expire[2];
174	unsigned int cfq_back_penalty;
175	unsigned int cfq_back_max;
176	unsigned int cfq_slice[2];
177	unsigned int cfq_slice_async_rq;
178	unsigned int cfq_slice_idle;
179	unsigned int cfq_max_depth;
180};
181
182/*
183 * Per process-grouping structure
184 */
185struct cfq_queue {
186	/* reference count */
187	atomic_t ref;
188	/* parent cfq_data */
189	struct cfq_data *cfqd;
190	/* cfqq lookup hash */
191	struct hlist_node cfq_hash;
192	/* hash key */
193	unsigned int key;
194	/* on either rr or empty list of cfqd */
195	struct list_head cfq_list;
196	/* sorted list of pending requests */
197	struct rb_root sort_list;
198	/* if fifo isn't expired, next request to serve */
199	struct cfq_rq *next_crq;
200	/* requests queued in sort_list */
201	int queued[2];
202	/* currently allocated requests */
203	int allocated[2];
204	/* fifo list of requests in sort_list */
205	struct list_head fifo;
206
207	unsigned long slice_start;
208	unsigned long slice_end;
209	unsigned long slice_left;
210	unsigned long service_last;
211
212	/* number of requests that are on the dispatch list */
213	int on_dispatch[2];
214
215	/* io prio of this group */
216	unsigned short ioprio, org_ioprio;
217	unsigned short ioprio_class, org_ioprio_class;
218
219	/* various state flags, see below */
220	unsigned int flags;
221};
222
223struct cfq_rq {
224	struct rb_node rb_node;
225	sector_t rb_key;
226	struct request *request;
227	struct hlist_node hash;
228
229	struct cfq_queue *cfq_queue;
230	struct cfq_io_context *io_context;
231
232	unsigned int crq_flags;
233};
234
235enum cfqq_state_flags {
236	CFQ_CFQQ_FLAG_on_rr = 0,
237	CFQ_CFQQ_FLAG_wait_request,
238	CFQ_CFQQ_FLAG_must_alloc,
239	CFQ_CFQQ_FLAG_must_alloc_slice,
240	CFQ_CFQQ_FLAG_must_dispatch,
241	CFQ_CFQQ_FLAG_fifo_expire,
242	CFQ_CFQQ_FLAG_idle_window,
243	CFQ_CFQQ_FLAG_prio_changed,
244	CFQ_CFQQ_FLAG_expired,
245};
246
247#define CFQ_CFQQ_FNS(name)						\
248static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
249{									\
250	cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
251}									\
252static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
253{									\
254	cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
255}									\
256static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
257{									\
258	return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
259}
260
261CFQ_CFQQ_FNS(on_rr);
262CFQ_CFQQ_FNS(wait_request);
263CFQ_CFQQ_FNS(must_alloc);
264CFQ_CFQQ_FNS(must_alloc_slice);
265CFQ_CFQQ_FNS(must_dispatch);
266CFQ_CFQQ_FNS(fifo_expire);
267CFQ_CFQQ_FNS(idle_window);
268CFQ_CFQQ_FNS(prio_changed);
269CFQ_CFQQ_FNS(expired);
270#undef CFQ_CFQQ_FNS
271
272enum cfq_rq_state_flags {
273	CFQ_CRQ_FLAG_is_sync = 0,
274};
275
276#define CFQ_CRQ_FNS(name)						\
277static inline void cfq_mark_crq_##name(struct cfq_rq *crq)		\
278{									\
279	crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name);			\
280}									\
281static inline void cfq_clear_crq_##name(struct cfq_rq *crq)		\
282{									\
283	crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name);			\
284}									\
285static inline int cfq_crq_##name(const struct cfq_rq *crq)		\
286{									\
287	return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0;	\
288}
289
290CFQ_CRQ_FNS(is_sync);
291#undef CFQ_CRQ_FNS
292
293static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
294static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
295static void cfq_put_cfqd(struct cfq_data *cfqd);
296
297#define process_sync(tsk)	((tsk)->flags & PF_SYNCWRITE)
298
299/*
300 * lots of deadline iosched dupes, can be abstracted later...
301 */
302static inline void cfq_del_crq_hash(struct cfq_rq *crq)
303{
304	hlist_del_init(&crq->hash);
305}
306
307static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
308{
309	const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
310
311	hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
312}
313
314static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
315{
316	struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
317	struct hlist_node *entry, *next;
318
319	hlist_for_each_safe(entry, next, hash_list) {
320		struct cfq_rq *crq = list_entry_hash(entry);
321		struct request *__rq = crq->request;
322
323		if (!rq_mergeable(__rq)) {
324			cfq_del_crq_hash(crq);
325			continue;
326		}
327
328		if (rq_hash_key(__rq) == offset)
329			return __rq;
330	}
331
332	return NULL;
333}
334
335/*
336 * scheduler run of queue, if there are requests pending and no one in the
337 * driver that will restart queueing
338 */
339static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
340{
341	if (!cfqd->rq_in_driver && cfqd->busy_queues)
342		kblockd_schedule_work(&cfqd->unplug_work);
343}
344
345static int cfq_queue_empty(request_queue_t *q)
346{
347	struct cfq_data *cfqd = q->elevator->elevator_data;
348
349	return !cfqd->busy_queues;
350}
351
352/*
353 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
354 * We choose the request that is closest to the head right now. Distance
355 * behind the head are penalized and only allowed to a certain extent.
356 */
357static struct cfq_rq *
358cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
359{
360	sector_t last, s1, s2, d1 = 0, d2 = 0;
361	int r1_wrap = 0, r2_wrap = 0;	/* requests are behind the disk head */
362	unsigned long back_max;
363
364	if (crq1 == NULL || crq1 == crq2)
365		return crq2;
366	if (crq2 == NULL)
367		return crq1;
368
369	if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
370		return crq1;
371	else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
372		return crq2;
373
374	s1 = crq1->request->sector;
375	s2 = crq2->request->sector;
376
377	last = cfqd->last_sector;
378
379	/*
380	 * by definition, 1KiB is 2 sectors
381	 */
382	back_max = cfqd->cfq_back_max * 2;
383
384	/*
385	 * Strict one way elevator _except_ in the case where we allow
386	 * short backward seeks which are biased as twice the cost of a
387	 * similar forward seek.
388	 */
389	if (s1 >= last)
390		d1 = s1 - last;
391	else if (s1 + back_max >= last)
392		d1 = (last - s1) * cfqd->cfq_back_penalty;
393	else
394		r1_wrap = 1;
395
396	if (s2 >= last)
397		d2 = s2 - last;
398	else if (s2 + back_max >= last)
399		d2 = (last - s2) * cfqd->cfq_back_penalty;
400	else
401		r2_wrap = 1;
402
403	/* Found required data */
404	if (!r1_wrap && r2_wrap)
405		return crq1;
406	else if (!r2_wrap && r1_wrap)
407		return crq2;
408	else if (r1_wrap && r2_wrap) {
409		/* both behind the head */
410		if (s1 <= s2)
411			return crq1;
412		else
413			return crq2;
414	}
415
416	/* Both requests in front of the head */
417	if (d1 < d2)
418		return crq1;
419	else if (d2 < d1)
420		return crq2;
421	else {
422		if (s1 >= s2)
423			return crq1;
424		else
425			return crq2;
426	}
427}
428
429/*
430 * would be nice to take fifo expire time into account as well
431 */
432static struct cfq_rq *
433cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
434		  struct cfq_rq *last)
435{
436	struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
437	struct rb_node *rbnext, *rbprev;
438
439	if (!(rbnext = rb_next(&last->rb_node))) {
440		rbnext = rb_first(&cfqq->sort_list);
441		if (rbnext == &last->rb_node)
442			rbnext = NULL;
443	}
444
445	rbprev = rb_prev(&last->rb_node);
446
447	if (rbprev)
448		crq_prev = rb_entry_crq(rbprev);
449	if (rbnext)
450		crq_next = rb_entry_crq(rbnext);
451
452	return cfq_choose_req(cfqd, crq_next, crq_prev);
453}
454
455static void cfq_update_next_crq(struct cfq_rq *crq)
456{
457	struct cfq_queue *cfqq = crq->cfq_queue;
458
459	if (cfqq->next_crq == crq)
460		cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
461}
462
463static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
464{
465	struct cfq_data *cfqd = cfqq->cfqd;
466	struct list_head *list, *entry;
467
468	BUG_ON(!cfq_cfqq_on_rr(cfqq));
469
470	list_del(&cfqq->cfq_list);
471
472	if (cfq_class_rt(cfqq))
473		list = &cfqd->cur_rr;
474	else if (cfq_class_idle(cfqq))
475		list = &cfqd->idle_rr;
476	else {
477		/*
478		 * if cfqq has requests in flight, don't allow it to be
479		 * found in cfq_set_active_queue before it has finished them.
480		 * this is done to increase fairness between a process that
481		 * has lots of io pending vs one that only generates one
482		 * sporadically or synchronously
483		 */
484		if (cfq_cfqq_dispatched(cfqq))
485			list = &cfqd->busy_rr;
486		else
487			list = &cfqd->rr_list[cfqq->ioprio];
488	}
489
490	/*
491	 * if queue was preempted, just add to front to be fair. busy_rr
492	 * isn't sorted.
493	 */
494	if (preempted || list == &cfqd->busy_rr) {
495		list_add(&cfqq->cfq_list, list);
496		return;
497	}
498
499	/*
500	 * sort by when queue was last serviced
501	 */
502	entry = list;
503	while ((entry = entry->prev) != list) {
504		struct cfq_queue *__cfqq = list_entry_cfqq(entry);
505
506		if (!__cfqq->service_last)
507			break;
508		if (time_before(__cfqq->service_last, cfqq->service_last))
509			break;
510	}
511
512	list_add(&cfqq->cfq_list, entry);
513}
514
515/*
516 * add to busy list of queues for service, trying to be fair in ordering
517 * the pending list according to last request service
518 */
519static inline void
520cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
521{
522	BUG_ON(cfq_cfqq_on_rr(cfqq));
523	cfq_mark_cfqq_on_rr(cfqq);
524	cfqd->busy_queues++;
525
526	cfq_resort_rr_list(cfqq, 0);
527}
528
529static inline void
530cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
531{
532	BUG_ON(!cfq_cfqq_on_rr(cfqq));
533	cfq_clear_cfqq_on_rr(cfqq);
534	list_move(&cfqq->cfq_list, &cfqd->empty_list);
535
536	BUG_ON(!cfqd->busy_queues);
537	cfqd->busy_queues--;
538}
539
540/*
541 * rb tree support functions
542 */
543static inline void cfq_del_crq_rb(struct cfq_rq *crq)
544{
545	struct cfq_queue *cfqq = crq->cfq_queue;
546	struct cfq_data *cfqd = cfqq->cfqd;
547	const int sync = cfq_crq_is_sync(crq);
548
549	BUG_ON(!cfqq->queued[sync]);
550	cfqq->queued[sync]--;
551
552	cfq_update_next_crq(crq);
553
554	rb_erase(&crq->rb_node, &cfqq->sort_list);
555	RB_CLEAR_COLOR(&crq->rb_node);
556
557	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
558		cfq_del_cfqq_rr(cfqd, cfqq);
559}
560
561static struct cfq_rq *
562__cfq_add_crq_rb(struct cfq_rq *crq)
563{
564	struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
565	struct rb_node *parent = NULL;
566	struct cfq_rq *__crq;
567
568	while (*p) {
569		parent = *p;
570		__crq = rb_entry_crq(parent);
571
572		if (crq->rb_key < __crq->rb_key)
573			p = &(*p)->rb_left;
574		else if (crq->rb_key > __crq->rb_key)
575			p = &(*p)->rb_right;
576		else
577			return __crq;
578	}
579
580	rb_link_node(&crq->rb_node, parent, p);
581	return NULL;
582}
583
584static void cfq_add_crq_rb(struct cfq_rq *crq)
585{
586	struct cfq_queue *cfqq = crq->cfq_queue;
587	struct cfq_data *cfqd = cfqq->cfqd;
588	struct request *rq = crq->request;
589	struct cfq_rq *__alias;
590
591	crq->rb_key = rq_rb_key(rq);
592	cfqq->queued[cfq_crq_is_sync(crq)]++;
593
594	/*
595	 * looks a little odd, but the first insert might return an alias.
596	 * if that happens, put the alias on the dispatch list
597	 */
598	while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
599		cfq_dispatch_insert(cfqd->queue, __alias);
600
601	rb_insert_color(&crq->rb_node, &cfqq->sort_list);
602
603	if (!cfq_cfqq_on_rr(cfqq))
604		cfq_add_cfqq_rr(cfqd, cfqq);
605
606	/*
607	 * check if this request is a better next-serve candidate
608	 */
609	cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
610}
611
612static inline void
613cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
614{
615	rb_erase(&crq->rb_node, &cfqq->sort_list);
616	cfqq->queued[cfq_crq_is_sync(crq)]--;
617
618	cfq_add_crq_rb(crq);
619}
620
621static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
622
623{
624	struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY);
625	struct rb_node *n;
626
627	if (!cfqq)
628		goto out;
629
630	n = cfqq->sort_list.rb_node;
631	while (n) {
632		struct cfq_rq *crq = rb_entry_crq(n);
633
634		if (sector < crq->rb_key)
635			n = n->rb_left;
636		else if (sector > crq->rb_key)
637			n = n->rb_right;
638		else
639			return crq->request;
640	}
641
642out:
643	return NULL;
644}
645
646static void cfq_activate_request(request_queue_t *q, struct request *rq)
647{
648	struct cfq_data *cfqd = q->elevator->elevator_data;
649
650	cfqd->rq_in_driver++;
651}
652
653static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
654{
655	struct cfq_data *cfqd = q->elevator->elevator_data;
656
657	WARN_ON(!cfqd->rq_in_driver);
658	cfqd->rq_in_driver--;
659}
660
661static void cfq_remove_request(struct request *rq)
662{
663	struct cfq_rq *crq = RQ_DATA(rq);
664
665	list_del_init(&rq->queuelist);
666	cfq_del_crq_rb(crq);
667	cfq_del_crq_hash(crq);
668}
669
670static int
671cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
672{
673	struct cfq_data *cfqd = q->elevator->elevator_data;
674	struct request *__rq;
675	int ret;
676
677	__rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
678	if (__rq && elv_rq_merge_ok(__rq, bio)) {
679		ret = ELEVATOR_BACK_MERGE;
680		goto out;
681	}
682
683	__rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
684	if (__rq && elv_rq_merge_ok(__rq, bio)) {
685		ret = ELEVATOR_FRONT_MERGE;
686		goto out;
687	}
688
689	return ELEVATOR_NO_MERGE;
690out:
691	*req = __rq;
692	return ret;
693}
694
695static void cfq_merged_request(request_queue_t *q, struct request *req)
696{
697	struct cfq_data *cfqd = q->elevator->elevator_data;
698	struct cfq_rq *crq = RQ_DATA(req);
699
700	cfq_del_crq_hash(crq);
701	cfq_add_crq_hash(cfqd, crq);
702
703	if (rq_rb_key(req) != crq->rb_key) {
704		struct cfq_queue *cfqq = crq->cfq_queue;
705
706		cfq_update_next_crq(crq);
707		cfq_reposition_crq_rb(cfqq, crq);
708	}
709}
710
711static void
712cfq_merged_requests(request_queue_t *q, struct request *rq,
713		    struct request *next)
714{
715	cfq_merged_request(q, rq);
716
717	/*
718	 * reposition in fifo if next is older than rq
719	 */
720	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
721	    time_before(next->start_time, rq->start_time))
722		list_move(&rq->queuelist, &next->queuelist);
723
724	cfq_remove_request(next);
725}
726
727static inline void
728__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
729{
730	if (cfqq) {
731		/*
732		 * stop potential idle class queues waiting service
733		 */
734		del_timer(&cfqd->idle_class_timer);
735
736		cfqq->slice_start = jiffies;
737		cfqq->slice_end = 0;
738		cfqq->slice_left = 0;
739		cfq_clear_cfqq_must_alloc_slice(cfqq);
740		cfq_clear_cfqq_fifo_expire(cfqq);
741		cfq_clear_cfqq_expired(cfqq);
742	}
743
744	cfqd->active_queue = cfqq;
745}
746
747/*
748 * 0
749 * 0,1
750 * 0,1,2
751 * 0,1,2,3
752 * 0,1,2,3,4
753 * 0,1,2,3,4,5
754 * 0,1,2,3,4,5,6
755 * 0,1,2,3,4,5,6,7
756 */
757static int cfq_get_next_prio_level(struct cfq_data *cfqd)
758{
759	int prio, wrap;
760
761	prio = -1;
762	wrap = 0;
763	do {
764		int p;
765
766		for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
767			if (!list_empty(&cfqd->rr_list[p])) {
768				prio = p;
769				break;
770			}
771		}
772
773		if (prio != -1)
774			break;
775		cfqd->cur_prio = 0;
776		if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
777			cfqd->cur_end_prio = 0;
778			if (wrap)
779				break;
780			wrap = 1;
781		}
782	} while (1);
783
784	if (unlikely(prio == -1))
785		return -1;
786
787	BUG_ON(prio >= CFQ_PRIO_LISTS);
788
789	list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
790
791	cfqd->cur_prio = prio + 1;
792	if (cfqd->cur_prio > cfqd->cur_end_prio) {
793		cfqd->cur_end_prio = cfqd->cur_prio;
794		cfqd->cur_prio = 0;
795	}
796	if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
797		cfqd->cur_prio = 0;
798		cfqd->cur_end_prio = 0;
799	}
800
801	return prio;
802}
803
804static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
805{
806	struct cfq_queue *cfqq;
807
808	/*
809	 * if current queue is expired but not done with its requests yet,
810	 * wait for that to happen
811	 */
812	if ((cfqq = cfqd->active_queue) != NULL) {
813		if (cfq_cfqq_expired(cfqq) && cfq_cfqq_dispatched(cfqq))
814			return NULL;
815	}
816
817	/*
818	 * if current list is non-empty, grab first entry. if it is empty,
819	 * get next prio level and grab first entry then if any are spliced
820	 */
821	if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
822		cfqq = list_entry_cfqq(cfqd->cur_rr.next);
823
824	/*
825	 * if we have idle queues and no rt or be queues had pending
826	 * requests, either allow immediate service if the grace period
827	 * has passed or arm the idle grace timer
828	 */
829	if (!cfqq && !list_empty(&cfqd->idle_rr)) {
830		unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
831
832		if (time_after_eq(jiffies, end))
833			cfqq = list_entry_cfqq(cfqd->idle_rr.next);
834		else
835			mod_timer(&cfqd->idle_class_timer, end);
836	}
837
838	__cfq_set_active_queue(cfqd, cfqq);
839	return cfqq;
840}
841
842/*
843 * current cfqq expired its slice (or was too idle), select new one
844 */
845static void
846__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
847		    int preempted)
848{
849	unsigned long now = jiffies;
850
851	if (cfq_cfqq_wait_request(cfqq))
852		del_timer(&cfqd->idle_slice_timer);
853
854	if (!preempted && !cfq_cfqq_dispatched(cfqq))
855		cfqq->service_last = now;
856
857	cfq_clear_cfqq_must_dispatch(cfqq);
858	cfq_clear_cfqq_wait_request(cfqq);
859
860	/*
861	 * store what was left of this slice, if the queue idled out
862	 * or was preempted
863	 */
864	if (time_after(cfqq->slice_end, now))
865		cfqq->slice_left = cfqq->slice_end - now;
866	else
867		cfqq->slice_left = 0;
868
869	if (cfq_cfqq_on_rr(cfqq))
870		cfq_resort_rr_list(cfqq, preempted);
871
872	if (cfqq == cfqd->active_queue)
873		cfqd->active_queue = NULL;
874
875	if (cfqd->active_cic) {
876		put_io_context(cfqd->active_cic->ioc);
877		cfqd->active_cic = NULL;
878	}
879
880	cfqd->dispatch_slice = 0;
881}
882
883static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
884{
885	struct cfq_queue *cfqq = cfqd->active_queue;
886
887	if (cfqq) {
888		/*
889		 * use deferred expiry, if there are requests in progress as
890		 * not to disturb the slice of the next queue
891		 */
892		if (cfq_cfqq_dispatched(cfqq))
893			cfq_mark_cfqq_expired(cfqq);
894		else
895			__cfq_slice_expired(cfqd, cfqq, preempted);
896	}
897}
898
899static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
900
901{
902	WARN_ON(!RB_EMPTY(&cfqq->sort_list));
903	WARN_ON(cfqq != cfqd->active_queue);
904
905	/*
906	 * idle is disabled, either manually or by past process history
907	 */
908	if (!cfqd->cfq_slice_idle)
909		return 0;
910	if (!cfq_cfqq_idle_window(cfqq))
911		return 0;
912	/*
913	 * task has exited, don't wait
914	 */
915	if (cfqd->active_cic && !cfqd->active_cic->ioc->task)
916		return 0;
917
918	cfq_mark_cfqq_must_dispatch(cfqq);
919	cfq_mark_cfqq_wait_request(cfqq);
920
921	if (!timer_pending(&cfqd->idle_slice_timer)) {
922		unsigned long slice_left = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
923
924		cfqd->idle_slice_timer.expires = jiffies + slice_left;
925		add_timer(&cfqd->idle_slice_timer);
926	}
927
928	return 1;
929}
930
931static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
932{
933	struct cfq_data *cfqd = q->elevator->elevator_data;
934	struct cfq_queue *cfqq = crq->cfq_queue;
935
936	cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
937	cfq_remove_request(crq->request);
938	cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
939	elv_dispatch_sort(q, crq->request);
940}
941
942/*
943 * return expired entry, or NULL to just start from scratch in rbtree
944 */
945static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
946{
947	struct cfq_data *cfqd = cfqq->cfqd;
948	struct request *rq;
949	struct cfq_rq *crq;
950
951	if (cfq_cfqq_fifo_expire(cfqq))
952		return NULL;
953
954	if (!list_empty(&cfqq->fifo)) {
955		int fifo = cfq_cfqq_class_sync(cfqq);
956
957		crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
958		rq = crq->request;
959		if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
960			cfq_mark_cfqq_fifo_expire(cfqq);
961			return crq;
962		}
963	}
964
965	return NULL;
966}
967
968/*
969 * Scale schedule slice based on io priority. Use the sync time slice only
970 * if a queue is marked sync and has sync io queued. A sync queue with async
971 * io only, should not get full sync slice length.
972 */
973static inline int
974cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
975{
976	const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
977
978	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
979
980	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
981}
982
983static inline void
984cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
985{
986	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
987}
988
989static inline int
990cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
991{
992	const int base_rq = cfqd->cfq_slice_async_rq;
993
994	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
995
996	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
997}
998
999/*
1000 * get next queue for service
1001 */
1002static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1003{
1004	unsigned long now = jiffies;
1005	struct cfq_queue *cfqq;
1006
1007	cfqq = cfqd->active_queue;
1008	if (!cfqq)
1009		goto new_queue;
1010
1011	if (cfq_cfqq_expired(cfqq))
1012		goto new_queue;
1013
1014	/*
1015	 * slice has expired
1016	 */
1017	if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
1018		goto expire;
1019
1020	/*
1021	 * if queue has requests, dispatch one. if not, check if
1022	 * enough slice is left to wait for one
1023	 */
1024	if (!RB_EMPTY(&cfqq->sort_list))
1025		goto keep_queue;
1026	else if (cfq_cfqq_class_sync(cfqq) &&
1027		 time_before(now, cfqq->slice_end)) {
1028		if (cfq_arm_slice_timer(cfqd, cfqq))
1029			return NULL;
1030	}
1031
1032expire:
1033	cfq_slice_expired(cfqd, 0);
1034new_queue:
1035	cfqq = cfq_set_active_queue(cfqd);
1036keep_queue:
1037	return cfqq;
1038}
1039
1040static int
1041__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1042			int max_dispatch)
1043{
1044	int dispatched = 0;
1045
1046	BUG_ON(RB_EMPTY(&cfqq->sort_list));
1047
1048	do {
1049		struct cfq_rq *crq;
1050
1051		/*
1052		 * follow expired path, else get first next available
1053		 */
1054		if ((crq = cfq_check_fifo(cfqq)) == NULL)
1055			crq = cfqq->next_crq;
1056
1057		/*
1058		 * finally, insert request into driver dispatch list
1059		 */
1060		cfq_dispatch_insert(cfqd->queue, crq);
1061
1062		cfqd->dispatch_slice++;
1063		dispatched++;
1064
1065		if (!cfqd->active_cic) {
1066			atomic_inc(&crq->io_context->ioc->refcount);
1067			cfqd->active_cic = crq->io_context;
1068		}
1069
1070		if (RB_EMPTY(&cfqq->sort_list))
1071			break;
1072
1073	} while (dispatched < max_dispatch);
1074
1075	/*
1076	 * if slice end isn't set yet, set it. if at least one request was
1077	 * sync, use the sync time slice value
1078	 */
1079	if (!cfqq->slice_end)
1080		cfq_set_prio_slice(cfqd, cfqq);
1081
1082	/*
1083	 * expire an async queue immediately if it has used up its slice. idle
1084	 * queue always expire after 1 dispatch round.
1085	 */
1086	if ((!cfq_cfqq_sync(cfqq) &&
1087	    cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1088	    cfq_class_idle(cfqq))
1089		cfq_slice_expired(cfqd, 0);
1090
1091	return dispatched;
1092}
1093
1094static int
1095cfq_forced_dispatch_cfqqs(struct list_head *list)
1096{
1097	int dispatched = 0;
1098	struct cfq_queue *cfqq, *next;
1099	struct cfq_rq *crq;
1100
1101	list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1102		while ((crq = cfqq->next_crq)) {
1103			cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1104			dispatched++;
1105		}
1106		BUG_ON(!list_empty(&cfqq->fifo));
1107	}
1108	return dispatched;
1109}
1110
1111static int
1112cfq_forced_dispatch(struct cfq_data *cfqd)
1113{
1114	int i, dispatched = 0;
1115
1116	for (i = 0; i < CFQ_PRIO_LISTS; i++)
1117		dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1118
1119	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1120	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1121	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1122
1123	cfq_slice_expired(cfqd, 0);
1124
1125	BUG_ON(cfqd->busy_queues);
1126
1127	return dispatched;
1128}
1129
1130static int
1131cfq_dispatch_requests(request_queue_t *q, int force)
1132{
1133	struct cfq_data *cfqd = q->elevator->elevator_data;
1134	struct cfq_queue *cfqq;
1135
1136	if (!cfqd->busy_queues)
1137		return 0;
1138
1139	if (unlikely(force))
1140		return cfq_forced_dispatch(cfqd);
1141
1142	cfqq = cfq_select_queue(cfqd);
1143	if (cfqq) {
1144		int max_dispatch;
1145
1146		/*
1147		 * if idle window is disabled, allow queue buildup
1148		 */
1149		if (!cfq_cfqq_idle_window(cfqq) &&
1150		    cfqd->rq_in_driver >= cfqd->cfq_max_depth)
1151			return 0;
1152
1153		cfq_clear_cfqq_must_dispatch(cfqq);
1154		cfq_clear_cfqq_wait_request(cfqq);
1155		del_timer(&cfqd->idle_slice_timer);
1156
1157		max_dispatch = cfqd->cfq_quantum;
1158		if (cfq_class_idle(cfqq))
1159			max_dispatch = 1;
1160
1161		return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1162	}
1163
1164	return 0;
1165}
1166
1167/*
1168 * task holds one reference to the queue, dropped when task exits. each crq
1169 * in-flight on this queue also holds a reference, dropped when crq is freed.
1170 *
1171 * queue lock must be held here.
1172 */
1173static void cfq_put_queue(struct cfq_queue *cfqq)
1174{
1175	struct cfq_data *cfqd = cfqq->cfqd;
1176
1177	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1178
1179	if (!atomic_dec_and_test(&cfqq->ref))
1180		return;
1181
1182	BUG_ON(rb_first(&cfqq->sort_list));
1183	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1184	BUG_ON(cfq_cfqq_on_rr(cfqq));
1185
1186	if (unlikely(cfqd->active_queue == cfqq)) {
1187		__cfq_slice_expired(cfqd, cfqq, 0);
1188		cfq_schedule_dispatch(cfqd);
1189	}
1190
1191	cfq_put_cfqd(cfqq->cfqd);
1192
1193	/*
1194	 * it's on the empty list and still hashed
1195	 */
1196	list_del(&cfqq->cfq_list);
1197	hlist_del(&cfqq->cfq_hash);
1198	kmem_cache_free(cfq_pool, cfqq);
1199}
1200
1201static inline struct cfq_queue *
1202__cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1203		    const int hashval)
1204{
1205	struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1206	struct hlist_node *entry, *next;
1207
1208	hlist_for_each_safe(entry, next, hash_list) {
1209		struct cfq_queue *__cfqq = list_entry_qhash(entry);
1210		const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->ioprio_class, __cfqq->ioprio);
1211
1212		if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY))
1213			return __cfqq;
1214	}
1215
1216	return NULL;
1217}
1218
1219static struct cfq_queue *
1220cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1221{
1222	return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1223}
1224
1225static void cfq_free_io_context(struct cfq_io_context *cic)
1226{
1227	struct cfq_io_context *__cic;
1228	struct list_head *entry, *next;
1229
1230	list_for_each_safe(entry, next, &cic->list) {
1231		__cic = list_entry(entry, struct cfq_io_context, list);
1232		kmem_cache_free(cfq_ioc_pool, __cic);
1233	}
1234
1235	kmem_cache_free(cfq_ioc_pool, cic);
1236}
1237
1238/*
1239 * Called with interrupts disabled
1240 */
1241static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1242{
1243	struct cfq_data *cfqd = cic->cfqq->cfqd;
1244	request_queue_t *q = cfqd->queue;
1245
1246	WARN_ON(!irqs_disabled());
1247
1248	spin_lock(q->queue_lock);
1249
1250	if (unlikely(cic->cfqq == cfqd->active_queue)) {
1251		__cfq_slice_expired(cfqd, cic->cfqq, 0);
1252		cfq_schedule_dispatch(cfqd);
1253	}
1254
1255	cfq_put_queue(cic->cfqq);
1256	cic->cfqq = NULL;
1257	spin_unlock(q->queue_lock);
1258}
1259
1260/*
1261 * Another task may update the task cic list, if it is doing a queue lookup
1262 * on its behalf. cfq_cic_lock excludes such concurrent updates
1263 */
1264static void cfq_exit_io_context(struct cfq_io_context *cic)
1265{
1266	struct cfq_io_context *__cic;
1267	struct list_head *entry;
1268	unsigned long flags;
1269
1270	local_irq_save(flags);
1271
1272	/*
1273	 * put the reference this task is holding to the various queues
1274	 */
1275	list_for_each(entry, &cic->list) {
1276		__cic = list_entry(entry, struct cfq_io_context, list);
1277		cfq_exit_single_io_context(__cic);
1278	}
1279
1280	cfq_exit_single_io_context(cic);
1281	local_irq_restore(flags);
1282}
1283
1284static struct cfq_io_context *
1285cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1286{
1287	struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1288
1289	if (cic) {
1290		INIT_LIST_HEAD(&cic->list);
1291		cic->cfqq = NULL;
1292		cic->key = NULL;
1293		cic->last_end_request = jiffies;
1294		cic->ttime_total = 0;
1295		cic->ttime_samples = 0;
1296		cic->ttime_mean = 0;
1297		cic->dtor = cfq_free_io_context;
1298		cic->exit = cfq_exit_io_context;
1299	}
1300
1301	return cic;
1302}
1303
1304static void cfq_init_prio_data(struct cfq_queue *cfqq)
1305{
1306	struct task_struct *tsk = current;
1307	int ioprio_class;
1308
1309	if (!cfq_cfqq_prio_changed(cfqq))
1310		return;
1311
1312	ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1313	switch (ioprio_class) {
1314		default:
1315			printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1316		case IOPRIO_CLASS_NONE:
1317			/*
1318			 * no prio set, place us in the middle of the BE classes
1319			 */
1320			cfqq->ioprio = task_nice_ioprio(tsk);
1321			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1322			break;
1323		case IOPRIO_CLASS_RT:
1324			cfqq->ioprio = task_ioprio(tsk);
1325			cfqq->ioprio_class = IOPRIO_CLASS_RT;
1326			break;
1327		case IOPRIO_CLASS_BE:
1328			cfqq->ioprio = task_ioprio(tsk);
1329			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1330			break;
1331		case IOPRIO_CLASS_IDLE:
1332			cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1333			cfqq->ioprio = 7;
1334			cfq_clear_cfqq_idle_window(cfqq);
1335			break;
1336	}
1337
1338	/*
1339	 * keep track of original prio settings in case we have to temporarily
1340	 * elevate the priority of this queue
1341	 */
1342	cfqq->org_ioprio = cfqq->ioprio;
1343	cfqq->org_ioprio_class = cfqq->ioprio_class;
1344
1345	if (cfq_cfqq_on_rr(cfqq))
1346		cfq_resort_rr_list(cfqq, 0);
1347
1348	cfq_clear_cfqq_prio_changed(cfqq);
1349}
1350
1351static inline void changed_ioprio(struct cfq_queue *cfqq)
1352{
1353	if (cfqq) {
1354		struct cfq_data *cfqd = cfqq->cfqd;
1355
1356		spin_lock(cfqd->queue->queue_lock);
1357		cfq_mark_cfqq_prio_changed(cfqq);
1358		cfq_init_prio_data(cfqq);
1359		spin_unlock(cfqd->queue->queue_lock);
1360	}
1361}
1362
1363/*
1364 * callback from sys_ioprio_set, irqs are disabled
1365 */
1366static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1367{
1368	struct cfq_io_context *cic = ioc->cic;
1369
1370	changed_ioprio(cic->cfqq);
1371
1372	list_for_each_entry(cic, &cic->list, list)
1373		changed_ioprio(cic->cfqq);
1374
1375	return 0;
1376}
1377
1378static struct cfq_queue *
1379cfq_get_queue(struct cfq_data *cfqd, unsigned int key, unsigned short ioprio,
1380	      gfp_t gfp_mask)
1381{
1382	const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1383	struct cfq_queue *cfqq, *new_cfqq = NULL;
1384
1385retry:
1386	cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1387
1388	if (!cfqq) {
1389		if (new_cfqq) {
1390			cfqq = new_cfqq;
1391			new_cfqq = NULL;
1392		} else if (gfp_mask & __GFP_WAIT) {
1393			spin_unlock_irq(cfqd->queue->queue_lock);
1394			new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1395			spin_lock_irq(cfqd->queue->queue_lock);
1396			goto retry;
1397		} else {
1398			cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1399			if (!cfqq)
1400				goto out;
1401		}
1402
1403		memset(cfqq, 0, sizeof(*cfqq));
1404
1405		INIT_HLIST_NODE(&cfqq->cfq_hash);
1406		INIT_LIST_HEAD(&cfqq->cfq_list);
1407		RB_CLEAR_ROOT(&cfqq->sort_list);
1408		INIT_LIST_HEAD(&cfqq->fifo);
1409
1410		cfqq->key = key;
1411		hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1412		atomic_set(&cfqq->ref, 0);
1413		cfqq->cfqd = cfqd;
1414		atomic_inc(&cfqd->ref);
1415		cfqq->service_last = 0;
1416		/*
1417		 * set ->slice_left to allow preemption for a new process
1418		 */
1419		cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1420		cfq_mark_cfqq_idle_window(cfqq);
1421		cfq_mark_cfqq_prio_changed(cfqq);
1422		cfq_init_prio_data(cfqq);
1423	}
1424
1425	if (new_cfqq)
1426		kmem_cache_free(cfq_pool, new_cfqq);
1427
1428	atomic_inc(&cfqq->ref);
1429out:
1430	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1431	return cfqq;
1432}
1433
1434/*
1435 * Setup general io context and cfq io context. There can be several cfq
1436 * io contexts per general io context, if this process is doing io to more
1437 * than one device managed by cfq. Note that caller is holding a reference to
1438 * cfqq, so we don't need to worry about it disappearing
1439 */
1440static struct cfq_io_context *
1441cfq_get_io_context(struct cfq_data *cfqd, pid_t pid, gfp_t gfp_mask)
1442{
1443	struct io_context *ioc = NULL;
1444	struct cfq_io_context *cic;
1445
1446	might_sleep_if(gfp_mask & __GFP_WAIT);
1447
1448	ioc = get_io_context(gfp_mask);
1449	if (!ioc)
1450		return NULL;
1451
1452	if ((cic = ioc->cic) == NULL) {
1453		cic = cfq_alloc_io_context(cfqd, gfp_mask);
1454
1455		if (cic == NULL)
1456			goto err;
1457
1458		/*
1459		 * manually increment generic io_context usage count, it
1460		 * cannot go away since we are already holding one ref to it
1461		 */
1462		ioc->cic = cic;
1463		ioc->set_ioprio = cfq_ioc_set_ioprio;
1464		cic->ioc = ioc;
1465		cic->key = cfqd;
1466		atomic_inc(&cfqd->ref);
1467	} else {
1468		struct cfq_io_context *__cic;
1469
1470		/*
1471		 * the first cic on the list is actually the head itself
1472		 */
1473		if (cic->key == cfqd)
1474			goto out;
1475
1476		/*
1477		 * cic exists, check if we already are there. linear search
1478		 * should be ok here, the list will usually not be more than
1479		 * 1 or a few entries long
1480		 */
1481		list_for_each_entry(__cic, &cic->list, list) {
1482			/*
1483			 * this process is already holding a reference to
1484			 * this queue, so no need to get one more
1485			 */
1486			if (__cic->key == cfqd) {
1487				cic = __cic;
1488				goto out;
1489			}
1490		}
1491
1492		/*
1493		 * nope, process doesn't have a cic assoicated with this
1494		 * cfqq yet. get a new one and add to list
1495		 */
1496		__cic = cfq_alloc_io_context(cfqd, gfp_mask);
1497		if (__cic == NULL)
1498			goto err;
1499
1500		__cic->ioc = ioc;
1501		__cic->key = cfqd;
1502		atomic_inc(&cfqd->ref);
1503		list_add(&__cic->list, &cic->list);
1504		cic = __cic;
1505	}
1506
1507out:
1508	return cic;
1509err:
1510	put_io_context(ioc);
1511	return NULL;
1512}
1513
1514static void
1515cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1516{
1517	unsigned long elapsed, ttime;
1518
1519	/*
1520	 * if this context already has stuff queued, thinktime is from
1521	 * last queue not last end
1522	 */
1523#if 0
1524	if (time_after(cic->last_end_request, cic->last_queue))
1525		elapsed = jiffies - cic->last_end_request;
1526	else
1527		elapsed = jiffies - cic->last_queue;
1528#else
1529		elapsed = jiffies - cic->last_end_request;
1530#endif
1531
1532	ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1533
1534	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1535	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1536	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1537}
1538
1539#define sample_valid(samples)	((samples) > 80)
1540
1541/*
1542 * Disable idle window if the process thinks too long or seeks so much that
1543 * it doesn't matter
1544 */
1545static void
1546cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1547		       struct cfq_io_context *cic)
1548{
1549	int enable_idle = cfq_cfqq_idle_window(cfqq);
1550
1551	if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1552		enable_idle = 0;
1553	else if (sample_valid(cic->ttime_samples)) {
1554		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1555			enable_idle = 0;
1556		else
1557			enable_idle = 1;
1558	}
1559
1560	if (enable_idle)
1561		cfq_mark_cfqq_idle_window(cfqq);
1562	else
1563		cfq_clear_cfqq_idle_window(cfqq);
1564}
1565
1566
1567/*
1568 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1569 * no or if we aren't sure, a 1 will cause a preempt.
1570 */
1571static int
1572cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1573		   struct cfq_rq *crq)
1574{
1575	struct cfq_queue *cfqq = cfqd->active_queue;
1576
1577	if (cfq_class_idle(new_cfqq))
1578		return 0;
1579
1580	if (!cfqq)
1581		return 1;
1582
1583	if (cfq_class_idle(cfqq))
1584		return 1;
1585	if (!cfq_cfqq_wait_request(new_cfqq))
1586		return 0;
1587	/*
1588	 * if it doesn't have slice left, forget it
1589	 */
1590	if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1591		return 0;
1592	if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1593		return 1;
1594
1595	return 0;
1596}
1597
1598/*
1599 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1600 * let it have half of its nominal slice.
1601 */
1602static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1603{
1604	struct cfq_queue *__cfqq, *next;
1605
1606	list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1607		cfq_resort_rr_list(__cfqq, 1);
1608
1609	if (!cfqq->slice_left)
1610		cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1611
1612	cfqq->slice_end = cfqq->slice_left + jiffies;
1613	__cfq_slice_expired(cfqd, cfqq, 1);
1614	__cfq_set_active_queue(cfqd, cfqq);
1615}
1616
1617/*
1618 * should really be a ll_rw_blk.c helper
1619 */
1620static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1621{
1622	request_queue_t *q = cfqd->queue;
1623
1624	if (!blk_queue_plugged(q))
1625		q->request_fn(q);
1626	else
1627		__generic_unplug_device(q);
1628}
1629
1630/*
1631 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1632 * something we should do about it
1633 */
1634static void
1635cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1636		 struct cfq_rq *crq)
1637{
1638	struct cfq_io_context *cic;
1639
1640	cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1641
1642	/*
1643	 * we never wait for an async request and we don't allow preemption
1644	 * of an async request. so just return early
1645	 */
1646	if (!cfq_crq_is_sync(crq))
1647		return;
1648
1649	cic = crq->io_context;
1650
1651	cfq_update_io_thinktime(cfqd, cic);
1652	cfq_update_idle_window(cfqd, cfqq, cic);
1653
1654	cic->last_queue = jiffies;
1655
1656	if (cfqq == cfqd->active_queue) {
1657		/*
1658		 * if we are waiting for a request for this queue, let it rip
1659		 * immediately and flag that we must not expire this queue
1660		 * just now
1661		 */
1662		if (cfq_cfqq_wait_request(cfqq)) {
1663			cfq_mark_cfqq_must_dispatch(cfqq);
1664			del_timer(&cfqd->idle_slice_timer);
1665			cfq_start_queueing(cfqd, cfqq);
1666		}
1667	} else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1668		/*
1669		 * not the active queue - expire current slice if it is
1670		 * idle and has expired it's mean thinktime or this new queue
1671		 * has some old slice time left and is of higher priority
1672		 */
1673		cfq_preempt_queue(cfqd, cfqq);
1674		cfq_mark_cfqq_must_dispatch(cfqq);
1675		cfq_start_queueing(cfqd, cfqq);
1676	}
1677}
1678
1679static void cfq_insert_request(request_queue_t *q, struct request *rq)
1680{
1681	struct cfq_data *cfqd = q->elevator->elevator_data;
1682	struct cfq_rq *crq = RQ_DATA(rq);
1683	struct cfq_queue *cfqq = crq->cfq_queue;
1684
1685	cfq_init_prio_data(cfqq);
1686
1687	cfq_add_crq_rb(crq);
1688
1689	list_add_tail(&rq->queuelist, &cfqq->fifo);
1690
1691	if (rq_mergeable(rq))
1692		cfq_add_crq_hash(cfqd, crq);
1693
1694	cfq_crq_enqueued(cfqd, cfqq, crq);
1695}
1696
1697static void cfq_completed_request(request_queue_t *q, struct request *rq)
1698{
1699	struct cfq_rq *crq = RQ_DATA(rq);
1700	struct cfq_queue *cfqq = crq->cfq_queue;
1701	struct cfq_data *cfqd = cfqq->cfqd;
1702	const int sync = cfq_crq_is_sync(crq);
1703	unsigned long now;
1704
1705	now = jiffies;
1706
1707	WARN_ON(!cfqd->rq_in_driver);
1708	WARN_ON(!cfqq->on_dispatch[sync]);
1709	cfqd->rq_in_driver--;
1710	cfqq->on_dispatch[sync]--;
1711
1712	if (!cfq_class_idle(cfqq))
1713		cfqd->last_end_request = now;
1714
1715	if (!cfq_cfqq_dispatched(cfqq)) {
1716		if (cfq_cfqq_on_rr(cfqq)) {
1717			cfqq->service_last = now;
1718			cfq_resort_rr_list(cfqq, 0);
1719		}
1720		if (cfq_cfqq_expired(cfqq)) {
1721			__cfq_slice_expired(cfqd, cfqq, 0);
1722			cfq_schedule_dispatch(cfqd);
1723		}
1724	}
1725
1726	if (cfq_crq_is_sync(crq))
1727		crq->io_context->last_end_request = now;
1728}
1729
1730static struct request *
1731cfq_former_request(request_queue_t *q, struct request *rq)
1732{
1733	struct cfq_rq *crq = RQ_DATA(rq);
1734	struct rb_node *rbprev = rb_prev(&crq->rb_node);
1735
1736	if (rbprev)
1737		return rb_entry_crq(rbprev)->request;
1738
1739	return NULL;
1740}
1741
1742static struct request *
1743cfq_latter_request(request_queue_t *q, struct request *rq)
1744{
1745	struct cfq_rq *crq = RQ_DATA(rq);
1746	struct rb_node *rbnext = rb_next(&crq->rb_node);
1747
1748	if (rbnext)
1749		return rb_entry_crq(rbnext)->request;
1750
1751	return NULL;
1752}
1753
1754/*
1755 * we temporarily boost lower priority queues if they are holding fs exclusive
1756 * resources. they are boosted to normal prio (CLASS_BE/4)
1757 */
1758static void cfq_prio_boost(struct cfq_queue *cfqq)
1759{
1760	const int ioprio_class = cfqq->ioprio_class;
1761	const int ioprio = cfqq->ioprio;
1762
1763	if (has_fs_excl()) {
1764		/*
1765		 * boost idle prio on transactions that would lock out other
1766		 * users of the filesystem
1767		 */
1768		if (cfq_class_idle(cfqq))
1769			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1770		if (cfqq->ioprio > IOPRIO_NORM)
1771			cfqq->ioprio = IOPRIO_NORM;
1772	} else {
1773		/*
1774		 * check if we need to unboost the queue
1775		 */
1776		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1777			cfqq->ioprio_class = cfqq->org_ioprio_class;
1778		if (cfqq->ioprio != cfqq->org_ioprio)
1779			cfqq->ioprio = cfqq->org_ioprio;
1780	}
1781
1782	/*
1783	 * refile between round-robin lists if we moved the priority class
1784	 */
1785	if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1786	    cfq_cfqq_on_rr(cfqq))
1787		cfq_resort_rr_list(cfqq, 0);
1788}
1789
1790static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
1791{
1792	if (rw == READ || process_sync(task))
1793		return task->pid;
1794
1795	return CFQ_KEY_ASYNC;
1796}
1797
1798static inline int
1799__cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1800		struct task_struct *task, int rw)
1801{
1802#if 1
1803	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1804	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1805		cfq_mark_cfqq_must_alloc_slice(cfqq);
1806		return ELV_MQUEUE_MUST;
1807	}
1808
1809	return ELV_MQUEUE_MAY;
1810#else
1811	if (!cfqq || task->flags & PF_MEMALLOC)
1812		return ELV_MQUEUE_MAY;
1813	if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1814		if (cfq_cfqq_wait_request(cfqq))
1815			return ELV_MQUEUE_MUST;
1816
1817		/*
1818		 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1819		 * can quickly flood the queue with writes from a single task
1820		 */
1821		if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1822			cfq_mark_cfqq_must_alloc_slice(cfqq);
1823			return ELV_MQUEUE_MUST;
1824		}
1825
1826		return ELV_MQUEUE_MAY;
1827	}
1828	if (cfq_class_idle(cfqq))
1829		return ELV_MQUEUE_NO;
1830	if (cfqq->allocated[rw] >= cfqd->max_queued) {
1831		struct io_context *ioc = get_io_context(GFP_ATOMIC);
1832		int ret = ELV_MQUEUE_NO;
1833
1834		if (ioc && ioc->nr_batch_requests)
1835			ret = ELV_MQUEUE_MAY;
1836
1837		put_io_context(ioc);
1838		return ret;
1839	}
1840
1841	return ELV_MQUEUE_MAY;
1842#endif
1843}
1844
1845static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1846{
1847	struct cfq_data *cfqd = q->elevator->elevator_data;
1848	struct task_struct *tsk = current;
1849	struct cfq_queue *cfqq;
1850
1851	/*
1852	 * don't force setup of a queue from here, as a call to may_queue
1853	 * does not necessarily imply that a request actually will be queued.
1854	 * so just lookup a possibly existing queue, or return 'may queue'
1855	 * if that fails
1856	 */
1857	cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1858	if (cfqq) {
1859		cfq_init_prio_data(cfqq);
1860		cfq_prio_boost(cfqq);
1861
1862		return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1863	}
1864
1865	return ELV_MQUEUE_MAY;
1866}
1867
1868static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1869{
1870	struct cfq_data *cfqd = q->elevator->elevator_data;
1871	struct request_list *rl = &q->rq;
1872
1873	if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1874		smp_mb();
1875		if (waitqueue_active(&rl->wait[READ]))
1876			wake_up(&rl->wait[READ]);
1877	}
1878
1879	if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1880		smp_mb();
1881		if (waitqueue_active(&rl->wait[WRITE]))
1882			wake_up(&rl->wait[WRITE]);
1883	}
1884}
1885
1886/*
1887 * queue lock held here
1888 */
1889static void cfq_put_request(request_queue_t *q, struct request *rq)
1890{
1891	struct cfq_data *cfqd = q->elevator->elevator_data;
1892	struct cfq_rq *crq = RQ_DATA(rq);
1893
1894	if (crq) {
1895		struct cfq_queue *cfqq = crq->cfq_queue;
1896		const int rw = rq_data_dir(rq);
1897
1898		BUG_ON(!cfqq->allocated[rw]);
1899		cfqq->allocated[rw]--;
1900
1901		put_io_context(crq->io_context->ioc);
1902
1903		mempool_free(crq, cfqd->crq_pool);
1904		rq->elevator_private = NULL;
1905
1906		cfq_check_waiters(q, cfqq);
1907		cfq_put_queue(cfqq);
1908	}
1909}
1910
1911/*
1912 * Allocate cfq data structures associated with this request.
1913 */
1914static int
1915cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1916		gfp_t gfp_mask)
1917{
1918	struct cfq_data *cfqd = q->elevator->elevator_data;
1919	struct task_struct *tsk = current;
1920	struct cfq_io_context *cic;
1921	const int rw = rq_data_dir(rq);
1922	pid_t key = cfq_queue_pid(tsk, rw);
1923	struct cfq_queue *cfqq;
1924	struct cfq_rq *crq;
1925	unsigned long flags;
1926
1927	might_sleep_if(gfp_mask & __GFP_WAIT);
1928
1929	cic = cfq_get_io_context(cfqd, key, gfp_mask);
1930
1931	spin_lock_irqsave(q->queue_lock, flags);
1932
1933	if (!cic)
1934		goto queue_fail;
1935
1936	if (!cic->cfqq) {
1937		cfqq = cfq_get_queue(cfqd, key, tsk->ioprio, gfp_mask);
1938		if (!cfqq)
1939			goto queue_fail;
1940
1941		cic->cfqq = cfqq;
1942	} else
1943		cfqq = cic->cfqq;
1944
1945	cfqq->allocated[rw]++;
1946	cfq_clear_cfqq_must_alloc(cfqq);
1947	cfqd->rq_starved = 0;
1948	atomic_inc(&cfqq->ref);
1949	spin_unlock_irqrestore(q->queue_lock, flags);
1950
1951	crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
1952	if (crq) {
1953		RB_CLEAR(&crq->rb_node);
1954		crq->rb_key = 0;
1955		crq->request = rq;
1956		INIT_HLIST_NODE(&crq->hash);
1957		crq->cfq_queue = cfqq;
1958		crq->io_context = cic;
1959
1960		if (rw == READ || process_sync(tsk))
1961			cfq_mark_crq_is_sync(crq);
1962		else
1963			cfq_clear_crq_is_sync(crq);
1964
1965		rq->elevator_private = crq;
1966		return 0;
1967	}
1968
1969	spin_lock_irqsave(q->queue_lock, flags);
1970	cfqq->allocated[rw]--;
1971	if (!(cfqq->allocated[0] + cfqq->allocated[1]))
1972		cfq_mark_cfqq_must_alloc(cfqq);
1973	cfq_put_queue(cfqq);
1974queue_fail:
1975	if (cic)
1976		put_io_context(cic->ioc);
1977	/*
1978	 * mark us rq allocation starved. we need to kickstart the process
1979	 * ourselves if there are no pending requests that can do it for us.
1980	 * that would be an extremely rare OOM situation
1981	 */
1982	cfqd->rq_starved = 1;
1983	cfq_schedule_dispatch(cfqd);
1984	spin_unlock_irqrestore(q->queue_lock, flags);
1985	return 1;
1986}
1987
1988static void cfq_kick_queue(void *data)
1989{
1990	request_queue_t *q = data;
1991	struct cfq_data *cfqd = q->elevator->elevator_data;
1992	unsigned long flags;
1993
1994	spin_lock_irqsave(q->queue_lock, flags);
1995
1996	if (cfqd->rq_starved) {
1997		struct request_list *rl = &q->rq;
1998
1999		/*
2000		 * we aren't guaranteed to get a request after this, but we
2001		 * have to be opportunistic
2002		 */
2003		smp_mb();
2004		if (waitqueue_active(&rl->wait[READ]))
2005			wake_up(&rl->wait[READ]);
2006		if (waitqueue_active(&rl->wait[WRITE]))
2007			wake_up(&rl->wait[WRITE]);
2008	}
2009
2010	blk_remove_plug(q);
2011	q->request_fn(q);
2012	spin_unlock_irqrestore(q->queue_lock, flags);
2013}
2014
2015/*
2016 * Timer running if the active_queue is currently idling inside its time slice
2017 */
2018static void cfq_idle_slice_timer(unsigned long data)
2019{
2020	struct cfq_data *cfqd = (struct cfq_data *) data;
2021	struct cfq_queue *cfqq;
2022	unsigned long flags;
2023
2024	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2025
2026	if ((cfqq = cfqd->active_queue) != NULL) {
2027		unsigned long now = jiffies;
2028
2029		/*
2030		 * expired
2031		 */
2032		if (time_after(now, cfqq->slice_end))
2033			goto expire;
2034
2035		/*
2036		 * only expire and reinvoke request handler, if there are
2037		 * other queues with pending requests
2038		 */
2039		if (!cfqd->busy_queues) {
2040			cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2041			add_timer(&cfqd->idle_slice_timer);
2042			goto out_cont;
2043		}
2044
2045		/*
2046		 * not expired and it has a request pending, let it dispatch
2047		 */
2048		if (!RB_EMPTY(&cfqq->sort_list)) {
2049			cfq_mark_cfqq_must_dispatch(cfqq);
2050			goto out_kick;
2051		}
2052	}
2053expire:
2054	cfq_slice_expired(cfqd, 0);
2055out_kick:
2056	cfq_schedule_dispatch(cfqd);
2057out_cont:
2058	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2059}
2060
2061/*
2062 * Timer running if an idle class queue is waiting for service
2063 */
2064static void cfq_idle_class_timer(unsigned long data)
2065{
2066	struct cfq_data *cfqd = (struct cfq_data *) data;
2067	unsigned long flags, end;
2068
2069	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2070
2071	/*
2072	 * race with a non-idle queue, reset timer
2073	 */
2074	end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2075	if (!time_after_eq(jiffies, end)) {
2076		cfqd->idle_class_timer.expires = end;
2077		add_timer(&cfqd->idle_class_timer);
2078	} else
2079		cfq_schedule_dispatch(cfqd);
2080
2081	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2082}
2083
2084static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2085{
2086	del_timer_sync(&cfqd->idle_slice_timer);
2087	del_timer_sync(&cfqd->idle_class_timer);
2088	blk_sync_queue(cfqd->queue);
2089}
2090
2091static void cfq_put_cfqd(struct cfq_data *cfqd)
2092{
2093	request_queue_t *q = cfqd->queue;
2094
2095	if (!atomic_dec_and_test(&cfqd->ref))
2096		return;
2097
2098	cfq_shutdown_timer_wq(cfqd);
2099	blk_put_queue(q);
2100
2101	mempool_destroy(cfqd->crq_pool);
2102	kfree(cfqd->crq_hash);
2103	kfree(cfqd->cfq_hash);
2104	kfree(cfqd);
2105}
2106
2107static void cfq_exit_queue(elevator_t *e)
2108{
2109	struct cfq_data *cfqd = e->elevator_data;
2110
2111	cfq_shutdown_timer_wq(cfqd);
2112	cfq_put_cfqd(cfqd);
2113}
2114
2115static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2116{
2117	struct cfq_data *cfqd;
2118	int i;
2119
2120	cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2121	if (!cfqd)
2122		return -ENOMEM;
2123
2124	memset(cfqd, 0, sizeof(*cfqd));
2125
2126	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2127		INIT_LIST_HEAD(&cfqd->rr_list[i]);
2128
2129	INIT_LIST_HEAD(&cfqd->busy_rr);
2130	INIT_LIST_HEAD(&cfqd->cur_rr);
2131	INIT_LIST_HEAD(&cfqd->idle_rr);
2132	INIT_LIST_HEAD(&cfqd->empty_list);
2133
2134	cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2135	if (!cfqd->crq_hash)
2136		goto out_crqhash;
2137
2138	cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2139	if (!cfqd->cfq_hash)
2140		goto out_cfqhash;
2141
2142	cfqd->crq_pool = mempool_create(BLKDEV_MIN_RQ, mempool_alloc_slab, mempool_free_slab, crq_pool);
2143	if (!cfqd->crq_pool)
2144		goto out_crqpool;
2145
2146	for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2147		INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2148	for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2149		INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2150
2151	e->elevator_data = cfqd;
2152
2153	cfqd->queue = q;
2154	atomic_inc(&q->refcnt);
2155
2156	cfqd->max_queued = q->nr_requests / 4;
2157	q->nr_batching = cfq_queued;
2158
2159	init_timer(&cfqd->idle_slice_timer);
2160	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2161	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2162
2163	init_timer(&cfqd->idle_class_timer);
2164	cfqd->idle_class_timer.function = cfq_idle_class_timer;
2165	cfqd->idle_class_timer.data = (unsigned long) cfqd;
2166
2167	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2168
2169	atomic_set(&cfqd->ref, 1);
2170
2171	cfqd->cfq_queued = cfq_queued;
2172	cfqd->cfq_quantum = cfq_quantum;
2173	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2174	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2175	cfqd->cfq_back_max = cfq_back_max;
2176	cfqd->cfq_back_penalty = cfq_back_penalty;
2177	cfqd->cfq_slice[0] = cfq_slice_async;
2178	cfqd->cfq_slice[1] = cfq_slice_sync;
2179	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2180	cfqd->cfq_slice_idle = cfq_slice_idle;
2181	cfqd->cfq_max_depth = cfq_max_depth;
2182
2183	return 0;
2184out_crqpool:
2185	kfree(cfqd->cfq_hash);
2186out_cfqhash:
2187	kfree(cfqd->crq_hash);
2188out_crqhash:
2189	kfree(cfqd);
2190	return -ENOMEM;
2191}
2192
2193static void cfq_slab_kill(void)
2194{
2195	if (crq_pool)
2196		kmem_cache_destroy(crq_pool);
2197	if (cfq_pool)
2198		kmem_cache_destroy(cfq_pool);
2199	if (cfq_ioc_pool)
2200		kmem_cache_destroy(cfq_ioc_pool);
2201}
2202
2203static int __init cfq_slab_setup(void)
2204{
2205	crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2206					NULL, NULL);
2207	if (!crq_pool)
2208		goto fail;
2209
2210	cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2211					NULL, NULL);
2212	if (!cfq_pool)
2213		goto fail;
2214
2215	cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2216			sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2217	if (!cfq_ioc_pool)
2218		goto fail;
2219
2220	return 0;
2221fail:
2222	cfq_slab_kill();
2223	return -ENOMEM;
2224}
2225
2226/*
2227 * sysfs parts below -->
2228 */
2229struct cfq_fs_entry {
2230	struct attribute attr;
2231	ssize_t (*show)(struct cfq_data *, char *);
2232	ssize_t (*store)(struct cfq_data *, const char *, size_t);
2233};
2234
2235static ssize_t
2236cfq_var_show(unsigned int var, char *page)
2237{
2238	return sprintf(page, "%d\n", var);
2239}
2240
2241static ssize_t
2242cfq_var_store(unsigned int *var, const char *page, size_t count)
2243{
2244	char *p = (char *) page;
2245
2246	*var = simple_strtoul(p, &p, 10);
2247	return count;
2248}
2249
2250#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2251static ssize_t __FUNC(struct cfq_data *cfqd, char *page)		\
2252{									\
2253	unsigned int __data = __VAR;					\
2254	if (__CONV)							\
2255		__data = jiffies_to_msecs(__data);			\
2256	return cfq_var_show(__data, (page));				\
2257}
2258SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2259SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2260SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2261SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2262SHOW_FUNCTION(cfq_back_max_show, cfqd->cfq_back_max, 0);
2263SHOW_FUNCTION(cfq_back_penalty_show, cfqd->cfq_back_penalty, 0);
2264SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2265SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2266SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2267SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2268SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0);
2269#undef SHOW_FUNCTION
2270
2271#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2272static ssize_t __FUNC(struct cfq_data *cfqd, const char *page, size_t count)	\
2273{									\
2274	unsigned int __data;						\
2275	int ret = cfq_var_store(&__data, (page), count);		\
2276	if (__data < (MIN))						\
2277		__data = (MIN);						\
2278	else if (__data > (MAX))					\
2279		__data = (MAX);						\
2280	if (__CONV)							\
2281		*(__PTR) = msecs_to_jiffies(__data);			\
2282	else								\
2283		*(__PTR) = __data;					\
2284	return ret;							\
2285}
2286STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2287STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2288STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2289STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2290STORE_FUNCTION(cfq_back_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2291STORE_FUNCTION(cfq_back_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2292STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2293STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2294STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2295STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2296STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0);
2297#undef STORE_FUNCTION
2298
2299static struct cfq_fs_entry cfq_quantum_entry = {
2300	.attr = {.name = "quantum", .mode = S_IRUGO | S_IWUSR },
2301	.show = cfq_quantum_show,
2302	.store = cfq_quantum_store,
2303};
2304static struct cfq_fs_entry cfq_queued_entry = {
2305	.attr = {.name = "queued", .mode = S_IRUGO | S_IWUSR },
2306	.show = cfq_queued_show,
2307	.store = cfq_queued_store,
2308};
2309static struct cfq_fs_entry cfq_fifo_expire_sync_entry = {
2310	.attr = {.name = "fifo_expire_sync", .mode = S_IRUGO | S_IWUSR },
2311	.show = cfq_fifo_expire_sync_show,
2312	.store = cfq_fifo_expire_sync_store,
2313};
2314static struct cfq_fs_entry cfq_fifo_expire_async_entry = {
2315	.attr = {.name = "fifo_expire_async", .mode = S_IRUGO | S_IWUSR },
2316	.show = cfq_fifo_expire_async_show,
2317	.store = cfq_fifo_expire_async_store,
2318};
2319static struct cfq_fs_entry cfq_back_max_entry = {
2320	.attr = {.name = "back_seek_max", .mode = S_IRUGO | S_IWUSR },
2321	.show = cfq_back_max_show,
2322	.store = cfq_back_max_store,
2323};
2324static struct cfq_fs_entry cfq_back_penalty_entry = {
2325	.attr = {.name = "back_seek_penalty", .mode = S_IRUGO | S_IWUSR },
2326	.show = cfq_back_penalty_show,
2327	.store = cfq_back_penalty_store,
2328};
2329static struct cfq_fs_entry cfq_slice_sync_entry = {
2330	.attr = {.name = "slice_sync", .mode = S_IRUGO | S_IWUSR },
2331	.show = cfq_slice_sync_show,
2332	.store = cfq_slice_sync_store,
2333};
2334static struct cfq_fs_entry cfq_slice_async_entry = {
2335	.attr = {.name = "slice_async", .mode = S_IRUGO | S_IWUSR },
2336	.show = cfq_slice_async_show,
2337	.store = cfq_slice_async_store,
2338};
2339static struct cfq_fs_entry cfq_slice_async_rq_entry = {
2340	.attr = {.name = "slice_async_rq", .mode = S_IRUGO | S_IWUSR },
2341	.show = cfq_slice_async_rq_show,
2342	.store = cfq_slice_async_rq_store,
2343};
2344static struct cfq_fs_entry cfq_slice_idle_entry = {
2345	.attr = {.name = "slice_idle", .mode = S_IRUGO | S_IWUSR },
2346	.show = cfq_slice_idle_show,
2347	.store = cfq_slice_idle_store,
2348};
2349static struct cfq_fs_entry cfq_max_depth_entry = {
2350	.attr = {.name = "max_depth", .mode = S_IRUGO | S_IWUSR },
2351	.show = cfq_max_depth_show,
2352	.store = cfq_max_depth_store,
2353};
2354
2355static struct attribute *default_attrs[] = {
2356	&cfq_quantum_entry.attr,
2357	&cfq_queued_entry.attr,
2358	&cfq_fifo_expire_sync_entry.attr,
2359	&cfq_fifo_expire_async_entry.attr,
2360	&cfq_back_max_entry.attr,
2361	&cfq_back_penalty_entry.attr,
2362	&cfq_slice_sync_entry.attr,
2363	&cfq_slice_async_entry.attr,
2364	&cfq_slice_async_rq_entry.attr,
2365	&cfq_slice_idle_entry.attr,
2366	&cfq_max_depth_entry.attr,
2367	NULL,
2368};
2369
2370#define to_cfq(atr) container_of((atr), struct cfq_fs_entry, attr)
2371
2372static ssize_t
2373cfq_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2374{
2375	elevator_t *e = container_of(kobj, elevator_t, kobj);
2376	struct cfq_fs_entry *entry = to_cfq(attr);
2377
2378	if (!entry->show)
2379		return -EIO;
2380
2381	return entry->show(e->elevator_data, page);
2382}
2383
2384static ssize_t
2385cfq_attr_store(struct kobject *kobj, struct attribute *attr,
2386	       const char *page, size_t length)
2387{
2388	elevator_t *e = container_of(kobj, elevator_t, kobj);
2389	struct cfq_fs_entry *entry = to_cfq(attr);
2390
2391	if (!entry->store)
2392		return -EIO;
2393
2394	return entry->store(e->elevator_data, page, length);
2395}
2396
2397static struct sysfs_ops cfq_sysfs_ops = {
2398	.show	= cfq_attr_show,
2399	.store	= cfq_attr_store,
2400};
2401
2402static struct kobj_type cfq_ktype = {
2403	.sysfs_ops	= &cfq_sysfs_ops,
2404	.default_attrs	= default_attrs,
2405};
2406
2407static struct elevator_type iosched_cfq = {
2408	.ops = {
2409		.elevator_merge_fn = 		cfq_merge,
2410		.elevator_merged_fn =		cfq_merged_request,
2411		.elevator_merge_req_fn =	cfq_merged_requests,
2412		.elevator_dispatch_fn =		cfq_dispatch_requests,
2413		.elevator_add_req_fn =		cfq_insert_request,
2414		.elevator_activate_req_fn =	cfq_activate_request,
2415		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2416		.elevator_queue_empty_fn =	cfq_queue_empty,
2417		.elevator_completed_req_fn =	cfq_completed_request,
2418		.elevator_former_req_fn =	cfq_former_request,
2419		.elevator_latter_req_fn =	cfq_latter_request,
2420		.elevator_set_req_fn =		cfq_set_request,
2421		.elevator_put_req_fn =		cfq_put_request,
2422		.elevator_may_queue_fn =	cfq_may_queue,
2423		.elevator_init_fn =		cfq_init_queue,
2424		.elevator_exit_fn =		cfq_exit_queue,
2425	},
2426	.elevator_ktype =	&cfq_ktype,
2427	.elevator_name =	"cfq",
2428	.elevator_owner =	THIS_MODULE,
2429};
2430
2431static int __init cfq_init(void)
2432{
2433	int ret;
2434
2435	/*
2436	 * could be 0 on HZ < 1000 setups
2437	 */
2438	if (!cfq_slice_async)
2439		cfq_slice_async = 1;
2440	if (!cfq_slice_idle)
2441		cfq_slice_idle = 1;
2442
2443	if (cfq_slab_setup())
2444		return -ENOMEM;
2445
2446	ret = elv_register(&iosched_cfq);
2447	if (ret)
2448		cfq_slab_kill();
2449
2450	return ret;
2451}
2452
2453static void __exit cfq_exit(void)
2454{
2455	elv_unregister(&iosched_cfq);
2456	cfq_slab_kill();
2457}
2458
2459module_init(cfq_init);
2460module_exit(cfq_exit);
2461
2462MODULE_AUTHOR("Jens Axboe");
2463MODULE_LICENSE("GPL");
2464MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2465