cfq-iosched.c revision c265a7f41706cee20508de5b4a919214cfd7a11b
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY		(HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT		(2)
40
41#define CFQ_SLICE_SCALE		(5)
42
43#define RQ_CIC(rq)		\
44	((struct cfq_io_context *) (rq)->elevator_private)
45#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
46
47static struct kmem_cache *cfq_pool;
48static struct kmem_cache *cfq_ioc_pool;
49
50static DEFINE_PER_CPU(unsigned long, ioc_count);
51static struct completion *ioc_gone;
52static DEFINE_SPINLOCK(ioc_gone_lock);
53
54#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
55#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
56#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
57
58#define ASYNC			(0)
59#define SYNC			(1)
60
61#define sample_valid(samples)	((samples) > 80)
62
63/*
64 * Most of our rbtree usage is for sorting with min extraction, so
65 * if we cache the leftmost node we don't have to walk down the tree
66 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
67 * move this into the elevator for the rq sorting as well.
68 */
69struct cfq_rb_root {
70	struct rb_root rb;
71	struct rb_node *left;
72};
73#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
74
75/*
76 * Per block device queue structure
77 */
78struct cfq_data {
79	struct request_queue *queue;
80
81	/*
82	 * rr list of queues with requests and the count of them
83	 */
84	struct cfq_rb_root service_tree;
85	unsigned int busy_queues;
86
87	int rq_in_driver;
88	int sync_flight;
89	int hw_tag;
90
91	/*
92	 * idle window management
93	 */
94	struct timer_list idle_slice_timer;
95	struct work_struct unplug_work;
96
97	struct cfq_queue *active_queue;
98	struct cfq_io_context *active_cic;
99
100	/*
101	 * async queue for each priority case
102	 */
103	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
104	struct cfq_queue *async_idle_cfqq;
105
106	sector_t last_position;
107	unsigned long last_end_request;
108
109	/*
110	 * tunables, see top of file
111	 */
112	unsigned int cfq_quantum;
113	unsigned int cfq_fifo_expire[2];
114	unsigned int cfq_back_penalty;
115	unsigned int cfq_back_max;
116	unsigned int cfq_slice[2];
117	unsigned int cfq_slice_async_rq;
118	unsigned int cfq_slice_idle;
119
120	struct list_head cic_list;
121};
122
123/*
124 * Per process-grouping structure
125 */
126struct cfq_queue {
127	/* reference count */
128	atomic_t ref;
129	/* various state flags, see below */
130	unsigned int flags;
131	/* parent cfq_data */
132	struct cfq_data *cfqd;
133	/* service_tree member */
134	struct rb_node rb_node;
135	/* service_tree key */
136	unsigned long rb_key;
137	/* sorted list of pending requests */
138	struct rb_root sort_list;
139	/* if fifo isn't expired, next request to serve */
140	struct request *next_rq;
141	/* requests queued in sort_list */
142	int queued[2];
143	/* currently allocated requests */
144	int allocated[2];
145	/* fifo list of requests in sort_list */
146	struct list_head fifo;
147
148	unsigned long slice_end;
149	long slice_resid;
150
151	/* pending metadata requests */
152	int meta_pending;
153	/* number of requests that are on the dispatch list or inside driver */
154	int dispatched;
155
156	/* io prio of this group */
157	unsigned short ioprio, org_ioprio;
158	unsigned short ioprio_class, org_ioprio_class;
159
160	pid_t pid;
161};
162
163enum cfqq_state_flags {
164	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
165	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
166	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
167	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
168	CFQ_CFQQ_FLAG_must_dispatch,	/* must dispatch, even if expired */
169	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
170	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
171	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
172	CFQ_CFQQ_FLAG_queue_new,	/* queue never been serviced */
173	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
174	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
175};
176
177#define CFQ_CFQQ_FNS(name)						\
178static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
179{									\
180	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
181}									\
182static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
183{									\
184	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
185}									\
186static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
187{									\
188	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
189}
190
191CFQ_CFQQ_FNS(on_rr);
192CFQ_CFQQ_FNS(wait_request);
193CFQ_CFQQ_FNS(must_alloc);
194CFQ_CFQQ_FNS(must_alloc_slice);
195CFQ_CFQQ_FNS(must_dispatch);
196CFQ_CFQQ_FNS(fifo_expire);
197CFQ_CFQQ_FNS(idle_window);
198CFQ_CFQQ_FNS(prio_changed);
199CFQ_CFQQ_FNS(queue_new);
200CFQ_CFQQ_FNS(slice_new);
201CFQ_CFQQ_FNS(sync);
202#undef CFQ_CFQQ_FNS
203
204#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
205	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
206#define cfq_log(cfqd, fmt, args...)	\
207	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
208
209static void cfq_dispatch_insert(struct request_queue *, struct request *);
210static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
211				       struct io_context *, gfp_t);
212static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
213						struct io_context *);
214
215static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
216					    int is_sync)
217{
218	return cic->cfqq[!!is_sync];
219}
220
221static inline void cic_set_cfqq(struct cfq_io_context *cic,
222				struct cfq_queue *cfqq, int is_sync)
223{
224	cic->cfqq[!!is_sync] = cfqq;
225}
226
227/*
228 * We regard a request as SYNC, if it's either a read or has the SYNC bit
229 * set (in which case it could also be direct WRITE).
230 */
231static inline int cfq_bio_sync(struct bio *bio)
232{
233	if (bio_data_dir(bio) == READ || bio_sync(bio))
234		return 1;
235
236	return 0;
237}
238
239/*
240 * scheduler run of queue, if there are requests pending and no one in the
241 * driver that will restart queueing
242 */
243static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
244{
245	if (cfqd->busy_queues) {
246		cfq_log(cfqd, "schedule dispatch");
247		kblockd_schedule_work(&cfqd->unplug_work);
248	}
249}
250
251static int cfq_queue_empty(struct request_queue *q)
252{
253	struct cfq_data *cfqd = q->elevator->elevator_data;
254
255	return !cfqd->busy_queues;
256}
257
258/*
259 * Scale schedule slice based on io priority. Use the sync time slice only
260 * if a queue is marked sync and has sync io queued. A sync queue with async
261 * io only, should not get full sync slice length.
262 */
263static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
264				 unsigned short prio)
265{
266	const int base_slice = cfqd->cfq_slice[sync];
267
268	WARN_ON(prio >= IOPRIO_BE_NR);
269
270	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
271}
272
273static inline int
274cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
275{
276	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
277}
278
279static inline void
280cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
281{
282	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
283	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
284}
285
286/*
287 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
288 * isn't valid until the first request from the dispatch is activated
289 * and the slice time set.
290 */
291static inline int cfq_slice_used(struct cfq_queue *cfqq)
292{
293	if (cfq_cfqq_slice_new(cfqq))
294		return 0;
295	if (time_before(jiffies, cfqq->slice_end))
296		return 0;
297
298	return 1;
299}
300
301/*
302 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
303 * We choose the request that is closest to the head right now. Distance
304 * behind the head is penalized and only allowed to a certain extent.
305 */
306static struct request *
307cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
308{
309	sector_t last, s1, s2, d1 = 0, d2 = 0;
310	unsigned long back_max;
311#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
312#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
313	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
314
315	if (rq1 == NULL || rq1 == rq2)
316		return rq2;
317	if (rq2 == NULL)
318		return rq1;
319
320	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
321		return rq1;
322	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
323		return rq2;
324	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
325		return rq1;
326	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
327		return rq2;
328
329	s1 = rq1->sector;
330	s2 = rq2->sector;
331
332	last = cfqd->last_position;
333
334	/*
335	 * by definition, 1KiB is 2 sectors
336	 */
337	back_max = cfqd->cfq_back_max * 2;
338
339	/*
340	 * Strict one way elevator _except_ in the case where we allow
341	 * short backward seeks which are biased as twice the cost of a
342	 * similar forward seek.
343	 */
344	if (s1 >= last)
345		d1 = s1 - last;
346	else if (s1 + back_max >= last)
347		d1 = (last - s1) * cfqd->cfq_back_penalty;
348	else
349		wrap |= CFQ_RQ1_WRAP;
350
351	if (s2 >= last)
352		d2 = s2 - last;
353	else if (s2 + back_max >= last)
354		d2 = (last - s2) * cfqd->cfq_back_penalty;
355	else
356		wrap |= CFQ_RQ2_WRAP;
357
358	/* Found required data */
359
360	/*
361	 * By doing switch() on the bit mask "wrap" we avoid having to
362	 * check two variables for all permutations: --> faster!
363	 */
364	switch (wrap) {
365	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
366		if (d1 < d2)
367			return rq1;
368		else if (d2 < d1)
369			return rq2;
370		else {
371			if (s1 >= s2)
372				return rq1;
373			else
374				return rq2;
375		}
376
377	case CFQ_RQ2_WRAP:
378		return rq1;
379	case CFQ_RQ1_WRAP:
380		return rq2;
381	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
382	default:
383		/*
384		 * Since both rqs are wrapped,
385		 * start with the one that's further behind head
386		 * (--> only *one* back seek required),
387		 * since back seek takes more time than forward.
388		 */
389		if (s1 <= s2)
390			return rq1;
391		else
392			return rq2;
393	}
394}
395
396/*
397 * The below is leftmost cache rbtree addon
398 */
399static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
400{
401	if (!root->left)
402		root->left = rb_first(&root->rb);
403
404	if (root->left)
405		return rb_entry(root->left, struct cfq_queue, rb_node);
406
407	return NULL;
408}
409
410static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
411{
412	if (root->left == n)
413		root->left = NULL;
414
415	rb_erase(n, &root->rb);
416	RB_CLEAR_NODE(n);
417}
418
419/*
420 * would be nice to take fifo expire time into account as well
421 */
422static struct request *
423cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
424		  struct request *last)
425{
426	struct rb_node *rbnext = rb_next(&last->rb_node);
427	struct rb_node *rbprev = rb_prev(&last->rb_node);
428	struct request *next = NULL, *prev = NULL;
429
430	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
431
432	if (rbprev)
433		prev = rb_entry_rq(rbprev);
434
435	if (rbnext)
436		next = rb_entry_rq(rbnext);
437	else {
438		rbnext = rb_first(&cfqq->sort_list);
439		if (rbnext && rbnext != &last->rb_node)
440			next = rb_entry_rq(rbnext);
441	}
442
443	return cfq_choose_req(cfqd, next, prev);
444}
445
446static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
447				      struct cfq_queue *cfqq)
448{
449	/*
450	 * just an approximation, should be ok.
451	 */
452	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
453		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
454}
455
456/*
457 * The cfqd->service_tree holds all pending cfq_queue's that have
458 * requests waiting to be processed. It is sorted in the order that
459 * we will service the queues.
460 */
461static void cfq_service_tree_add(struct cfq_data *cfqd,
462				    struct cfq_queue *cfqq, int add_front)
463{
464	struct rb_node **p, *parent;
465	struct cfq_queue *__cfqq;
466	unsigned long rb_key;
467	int left;
468
469	if (cfq_class_idle(cfqq)) {
470		rb_key = CFQ_IDLE_DELAY;
471		parent = rb_last(&cfqd->service_tree.rb);
472		if (parent && parent != &cfqq->rb_node) {
473			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
474			rb_key += __cfqq->rb_key;
475		} else
476			rb_key += jiffies;
477	} else if (!add_front) {
478		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
479		rb_key += cfqq->slice_resid;
480		cfqq->slice_resid = 0;
481	} else
482		rb_key = 0;
483
484	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
485		/*
486		 * same position, nothing more to do
487		 */
488		if (rb_key == cfqq->rb_key)
489			return;
490
491		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
492	}
493
494	left = 1;
495	parent = NULL;
496	p = &cfqd->service_tree.rb.rb_node;
497	while (*p) {
498		struct rb_node **n;
499
500		parent = *p;
501		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
502
503		/*
504		 * sort RT queues first, we always want to give
505		 * preference to them. IDLE queues goes to the back.
506		 * after that, sort on the next service time.
507		 */
508		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
509			n = &(*p)->rb_left;
510		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
511			n = &(*p)->rb_right;
512		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
513			n = &(*p)->rb_left;
514		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
515			n = &(*p)->rb_right;
516		else if (rb_key < __cfqq->rb_key)
517			n = &(*p)->rb_left;
518		else
519			n = &(*p)->rb_right;
520
521		if (n == &(*p)->rb_right)
522			left = 0;
523
524		p = n;
525	}
526
527	if (left)
528		cfqd->service_tree.left = &cfqq->rb_node;
529
530	cfqq->rb_key = rb_key;
531	rb_link_node(&cfqq->rb_node, parent, p);
532	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
533}
534
535/*
536 * Update cfqq's position in the service tree.
537 */
538static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539{
540	/*
541	 * Resorting requires the cfqq to be on the RR list already.
542	 */
543	if (cfq_cfqq_on_rr(cfqq))
544		cfq_service_tree_add(cfqd, cfqq, 0);
545}
546
547/*
548 * add to busy list of queues for service, trying to be fair in ordering
549 * the pending list according to last request service
550 */
551static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
552{
553	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
554	BUG_ON(cfq_cfqq_on_rr(cfqq));
555	cfq_mark_cfqq_on_rr(cfqq);
556	cfqd->busy_queues++;
557
558	cfq_resort_rr_list(cfqd, cfqq);
559}
560
561/*
562 * Called when the cfqq no longer has requests pending, remove it from
563 * the service tree.
564 */
565static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
566{
567	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
568	BUG_ON(!cfq_cfqq_on_rr(cfqq));
569	cfq_clear_cfqq_on_rr(cfqq);
570
571	if (!RB_EMPTY_NODE(&cfqq->rb_node))
572		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
573
574	BUG_ON(!cfqd->busy_queues);
575	cfqd->busy_queues--;
576}
577
578/*
579 * rb tree support functions
580 */
581static void cfq_del_rq_rb(struct request *rq)
582{
583	struct cfq_queue *cfqq = RQ_CFQQ(rq);
584	struct cfq_data *cfqd = cfqq->cfqd;
585	const int sync = rq_is_sync(rq);
586
587	BUG_ON(!cfqq->queued[sync]);
588	cfqq->queued[sync]--;
589
590	elv_rb_del(&cfqq->sort_list, rq);
591
592	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
593		cfq_del_cfqq_rr(cfqd, cfqq);
594}
595
596static void cfq_add_rq_rb(struct request *rq)
597{
598	struct cfq_queue *cfqq = RQ_CFQQ(rq);
599	struct cfq_data *cfqd = cfqq->cfqd;
600	struct request *__alias;
601
602	cfqq->queued[rq_is_sync(rq)]++;
603
604	/*
605	 * looks a little odd, but the first insert might return an alias.
606	 * if that happens, put the alias on the dispatch list
607	 */
608	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
609		cfq_dispatch_insert(cfqd->queue, __alias);
610
611	if (!cfq_cfqq_on_rr(cfqq))
612		cfq_add_cfqq_rr(cfqd, cfqq);
613
614	/*
615	 * check if this request is a better next-serve candidate
616	 */
617	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
618	BUG_ON(!cfqq->next_rq);
619}
620
621static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
622{
623	elv_rb_del(&cfqq->sort_list, rq);
624	cfqq->queued[rq_is_sync(rq)]--;
625	cfq_add_rq_rb(rq);
626}
627
628static struct request *
629cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
630{
631	struct task_struct *tsk = current;
632	struct cfq_io_context *cic;
633	struct cfq_queue *cfqq;
634
635	cic = cfq_cic_lookup(cfqd, tsk->io_context);
636	if (!cic)
637		return NULL;
638
639	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
640	if (cfqq) {
641		sector_t sector = bio->bi_sector + bio_sectors(bio);
642
643		return elv_rb_find(&cfqq->sort_list, sector);
644	}
645
646	return NULL;
647}
648
649static void cfq_activate_request(struct request_queue *q, struct request *rq)
650{
651	struct cfq_data *cfqd = q->elevator->elevator_data;
652
653	cfqd->rq_in_driver++;
654	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
655						cfqd->rq_in_driver);
656
657	/*
658	 * If the depth is larger 1, it really could be queueing. But lets
659	 * make the mark a little higher - idling could still be good for
660	 * low queueing, and a low queueing number could also just indicate
661	 * a SCSI mid layer like behaviour where limit+1 is often seen.
662	 */
663	if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
664		cfqd->hw_tag = 1;
665
666	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
667}
668
669static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
670{
671	struct cfq_data *cfqd = q->elevator->elevator_data;
672
673	WARN_ON(!cfqd->rq_in_driver);
674	cfqd->rq_in_driver--;
675	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
676						cfqd->rq_in_driver);
677}
678
679static void cfq_remove_request(struct request *rq)
680{
681	struct cfq_queue *cfqq = RQ_CFQQ(rq);
682
683	if (cfqq->next_rq == rq)
684		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
685
686	list_del_init(&rq->queuelist);
687	cfq_del_rq_rb(rq);
688
689	if (rq_is_meta(rq)) {
690		WARN_ON(!cfqq->meta_pending);
691		cfqq->meta_pending--;
692	}
693}
694
695static int cfq_merge(struct request_queue *q, struct request **req,
696		     struct bio *bio)
697{
698	struct cfq_data *cfqd = q->elevator->elevator_data;
699	struct request *__rq;
700
701	__rq = cfq_find_rq_fmerge(cfqd, bio);
702	if (__rq && elv_rq_merge_ok(__rq, bio)) {
703		*req = __rq;
704		return ELEVATOR_FRONT_MERGE;
705	}
706
707	return ELEVATOR_NO_MERGE;
708}
709
710static void cfq_merged_request(struct request_queue *q, struct request *req,
711			       int type)
712{
713	if (type == ELEVATOR_FRONT_MERGE) {
714		struct cfq_queue *cfqq = RQ_CFQQ(req);
715
716		cfq_reposition_rq_rb(cfqq, req);
717	}
718}
719
720static void
721cfq_merged_requests(struct request_queue *q, struct request *rq,
722		    struct request *next)
723{
724	/*
725	 * reposition in fifo if next is older than rq
726	 */
727	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
728	    time_before(next->start_time, rq->start_time))
729		list_move(&rq->queuelist, &next->queuelist);
730
731	cfq_remove_request(next);
732}
733
734static int cfq_allow_merge(struct request_queue *q, struct request *rq,
735			   struct bio *bio)
736{
737	struct cfq_data *cfqd = q->elevator->elevator_data;
738	struct cfq_io_context *cic;
739	struct cfq_queue *cfqq;
740
741	/*
742	 * Disallow merge of a sync bio into an async request.
743	 */
744	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
745		return 0;
746
747	/*
748	 * Lookup the cfqq that this bio will be queued with. Allow
749	 * merge only if rq is queued there.
750	 */
751	cic = cfq_cic_lookup(cfqd, current->io_context);
752	if (!cic)
753		return 0;
754
755	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
756	if (cfqq == RQ_CFQQ(rq))
757		return 1;
758
759	return 0;
760}
761
762static void __cfq_set_active_queue(struct cfq_data *cfqd,
763				   struct cfq_queue *cfqq)
764{
765	if (cfqq) {
766		cfq_log_cfqq(cfqd, cfqq, "set_active");
767		cfqq->slice_end = 0;
768		cfq_clear_cfqq_must_alloc_slice(cfqq);
769		cfq_clear_cfqq_fifo_expire(cfqq);
770		cfq_mark_cfqq_slice_new(cfqq);
771		cfq_clear_cfqq_queue_new(cfqq);
772	}
773
774	cfqd->active_queue = cfqq;
775}
776
777/*
778 * current cfqq expired its slice (or was too idle), select new one
779 */
780static void
781__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
782		    int timed_out)
783{
784	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
785
786	if (cfq_cfqq_wait_request(cfqq))
787		del_timer(&cfqd->idle_slice_timer);
788
789	cfq_clear_cfqq_must_dispatch(cfqq);
790	cfq_clear_cfqq_wait_request(cfqq);
791
792	/*
793	 * store what was left of this slice, if the queue idled/timed out
794	 */
795	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
796		cfqq->slice_resid = cfqq->slice_end - jiffies;
797		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
798	}
799
800	cfq_resort_rr_list(cfqd, cfqq);
801
802	if (cfqq == cfqd->active_queue)
803		cfqd->active_queue = NULL;
804
805	if (cfqd->active_cic) {
806		put_io_context(cfqd->active_cic->ioc);
807		cfqd->active_cic = NULL;
808	}
809}
810
811static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
812{
813	struct cfq_queue *cfqq = cfqd->active_queue;
814
815	if (cfqq)
816		__cfq_slice_expired(cfqd, cfqq, timed_out);
817}
818
819/*
820 * Get next queue for service. Unless we have a queue preemption,
821 * we'll simply select the first cfqq in the service tree.
822 */
823static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
824{
825	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
826		return NULL;
827
828	return cfq_rb_first(&cfqd->service_tree);
829}
830
831/*
832 * Get and set a new active queue for service.
833 */
834static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
835{
836	struct cfq_queue *cfqq;
837
838	cfqq = cfq_get_next_queue(cfqd);
839	__cfq_set_active_queue(cfqd, cfqq);
840	return cfqq;
841}
842
843static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
844					  struct request *rq)
845{
846	if (rq->sector >= cfqd->last_position)
847		return rq->sector - cfqd->last_position;
848	else
849		return cfqd->last_position - rq->sector;
850}
851
852static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
853{
854	struct cfq_io_context *cic = cfqd->active_cic;
855
856	if (!sample_valid(cic->seek_samples))
857		return 0;
858
859	return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
860}
861
862static int cfq_close_cooperator(struct cfq_data *cfq_data,
863				struct cfq_queue *cfqq)
864{
865	/*
866	 * We should notice if some of the queues are cooperating, eg
867	 * working closely on the same area of the disk. In that case,
868	 * we can group them together and don't waste time idling.
869	 */
870	return 0;
871}
872
873#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
874
875static void cfq_arm_slice_timer(struct cfq_data *cfqd)
876{
877	struct cfq_queue *cfqq = cfqd->active_queue;
878	struct cfq_io_context *cic;
879	unsigned long sl;
880
881	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
882	WARN_ON(cfq_cfqq_slice_new(cfqq));
883
884	/*
885	 * idle is disabled, either manually or by past process history
886	 */
887	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
888		return;
889
890	/*
891	 * still requests with the driver, don't idle
892	 */
893	if (cfqd->rq_in_driver)
894		return;
895
896	/*
897	 * task has exited, don't wait
898	 */
899	cic = cfqd->active_cic;
900	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
901		return;
902
903	/*
904	 * See if this prio level has a good candidate
905	 */
906	if (cfq_close_cooperator(cfqd, cfqq) &&
907	    (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
908		return;
909
910	cfq_mark_cfqq_must_dispatch(cfqq);
911	cfq_mark_cfqq_wait_request(cfqq);
912
913	/*
914	 * we don't want to idle for seeks, but we do want to allow
915	 * fair distribution of slice time for a process doing back-to-back
916	 * seeks. so allow a little bit of time for him to submit a new rq
917	 */
918	sl = cfqd->cfq_slice_idle;
919	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
920		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
921
922	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
923	cfq_log(cfqd, "arm_idle: %lu", sl);
924}
925
926/*
927 * Move request from internal lists to the request queue dispatch list.
928 */
929static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
930{
931	struct cfq_data *cfqd = q->elevator->elevator_data;
932	struct cfq_queue *cfqq = RQ_CFQQ(rq);
933
934	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
935
936	cfq_remove_request(rq);
937	cfqq->dispatched++;
938	elv_dispatch_sort(q, rq);
939
940	if (cfq_cfqq_sync(cfqq))
941		cfqd->sync_flight++;
942}
943
944/*
945 * return expired entry, or NULL to just start from scratch in rbtree
946 */
947static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
948{
949	struct cfq_data *cfqd = cfqq->cfqd;
950	struct request *rq;
951	int fifo;
952
953	if (cfq_cfqq_fifo_expire(cfqq))
954		return NULL;
955
956	cfq_mark_cfqq_fifo_expire(cfqq);
957
958	if (list_empty(&cfqq->fifo))
959		return NULL;
960
961	fifo = cfq_cfqq_sync(cfqq);
962	rq = rq_entry_fifo(cfqq->fifo.next);
963
964	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
965		rq = NULL;
966
967	cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
968	return rq;
969}
970
971static inline int
972cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
973{
974	const int base_rq = cfqd->cfq_slice_async_rq;
975
976	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
977
978	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
979}
980
981/*
982 * Select a queue for service. If we have a current active queue,
983 * check whether to continue servicing it, or retrieve and set a new one.
984 */
985static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
986{
987	struct cfq_queue *cfqq;
988
989	cfqq = cfqd->active_queue;
990	if (!cfqq)
991		goto new_queue;
992
993	/*
994	 * The active queue has run out of time, expire it and select new.
995	 */
996	if (cfq_slice_used(cfqq))
997		goto expire;
998
999	/*
1000	 * The active queue has requests and isn't expired, allow it to
1001	 * dispatch.
1002	 */
1003	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1004		goto keep_queue;
1005
1006	/*
1007	 * No requests pending. If the active queue still has requests in
1008	 * flight or is idling for a new request, allow either of these
1009	 * conditions to happen (or time out) before selecting a new queue.
1010	 */
1011	if (timer_pending(&cfqd->idle_slice_timer) ||
1012	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1013		cfqq = NULL;
1014		goto keep_queue;
1015	}
1016
1017expire:
1018	cfq_slice_expired(cfqd, 0);
1019new_queue:
1020	cfqq = cfq_set_active_queue(cfqd);
1021keep_queue:
1022	return cfqq;
1023}
1024
1025/*
1026 * Dispatch some requests from cfqq, moving them to the request queue
1027 * dispatch list.
1028 */
1029static int
1030__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1031			int max_dispatch)
1032{
1033	int dispatched = 0;
1034
1035	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1036
1037	do {
1038		struct request *rq;
1039
1040		/*
1041		 * follow expired path, else get first next available
1042		 */
1043		rq = cfq_check_fifo(cfqq);
1044		if (rq == NULL)
1045			rq = cfqq->next_rq;
1046
1047		/*
1048		 * finally, insert request into driver dispatch list
1049		 */
1050		cfq_dispatch_insert(cfqd->queue, rq);
1051
1052		dispatched++;
1053
1054		if (!cfqd->active_cic) {
1055			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1056			cfqd->active_cic = RQ_CIC(rq);
1057		}
1058
1059		if (RB_EMPTY_ROOT(&cfqq->sort_list))
1060			break;
1061
1062	} while (dispatched < max_dispatch);
1063
1064	/*
1065	 * expire an async queue immediately if it has used up its slice. idle
1066	 * queue always expire after 1 dispatch round.
1067	 */
1068	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1069	    dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1070	    cfq_class_idle(cfqq))) {
1071		cfqq->slice_end = jiffies + 1;
1072		cfq_slice_expired(cfqd, 0);
1073	}
1074
1075	return dispatched;
1076}
1077
1078static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1079{
1080	int dispatched = 0;
1081
1082	while (cfqq->next_rq) {
1083		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1084		dispatched++;
1085	}
1086
1087	BUG_ON(!list_empty(&cfqq->fifo));
1088	return dispatched;
1089}
1090
1091/*
1092 * Drain our current requests. Used for barriers and when switching
1093 * io schedulers on-the-fly.
1094 */
1095static int cfq_forced_dispatch(struct cfq_data *cfqd)
1096{
1097	struct cfq_queue *cfqq;
1098	int dispatched = 0;
1099
1100	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1101		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1102
1103	cfq_slice_expired(cfqd, 0);
1104
1105	BUG_ON(cfqd->busy_queues);
1106
1107	cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1108	return dispatched;
1109}
1110
1111static int cfq_dispatch_requests(struct request_queue *q, int force)
1112{
1113	struct cfq_data *cfqd = q->elevator->elevator_data;
1114	struct cfq_queue *cfqq;
1115	int dispatched;
1116
1117	if (!cfqd->busy_queues)
1118		return 0;
1119
1120	if (unlikely(force))
1121		return cfq_forced_dispatch(cfqd);
1122
1123	dispatched = 0;
1124	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1125		int max_dispatch;
1126
1127		max_dispatch = cfqd->cfq_quantum;
1128		if (cfq_class_idle(cfqq))
1129			max_dispatch = 1;
1130
1131		if (cfqq->dispatched >= max_dispatch) {
1132			if (cfqd->busy_queues > 1)
1133				break;
1134			if (cfqq->dispatched >= 4 * max_dispatch)
1135				break;
1136		}
1137
1138		if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1139			break;
1140
1141		cfq_clear_cfqq_must_dispatch(cfqq);
1142		cfq_clear_cfqq_wait_request(cfqq);
1143		del_timer(&cfqd->idle_slice_timer);
1144
1145		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1146	}
1147
1148	cfq_log(cfqd, "dispatched=%d", dispatched);
1149	return dispatched;
1150}
1151
1152/*
1153 * task holds one reference to the queue, dropped when task exits. each rq
1154 * in-flight on this queue also holds a reference, dropped when rq is freed.
1155 *
1156 * queue lock must be held here.
1157 */
1158static void cfq_put_queue(struct cfq_queue *cfqq)
1159{
1160	struct cfq_data *cfqd = cfqq->cfqd;
1161
1162	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1163
1164	if (!atomic_dec_and_test(&cfqq->ref))
1165		return;
1166
1167	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1168	BUG_ON(rb_first(&cfqq->sort_list));
1169	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1170	BUG_ON(cfq_cfqq_on_rr(cfqq));
1171
1172	if (unlikely(cfqd->active_queue == cfqq)) {
1173		__cfq_slice_expired(cfqd, cfqq, 0);
1174		cfq_schedule_dispatch(cfqd);
1175	}
1176
1177	kmem_cache_free(cfq_pool, cfqq);
1178}
1179
1180/*
1181 * Must always be called with the rcu_read_lock() held
1182 */
1183static void
1184__call_for_each_cic(struct io_context *ioc,
1185		    void (*func)(struct io_context *, struct cfq_io_context *))
1186{
1187	struct cfq_io_context *cic;
1188	struct hlist_node *n;
1189
1190	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1191		func(ioc, cic);
1192}
1193
1194/*
1195 * Call func for each cic attached to this ioc.
1196 */
1197static void
1198call_for_each_cic(struct io_context *ioc,
1199		  void (*func)(struct io_context *, struct cfq_io_context *))
1200{
1201	rcu_read_lock();
1202	__call_for_each_cic(ioc, func);
1203	rcu_read_unlock();
1204}
1205
1206static void cfq_cic_free_rcu(struct rcu_head *head)
1207{
1208	struct cfq_io_context *cic;
1209
1210	cic = container_of(head, struct cfq_io_context, rcu_head);
1211
1212	kmem_cache_free(cfq_ioc_pool, cic);
1213	elv_ioc_count_dec(ioc_count);
1214
1215	if (ioc_gone) {
1216		/*
1217		 * CFQ scheduler is exiting, grab exit lock and check
1218		 * the pending io context count. If it hits zero,
1219		 * complete ioc_gone and set it back to NULL
1220		 */
1221		spin_lock(&ioc_gone_lock);
1222		if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1223			complete(ioc_gone);
1224			ioc_gone = NULL;
1225		}
1226		spin_unlock(&ioc_gone_lock);
1227	}
1228}
1229
1230static void cfq_cic_free(struct cfq_io_context *cic)
1231{
1232	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1233}
1234
1235static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1236{
1237	unsigned long flags;
1238
1239	BUG_ON(!cic->dead_key);
1240
1241	spin_lock_irqsave(&ioc->lock, flags);
1242	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1243	hlist_del_rcu(&cic->cic_list);
1244	spin_unlock_irqrestore(&ioc->lock, flags);
1245
1246	cfq_cic_free(cic);
1247}
1248
1249/*
1250 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1251 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1252 * and ->trim() which is called with the task lock held
1253 */
1254static void cfq_free_io_context(struct io_context *ioc)
1255{
1256	/*
1257	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1258	 * so no more cic's are allowed to be linked into this ioc.  So it
1259	 * should be ok to iterate over the known list, we will see all cic's
1260	 * since no new ones are added.
1261	 */
1262	__call_for_each_cic(ioc, cic_free_func);
1263}
1264
1265static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1266{
1267	if (unlikely(cfqq == cfqd->active_queue)) {
1268		__cfq_slice_expired(cfqd, cfqq, 0);
1269		cfq_schedule_dispatch(cfqd);
1270	}
1271
1272	cfq_put_queue(cfqq);
1273}
1274
1275static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1276					 struct cfq_io_context *cic)
1277{
1278	struct io_context *ioc = cic->ioc;
1279
1280	list_del_init(&cic->queue_list);
1281
1282	/*
1283	 * Make sure key == NULL is seen for dead queues
1284	 */
1285	smp_wmb();
1286	cic->dead_key = (unsigned long) cic->key;
1287	cic->key = NULL;
1288
1289	if (ioc->ioc_data == cic)
1290		rcu_assign_pointer(ioc->ioc_data, NULL);
1291
1292	if (cic->cfqq[ASYNC]) {
1293		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1294		cic->cfqq[ASYNC] = NULL;
1295	}
1296
1297	if (cic->cfqq[SYNC]) {
1298		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1299		cic->cfqq[SYNC] = NULL;
1300	}
1301}
1302
1303static void cfq_exit_single_io_context(struct io_context *ioc,
1304				       struct cfq_io_context *cic)
1305{
1306	struct cfq_data *cfqd = cic->key;
1307
1308	if (cfqd) {
1309		struct request_queue *q = cfqd->queue;
1310		unsigned long flags;
1311
1312		spin_lock_irqsave(q->queue_lock, flags);
1313		__cfq_exit_single_io_context(cfqd, cic);
1314		spin_unlock_irqrestore(q->queue_lock, flags);
1315	}
1316}
1317
1318/*
1319 * The process that ioc belongs to has exited, we need to clean up
1320 * and put the internal structures we have that belongs to that process.
1321 */
1322static void cfq_exit_io_context(struct io_context *ioc)
1323{
1324	call_for_each_cic(ioc, cfq_exit_single_io_context);
1325}
1326
1327static struct cfq_io_context *
1328cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1329{
1330	struct cfq_io_context *cic;
1331
1332	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1333							cfqd->queue->node);
1334	if (cic) {
1335		cic->last_end_request = jiffies;
1336		INIT_LIST_HEAD(&cic->queue_list);
1337		INIT_HLIST_NODE(&cic->cic_list);
1338		cic->dtor = cfq_free_io_context;
1339		cic->exit = cfq_exit_io_context;
1340		elv_ioc_count_inc(ioc_count);
1341	}
1342
1343	return cic;
1344}
1345
1346static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1347{
1348	struct task_struct *tsk = current;
1349	int ioprio_class;
1350
1351	if (!cfq_cfqq_prio_changed(cfqq))
1352		return;
1353
1354	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1355	switch (ioprio_class) {
1356	default:
1357		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1358	case IOPRIO_CLASS_NONE:
1359		/*
1360		 * no prio set, inherit CPU scheduling settings
1361		 */
1362		cfqq->ioprio = task_nice_ioprio(tsk);
1363		cfqq->ioprio_class = task_nice_ioclass(tsk);
1364		break;
1365	case IOPRIO_CLASS_RT:
1366		cfqq->ioprio = task_ioprio(ioc);
1367		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1368		break;
1369	case IOPRIO_CLASS_BE:
1370		cfqq->ioprio = task_ioprio(ioc);
1371		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1372		break;
1373	case IOPRIO_CLASS_IDLE:
1374		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1375		cfqq->ioprio = 7;
1376		cfq_clear_cfqq_idle_window(cfqq);
1377		break;
1378	}
1379
1380	/*
1381	 * keep track of original prio settings in case we have to temporarily
1382	 * elevate the priority of this queue
1383	 */
1384	cfqq->org_ioprio = cfqq->ioprio;
1385	cfqq->org_ioprio_class = cfqq->ioprio_class;
1386	cfq_clear_cfqq_prio_changed(cfqq);
1387}
1388
1389static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1390{
1391	struct cfq_data *cfqd = cic->key;
1392	struct cfq_queue *cfqq;
1393	unsigned long flags;
1394
1395	if (unlikely(!cfqd))
1396		return;
1397
1398	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1399
1400	cfqq = cic->cfqq[ASYNC];
1401	if (cfqq) {
1402		struct cfq_queue *new_cfqq;
1403		new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1404		if (new_cfqq) {
1405			cic->cfqq[ASYNC] = new_cfqq;
1406			cfq_put_queue(cfqq);
1407		}
1408	}
1409
1410	cfqq = cic->cfqq[SYNC];
1411	if (cfqq)
1412		cfq_mark_cfqq_prio_changed(cfqq);
1413
1414	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1415}
1416
1417static void cfq_ioc_set_ioprio(struct io_context *ioc)
1418{
1419	call_for_each_cic(ioc, changed_ioprio);
1420	ioc->ioprio_changed = 0;
1421}
1422
1423static struct cfq_queue *
1424cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1425		     struct io_context *ioc, gfp_t gfp_mask)
1426{
1427	struct cfq_queue *cfqq, *new_cfqq = NULL;
1428	struct cfq_io_context *cic;
1429
1430retry:
1431	cic = cfq_cic_lookup(cfqd, ioc);
1432	/* cic always exists here */
1433	cfqq = cic_to_cfqq(cic, is_sync);
1434
1435	if (!cfqq) {
1436		if (new_cfqq) {
1437			cfqq = new_cfqq;
1438			new_cfqq = NULL;
1439		} else if (gfp_mask & __GFP_WAIT) {
1440			/*
1441			 * Inform the allocator of the fact that we will
1442			 * just repeat this allocation if it fails, to allow
1443			 * the allocator to do whatever it needs to attempt to
1444			 * free memory.
1445			 */
1446			spin_unlock_irq(cfqd->queue->queue_lock);
1447			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1448					gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1449					cfqd->queue->node);
1450			spin_lock_irq(cfqd->queue->queue_lock);
1451			goto retry;
1452		} else {
1453			cfqq = kmem_cache_alloc_node(cfq_pool,
1454					gfp_mask | __GFP_ZERO,
1455					cfqd->queue->node);
1456			if (!cfqq)
1457				goto out;
1458		}
1459
1460		RB_CLEAR_NODE(&cfqq->rb_node);
1461		INIT_LIST_HEAD(&cfqq->fifo);
1462
1463		atomic_set(&cfqq->ref, 0);
1464		cfqq->cfqd = cfqd;
1465
1466		cfq_mark_cfqq_prio_changed(cfqq);
1467		cfq_mark_cfqq_queue_new(cfqq);
1468
1469		cfq_init_prio_data(cfqq, ioc);
1470
1471		if (is_sync) {
1472			if (!cfq_class_idle(cfqq))
1473				cfq_mark_cfqq_idle_window(cfqq);
1474			cfq_mark_cfqq_sync(cfqq);
1475		}
1476		cfqq->pid = current->pid;
1477		cfq_log_cfqq(cfqd, cfqq, "alloced");
1478	}
1479
1480	if (new_cfqq)
1481		kmem_cache_free(cfq_pool, new_cfqq);
1482
1483out:
1484	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1485	return cfqq;
1486}
1487
1488static struct cfq_queue **
1489cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1490{
1491	switch (ioprio_class) {
1492	case IOPRIO_CLASS_RT:
1493		return &cfqd->async_cfqq[0][ioprio];
1494	case IOPRIO_CLASS_BE:
1495		return &cfqd->async_cfqq[1][ioprio];
1496	case IOPRIO_CLASS_IDLE:
1497		return &cfqd->async_idle_cfqq;
1498	default:
1499		BUG();
1500	}
1501}
1502
1503static struct cfq_queue *
1504cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1505	      gfp_t gfp_mask)
1506{
1507	const int ioprio = task_ioprio(ioc);
1508	const int ioprio_class = task_ioprio_class(ioc);
1509	struct cfq_queue **async_cfqq = NULL;
1510	struct cfq_queue *cfqq = NULL;
1511
1512	if (!is_sync) {
1513		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1514		cfqq = *async_cfqq;
1515	}
1516
1517	if (!cfqq) {
1518		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1519		if (!cfqq)
1520			return NULL;
1521	}
1522
1523	/*
1524	 * pin the queue now that it's allocated, scheduler exit will prune it
1525	 */
1526	if (!is_sync && !(*async_cfqq)) {
1527		atomic_inc(&cfqq->ref);
1528		*async_cfqq = cfqq;
1529	}
1530
1531	atomic_inc(&cfqq->ref);
1532	return cfqq;
1533}
1534
1535/*
1536 * We drop cfq io contexts lazily, so we may find a dead one.
1537 */
1538static void
1539cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1540		  struct cfq_io_context *cic)
1541{
1542	unsigned long flags;
1543
1544	WARN_ON(!list_empty(&cic->queue_list));
1545
1546	spin_lock_irqsave(&ioc->lock, flags);
1547
1548	BUG_ON(ioc->ioc_data == cic);
1549
1550	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1551	hlist_del_rcu(&cic->cic_list);
1552	spin_unlock_irqrestore(&ioc->lock, flags);
1553
1554	cfq_cic_free(cic);
1555}
1556
1557static struct cfq_io_context *
1558cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1559{
1560	struct cfq_io_context *cic;
1561	unsigned long flags;
1562	void *k;
1563
1564	if (unlikely(!ioc))
1565		return NULL;
1566
1567	rcu_read_lock();
1568
1569	/*
1570	 * we maintain a last-hit cache, to avoid browsing over the tree
1571	 */
1572	cic = rcu_dereference(ioc->ioc_data);
1573	if (cic && cic->key == cfqd) {
1574		rcu_read_unlock();
1575		return cic;
1576	}
1577
1578	do {
1579		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1580		rcu_read_unlock();
1581		if (!cic)
1582			break;
1583		/* ->key must be copied to avoid race with cfq_exit_queue() */
1584		k = cic->key;
1585		if (unlikely(!k)) {
1586			cfq_drop_dead_cic(cfqd, ioc, cic);
1587			rcu_read_lock();
1588			continue;
1589		}
1590
1591		spin_lock_irqsave(&ioc->lock, flags);
1592		rcu_assign_pointer(ioc->ioc_data, cic);
1593		spin_unlock_irqrestore(&ioc->lock, flags);
1594		break;
1595	} while (1);
1596
1597	return cic;
1598}
1599
1600/*
1601 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1602 * the process specific cfq io context when entered from the block layer.
1603 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1604 */
1605static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1606			struct cfq_io_context *cic, gfp_t gfp_mask)
1607{
1608	unsigned long flags;
1609	int ret;
1610
1611	ret = radix_tree_preload(gfp_mask);
1612	if (!ret) {
1613		cic->ioc = ioc;
1614		cic->key = cfqd;
1615
1616		spin_lock_irqsave(&ioc->lock, flags);
1617		ret = radix_tree_insert(&ioc->radix_root,
1618						(unsigned long) cfqd, cic);
1619		if (!ret)
1620			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1621		spin_unlock_irqrestore(&ioc->lock, flags);
1622
1623		radix_tree_preload_end();
1624
1625		if (!ret) {
1626			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1627			list_add(&cic->queue_list, &cfqd->cic_list);
1628			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1629		}
1630	}
1631
1632	if (ret)
1633		printk(KERN_ERR "cfq: cic link failed!\n");
1634
1635	return ret;
1636}
1637
1638/*
1639 * Setup general io context and cfq io context. There can be several cfq
1640 * io contexts per general io context, if this process is doing io to more
1641 * than one device managed by cfq.
1642 */
1643static struct cfq_io_context *
1644cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1645{
1646	struct io_context *ioc = NULL;
1647	struct cfq_io_context *cic;
1648
1649	might_sleep_if(gfp_mask & __GFP_WAIT);
1650
1651	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1652	if (!ioc)
1653		return NULL;
1654
1655	cic = cfq_cic_lookup(cfqd, ioc);
1656	if (cic)
1657		goto out;
1658
1659	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1660	if (cic == NULL)
1661		goto err;
1662
1663	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1664		goto err_free;
1665
1666out:
1667	smp_read_barrier_depends();
1668	if (unlikely(ioc->ioprio_changed))
1669		cfq_ioc_set_ioprio(ioc);
1670
1671	return cic;
1672err_free:
1673	cfq_cic_free(cic);
1674err:
1675	put_io_context(ioc);
1676	return NULL;
1677}
1678
1679static void
1680cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1681{
1682	unsigned long elapsed = jiffies - cic->last_end_request;
1683	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1684
1685	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1686	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1687	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1688}
1689
1690static void
1691cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1692		       struct request *rq)
1693{
1694	sector_t sdist;
1695	u64 total;
1696
1697	if (cic->last_request_pos < rq->sector)
1698		sdist = rq->sector - cic->last_request_pos;
1699	else
1700		sdist = cic->last_request_pos - rq->sector;
1701
1702	/*
1703	 * Don't allow the seek distance to get too large from the
1704	 * odd fragment, pagein, etc
1705	 */
1706	if (cic->seek_samples <= 60) /* second&third seek */
1707		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1708	else
1709		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1710
1711	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1712	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1713	total = cic->seek_total + (cic->seek_samples/2);
1714	do_div(total, cic->seek_samples);
1715	cic->seek_mean = (sector_t)total;
1716}
1717
1718/*
1719 * Disable idle window if the process thinks too long or seeks so much that
1720 * it doesn't matter
1721 */
1722static void
1723cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1724		       struct cfq_io_context *cic)
1725{
1726	int old_idle, enable_idle;
1727
1728	/*
1729	 * Don't idle for async or idle io prio class
1730	 */
1731	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1732		return;
1733
1734	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1735
1736	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1737	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1738		enable_idle = 0;
1739	else if (sample_valid(cic->ttime_samples)) {
1740		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1741			enable_idle = 0;
1742		else
1743			enable_idle = 1;
1744	}
1745
1746	if (old_idle != enable_idle) {
1747		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1748		if (enable_idle)
1749			cfq_mark_cfqq_idle_window(cfqq);
1750		else
1751			cfq_clear_cfqq_idle_window(cfqq);
1752	}
1753}
1754
1755/*
1756 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1757 * no or if we aren't sure, a 1 will cause a preempt.
1758 */
1759static int
1760cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1761		   struct request *rq)
1762{
1763	struct cfq_queue *cfqq;
1764
1765	cfqq = cfqd->active_queue;
1766	if (!cfqq)
1767		return 0;
1768
1769	if (cfq_slice_used(cfqq))
1770		return 1;
1771
1772	if (cfq_class_idle(new_cfqq))
1773		return 0;
1774
1775	if (cfq_class_idle(cfqq))
1776		return 1;
1777
1778	/*
1779	 * if the new request is sync, but the currently running queue is
1780	 * not, let the sync request have priority.
1781	 */
1782	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1783		return 1;
1784
1785	/*
1786	 * So both queues are sync. Let the new request get disk time if
1787	 * it's a metadata request and the current queue is doing regular IO.
1788	 */
1789	if (rq_is_meta(rq) && !cfqq->meta_pending)
1790		return 1;
1791
1792	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1793		return 0;
1794
1795	/*
1796	 * if this request is as-good as one we would expect from the
1797	 * current cfqq, let it preempt
1798	 */
1799	if (cfq_rq_close(cfqd, rq))
1800		return 1;
1801
1802	return 0;
1803}
1804
1805/*
1806 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1807 * let it have half of its nominal slice.
1808 */
1809static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1810{
1811	cfq_log_cfqq(cfqd, cfqq, "preempt");
1812	cfq_slice_expired(cfqd, 1);
1813
1814	/*
1815	 * Put the new queue at the front of the of the current list,
1816	 * so we know that it will be selected next.
1817	 */
1818	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1819
1820	cfq_service_tree_add(cfqd, cfqq, 1);
1821
1822	cfqq->slice_end = 0;
1823	cfq_mark_cfqq_slice_new(cfqq);
1824}
1825
1826/*
1827 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1828 * something we should do about it
1829 */
1830static void
1831cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1832		struct request *rq)
1833{
1834	struct cfq_io_context *cic = RQ_CIC(rq);
1835
1836	if (rq_is_meta(rq))
1837		cfqq->meta_pending++;
1838
1839	cfq_update_io_thinktime(cfqd, cic);
1840	cfq_update_io_seektime(cfqd, cic, rq);
1841	cfq_update_idle_window(cfqd, cfqq, cic);
1842
1843	cic->last_request_pos = rq->sector + rq->nr_sectors;
1844
1845	if (cfqq == cfqd->active_queue) {
1846		/*
1847		 * if we are waiting for a request for this queue, let it rip
1848		 * immediately and flag that we must not expire this queue
1849		 * just now
1850		 */
1851		if (cfq_cfqq_wait_request(cfqq)) {
1852			cfq_mark_cfqq_must_dispatch(cfqq);
1853			del_timer(&cfqd->idle_slice_timer);
1854			blk_start_queueing(cfqd->queue);
1855		}
1856	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1857		/*
1858		 * not the active queue - expire current slice if it is
1859		 * idle and has expired it's mean thinktime or this new queue
1860		 * has some old slice time left and is of higher priority
1861		 */
1862		cfq_preempt_queue(cfqd, cfqq);
1863		cfq_mark_cfqq_must_dispatch(cfqq);
1864		blk_start_queueing(cfqd->queue);
1865	}
1866}
1867
1868static void cfq_insert_request(struct request_queue *q, struct request *rq)
1869{
1870	struct cfq_data *cfqd = q->elevator->elevator_data;
1871	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1872
1873	cfq_log_cfqq(cfqd, cfqq, "insert_request");
1874	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1875
1876	cfq_add_rq_rb(rq);
1877
1878	list_add_tail(&rq->queuelist, &cfqq->fifo);
1879
1880	cfq_rq_enqueued(cfqd, cfqq, rq);
1881}
1882
1883static void cfq_completed_request(struct request_queue *q, struct request *rq)
1884{
1885	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1886	struct cfq_data *cfqd = cfqq->cfqd;
1887	const int sync = rq_is_sync(rq);
1888	unsigned long now;
1889
1890	now = jiffies;
1891	cfq_log_cfqq(cfqd, cfqq, "complete");
1892
1893	WARN_ON(!cfqd->rq_in_driver);
1894	WARN_ON(!cfqq->dispatched);
1895	cfqd->rq_in_driver--;
1896	cfqq->dispatched--;
1897
1898	if (cfq_cfqq_sync(cfqq))
1899		cfqd->sync_flight--;
1900
1901	if (!cfq_class_idle(cfqq))
1902		cfqd->last_end_request = now;
1903
1904	if (sync)
1905		RQ_CIC(rq)->last_end_request = now;
1906
1907	/*
1908	 * If this is the active queue, check if it needs to be expired,
1909	 * or if we want to idle in case it has no pending requests.
1910	 */
1911	if (cfqd->active_queue == cfqq) {
1912		if (cfq_cfqq_slice_new(cfqq)) {
1913			cfq_set_prio_slice(cfqd, cfqq);
1914			cfq_clear_cfqq_slice_new(cfqq);
1915		}
1916		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1917			cfq_slice_expired(cfqd, 1);
1918		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1919			cfq_arm_slice_timer(cfqd);
1920	}
1921
1922	if (!cfqd->rq_in_driver)
1923		cfq_schedule_dispatch(cfqd);
1924}
1925
1926/*
1927 * we temporarily boost lower priority queues if they are holding fs exclusive
1928 * resources. they are boosted to normal prio (CLASS_BE/4)
1929 */
1930static void cfq_prio_boost(struct cfq_queue *cfqq)
1931{
1932	if (has_fs_excl()) {
1933		/*
1934		 * boost idle prio on transactions that would lock out other
1935		 * users of the filesystem
1936		 */
1937		if (cfq_class_idle(cfqq))
1938			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1939		if (cfqq->ioprio > IOPRIO_NORM)
1940			cfqq->ioprio = IOPRIO_NORM;
1941	} else {
1942		/*
1943		 * check if we need to unboost the queue
1944		 */
1945		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1946			cfqq->ioprio_class = cfqq->org_ioprio_class;
1947		if (cfqq->ioprio != cfqq->org_ioprio)
1948			cfqq->ioprio = cfqq->org_ioprio;
1949	}
1950}
1951
1952static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1953{
1954	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1955	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1956		cfq_mark_cfqq_must_alloc_slice(cfqq);
1957		return ELV_MQUEUE_MUST;
1958	}
1959
1960	return ELV_MQUEUE_MAY;
1961}
1962
1963static int cfq_may_queue(struct request_queue *q, int rw)
1964{
1965	struct cfq_data *cfqd = q->elevator->elevator_data;
1966	struct task_struct *tsk = current;
1967	struct cfq_io_context *cic;
1968	struct cfq_queue *cfqq;
1969
1970	/*
1971	 * don't force setup of a queue from here, as a call to may_queue
1972	 * does not necessarily imply that a request actually will be queued.
1973	 * so just lookup a possibly existing queue, or return 'may queue'
1974	 * if that fails
1975	 */
1976	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1977	if (!cic)
1978		return ELV_MQUEUE_MAY;
1979
1980	cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1981	if (cfqq) {
1982		cfq_init_prio_data(cfqq, cic->ioc);
1983		cfq_prio_boost(cfqq);
1984
1985		return __cfq_may_queue(cfqq);
1986	}
1987
1988	return ELV_MQUEUE_MAY;
1989}
1990
1991/*
1992 * queue lock held here
1993 */
1994static void cfq_put_request(struct request *rq)
1995{
1996	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1997
1998	if (cfqq) {
1999		const int rw = rq_data_dir(rq);
2000
2001		BUG_ON(!cfqq->allocated[rw]);
2002		cfqq->allocated[rw]--;
2003
2004		put_io_context(RQ_CIC(rq)->ioc);
2005
2006		rq->elevator_private = NULL;
2007		rq->elevator_private2 = NULL;
2008
2009		cfq_put_queue(cfqq);
2010	}
2011}
2012
2013/*
2014 * Allocate cfq data structures associated with this request.
2015 */
2016static int
2017cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2018{
2019	struct cfq_data *cfqd = q->elevator->elevator_data;
2020	struct cfq_io_context *cic;
2021	const int rw = rq_data_dir(rq);
2022	const int is_sync = rq_is_sync(rq);
2023	struct cfq_queue *cfqq;
2024	unsigned long flags;
2025
2026	might_sleep_if(gfp_mask & __GFP_WAIT);
2027
2028	cic = cfq_get_io_context(cfqd, gfp_mask);
2029
2030	spin_lock_irqsave(q->queue_lock, flags);
2031
2032	if (!cic)
2033		goto queue_fail;
2034
2035	cfqq = cic_to_cfqq(cic, is_sync);
2036	if (!cfqq) {
2037		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2038
2039		if (!cfqq)
2040			goto queue_fail;
2041
2042		cic_set_cfqq(cic, cfqq, is_sync);
2043	}
2044
2045	cfqq->allocated[rw]++;
2046	cfq_clear_cfqq_must_alloc(cfqq);
2047	atomic_inc(&cfqq->ref);
2048
2049	spin_unlock_irqrestore(q->queue_lock, flags);
2050
2051	rq->elevator_private = cic;
2052	rq->elevator_private2 = cfqq;
2053	return 0;
2054
2055queue_fail:
2056	if (cic)
2057		put_io_context(cic->ioc);
2058
2059	cfq_schedule_dispatch(cfqd);
2060	spin_unlock_irqrestore(q->queue_lock, flags);
2061	cfq_log(cfqd, "set_request fail");
2062	return 1;
2063}
2064
2065static void cfq_kick_queue(struct work_struct *work)
2066{
2067	struct cfq_data *cfqd =
2068		container_of(work, struct cfq_data, unplug_work);
2069	struct request_queue *q = cfqd->queue;
2070	unsigned long flags;
2071
2072	spin_lock_irqsave(q->queue_lock, flags);
2073	blk_start_queueing(q);
2074	spin_unlock_irqrestore(q->queue_lock, flags);
2075}
2076
2077/*
2078 * Timer running if the active_queue is currently idling inside its time slice
2079 */
2080static void cfq_idle_slice_timer(unsigned long data)
2081{
2082	struct cfq_data *cfqd = (struct cfq_data *) data;
2083	struct cfq_queue *cfqq;
2084	unsigned long flags;
2085	int timed_out = 1;
2086
2087	cfq_log(cfqd, "idle timer fired");
2088
2089	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2090
2091	cfqq = cfqd->active_queue;
2092	if (cfqq) {
2093		timed_out = 0;
2094
2095		/*
2096		 * expired
2097		 */
2098		if (cfq_slice_used(cfqq))
2099			goto expire;
2100
2101		/*
2102		 * only expire and reinvoke request handler, if there are
2103		 * other queues with pending requests
2104		 */
2105		if (!cfqd->busy_queues)
2106			goto out_cont;
2107
2108		/*
2109		 * not expired and it has a request pending, let it dispatch
2110		 */
2111		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2112			cfq_mark_cfqq_must_dispatch(cfqq);
2113			goto out_kick;
2114		}
2115	}
2116expire:
2117	cfq_slice_expired(cfqd, timed_out);
2118out_kick:
2119	cfq_schedule_dispatch(cfqd);
2120out_cont:
2121	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2122}
2123
2124static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2125{
2126	del_timer_sync(&cfqd->idle_slice_timer);
2127	kblockd_flush_work(&cfqd->unplug_work);
2128}
2129
2130static void cfq_put_async_queues(struct cfq_data *cfqd)
2131{
2132	int i;
2133
2134	for (i = 0; i < IOPRIO_BE_NR; i++) {
2135		if (cfqd->async_cfqq[0][i])
2136			cfq_put_queue(cfqd->async_cfqq[0][i]);
2137		if (cfqd->async_cfqq[1][i])
2138			cfq_put_queue(cfqd->async_cfqq[1][i]);
2139	}
2140
2141	if (cfqd->async_idle_cfqq)
2142		cfq_put_queue(cfqd->async_idle_cfqq);
2143}
2144
2145static void cfq_exit_queue(elevator_t *e)
2146{
2147	struct cfq_data *cfqd = e->elevator_data;
2148	struct request_queue *q = cfqd->queue;
2149
2150	cfq_shutdown_timer_wq(cfqd);
2151
2152	spin_lock_irq(q->queue_lock);
2153
2154	if (cfqd->active_queue)
2155		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2156
2157	while (!list_empty(&cfqd->cic_list)) {
2158		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2159							struct cfq_io_context,
2160							queue_list);
2161
2162		__cfq_exit_single_io_context(cfqd, cic);
2163	}
2164
2165	cfq_put_async_queues(cfqd);
2166
2167	spin_unlock_irq(q->queue_lock);
2168
2169	cfq_shutdown_timer_wq(cfqd);
2170
2171	kfree(cfqd);
2172}
2173
2174static void *cfq_init_queue(struct request_queue *q)
2175{
2176	struct cfq_data *cfqd;
2177
2178	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2179	if (!cfqd)
2180		return NULL;
2181
2182	cfqd->service_tree = CFQ_RB_ROOT;
2183	INIT_LIST_HEAD(&cfqd->cic_list);
2184
2185	cfqd->queue = q;
2186
2187	init_timer(&cfqd->idle_slice_timer);
2188	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2189	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2190
2191	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2192
2193	cfqd->last_end_request = jiffies;
2194	cfqd->cfq_quantum = cfq_quantum;
2195	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2196	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2197	cfqd->cfq_back_max = cfq_back_max;
2198	cfqd->cfq_back_penalty = cfq_back_penalty;
2199	cfqd->cfq_slice[0] = cfq_slice_async;
2200	cfqd->cfq_slice[1] = cfq_slice_sync;
2201	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2202	cfqd->cfq_slice_idle = cfq_slice_idle;
2203
2204	return cfqd;
2205}
2206
2207static void cfq_slab_kill(void)
2208{
2209	/*
2210	 * Caller already ensured that pending RCU callbacks are completed,
2211	 * so we should have no busy allocations at this point.
2212	 */
2213	if (cfq_pool)
2214		kmem_cache_destroy(cfq_pool);
2215	if (cfq_ioc_pool)
2216		kmem_cache_destroy(cfq_ioc_pool);
2217}
2218
2219static int __init cfq_slab_setup(void)
2220{
2221	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2222	if (!cfq_pool)
2223		goto fail;
2224
2225	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2226	if (!cfq_ioc_pool)
2227		goto fail;
2228
2229	return 0;
2230fail:
2231	cfq_slab_kill();
2232	return -ENOMEM;
2233}
2234
2235/*
2236 * sysfs parts below -->
2237 */
2238static ssize_t
2239cfq_var_show(unsigned int var, char *page)
2240{
2241	return sprintf(page, "%d\n", var);
2242}
2243
2244static ssize_t
2245cfq_var_store(unsigned int *var, const char *page, size_t count)
2246{
2247	char *p = (char *) page;
2248
2249	*var = simple_strtoul(p, &p, 10);
2250	return count;
2251}
2252
2253#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2254static ssize_t __FUNC(elevator_t *e, char *page)			\
2255{									\
2256	struct cfq_data *cfqd = e->elevator_data;			\
2257	unsigned int __data = __VAR;					\
2258	if (__CONV)							\
2259		__data = jiffies_to_msecs(__data);			\
2260	return cfq_var_show(__data, (page));				\
2261}
2262SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2263SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2264SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2265SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2266SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2267SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2268SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2269SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2270SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2271#undef SHOW_FUNCTION
2272
2273#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2274static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
2275{									\
2276	struct cfq_data *cfqd = e->elevator_data;			\
2277	unsigned int __data;						\
2278	int ret = cfq_var_store(&__data, (page), count);		\
2279	if (__data < (MIN))						\
2280		__data = (MIN);						\
2281	else if (__data > (MAX))					\
2282		__data = (MAX);						\
2283	if (__CONV)							\
2284		*(__PTR) = msecs_to_jiffies(__data);			\
2285	else								\
2286		*(__PTR) = __data;					\
2287	return ret;							\
2288}
2289STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2290STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2291		UINT_MAX, 1);
2292STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2293		UINT_MAX, 1);
2294STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2295STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2296		UINT_MAX, 0);
2297STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2298STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2299STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2300STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2301		UINT_MAX, 0);
2302#undef STORE_FUNCTION
2303
2304#define CFQ_ATTR(name) \
2305	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2306
2307static struct elv_fs_entry cfq_attrs[] = {
2308	CFQ_ATTR(quantum),
2309	CFQ_ATTR(fifo_expire_sync),
2310	CFQ_ATTR(fifo_expire_async),
2311	CFQ_ATTR(back_seek_max),
2312	CFQ_ATTR(back_seek_penalty),
2313	CFQ_ATTR(slice_sync),
2314	CFQ_ATTR(slice_async),
2315	CFQ_ATTR(slice_async_rq),
2316	CFQ_ATTR(slice_idle),
2317	__ATTR_NULL
2318};
2319
2320static struct elevator_type iosched_cfq = {
2321	.ops = {
2322		.elevator_merge_fn = 		cfq_merge,
2323		.elevator_merged_fn =		cfq_merged_request,
2324		.elevator_merge_req_fn =	cfq_merged_requests,
2325		.elevator_allow_merge_fn =	cfq_allow_merge,
2326		.elevator_dispatch_fn =		cfq_dispatch_requests,
2327		.elevator_add_req_fn =		cfq_insert_request,
2328		.elevator_activate_req_fn =	cfq_activate_request,
2329		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2330		.elevator_queue_empty_fn =	cfq_queue_empty,
2331		.elevator_completed_req_fn =	cfq_completed_request,
2332		.elevator_former_req_fn =	elv_rb_former_request,
2333		.elevator_latter_req_fn =	elv_rb_latter_request,
2334		.elevator_set_req_fn =		cfq_set_request,
2335		.elevator_put_req_fn =		cfq_put_request,
2336		.elevator_may_queue_fn =	cfq_may_queue,
2337		.elevator_init_fn =		cfq_init_queue,
2338		.elevator_exit_fn =		cfq_exit_queue,
2339		.trim =				cfq_free_io_context,
2340	},
2341	.elevator_attrs =	cfq_attrs,
2342	.elevator_name =	"cfq",
2343	.elevator_owner =	THIS_MODULE,
2344};
2345
2346static int __init cfq_init(void)
2347{
2348	/*
2349	 * could be 0 on HZ < 1000 setups
2350	 */
2351	if (!cfq_slice_async)
2352		cfq_slice_async = 1;
2353	if (!cfq_slice_idle)
2354		cfq_slice_idle = 1;
2355
2356	if (cfq_slab_setup())
2357		return -ENOMEM;
2358
2359	elv_register(&iosched_cfq);
2360
2361	return 0;
2362}
2363
2364static void __exit cfq_exit(void)
2365{
2366	DECLARE_COMPLETION_ONSTACK(all_gone);
2367	elv_unregister(&iosched_cfq);
2368	ioc_gone = &all_gone;
2369	/* ioc_gone's update must be visible before reading ioc_count */
2370	smp_wmb();
2371
2372	/*
2373	 * this also protects us from entering cfq_slab_kill() with
2374	 * pending RCU callbacks
2375	 */
2376	if (elv_ioc_count_read(ioc_count))
2377		wait_for_completion(&all_gone);
2378	cfq_slab_kill();
2379}
2380
2381module_init(cfq_init);
2382module_exit(cfq_exit);
2383
2384MODULE_AUTHOR("Jens Axboe");
2385MODULE_LICENSE("GPL");
2386MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2387