cfq-iosched.c revision e18b890bb0881bbab6f4f1a6cd20d9c60d66b003
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/hash.h>
13#include <linux/rbtree.h>
14#include <linux/ioprio.h>
15
16/*
17 * tunables
18 */
19static const int cfq_quantum = 4;		/* max queue in one round of service */
20static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21static const int cfq_back_max = 16 * 1024;	/* maximum backwards seek, in KiB */
22static const int cfq_back_penalty = 2;		/* penalty of a backwards seek */
23
24static const int cfq_slice_sync = HZ / 10;
25static int cfq_slice_async = HZ / 25;
26static const int cfq_slice_async_rq = 2;
27static int cfq_slice_idle = HZ / 125;
28
29#define CFQ_IDLE_GRACE		(HZ / 10)
30#define CFQ_SLICE_SCALE		(5)
31
32#define CFQ_KEY_ASYNC		(0)
33
34/*
35 * for the hash of cfqq inside the cfqd
36 */
37#define CFQ_QHASH_SHIFT		6
38#define CFQ_QHASH_ENTRIES	(1 << CFQ_QHASH_SHIFT)
39#define list_entry_qhash(entry)	hlist_entry((entry), struct cfq_queue, cfq_hash)
40
41#define list_entry_cfqq(ptr)	list_entry((ptr), struct cfq_queue, cfq_list)
42
43#define RQ_CIC(rq)		((struct cfq_io_context*)(rq)->elevator_private)
44#define RQ_CFQQ(rq)		((rq)->elevator_private2)
45
46static struct kmem_cache *cfq_pool;
47static struct kmem_cache *cfq_ioc_pool;
48
49static DEFINE_PER_CPU(unsigned long, ioc_count);
50static struct completion *ioc_gone;
51
52#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
53#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56#define ASYNC			(0)
57#define SYNC			(1)
58
59#define cfq_cfqq_dispatched(cfqq)	\
60	((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
61
62#define cfq_cfqq_class_sync(cfqq)	((cfqq)->key != CFQ_KEY_ASYNC)
63
64#define cfq_cfqq_sync(cfqq)		\
65	(cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
66
67#define sample_valid(samples)	((samples) > 80)
68
69/*
70 * Per block device queue structure
71 */
72struct cfq_data {
73	request_queue_t *queue;
74
75	/*
76	 * rr list of queues with requests and the count of them
77	 */
78	struct list_head rr_list[CFQ_PRIO_LISTS];
79	struct list_head busy_rr;
80	struct list_head cur_rr;
81	struct list_head idle_rr;
82	unsigned int busy_queues;
83
84	/*
85	 * cfqq lookup hash
86	 */
87	struct hlist_head *cfq_hash;
88
89	int rq_in_driver;
90	int hw_tag;
91
92	/*
93	 * idle window management
94	 */
95	struct timer_list idle_slice_timer;
96	struct work_struct unplug_work;
97
98	struct cfq_queue *active_queue;
99	struct cfq_io_context *active_cic;
100	int cur_prio, cur_end_prio;
101	unsigned int dispatch_slice;
102
103	struct timer_list idle_class_timer;
104
105	sector_t last_sector;
106	unsigned long last_end_request;
107
108	/*
109	 * tunables, see top of file
110	 */
111	unsigned int cfq_quantum;
112	unsigned int cfq_fifo_expire[2];
113	unsigned int cfq_back_penalty;
114	unsigned int cfq_back_max;
115	unsigned int cfq_slice[2];
116	unsigned int cfq_slice_async_rq;
117	unsigned int cfq_slice_idle;
118
119	struct list_head cic_list;
120};
121
122/*
123 * Per process-grouping structure
124 */
125struct cfq_queue {
126	/* reference count */
127	atomic_t ref;
128	/* parent cfq_data */
129	struct cfq_data *cfqd;
130	/* cfqq lookup hash */
131	struct hlist_node cfq_hash;
132	/* hash key */
133	unsigned int key;
134	/* member of the rr/busy/cur/idle cfqd list */
135	struct list_head cfq_list;
136	/* sorted list of pending requests */
137	struct rb_root sort_list;
138	/* if fifo isn't expired, next request to serve */
139	struct request *next_rq;
140	/* requests queued in sort_list */
141	int queued[2];
142	/* currently allocated requests */
143	int allocated[2];
144	/* pending metadata requests */
145	int meta_pending;
146	/* fifo list of requests in sort_list */
147	struct list_head fifo;
148
149	unsigned long slice_start;
150	unsigned long slice_end;
151	unsigned long slice_left;
152
153	/* number of requests that are on the dispatch list */
154	int on_dispatch[2];
155
156	/* io prio of this group */
157	unsigned short ioprio, org_ioprio;
158	unsigned short ioprio_class, org_ioprio_class;
159
160	/* various state flags, see below */
161	unsigned int flags;
162};
163
164enum cfqq_state_flags {
165	CFQ_CFQQ_FLAG_on_rr = 0,
166	CFQ_CFQQ_FLAG_wait_request,
167	CFQ_CFQQ_FLAG_must_alloc,
168	CFQ_CFQQ_FLAG_must_alloc_slice,
169	CFQ_CFQQ_FLAG_must_dispatch,
170	CFQ_CFQQ_FLAG_fifo_expire,
171	CFQ_CFQQ_FLAG_idle_window,
172	CFQ_CFQQ_FLAG_prio_changed,
173	CFQ_CFQQ_FLAG_queue_new,
174};
175
176#define CFQ_CFQQ_FNS(name)						\
177static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
178{									\
179	cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
180}									\
181static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
182{									\
183	cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
184}									\
185static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
186{									\
187	return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
188}
189
190CFQ_CFQQ_FNS(on_rr);
191CFQ_CFQQ_FNS(wait_request);
192CFQ_CFQQ_FNS(must_alloc);
193CFQ_CFQQ_FNS(must_alloc_slice);
194CFQ_CFQQ_FNS(must_dispatch);
195CFQ_CFQQ_FNS(fifo_expire);
196CFQ_CFQQ_FNS(idle_window);
197CFQ_CFQQ_FNS(prio_changed);
198CFQ_CFQQ_FNS(queue_new);
199#undef CFQ_CFQQ_FNS
200
201static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
202static void cfq_dispatch_insert(request_queue_t *, struct request *);
203static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
204
205/*
206 * scheduler run of queue, if there are requests pending and no one in the
207 * driver that will restart queueing
208 */
209static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
210{
211	if (cfqd->busy_queues)
212		kblockd_schedule_work(&cfqd->unplug_work);
213}
214
215static int cfq_queue_empty(request_queue_t *q)
216{
217	struct cfq_data *cfqd = q->elevator->elevator_data;
218
219	return !cfqd->busy_queues;
220}
221
222static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
223{
224	if (rw == READ || rw == WRITE_SYNC)
225		return task->pid;
226
227	return CFQ_KEY_ASYNC;
228}
229
230/*
231 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
232 * We choose the request that is closest to the head right now. Distance
233 * behind the head is penalized and only allowed to a certain extent.
234 */
235static struct request *
236cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
237{
238	sector_t last, s1, s2, d1 = 0, d2 = 0;
239	unsigned long back_max;
240#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
241#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
242	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
243
244	if (rq1 == NULL || rq1 == rq2)
245		return rq2;
246	if (rq2 == NULL)
247		return rq1;
248
249	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
250		return rq1;
251	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
252		return rq2;
253	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
254		return rq1;
255	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
256		return rq2;
257
258	s1 = rq1->sector;
259	s2 = rq2->sector;
260
261	last = cfqd->last_sector;
262
263	/*
264	 * by definition, 1KiB is 2 sectors
265	 */
266	back_max = cfqd->cfq_back_max * 2;
267
268	/*
269	 * Strict one way elevator _except_ in the case where we allow
270	 * short backward seeks which are biased as twice the cost of a
271	 * similar forward seek.
272	 */
273	if (s1 >= last)
274		d1 = s1 - last;
275	else if (s1 + back_max >= last)
276		d1 = (last - s1) * cfqd->cfq_back_penalty;
277	else
278		wrap |= CFQ_RQ1_WRAP;
279
280	if (s2 >= last)
281		d2 = s2 - last;
282	else if (s2 + back_max >= last)
283		d2 = (last - s2) * cfqd->cfq_back_penalty;
284	else
285		wrap |= CFQ_RQ2_WRAP;
286
287	/* Found required data */
288
289	/*
290	 * By doing switch() on the bit mask "wrap" we avoid having to
291	 * check two variables for all permutations: --> faster!
292	 */
293	switch (wrap) {
294	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
295		if (d1 < d2)
296			return rq1;
297		else if (d2 < d1)
298			return rq2;
299		else {
300			if (s1 >= s2)
301				return rq1;
302			else
303				return rq2;
304		}
305
306	case CFQ_RQ2_WRAP:
307		return rq1;
308	case CFQ_RQ1_WRAP:
309		return rq2;
310	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
311	default:
312		/*
313		 * Since both rqs are wrapped,
314		 * start with the one that's further behind head
315		 * (--> only *one* back seek required),
316		 * since back seek takes more time than forward.
317		 */
318		if (s1 <= s2)
319			return rq1;
320		else
321			return rq2;
322	}
323}
324
325/*
326 * would be nice to take fifo expire time into account as well
327 */
328static struct request *
329cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
330		  struct request *last)
331{
332	struct rb_node *rbnext = rb_next(&last->rb_node);
333	struct rb_node *rbprev = rb_prev(&last->rb_node);
334	struct request *next = NULL, *prev = NULL;
335
336	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
337
338	if (rbprev)
339		prev = rb_entry_rq(rbprev);
340
341	if (rbnext)
342		next = rb_entry_rq(rbnext);
343	else {
344		rbnext = rb_first(&cfqq->sort_list);
345		if (rbnext && rbnext != &last->rb_node)
346			next = rb_entry_rq(rbnext);
347	}
348
349	return cfq_choose_req(cfqd, next, prev);
350}
351
352static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
353{
354	struct cfq_data *cfqd = cfqq->cfqd;
355	struct list_head *list;
356
357	BUG_ON(!cfq_cfqq_on_rr(cfqq));
358
359	list_del(&cfqq->cfq_list);
360
361	if (cfq_class_rt(cfqq))
362		list = &cfqd->cur_rr;
363	else if (cfq_class_idle(cfqq))
364		list = &cfqd->idle_rr;
365	else {
366		/*
367		 * if cfqq has requests in flight, don't allow it to be
368		 * found in cfq_set_active_queue before it has finished them.
369		 * this is done to increase fairness between a process that
370		 * has lots of io pending vs one that only generates one
371		 * sporadically or synchronously
372		 */
373		if (cfq_cfqq_dispatched(cfqq))
374			list = &cfqd->busy_rr;
375		else
376			list = &cfqd->rr_list[cfqq->ioprio];
377	}
378
379	/*
380	 * If this queue was preempted or is new (never been serviced), let
381	 * it be added first for fairness but beind other new queues.
382	 * Otherwise, just add to the back  of the list.
383	 */
384	if (preempted || cfq_cfqq_queue_new(cfqq)) {
385		struct list_head *n = list;
386		struct cfq_queue *__cfqq;
387
388		while (n->next != list) {
389			__cfqq = list_entry_cfqq(n->next);
390			if (!cfq_cfqq_queue_new(__cfqq))
391				break;
392
393			n = n->next;
394		}
395
396		list = n;
397	}
398
399	list_add_tail(&cfqq->cfq_list, list);
400}
401
402/*
403 * add to busy list of queues for service, trying to be fair in ordering
404 * the pending list according to last request service
405 */
406static inline void
407cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
408{
409	BUG_ON(cfq_cfqq_on_rr(cfqq));
410	cfq_mark_cfqq_on_rr(cfqq);
411	cfqd->busy_queues++;
412
413	cfq_resort_rr_list(cfqq, 0);
414}
415
416static inline void
417cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
418{
419	BUG_ON(!cfq_cfqq_on_rr(cfqq));
420	cfq_clear_cfqq_on_rr(cfqq);
421	list_del_init(&cfqq->cfq_list);
422
423	BUG_ON(!cfqd->busy_queues);
424	cfqd->busy_queues--;
425}
426
427/*
428 * rb tree support functions
429 */
430static inline void cfq_del_rq_rb(struct request *rq)
431{
432	struct cfq_queue *cfqq = RQ_CFQQ(rq);
433	struct cfq_data *cfqd = cfqq->cfqd;
434	const int sync = rq_is_sync(rq);
435
436	BUG_ON(!cfqq->queued[sync]);
437	cfqq->queued[sync]--;
438
439	elv_rb_del(&cfqq->sort_list, rq);
440
441	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
442		cfq_del_cfqq_rr(cfqd, cfqq);
443}
444
445static void cfq_add_rq_rb(struct request *rq)
446{
447	struct cfq_queue *cfqq = RQ_CFQQ(rq);
448	struct cfq_data *cfqd = cfqq->cfqd;
449	struct request *__alias;
450
451	cfqq->queued[rq_is_sync(rq)]++;
452
453	/*
454	 * looks a little odd, but the first insert might return an alias.
455	 * if that happens, put the alias on the dispatch list
456	 */
457	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
458		cfq_dispatch_insert(cfqd->queue, __alias);
459
460	if (!cfq_cfqq_on_rr(cfqq))
461		cfq_add_cfqq_rr(cfqd, cfqq);
462}
463
464static inline void
465cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
466{
467	elv_rb_del(&cfqq->sort_list, rq);
468	cfqq->queued[rq_is_sync(rq)]--;
469	cfq_add_rq_rb(rq);
470}
471
472static struct request *
473cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
474{
475	struct task_struct *tsk = current;
476	pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio));
477	struct cfq_queue *cfqq;
478
479	cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
480	if (cfqq) {
481		sector_t sector = bio->bi_sector + bio_sectors(bio);
482
483		return elv_rb_find(&cfqq->sort_list, sector);
484	}
485
486	return NULL;
487}
488
489static void cfq_activate_request(request_queue_t *q, struct request *rq)
490{
491	struct cfq_data *cfqd = q->elevator->elevator_data;
492
493	cfqd->rq_in_driver++;
494
495	/*
496	 * If the depth is larger 1, it really could be queueing. But lets
497	 * make the mark a little higher - idling could still be good for
498	 * low queueing, and a low queueing number could also just indicate
499	 * a SCSI mid layer like behaviour where limit+1 is often seen.
500	 */
501	if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
502		cfqd->hw_tag = 1;
503}
504
505static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
506{
507	struct cfq_data *cfqd = q->elevator->elevator_data;
508
509	WARN_ON(!cfqd->rq_in_driver);
510	cfqd->rq_in_driver--;
511}
512
513static void cfq_remove_request(struct request *rq)
514{
515	struct cfq_queue *cfqq = RQ_CFQQ(rq);
516
517	if (cfqq->next_rq == rq)
518		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
519
520	list_del_init(&rq->queuelist);
521	cfq_del_rq_rb(rq);
522
523	if (rq_is_meta(rq)) {
524		WARN_ON(!cfqq->meta_pending);
525		cfqq->meta_pending--;
526	}
527}
528
529static int
530cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
531{
532	struct cfq_data *cfqd = q->elevator->elevator_data;
533	struct request *__rq;
534
535	__rq = cfq_find_rq_fmerge(cfqd, bio);
536	if (__rq && elv_rq_merge_ok(__rq, bio)) {
537		*req = __rq;
538		return ELEVATOR_FRONT_MERGE;
539	}
540
541	return ELEVATOR_NO_MERGE;
542}
543
544static void cfq_merged_request(request_queue_t *q, struct request *req,
545			       int type)
546{
547	if (type == ELEVATOR_FRONT_MERGE) {
548		struct cfq_queue *cfqq = RQ_CFQQ(req);
549
550		cfq_reposition_rq_rb(cfqq, req);
551	}
552}
553
554static void
555cfq_merged_requests(request_queue_t *q, struct request *rq,
556		    struct request *next)
557{
558	/*
559	 * reposition in fifo if next is older than rq
560	 */
561	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
562	    time_before(next->start_time, rq->start_time))
563		list_move(&rq->queuelist, &next->queuelist);
564
565	cfq_remove_request(next);
566}
567
568static inline void
569__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
570{
571	if (cfqq) {
572		/*
573		 * stop potential idle class queues waiting service
574		 */
575		del_timer(&cfqd->idle_class_timer);
576
577		cfqq->slice_start = jiffies;
578		cfqq->slice_end = 0;
579		cfqq->slice_left = 0;
580		cfq_clear_cfqq_must_alloc_slice(cfqq);
581		cfq_clear_cfqq_fifo_expire(cfqq);
582	}
583
584	cfqd->active_queue = cfqq;
585}
586
587/*
588 * current cfqq expired its slice (or was too idle), select new one
589 */
590static void
591__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
592		    int preempted)
593{
594	unsigned long now = jiffies;
595
596	if (cfq_cfqq_wait_request(cfqq))
597		del_timer(&cfqd->idle_slice_timer);
598
599	if (!preempted && !cfq_cfqq_dispatched(cfqq))
600		cfq_schedule_dispatch(cfqd);
601
602	cfq_clear_cfqq_must_dispatch(cfqq);
603	cfq_clear_cfqq_wait_request(cfqq);
604	cfq_clear_cfqq_queue_new(cfqq);
605
606	/*
607	 * store what was left of this slice, if the queue idled out
608	 * or was preempted
609	 */
610	if (time_after(cfqq->slice_end, now))
611		cfqq->slice_left = cfqq->slice_end - now;
612	else
613		cfqq->slice_left = 0;
614
615	if (cfq_cfqq_on_rr(cfqq))
616		cfq_resort_rr_list(cfqq, preempted);
617
618	if (cfqq == cfqd->active_queue)
619		cfqd->active_queue = NULL;
620
621	if (cfqd->active_cic) {
622		put_io_context(cfqd->active_cic->ioc);
623		cfqd->active_cic = NULL;
624	}
625
626	cfqd->dispatch_slice = 0;
627}
628
629static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
630{
631	struct cfq_queue *cfqq = cfqd->active_queue;
632
633	if (cfqq)
634		__cfq_slice_expired(cfqd, cfqq, preempted);
635}
636
637/*
638 * 0
639 * 0,1
640 * 0,1,2
641 * 0,1,2,3
642 * 0,1,2,3,4
643 * 0,1,2,3,4,5
644 * 0,1,2,3,4,5,6
645 * 0,1,2,3,4,5,6,7
646 */
647static int cfq_get_next_prio_level(struct cfq_data *cfqd)
648{
649	int prio, wrap;
650
651	prio = -1;
652	wrap = 0;
653	do {
654		int p;
655
656		for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
657			if (!list_empty(&cfqd->rr_list[p])) {
658				prio = p;
659				break;
660			}
661		}
662
663		if (prio != -1)
664			break;
665		cfqd->cur_prio = 0;
666		if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
667			cfqd->cur_end_prio = 0;
668			if (wrap)
669				break;
670			wrap = 1;
671		}
672	} while (1);
673
674	if (unlikely(prio == -1))
675		return -1;
676
677	BUG_ON(prio >= CFQ_PRIO_LISTS);
678
679	list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
680
681	cfqd->cur_prio = prio + 1;
682	if (cfqd->cur_prio > cfqd->cur_end_prio) {
683		cfqd->cur_end_prio = cfqd->cur_prio;
684		cfqd->cur_prio = 0;
685	}
686	if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
687		cfqd->cur_prio = 0;
688		cfqd->cur_end_prio = 0;
689	}
690
691	return prio;
692}
693
694static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
695{
696	struct cfq_queue *cfqq = NULL;
697
698	if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1) {
699		/*
700		 * if current list is non-empty, grab first entry. if it is
701		 * empty, get next prio level and grab first entry then if any
702		 * are spliced
703		 */
704		cfqq = list_entry_cfqq(cfqd->cur_rr.next);
705	} else if (!list_empty(&cfqd->busy_rr)) {
706		/*
707		 * If no new queues are available, check if the busy list has
708		 * some before falling back to idle io.
709		 */
710		cfqq = list_entry_cfqq(cfqd->busy_rr.next);
711	} else if (!list_empty(&cfqd->idle_rr)) {
712		/*
713		 * if we have idle queues and no rt or be queues had pending
714		 * requests, either allow immediate service if the grace period
715		 * has passed or arm the idle grace timer
716		 */
717		unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
718
719		if (time_after_eq(jiffies, end))
720			cfqq = list_entry_cfqq(cfqd->idle_rr.next);
721		else
722			mod_timer(&cfqd->idle_class_timer, end);
723	}
724
725	__cfq_set_active_queue(cfqd, cfqq);
726	return cfqq;
727}
728
729#define CIC_SEEKY(cic) ((cic)->seek_mean > (128 * 1024))
730
731static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
732
733{
734	struct cfq_io_context *cic;
735	unsigned long sl;
736
737	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
738	WARN_ON(cfqq != cfqd->active_queue);
739
740	/*
741	 * idle is disabled, either manually or by past process history
742	 */
743	if (!cfqd->cfq_slice_idle)
744		return 0;
745	if (!cfq_cfqq_idle_window(cfqq))
746		return 0;
747	/*
748	 * task has exited, don't wait
749	 */
750	cic = cfqd->active_cic;
751	if (!cic || !cic->ioc->task)
752		return 0;
753
754	cfq_mark_cfqq_must_dispatch(cfqq);
755	cfq_mark_cfqq_wait_request(cfqq);
756
757	sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
758
759	/*
760	 * we don't want to idle for seeks, but we do want to allow
761	 * fair distribution of slice time for a process doing back-to-back
762	 * seeks. so allow a little bit of time for him to submit a new rq
763	 */
764	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
765		sl = min(sl, msecs_to_jiffies(2));
766
767	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
768	return 1;
769}
770
771static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
772{
773	struct cfq_data *cfqd = q->elevator->elevator_data;
774	struct cfq_queue *cfqq = RQ_CFQQ(rq);
775
776	cfq_remove_request(rq);
777	cfqq->on_dispatch[rq_is_sync(rq)]++;
778	elv_dispatch_sort(q, rq);
779
780	rq = list_entry(q->queue_head.prev, struct request, queuelist);
781	cfqd->last_sector = rq->sector + rq->nr_sectors;
782}
783
784/*
785 * return expired entry, or NULL to just start from scratch in rbtree
786 */
787static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
788{
789	struct cfq_data *cfqd = cfqq->cfqd;
790	struct request *rq;
791	int fifo;
792
793	if (cfq_cfqq_fifo_expire(cfqq))
794		return NULL;
795	if (list_empty(&cfqq->fifo))
796		return NULL;
797
798	fifo = cfq_cfqq_class_sync(cfqq);
799	rq = rq_entry_fifo(cfqq->fifo.next);
800
801	if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
802		cfq_mark_cfqq_fifo_expire(cfqq);
803		return rq;
804	}
805
806	return NULL;
807}
808
809/*
810 * Scale schedule slice based on io priority. Use the sync time slice only
811 * if a queue is marked sync and has sync io queued. A sync queue with async
812 * io only, should not get full sync slice length.
813 */
814static inline int
815cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
816{
817	const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
818
819	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
820
821	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
822}
823
824static inline void
825cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
826{
827	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
828}
829
830static inline int
831cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
832{
833	const int base_rq = cfqd->cfq_slice_async_rq;
834
835	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
836
837	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
838}
839
840/*
841 * get next queue for service
842 */
843static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
844{
845	unsigned long now = jiffies;
846	struct cfq_queue *cfqq;
847
848	cfqq = cfqd->active_queue;
849	if (!cfqq)
850		goto new_queue;
851
852	/*
853	 * slice has expired
854	 */
855	if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
856		goto expire;
857
858	/*
859	 * if queue has requests, dispatch one. if not, check if
860	 * enough slice is left to wait for one
861	 */
862	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
863		goto keep_queue;
864	else if (cfq_cfqq_dispatched(cfqq)) {
865		cfqq = NULL;
866		goto keep_queue;
867	} else if (cfq_cfqq_class_sync(cfqq)) {
868		if (cfq_arm_slice_timer(cfqd, cfqq))
869			return NULL;
870	}
871
872expire:
873	cfq_slice_expired(cfqd, 0);
874new_queue:
875	cfqq = cfq_set_active_queue(cfqd);
876keep_queue:
877	return cfqq;
878}
879
880static int
881__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
882			int max_dispatch)
883{
884	int dispatched = 0;
885
886	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
887
888	do {
889		struct request *rq;
890
891		/*
892		 * follow expired path, else get first next available
893		 */
894		if ((rq = cfq_check_fifo(cfqq)) == NULL)
895			rq = cfqq->next_rq;
896
897		/*
898		 * finally, insert request into driver dispatch list
899		 */
900		cfq_dispatch_insert(cfqd->queue, rq);
901
902		cfqd->dispatch_slice++;
903		dispatched++;
904
905		if (!cfqd->active_cic) {
906			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
907			cfqd->active_cic = RQ_CIC(rq);
908		}
909
910		if (RB_EMPTY_ROOT(&cfqq->sort_list))
911			break;
912
913	} while (dispatched < max_dispatch);
914
915	/*
916	 * if slice end isn't set yet, set it.
917	 */
918	if (!cfqq->slice_end)
919		cfq_set_prio_slice(cfqd, cfqq);
920
921	/*
922	 * expire an async queue immediately if it has used up its slice. idle
923	 * queue always expire after 1 dispatch round.
924	 */
925	if ((!cfq_cfqq_sync(cfqq) &&
926	    cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
927	    cfq_class_idle(cfqq) ||
928	    !cfq_cfqq_idle_window(cfqq))
929		cfq_slice_expired(cfqd, 0);
930
931	return dispatched;
932}
933
934static int
935cfq_forced_dispatch_cfqqs(struct list_head *list)
936{
937	struct cfq_queue *cfqq, *next;
938	int dispatched;
939
940	dispatched = 0;
941	list_for_each_entry_safe(cfqq, next, list, cfq_list) {
942		while (cfqq->next_rq) {
943			cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
944			dispatched++;
945		}
946		BUG_ON(!list_empty(&cfqq->fifo));
947	}
948
949	return dispatched;
950}
951
952static int
953cfq_forced_dispatch(struct cfq_data *cfqd)
954{
955	int i, dispatched = 0;
956
957	for (i = 0; i < CFQ_PRIO_LISTS; i++)
958		dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
959
960	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
961	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
962	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
963
964	cfq_slice_expired(cfqd, 0);
965
966	BUG_ON(cfqd->busy_queues);
967
968	return dispatched;
969}
970
971static int
972cfq_dispatch_requests(request_queue_t *q, int force)
973{
974	struct cfq_data *cfqd = q->elevator->elevator_data;
975	struct cfq_queue *cfqq, *prev_cfqq;
976	int dispatched;
977
978	if (!cfqd->busy_queues)
979		return 0;
980
981	if (unlikely(force))
982		return cfq_forced_dispatch(cfqd);
983
984	dispatched = 0;
985	prev_cfqq = NULL;
986	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
987		int max_dispatch;
988
989		/*
990		 * Don't repeat dispatch from the previous queue.
991		 */
992		if (prev_cfqq == cfqq)
993			break;
994
995		cfq_clear_cfqq_must_dispatch(cfqq);
996		cfq_clear_cfqq_wait_request(cfqq);
997		del_timer(&cfqd->idle_slice_timer);
998
999		max_dispatch = cfqd->cfq_quantum;
1000		if (cfq_class_idle(cfqq))
1001			max_dispatch = 1;
1002
1003		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1004
1005		/*
1006		 * If the dispatch cfqq has idling enabled and is still
1007		 * the active queue, break out.
1008		 */
1009		if (cfq_cfqq_idle_window(cfqq) && cfqd->active_queue)
1010			break;
1011
1012		prev_cfqq = cfqq;
1013	}
1014
1015	return dispatched;
1016}
1017
1018/*
1019 * task holds one reference to the queue, dropped when task exits. each rq
1020 * in-flight on this queue also holds a reference, dropped when rq is freed.
1021 *
1022 * queue lock must be held here.
1023 */
1024static void cfq_put_queue(struct cfq_queue *cfqq)
1025{
1026	struct cfq_data *cfqd = cfqq->cfqd;
1027
1028	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1029
1030	if (!atomic_dec_and_test(&cfqq->ref))
1031		return;
1032
1033	BUG_ON(rb_first(&cfqq->sort_list));
1034	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1035	BUG_ON(cfq_cfqq_on_rr(cfqq));
1036
1037	if (unlikely(cfqd->active_queue == cfqq))
1038		__cfq_slice_expired(cfqd, cfqq, 0);
1039
1040	/*
1041	 * it's on the empty list and still hashed
1042	 */
1043	list_del(&cfqq->cfq_list);
1044	hlist_del(&cfqq->cfq_hash);
1045	kmem_cache_free(cfq_pool, cfqq);
1046}
1047
1048static struct cfq_queue *
1049__cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1050		    const int hashval)
1051{
1052	struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1053	struct hlist_node *entry;
1054	struct cfq_queue *__cfqq;
1055
1056	hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1057		const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1058
1059		if (__cfqq->key == key && (__p == prio || !prio))
1060			return __cfqq;
1061	}
1062
1063	return NULL;
1064}
1065
1066static struct cfq_queue *
1067cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1068{
1069	return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1070}
1071
1072static void cfq_free_io_context(struct io_context *ioc)
1073{
1074	struct cfq_io_context *__cic;
1075	struct rb_node *n;
1076	int freed = 0;
1077
1078	while ((n = rb_first(&ioc->cic_root)) != NULL) {
1079		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1080		rb_erase(&__cic->rb_node, &ioc->cic_root);
1081		kmem_cache_free(cfq_ioc_pool, __cic);
1082		freed++;
1083	}
1084
1085	elv_ioc_count_mod(ioc_count, -freed);
1086
1087	if (ioc_gone && !elv_ioc_count_read(ioc_count))
1088		complete(ioc_gone);
1089}
1090
1091static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1092{
1093	if (unlikely(cfqq == cfqd->active_queue))
1094		__cfq_slice_expired(cfqd, cfqq, 0);
1095
1096	cfq_put_queue(cfqq);
1097}
1098
1099static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1100					 struct cfq_io_context *cic)
1101{
1102	list_del_init(&cic->queue_list);
1103	smp_wmb();
1104	cic->key = NULL;
1105
1106	if (cic->cfqq[ASYNC]) {
1107		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1108		cic->cfqq[ASYNC] = NULL;
1109	}
1110
1111	if (cic->cfqq[SYNC]) {
1112		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1113		cic->cfqq[SYNC] = NULL;
1114	}
1115}
1116
1117
1118/*
1119 * Called with interrupts disabled
1120 */
1121static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1122{
1123	struct cfq_data *cfqd = cic->key;
1124
1125	if (cfqd) {
1126		request_queue_t *q = cfqd->queue;
1127
1128		spin_lock_irq(q->queue_lock);
1129		__cfq_exit_single_io_context(cfqd, cic);
1130		spin_unlock_irq(q->queue_lock);
1131	}
1132}
1133
1134static void cfq_exit_io_context(struct io_context *ioc)
1135{
1136	struct cfq_io_context *__cic;
1137	struct rb_node *n;
1138
1139	/*
1140	 * put the reference this task is holding to the various queues
1141	 */
1142
1143	n = rb_first(&ioc->cic_root);
1144	while (n != NULL) {
1145		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1146
1147		cfq_exit_single_io_context(__cic);
1148		n = rb_next(n);
1149	}
1150}
1151
1152static struct cfq_io_context *
1153cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1154{
1155	struct cfq_io_context *cic;
1156
1157	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1158	if (cic) {
1159		memset(cic, 0, sizeof(*cic));
1160		cic->last_end_request = jiffies;
1161		INIT_LIST_HEAD(&cic->queue_list);
1162		cic->dtor = cfq_free_io_context;
1163		cic->exit = cfq_exit_io_context;
1164		elv_ioc_count_inc(ioc_count);
1165	}
1166
1167	return cic;
1168}
1169
1170static void cfq_init_prio_data(struct cfq_queue *cfqq)
1171{
1172	struct task_struct *tsk = current;
1173	int ioprio_class;
1174
1175	if (!cfq_cfqq_prio_changed(cfqq))
1176		return;
1177
1178	ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1179	switch (ioprio_class) {
1180		default:
1181			printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1182		case IOPRIO_CLASS_NONE:
1183			/*
1184			 * no prio set, place us in the middle of the BE classes
1185			 */
1186			cfqq->ioprio = task_nice_ioprio(tsk);
1187			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1188			break;
1189		case IOPRIO_CLASS_RT:
1190			cfqq->ioprio = task_ioprio(tsk);
1191			cfqq->ioprio_class = IOPRIO_CLASS_RT;
1192			break;
1193		case IOPRIO_CLASS_BE:
1194			cfqq->ioprio = task_ioprio(tsk);
1195			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1196			break;
1197		case IOPRIO_CLASS_IDLE:
1198			cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1199			cfqq->ioprio = 7;
1200			cfq_clear_cfqq_idle_window(cfqq);
1201			break;
1202	}
1203
1204	/*
1205	 * keep track of original prio settings in case we have to temporarily
1206	 * elevate the priority of this queue
1207	 */
1208	cfqq->org_ioprio = cfqq->ioprio;
1209	cfqq->org_ioprio_class = cfqq->ioprio_class;
1210
1211	if (cfq_cfqq_on_rr(cfqq))
1212		cfq_resort_rr_list(cfqq, 0);
1213
1214	cfq_clear_cfqq_prio_changed(cfqq);
1215}
1216
1217static inline void changed_ioprio(struct cfq_io_context *cic)
1218{
1219	struct cfq_data *cfqd = cic->key;
1220	struct cfq_queue *cfqq;
1221	unsigned long flags;
1222
1223	if (unlikely(!cfqd))
1224		return;
1225
1226	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1227
1228	cfqq = cic->cfqq[ASYNC];
1229	if (cfqq) {
1230		struct cfq_queue *new_cfqq;
1231		new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1232					 GFP_ATOMIC);
1233		if (new_cfqq) {
1234			cic->cfqq[ASYNC] = new_cfqq;
1235			cfq_put_queue(cfqq);
1236		}
1237	}
1238
1239	cfqq = cic->cfqq[SYNC];
1240	if (cfqq)
1241		cfq_mark_cfqq_prio_changed(cfqq);
1242
1243	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1244}
1245
1246static void cfq_ioc_set_ioprio(struct io_context *ioc)
1247{
1248	struct cfq_io_context *cic;
1249	struct rb_node *n;
1250
1251	ioc->ioprio_changed = 0;
1252
1253	n = rb_first(&ioc->cic_root);
1254	while (n != NULL) {
1255		cic = rb_entry(n, struct cfq_io_context, rb_node);
1256
1257		changed_ioprio(cic);
1258		n = rb_next(n);
1259	}
1260}
1261
1262static struct cfq_queue *
1263cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1264	      gfp_t gfp_mask)
1265{
1266	const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1267	struct cfq_queue *cfqq, *new_cfqq = NULL;
1268	unsigned short ioprio;
1269
1270retry:
1271	ioprio = tsk->ioprio;
1272	cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1273
1274	if (!cfqq) {
1275		if (new_cfqq) {
1276			cfqq = new_cfqq;
1277			new_cfqq = NULL;
1278		} else if (gfp_mask & __GFP_WAIT) {
1279			/*
1280			 * Inform the allocator of the fact that we will
1281			 * just repeat this allocation if it fails, to allow
1282			 * the allocator to do whatever it needs to attempt to
1283			 * free memory.
1284			 */
1285			spin_unlock_irq(cfqd->queue->queue_lock);
1286			new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1287			spin_lock_irq(cfqd->queue->queue_lock);
1288			goto retry;
1289		} else {
1290			cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1291			if (!cfqq)
1292				goto out;
1293		}
1294
1295		memset(cfqq, 0, sizeof(*cfqq));
1296
1297		INIT_HLIST_NODE(&cfqq->cfq_hash);
1298		INIT_LIST_HEAD(&cfqq->cfq_list);
1299		INIT_LIST_HEAD(&cfqq->fifo);
1300
1301		cfqq->key = key;
1302		hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1303		atomic_set(&cfqq->ref, 0);
1304		cfqq->cfqd = cfqd;
1305		/*
1306		 * set ->slice_left to allow preemption for a new process
1307		 */
1308		cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1309		cfq_mark_cfqq_idle_window(cfqq);
1310		cfq_mark_cfqq_prio_changed(cfqq);
1311		cfq_mark_cfqq_queue_new(cfqq);
1312		cfq_init_prio_data(cfqq);
1313	}
1314
1315	if (new_cfqq)
1316		kmem_cache_free(cfq_pool, new_cfqq);
1317
1318	atomic_inc(&cfqq->ref);
1319out:
1320	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1321	return cfqq;
1322}
1323
1324static void
1325cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1326{
1327	WARN_ON(!list_empty(&cic->queue_list));
1328	rb_erase(&cic->rb_node, &ioc->cic_root);
1329	kmem_cache_free(cfq_ioc_pool, cic);
1330	elv_ioc_count_dec(ioc_count);
1331}
1332
1333static struct cfq_io_context *
1334cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1335{
1336	struct rb_node *n;
1337	struct cfq_io_context *cic;
1338	void *k, *key = cfqd;
1339
1340restart:
1341	n = ioc->cic_root.rb_node;
1342	while (n) {
1343		cic = rb_entry(n, struct cfq_io_context, rb_node);
1344		/* ->key must be copied to avoid race with cfq_exit_queue() */
1345		k = cic->key;
1346		if (unlikely(!k)) {
1347			cfq_drop_dead_cic(ioc, cic);
1348			goto restart;
1349		}
1350
1351		if (key < k)
1352			n = n->rb_left;
1353		else if (key > k)
1354			n = n->rb_right;
1355		else
1356			return cic;
1357	}
1358
1359	return NULL;
1360}
1361
1362static inline void
1363cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1364	     struct cfq_io_context *cic)
1365{
1366	struct rb_node **p;
1367	struct rb_node *parent;
1368	struct cfq_io_context *__cic;
1369	unsigned long flags;
1370	void *k;
1371
1372	cic->ioc = ioc;
1373	cic->key = cfqd;
1374
1375restart:
1376	parent = NULL;
1377	p = &ioc->cic_root.rb_node;
1378	while (*p) {
1379		parent = *p;
1380		__cic = rb_entry(parent, struct cfq_io_context, rb_node);
1381		/* ->key must be copied to avoid race with cfq_exit_queue() */
1382		k = __cic->key;
1383		if (unlikely(!k)) {
1384			cfq_drop_dead_cic(ioc, __cic);
1385			goto restart;
1386		}
1387
1388		if (cic->key < k)
1389			p = &(*p)->rb_left;
1390		else if (cic->key > k)
1391			p = &(*p)->rb_right;
1392		else
1393			BUG();
1394	}
1395
1396	rb_link_node(&cic->rb_node, parent, p);
1397	rb_insert_color(&cic->rb_node, &ioc->cic_root);
1398
1399	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1400	list_add(&cic->queue_list, &cfqd->cic_list);
1401	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1402}
1403
1404/*
1405 * Setup general io context and cfq io context. There can be several cfq
1406 * io contexts per general io context, if this process is doing io to more
1407 * than one device managed by cfq.
1408 */
1409static struct cfq_io_context *
1410cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1411{
1412	struct io_context *ioc = NULL;
1413	struct cfq_io_context *cic;
1414
1415	might_sleep_if(gfp_mask & __GFP_WAIT);
1416
1417	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1418	if (!ioc)
1419		return NULL;
1420
1421	cic = cfq_cic_rb_lookup(cfqd, ioc);
1422	if (cic)
1423		goto out;
1424
1425	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1426	if (cic == NULL)
1427		goto err;
1428
1429	cfq_cic_link(cfqd, ioc, cic);
1430out:
1431	smp_read_barrier_depends();
1432	if (unlikely(ioc->ioprio_changed))
1433		cfq_ioc_set_ioprio(ioc);
1434
1435	return cic;
1436err:
1437	put_io_context(ioc);
1438	return NULL;
1439}
1440
1441static void
1442cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1443{
1444	unsigned long elapsed, ttime;
1445
1446	/*
1447	 * if this context already has stuff queued, thinktime is from
1448	 * last queue not last end
1449	 */
1450#if 0
1451	if (time_after(cic->last_end_request, cic->last_queue))
1452		elapsed = jiffies - cic->last_end_request;
1453	else
1454		elapsed = jiffies - cic->last_queue;
1455#else
1456		elapsed = jiffies - cic->last_end_request;
1457#endif
1458
1459	ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1460
1461	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1462	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1463	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1464}
1465
1466static void
1467cfq_update_io_seektime(struct cfq_io_context *cic, struct request *rq)
1468{
1469	sector_t sdist;
1470	u64 total;
1471
1472	if (cic->last_request_pos < rq->sector)
1473		sdist = rq->sector - cic->last_request_pos;
1474	else
1475		sdist = cic->last_request_pos - rq->sector;
1476
1477	/*
1478	 * Don't allow the seek distance to get too large from the
1479	 * odd fragment, pagein, etc
1480	 */
1481	if (cic->seek_samples <= 60) /* second&third seek */
1482		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1483	else
1484		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1485
1486	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1487	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1488	total = cic->seek_total + (cic->seek_samples/2);
1489	do_div(total, cic->seek_samples);
1490	cic->seek_mean = (sector_t)total;
1491}
1492
1493/*
1494 * Disable idle window if the process thinks too long or seeks so much that
1495 * it doesn't matter
1496 */
1497static void
1498cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1499		       struct cfq_io_context *cic)
1500{
1501	int enable_idle = cfq_cfqq_idle_window(cfqq);
1502
1503	if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1504	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1505		enable_idle = 0;
1506	else if (sample_valid(cic->ttime_samples)) {
1507		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1508			enable_idle = 0;
1509		else
1510			enable_idle = 1;
1511	}
1512
1513	if (enable_idle)
1514		cfq_mark_cfqq_idle_window(cfqq);
1515	else
1516		cfq_clear_cfqq_idle_window(cfqq);
1517}
1518
1519
1520/*
1521 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1522 * no or if we aren't sure, a 1 will cause a preempt.
1523 */
1524static int
1525cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1526		   struct request *rq)
1527{
1528	struct cfq_queue *cfqq = cfqd->active_queue;
1529
1530	if (cfq_class_idle(new_cfqq))
1531		return 0;
1532
1533	if (!cfqq)
1534		return 0;
1535
1536	if (cfq_class_idle(cfqq))
1537		return 1;
1538	if (!cfq_cfqq_wait_request(new_cfqq))
1539		return 0;
1540	/*
1541	 * if it doesn't have slice left, forget it
1542	 */
1543	if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1544		return 0;
1545	/*
1546	 * if the new request is sync, but the currently running queue is
1547	 * not, let the sync request have priority.
1548	 */
1549	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1550		return 1;
1551	/*
1552	 * So both queues are sync. Let the new request get disk time if
1553	 * it's a metadata request and the current queue is doing regular IO.
1554	 */
1555	if (rq_is_meta(rq) && !cfqq->meta_pending)
1556		return 1;
1557
1558	return 0;
1559}
1560
1561/*
1562 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1563 * let it have half of its nominal slice.
1564 */
1565static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1566{
1567	cfq_slice_expired(cfqd, 1);
1568
1569	if (!cfqq->slice_left)
1570		cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1571
1572	/*
1573	 * Put the new queue at the front of the of the current list,
1574	 * so we know that it will be selected next.
1575	 */
1576	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1577	list_move(&cfqq->cfq_list, &cfqd->cur_rr);
1578
1579	cfqq->slice_end = cfqq->slice_left + jiffies;
1580}
1581
1582/*
1583 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1584 * something we should do about it
1585 */
1586static void
1587cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1588		struct request *rq)
1589{
1590	struct cfq_io_context *cic = RQ_CIC(rq);
1591
1592	if (rq_is_meta(rq))
1593		cfqq->meta_pending++;
1594
1595	/*
1596	 * check if this request is a better next-serve candidate)) {
1597	 */
1598	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
1599	BUG_ON(!cfqq->next_rq);
1600
1601	/*
1602	 * we never wait for an async request and we don't allow preemption
1603	 * of an async request. so just return early
1604	 */
1605	if (!rq_is_sync(rq)) {
1606		/*
1607		 * sync process issued an async request, if it's waiting
1608		 * then expire it and kick rq handling.
1609		 */
1610		if (cic == cfqd->active_cic &&
1611		    del_timer(&cfqd->idle_slice_timer)) {
1612			cfq_slice_expired(cfqd, 0);
1613			blk_start_queueing(cfqd->queue);
1614		}
1615		return;
1616	}
1617
1618	cfq_update_io_thinktime(cfqd, cic);
1619	cfq_update_io_seektime(cic, rq);
1620	cfq_update_idle_window(cfqd, cfqq, cic);
1621
1622	cic->last_queue = jiffies;
1623	cic->last_request_pos = rq->sector + rq->nr_sectors;
1624
1625	if (cfqq == cfqd->active_queue) {
1626		/*
1627		 * if we are waiting for a request for this queue, let it rip
1628		 * immediately and flag that we must not expire this queue
1629		 * just now
1630		 */
1631		if (cfq_cfqq_wait_request(cfqq)) {
1632			cfq_mark_cfqq_must_dispatch(cfqq);
1633			del_timer(&cfqd->idle_slice_timer);
1634			blk_start_queueing(cfqd->queue);
1635		}
1636	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1637		/*
1638		 * not the active queue - expire current slice if it is
1639		 * idle and has expired it's mean thinktime or this new queue
1640		 * has some old slice time left and is of higher priority
1641		 */
1642		cfq_preempt_queue(cfqd, cfqq);
1643		cfq_mark_cfqq_must_dispatch(cfqq);
1644		blk_start_queueing(cfqd->queue);
1645	}
1646}
1647
1648static void cfq_insert_request(request_queue_t *q, struct request *rq)
1649{
1650	struct cfq_data *cfqd = q->elevator->elevator_data;
1651	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1652
1653	cfq_init_prio_data(cfqq);
1654
1655	cfq_add_rq_rb(rq);
1656
1657	list_add_tail(&rq->queuelist, &cfqq->fifo);
1658
1659	cfq_rq_enqueued(cfqd, cfqq, rq);
1660}
1661
1662static void cfq_completed_request(request_queue_t *q, struct request *rq)
1663{
1664	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1665	struct cfq_data *cfqd = cfqq->cfqd;
1666	const int sync = rq_is_sync(rq);
1667	unsigned long now;
1668
1669	now = jiffies;
1670
1671	WARN_ON(!cfqd->rq_in_driver);
1672	WARN_ON(!cfqq->on_dispatch[sync]);
1673	cfqd->rq_in_driver--;
1674	cfqq->on_dispatch[sync]--;
1675
1676	if (!cfq_class_idle(cfqq))
1677		cfqd->last_end_request = now;
1678
1679	if (!cfq_cfqq_dispatched(cfqq) && cfq_cfqq_on_rr(cfqq))
1680		cfq_resort_rr_list(cfqq, 0);
1681
1682	if (sync)
1683		RQ_CIC(rq)->last_end_request = now;
1684
1685	/*
1686	 * If this is the active queue, check if it needs to be expired,
1687	 * or if we want to idle in case it has no pending requests.
1688	 */
1689	if (cfqd->active_queue == cfqq) {
1690		if (time_after(now, cfqq->slice_end))
1691			cfq_slice_expired(cfqd, 0);
1692		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1693			if (!cfq_arm_slice_timer(cfqd, cfqq))
1694				cfq_schedule_dispatch(cfqd);
1695		}
1696	}
1697}
1698
1699/*
1700 * we temporarily boost lower priority queues if they are holding fs exclusive
1701 * resources. they are boosted to normal prio (CLASS_BE/4)
1702 */
1703static void cfq_prio_boost(struct cfq_queue *cfqq)
1704{
1705	const int ioprio_class = cfqq->ioprio_class;
1706	const int ioprio = cfqq->ioprio;
1707
1708	if (has_fs_excl()) {
1709		/*
1710		 * boost idle prio on transactions that would lock out other
1711		 * users of the filesystem
1712		 */
1713		if (cfq_class_idle(cfqq))
1714			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1715		if (cfqq->ioprio > IOPRIO_NORM)
1716			cfqq->ioprio = IOPRIO_NORM;
1717	} else {
1718		/*
1719		 * check if we need to unboost the queue
1720		 */
1721		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1722			cfqq->ioprio_class = cfqq->org_ioprio_class;
1723		if (cfqq->ioprio != cfqq->org_ioprio)
1724			cfqq->ioprio = cfqq->org_ioprio;
1725	}
1726
1727	/*
1728	 * refile between round-robin lists if we moved the priority class
1729	 */
1730	if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1731	    cfq_cfqq_on_rr(cfqq))
1732		cfq_resort_rr_list(cfqq, 0);
1733}
1734
1735static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1736{
1737	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1738	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1739		cfq_mark_cfqq_must_alloc_slice(cfqq);
1740		return ELV_MQUEUE_MUST;
1741	}
1742
1743	return ELV_MQUEUE_MAY;
1744}
1745
1746static int cfq_may_queue(request_queue_t *q, int rw)
1747{
1748	struct cfq_data *cfqd = q->elevator->elevator_data;
1749	struct task_struct *tsk = current;
1750	struct cfq_queue *cfqq;
1751
1752	/*
1753	 * don't force setup of a queue from here, as a call to may_queue
1754	 * does not necessarily imply that a request actually will be queued.
1755	 * so just lookup a possibly existing queue, or return 'may queue'
1756	 * if that fails
1757	 */
1758	cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1759	if (cfqq) {
1760		cfq_init_prio_data(cfqq);
1761		cfq_prio_boost(cfqq);
1762
1763		return __cfq_may_queue(cfqq);
1764	}
1765
1766	return ELV_MQUEUE_MAY;
1767}
1768
1769/*
1770 * queue lock held here
1771 */
1772static void cfq_put_request(struct request *rq)
1773{
1774	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1775
1776	if (cfqq) {
1777		const int rw = rq_data_dir(rq);
1778
1779		BUG_ON(!cfqq->allocated[rw]);
1780		cfqq->allocated[rw]--;
1781
1782		put_io_context(RQ_CIC(rq)->ioc);
1783
1784		rq->elevator_private = NULL;
1785		rq->elevator_private2 = NULL;
1786
1787		cfq_put_queue(cfqq);
1788	}
1789}
1790
1791/*
1792 * Allocate cfq data structures associated with this request.
1793 */
1794static int
1795cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1796{
1797	struct cfq_data *cfqd = q->elevator->elevator_data;
1798	struct task_struct *tsk = current;
1799	struct cfq_io_context *cic;
1800	const int rw = rq_data_dir(rq);
1801	pid_t key = cfq_queue_pid(tsk, rw);
1802	struct cfq_queue *cfqq;
1803	unsigned long flags;
1804	int is_sync = key != CFQ_KEY_ASYNC;
1805
1806	might_sleep_if(gfp_mask & __GFP_WAIT);
1807
1808	cic = cfq_get_io_context(cfqd, gfp_mask);
1809
1810	spin_lock_irqsave(q->queue_lock, flags);
1811
1812	if (!cic)
1813		goto queue_fail;
1814
1815	if (!cic->cfqq[is_sync]) {
1816		cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1817		if (!cfqq)
1818			goto queue_fail;
1819
1820		cic->cfqq[is_sync] = cfqq;
1821	} else
1822		cfqq = cic->cfqq[is_sync];
1823
1824	cfqq->allocated[rw]++;
1825	cfq_clear_cfqq_must_alloc(cfqq);
1826	atomic_inc(&cfqq->ref);
1827
1828	spin_unlock_irqrestore(q->queue_lock, flags);
1829
1830	rq->elevator_private = cic;
1831	rq->elevator_private2 = cfqq;
1832	return 0;
1833
1834queue_fail:
1835	if (cic)
1836		put_io_context(cic->ioc);
1837
1838	cfq_schedule_dispatch(cfqd);
1839	spin_unlock_irqrestore(q->queue_lock, flags);
1840	return 1;
1841}
1842
1843static void cfq_kick_queue(struct work_struct *work)
1844{
1845	struct cfq_data *cfqd =
1846		container_of(work, struct cfq_data, unplug_work);
1847	request_queue_t *q = cfqd->queue;
1848	unsigned long flags;
1849
1850	spin_lock_irqsave(q->queue_lock, flags);
1851	blk_start_queueing(q);
1852	spin_unlock_irqrestore(q->queue_lock, flags);
1853}
1854
1855/*
1856 * Timer running if the active_queue is currently idling inside its time slice
1857 */
1858static void cfq_idle_slice_timer(unsigned long data)
1859{
1860	struct cfq_data *cfqd = (struct cfq_data *) data;
1861	struct cfq_queue *cfqq;
1862	unsigned long flags;
1863
1864	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1865
1866	if ((cfqq = cfqd->active_queue) != NULL) {
1867		unsigned long now = jiffies;
1868
1869		/*
1870		 * expired
1871		 */
1872		if (time_after(now, cfqq->slice_end))
1873			goto expire;
1874
1875		/*
1876		 * only expire and reinvoke request handler, if there are
1877		 * other queues with pending requests
1878		 */
1879		if (!cfqd->busy_queues)
1880			goto out_cont;
1881
1882		/*
1883		 * not expired and it has a request pending, let it dispatch
1884		 */
1885		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1886			cfq_mark_cfqq_must_dispatch(cfqq);
1887			goto out_kick;
1888		}
1889	}
1890expire:
1891	cfq_slice_expired(cfqd, 0);
1892out_kick:
1893	cfq_schedule_dispatch(cfqd);
1894out_cont:
1895	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1896}
1897
1898/*
1899 * Timer running if an idle class queue is waiting for service
1900 */
1901static void cfq_idle_class_timer(unsigned long data)
1902{
1903	struct cfq_data *cfqd = (struct cfq_data *) data;
1904	unsigned long flags, end;
1905
1906	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1907
1908	/*
1909	 * race with a non-idle queue, reset timer
1910	 */
1911	end = cfqd->last_end_request + CFQ_IDLE_GRACE;
1912	if (!time_after_eq(jiffies, end))
1913		mod_timer(&cfqd->idle_class_timer, end);
1914	else
1915		cfq_schedule_dispatch(cfqd);
1916
1917	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1918}
1919
1920static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
1921{
1922	del_timer_sync(&cfqd->idle_slice_timer);
1923	del_timer_sync(&cfqd->idle_class_timer);
1924	blk_sync_queue(cfqd->queue);
1925}
1926
1927static void cfq_exit_queue(elevator_t *e)
1928{
1929	struct cfq_data *cfqd = e->elevator_data;
1930	request_queue_t *q = cfqd->queue;
1931
1932	cfq_shutdown_timer_wq(cfqd);
1933
1934	spin_lock_irq(q->queue_lock);
1935
1936	if (cfqd->active_queue)
1937		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
1938
1939	while (!list_empty(&cfqd->cic_list)) {
1940		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
1941							struct cfq_io_context,
1942							queue_list);
1943
1944		__cfq_exit_single_io_context(cfqd, cic);
1945	}
1946
1947	spin_unlock_irq(q->queue_lock);
1948
1949	cfq_shutdown_timer_wq(cfqd);
1950
1951	kfree(cfqd->cfq_hash);
1952	kfree(cfqd);
1953}
1954
1955static void *cfq_init_queue(request_queue_t *q)
1956{
1957	struct cfq_data *cfqd;
1958	int i;
1959
1960	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
1961	if (!cfqd)
1962		return NULL;
1963
1964	memset(cfqd, 0, sizeof(*cfqd));
1965
1966	for (i = 0; i < CFQ_PRIO_LISTS; i++)
1967		INIT_LIST_HEAD(&cfqd->rr_list[i]);
1968
1969	INIT_LIST_HEAD(&cfqd->busy_rr);
1970	INIT_LIST_HEAD(&cfqd->cur_rr);
1971	INIT_LIST_HEAD(&cfqd->idle_rr);
1972	INIT_LIST_HEAD(&cfqd->cic_list);
1973
1974	cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
1975	if (!cfqd->cfq_hash)
1976		goto out_free;
1977
1978	for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
1979		INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
1980
1981	cfqd->queue = q;
1982
1983	init_timer(&cfqd->idle_slice_timer);
1984	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
1985	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
1986
1987	init_timer(&cfqd->idle_class_timer);
1988	cfqd->idle_class_timer.function = cfq_idle_class_timer;
1989	cfqd->idle_class_timer.data = (unsigned long) cfqd;
1990
1991	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
1992
1993	cfqd->cfq_quantum = cfq_quantum;
1994	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
1995	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1996	cfqd->cfq_back_max = cfq_back_max;
1997	cfqd->cfq_back_penalty = cfq_back_penalty;
1998	cfqd->cfq_slice[0] = cfq_slice_async;
1999	cfqd->cfq_slice[1] = cfq_slice_sync;
2000	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2001	cfqd->cfq_slice_idle = cfq_slice_idle;
2002
2003	return cfqd;
2004out_free:
2005	kfree(cfqd);
2006	return NULL;
2007}
2008
2009static void cfq_slab_kill(void)
2010{
2011	if (cfq_pool)
2012		kmem_cache_destroy(cfq_pool);
2013	if (cfq_ioc_pool)
2014		kmem_cache_destroy(cfq_ioc_pool);
2015}
2016
2017static int __init cfq_slab_setup(void)
2018{
2019	cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2020					NULL, NULL);
2021	if (!cfq_pool)
2022		goto fail;
2023
2024	cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2025			sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2026	if (!cfq_ioc_pool)
2027		goto fail;
2028
2029	return 0;
2030fail:
2031	cfq_slab_kill();
2032	return -ENOMEM;
2033}
2034
2035/*
2036 * sysfs parts below -->
2037 */
2038
2039static ssize_t
2040cfq_var_show(unsigned int var, char *page)
2041{
2042	return sprintf(page, "%d\n", var);
2043}
2044
2045static ssize_t
2046cfq_var_store(unsigned int *var, const char *page, size_t count)
2047{
2048	char *p = (char *) page;
2049
2050	*var = simple_strtoul(p, &p, 10);
2051	return count;
2052}
2053
2054#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2055static ssize_t __FUNC(elevator_t *e, char *page)			\
2056{									\
2057	struct cfq_data *cfqd = e->elevator_data;			\
2058	unsigned int __data = __VAR;					\
2059	if (__CONV)							\
2060		__data = jiffies_to_msecs(__data);			\
2061	return cfq_var_show(__data, (page));				\
2062}
2063SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2064SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2065SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2066SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2067SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2068SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2069SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2070SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2071SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2072#undef SHOW_FUNCTION
2073
2074#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2075static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
2076{									\
2077	struct cfq_data *cfqd = e->elevator_data;			\
2078	unsigned int __data;						\
2079	int ret = cfq_var_store(&__data, (page), count);		\
2080	if (__data < (MIN))						\
2081		__data = (MIN);						\
2082	else if (__data > (MAX))					\
2083		__data = (MAX);						\
2084	if (__CONV)							\
2085		*(__PTR) = msecs_to_jiffies(__data);			\
2086	else								\
2087		*(__PTR) = __data;					\
2088	return ret;							\
2089}
2090STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2091STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2092STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2093STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2094STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2095STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2096STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2097STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2098STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2099#undef STORE_FUNCTION
2100
2101#define CFQ_ATTR(name) \
2102	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2103
2104static struct elv_fs_entry cfq_attrs[] = {
2105	CFQ_ATTR(quantum),
2106	CFQ_ATTR(fifo_expire_sync),
2107	CFQ_ATTR(fifo_expire_async),
2108	CFQ_ATTR(back_seek_max),
2109	CFQ_ATTR(back_seek_penalty),
2110	CFQ_ATTR(slice_sync),
2111	CFQ_ATTR(slice_async),
2112	CFQ_ATTR(slice_async_rq),
2113	CFQ_ATTR(slice_idle),
2114	__ATTR_NULL
2115};
2116
2117static struct elevator_type iosched_cfq = {
2118	.ops = {
2119		.elevator_merge_fn = 		cfq_merge,
2120		.elevator_merged_fn =		cfq_merged_request,
2121		.elevator_merge_req_fn =	cfq_merged_requests,
2122		.elevator_dispatch_fn =		cfq_dispatch_requests,
2123		.elevator_add_req_fn =		cfq_insert_request,
2124		.elevator_activate_req_fn =	cfq_activate_request,
2125		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2126		.elevator_queue_empty_fn =	cfq_queue_empty,
2127		.elevator_completed_req_fn =	cfq_completed_request,
2128		.elevator_former_req_fn =	elv_rb_former_request,
2129		.elevator_latter_req_fn =	elv_rb_latter_request,
2130		.elevator_set_req_fn =		cfq_set_request,
2131		.elevator_put_req_fn =		cfq_put_request,
2132		.elevator_may_queue_fn =	cfq_may_queue,
2133		.elevator_init_fn =		cfq_init_queue,
2134		.elevator_exit_fn =		cfq_exit_queue,
2135		.trim =				cfq_free_io_context,
2136	},
2137	.elevator_attrs =	cfq_attrs,
2138	.elevator_name =	"cfq",
2139	.elevator_owner =	THIS_MODULE,
2140};
2141
2142static int __init cfq_init(void)
2143{
2144	int ret;
2145
2146	/*
2147	 * could be 0 on HZ < 1000 setups
2148	 */
2149	if (!cfq_slice_async)
2150		cfq_slice_async = 1;
2151	if (!cfq_slice_idle)
2152		cfq_slice_idle = 1;
2153
2154	if (cfq_slab_setup())
2155		return -ENOMEM;
2156
2157	ret = elv_register(&iosched_cfq);
2158	if (ret)
2159		cfq_slab_kill();
2160
2161	return ret;
2162}
2163
2164static void __exit cfq_exit(void)
2165{
2166	DECLARE_COMPLETION_ONSTACK(all_gone);
2167	elv_unregister(&iosched_cfq);
2168	ioc_gone = &all_gone;
2169	/* ioc_gone's update must be visible before reading ioc_count */
2170	smp_wmb();
2171	if (elv_ioc_count_read(ioc_count))
2172		wait_for_completion(ioc_gone);
2173	synchronize_rcu();
2174	cfq_slab_kill();
2175}
2176
2177module_init(cfq_init);
2178module_exit(cfq_exit);
2179
2180MODULE_AUTHOR("Jens Axboe");
2181MODULE_LICENSE("GPL");
2182MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2183