cfq-iosched.c revision e2d74ac0664c89757bde8fb18c98cd7bf53da61c
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@suse.de>
8 */
9#include <linux/config.h>
10#include <linux/module.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/hash.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16
17/*
18 * tunables
19 */
20static const int cfq_quantum = 4;		/* max queue in one round of service */
21static const int cfq_queued = 8;		/* minimum rq allocate limit per-queue*/
22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23static const int cfq_back_max = 16 * 1024;	/* maximum backwards seek, in KiB */
24static const int cfq_back_penalty = 2;		/* penalty of a backwards seek */
25
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 100;
30
31#define CFQ_IDLE_GRACE		(HZ / 10)
32#define CFQ_SLICE_SCALE		(5)
33
34#define CFQ_KEY_ASYNC		(0)
35#define CFQ_KEY_ANY		(0xffff)
36
37/*
38 * disable queueing at the driver/hardware level
39 */
40static const int cfq_max_depth = 2;
41
42static DEFINE_RWLOCK(cfq_exit_lock);
43
44/*
45 * for the hash of cfqq inside the cfqd
46 */
47#define CFQ_QHASH_SHIFT		6
48#define CFQ_QHASH_ENTRIES	(1 << CFQ_QHASH_SHIFT)
49#define list_entry_qhash(entry)	hlist_entry((entry), struct cfq_queue, cfq_hash)
50
51/*
52 * for the hash of crq inside the cfqq
53 */
54#define CFQ_MHASH_SHIFT		6
55#define CFQ_MHASH_BLOCK(sec)	((sec) >> 3)
56#define CFQ_MHASH_ENTRIES	(1 << CFQ_MHASH_SHIFT)
57#define CFQ_MHASH_FN(sec)	hash_long(CFQ_MHASH_BLOCK(sec), CFQ_MHASH_SHIFT)
58#define rq_hash_key(rq)		((rq)->sector + (rq)->nr_sectors)
59#define list_entry_hash(ptr)	hlist_entry((ptr), struct cfq_rq, hash)
60
61#define list_entry_cfqq(ptr)	list_entry((ptr), struct cfq_queue, cfq_list)
62#define list_entry_fifo(ptr)	list_entry((ptr), struct request, queuelist)
63
64#define RQ_DATA(rq)		(rq)->elevator_private
65
66/*
67 * rb-tree defines
68 */
69#define RB_NONE			(2)
70#define RB_EMPTY(node)		((node)->rb_node == NULL)
71#define RB_CLEAR_COLOR(node)	(node)->rb_color = RB_NONE
72#define RB_CLEAR(node)		do {	\
73	(node)->rb_parent = NULL;	\
74	RB_CLEAR_COLOR((node));		\
75	(node)->rb_right = NULL;	\
76	(node)->rb_left = NULL;		\
77} while (0)
78#define RB_CLEAR_ROOT(root)	((root)->rb_node = NULL)
79#define rb_entry_crq(node)	rb_entry((node), struct cfq_rq, rb_node)
80#define rq_rb_key(rq)		(rq)->sector
81
82static kmem_cache_t *crq_pool;
83static kmem_cache_t *cfq_pool;
84static kmem_cache_t *cfq_ioc_pool;
85
86static atomic_t ioc_count = ATOMIC_INIT(0);
87static struct completion *ioc_gone;
88
89#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
90#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
91#define cfq_class_be(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_BE)
92#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
93
94#define ASYNC			(0)
95#define SYNC			(1)
96
97#define cfq_cfqq_dispatched(cfqq)	\
98	((cfqq)->on_dispatch[ASYNC] + (cfqq)->on_dispatch[SYNC])
99
100#define cfq_cfqq_class_sync(cfqq)	((cfqq)->key != CFQ_KEY_ASYNC)
101
102#define cfq_cfqq_sync(cfqq)		\
103	(cfq_cfqq_class_sync(cfqq) || (cfqq)->on_dispatch[SYNC])
104
105/*
106 * Per block device queue structure
107 */
108struct cfq_data {
109	request_queue_t *queue;
110
111	/*
112	 * rr list of queues with requests and the count of them
113	 */
114	struct list_head rr_list[CFQ_PRIO_LISTS];
115	struct list_head busy_rr;
116	struct list_head cur_rr;
117	struct list_head idle_rr;
118	unsigned int busy_queues;
119
120	/*
121	 * non-ordered list of empty cfqq's
122	 */
123	struct list_head empty_list;
124
125	/*
126	 * cfqq lookup hash
127	 */
128	struct hlist_head *cfq_hash;
129
130	/*
131	 * global crq hash for all queues
132	 */
133	struct hlist_head *crq_hash;
134
135	unsigned int max_queued;
136
137	mempool_t *crq_pool;
138
139	int rq_in_driver;
140
141	/*
142	 * schedule slice state info
143	 */
144	/*
145	 * idle window management
146	 */
147	struct timer_list idle_slice_timer;
148	struct work_struct unplug_work;
149
150	struct cfq_queue *active_queue;
151	struct cfq_io_context *active_cic;
152	int cur_prio, cur_end_prio;
153	unsigned int dispatch_slice;
154
155	struct timer_list idle_class_timer;
156
157	sector_t last_sector;
158	unsigned long last_end_request;
159
160	unsigned int rq_starved;
161
162	/*
163	 * tunables, see top of file
164	 */
165	unsigned int cfq_quantum;
166	unsigned int cfq_queued;
167	unsigned int cfq_fifo_expire[2];
168	unsigned int cfq_back_penalty;
169	unsigned int cfq_back_max;
170	unsigned int cfq_slice[2];
171	unsigned int cfq_slice_async_rq;
172	unsigned int cfq_slice_idle;
173	unsigned int cfq_max_depth;
174
175	struct list_head cic_list;
176};
177
178/*
179 * Per process-grouping structure
180 */
181struct cfq_queue {
182	/* reference count */
183	atomic_t ref;
184	/* parent cfq_data */
185	struct cfq_data *cfqd;
186	/* cfqq lookup hash */
187	struct hlist_node cfq_hash;
188	/* hash key */
189	unsigned int key;
190	/* on either rr or empty list of cfqd */
191	struct list_head cfq_list;
192	/* sorted list of pending requests */
193	struct rb_root sort_list;
194	/* if fifo isn't expired, next request to serve */
195	struct cfq_rq *next_crq;
196	/* requests queued in sort_list */
197	int queued[2];
198	/* currently allocated requests */
199	int allocated[2];
200	/* fifo list of requests in sort_list */
201	struct list_head fifo;
202
203	unsigned long slice_start;
204	unsigned long slice_end;
205	unsigned long slice_left;
206	unsigned long service_last;
207
208	/* number of requests that are on the dispatch list */
209	int on_dispatch[2];
210
211	/* io prio of this group */
212	unsigned short ioprio, org_ioprio;
213	unsigned short ioprio_class, org_ioprio_class;
214
215	/* various state flags, see below */
216	unsigned int flags;
217};
218
219struct cfq_rq {
220	struct rb_node rb_node;
221	sector_t rb_key;
222	struct request *request;
223	struct hlist_node hash;
224
225	struct cfq_queue *cfq_queue;
226	struct cfq_io_context *io_context;
227
228	unsigned int crq_flags;
229};
230
231enum cfqq_state_flags {
232	CFQ_CFQQ_FLAG_on_rr = 0,
233	CFQ_CFQQ_FLAG_wait_request,
234	CFQ_CFQQ_FLAG_must_alloc,
235	CFQ_CFQQ_FLAG_must_alloc_slice,
236	CFQ_CFQQ_FLAG_must_dispatch,
237	CFQ_CFQQ_FLAG_fifo_expire,
238	CFQ_CFQQ_FLAG_idle_window,
239	CFQ_CFQQ_FLAG_prio_changed,
240};
241
242#define CFQ_CFQQ_FNS(name)						\
243static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
244{									\
245	cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
246}									\
247static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
248{									\
249	cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
250}									\
251static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
252{									\
253	return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
254}
255
256CFQ_CFQQ_FNS(on_rr);
257CFQ_CFQQ_FNS(wait_request);
258CFQ_CFQQ_FNS(must_alloc);
259CFQ_CFQQ_FNS(must_alloc_slice);
260CFQ_CFQQ_FNS(must_dispatch);
261CFQ_CFQQ_FNS(fifo_expire);
262CFQ_CFQQ_FNS(idle_window);
263CFQ_CFQQ_FNS(prio_changed);
264#undef CFQ_CFQQ_FNS
265
266enum cfq_rq_state_flags {
267	CFQ_CRQ_FLAG_is_sync = 0,
268};
269
270#define CFQ_CRQ_FNS(name)						\
271static inline void cfq_mark_crq_##name(struct cfq_rq *crq)		\
272{									\
273	crq->crq_flags |= (1 << CFQ_CRQ_FLAG_##name);			\
274}									\
275static inline void cfq_clear_crq_##name(struct cfq_rq *crq)		\
276{									\
277	crq->crq_flags &= ~(1 << CFQ_CRQ_FLAG_##name);			\
278}									\
279static inline int cfq_crq_##name(const struct cfq_rq *crq)		\
280{									\
281	return (crq->crq_flags & (1 << CFQ_CRQ_FLAG_##name)) != 0;	\
282}
283
284CFQ_CRQ_FNS(is_sync);
285#undef CFQ_CRQ_FNS
286
287static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
288static void cfq_dispatch_insert(request_queue_t *, struct cfq_rq *);
289static struct cfq_queue *cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk, gfp_t gfp_mask);
290
291#define process_sync(tsk)	((tsk)->flags & PF_SYNCWRITE)
292
293/*
294 * lots of deadline iosched dupes, can be abstracted later...
295 */
296static inline void cfq_del_crq_hash(struct cfq_rq *crq)
297{
298	hlist_del_init(&crq->hash);
299}
300
301static inline void cfq_add_crq_hash(struct cfq_data *cfqd, struct cfq_rq *crq)
302{
303	const int hash_idx = CFQ_MHASH_FN(rq_hash_key(crq->request));
304
305	hlist_add_head(&crq->hash, &cfqd->crq_hash[hash_idx]);
306}
307
308static struct request *cfq_find_rq_hash(struct cfq_data *cfqd, sector_t offset)
309{
310	struct hlist_head *hash_list = &cfqd->crq_hash[CFQ_MHASH_FN(offset)];
311	struct hlist_node *entry, *next;
312
313	hlist_for_each_safe(entry, next, hash_list) {
314		struct cfq_rq *crq = list_entry_hash(entry);
315		struct request *__rq = crq->request;
316
317		if (!rq_mergeable(__rq)) {
318			cfq_del_crq_hash(crq);
319			continue;
320		}
321
322		if (rq_hash_key(__rq) == offset)
323			return __rq;
324	}
325
326	return NULL;
327}
328
329/*
330 * scheduler run of queue, if there are requests pending and no one in the
331 * driver that will restart queueing
332 */
333static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
334{
335	if (cfqd->busy_queues)
336		kblockd_schedule_work(&cfqd->unplug_work);
337}
338
339static int cfq_queue_empty(request_queue_t *q)
340{
341	struct cfq_data *cfqd = q->elevator->elevator_data;
342
343	return !cfqd->busy_queues;
344}
345
346/*
347 * Lifted from AS - choose which of crq1 and crq2 that is best served now.
348 * We choose the request that is closest to the head right now. Distance
349 * behind the head are penalized and only allowed to a certain extent.
350 */
351static struct cfq_rq *
352cfq_choose_req(struct cfq_data *cfqd, struct cfq_rq *crq1, struct cfq_rq *crq2)
353{
354	sector_t last, s1, s2, d1 = 0, d2 = 0;
355	int r1_wrap = 0, r2_wrap = 0;	/* requests are behind the disk head */
356	unsigned long back_max;
357
358	if (crq1 == NULL || crq1 == crq2)
359		return crq2;
360	if (crq2 == NULL)
361		return crq1;
362
363	if (cfq_crq_is_sync(crq1) && !cfq_crq_is_sync(crq2))
364		return crq1;
365	else if (cfq_crq_is_sync(crq2) && !cfq_crq_is_sync(crq1))
366		return crq2;
367
368	s1 = crq1->request->sector;
369	s2 = crq2->request->sector;
370
371	last = cfqd->last_sector;
372
373	/*
374	 * by definition, 1KiB is 2 sectors
375	 */
376	back_max = cfqd->cfq_back_max * 2;
377
378	/*
379	 * Strict one way elevator _except_ in the case where we allow
380	 * short backward seeks which are biased as twice the cost of a
381	 * similar forward seek.
382	 */
383	if (s1 >= last)
384		d1 = s1 - last;
385	else if (s1 + back_max >= last)
386		d1 = (last - s1) * cfqd->cfq_back_penalty;
387	else
388		r1_wrap = 1;
389
390	if (s2 >= last)
391		d2 = s2 - last;
392	else if (s2 + back_max >= last)
393		d2 = (last - s2) * cfqd->cfq_back_penalty;
394	else
395		r2_wrap = 1;
396
397	/* Found required data */
398	if (!r1_wrap && r2_wrap)
399		return crq1;
400	else if (!r2_wrap && r1_wrap)
401		return crq2;
402	else if (r1_wrap && r2_wrap) {
403		/* both behind the head */
404		if (s1 <= s2)
405			return crq1;
406		else
407			return crq2;
408	}
409
410	/* Both requests in front of the head */
411	if (d1 < d2)
412		return crq1;
413	else if (d2 < d1)
414		return crq2;
415	else {
416		if (s1 >= s2)
417			return crq1;
418		else
419			return crq2;
420	}
421}
422
423/*
424 * would be nice to take fifo expire time into account as well
425 */
426static struct cfq_rq *
427cfq_find_next_crq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
428		  struct cfq_rq *last)
429{
430	struct cfq_rq *crq_next = NULL, *crq_prev = NULL;
431	struct rb_node *rbnext, *rbprev;
432
433	if (!(rbnext = rb_next(&last->rb_node))) {
434		rbnext = rb_first(&cfqq->sort_list);
435		if (rbnext == &last->rb_node)
436			rbnext = NULL;
437	}
438
439	rbprev = rb_prev(&last->rb_node);
440
441	if (rbprev)
442		crq_prev = rb_entry_crq(rbprev);
443	if (rbnext)
444		crq_next = rb_entry_crq(rbnext);
445
446	return cfq_choose_req(cfqd, crq_next, crq_prev);
447}
448
449static void cfq_update_next_crq(struct cfq_rq *crq)
450{
451	struct cfq_queue *cfqq = crq->cfq_queue;
452
453	if (cfqq->next_crq == crq)
454		cfqq->next_crq = cfq_find_next_crq(cfqq->cfqd, cfqq, crq);
455}
456
457static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
458{
459	struct cfq_data *cfqd = cfqq->cfqd;
460	struct list_head *list, *entry;
461
462	BUG_ON(!cfq_cfqq_on_rr(cfqq));
463
464	list_del(&cfqq->cfq_list);
465
466	if (cfq_class_rt(cfqq))
467		list = &cfqd->cur_rr;
468	else if (cfq_class_idle(cfqq))
469		list = &cfqd->idle_rr;
470	else {
471		/*
472		 * if cfqq has requests in flight, don't allow it to be
473		 * found in cfq_set_active_queue before it has finished them.
474		 * this is done to increase fairness between a process that
475		 * has lots of io pending vs one that only generates one
476		 * sporadically or synchronously
477		 */
478		if (cfq_cfqq_dispatched(cfqq))
479			list = &cfqd->busy_rr;
480		else
481			list = &cfqd->rr_list[cfqq->ioprio];
482	}
483
484	/*
485	 * if queue was preempted, just add to front to be fair. busy_rr
486	 * isn't sorted.
487	 */
488	if (preempted || list == &cfqd->busy_rr) {
489		list_add(&cfqq->cfq_list, list);
490		return;
491	}
492
493	/*
494	 * sort by when queue was last serviced
495	 */
496	entry = list;
497	while ((entry = entry->prev) != list) {
498		struct cfq_queue *__cfqq = list_entry_cfqq(entry);
499
500		if (!__cfqq->service_last)
501			break;
502		if (time_before(__cfqq->service_last, cfqq->service_last))
503			break;
504	}
505
506	list_add(&cfqq->cfq_list, entry);
507}
508
509/*
510 * add to busy list of queues for service, trying to be fair in ordering
511 * the pending list according to last request service
512 */
513static inline void
514cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
515{
516	BUG_ON(cfq_cfqq_on_rr(cfqq));
517	cfq_mark_cfqq_on_rr(cfqq);
518	cfqd->busy_queues++;
519
520	cfq_resort_rr_list(cfqq, 0);
521}
522
523static inline void
524cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
525{
526	BUG_ON(!cfq_cfqq_on_rr(cfqq));
527	cfq_clear_cfqq_on_rr(cfqq);
528	list_move(&cfqq->cfq_list, &cfqd->empty_list);
529
530	BUG_ON(!cfqd->busy_queues);
531	cfqd->busy_queues--;
532}
533
534/*
535 * rb tree support functions
536 */
537static inline void cfq_del_crq_rb(struct cfq_rq *crq)
538{
539	struct cfq_queue *cfqq = crq->cfq_queue;
540	struct cfq_data *cfqd = cfqq->cfqd;
541	const int sync = cfq_crq_is_sync(crq);
542
543	BUG_ON(!cfqq->queued[sync]);
544	cfqq->queued[sync]--;
545
546	cfq_update_next_crq(crq);
547
548	rb_erase(&crq->rb_node, &cfqq->sort_list);
549	RB_CLEAR_COLOR(&crq->rb_node);
550
551	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY(&cfqq->sort_list))
552		cfq_del_cfqq_rr(cfqd, cfqq);
553}
554
555static struct cfq_rq *
556__cfq_add_crq_rb(struct cfq_rq *crq)
557{
558	struct rb_node **p = &crq->cfq_queue->sort_list.rb_node;
559	struct rb_node *parent = NULL;
560	struct cfq_rq *__crq;
561
562	while (*p) {
563		parent = *p;
564		__crq = rb_entry_crq(parent);
565
566		if (crq->rb_key < __crq->rb_key)
567			p = &(*p)->rb_left;
568		else if (crq->rb_key > __crq->rb_key)
569			p = &(*p)->rb_right;
570		else
571			return __crq;
572	}
573
574	rb_link_node(&crq->rb_node, parent, p);
575	return NULL;
576}
577
578static void cfq_add_crq_rb(struct cfq_rq *crq)
579{
580	struct cfq_queue *cfqq = crq->cfq_queue;
581	struct cfq_data *cfqd = cfqq->cfqd;
582	struct request *rq = crq->request;
583	struct cfq_rq *__alias;
584
585	crq->rb_key = rq_rb_key(rq);
586	cfqq->queued[cfq_crq_is_sync(crq)]++;
587
588	/*
589	 * looks a little odd, but the first insert might return an alias.
590	 * if that happens, put the alias on the dispatch list
591	 */
592	while ((__alias = __cfq_add_crq_rb(crq)) != NULL)
593		cfq_dispatch_insert(cfqd->queue, __alias);
594
595	rb_insert_color(&crq->rb_node, &cfqq->sort_list);
596
597	if (!cfq_cfqq_on_rr(cfqq))
598		cfq_add_cfqq_rr(cfqd, cfqq);
599
600	/*
601	 * check if this request is a better next-serve candidate
602	 */
603	cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
604}
605
606static inline void
607cfq_reposition_crq_rb(struct cfq_queue *cfqq, struct cfq_rq *crq)
608{
609	rb_erase(&crq->rb_node, &cfqq->sort_list);
610	cfqq->queued[cfq_crq_is_sync(crq)]--;
611
612	cfq_add_crq_rb(crq);
613}
614
615static struct request *cfq_find_rq_rb(struct cfq_data *cfqd, sector_t sector)
616
617{
618	struct cfq_queue *cfqq = cfq_find_cfq_hash(cfqd, current->pid, CFQ_KEY_ANY);
619	struct rb_node *n;
620
621	if (!cfqq)
622		goto out;
623
624	n = cfqq->sort_list.rb_node;
625	while (n) {
626		struct cfq_rq *crq = rb_entry_crq(n);
627
628		if (sector < crq->rb_key)
629			n = n->rb_left;
630		else if (sector > crq->rb_key)
631			n = n->rb_right;
632		else
633			return crq->request;
634	}
635
636out:
637	return NULL;
638}
639
640static void cfq_activate_request(request_queue_t *q, struct request *rq)
641{
642	struct cfq_data *cfqd = q->elevator->elevator_data;
643
644	cfqd->rq_in_driver++;
645}
646
647static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
648{
649	struct cfq_data *cfqd = q->elevator->elevator_data;
650
651	WARN_ON(!cfqd->rq_in_driver);
652	cfqd->rq_in_driver--;
653}
654
655static void cfq_remove_request(struct request *rq)
656{
657	struct cfq_rq *crq = RQ_DATA(rq);
658
659	list_del_init(&rq->queuelist);
660	cfq_del_crq_rb(crq);
661	cfq_del_crq_hash(crq);
662}
663
664static int
665cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
666{
667	struct cfq_data *cfqd = q->elevator->elevator_data;
668	struct request *__rq;
669	int ret;
670
671	__rq = cfq_find_rq_hash(cfqd, bio->bi_sector);
672	if (__rq && elv_rq_merge_ok(__rq, bio)) {
673		ret = ELEVATOR_BACK_MERGE;
674		goto out;
675	}
676
677	__rq = cfq_find_rq_rb(cfqd, bio->bi_sector + bio_sectors(bio));
678	if (__rq && elv_rq_merge_ok(__rq, bio)) {
679		ret = ELEVATOR_FRONT_MERGE;
680		goto out;
681	}
682
683	return ELEVATOR_NO_MERGE;
684out:
685	*req = __rq;
686	return ret;
687}
688
689static void cfq_merged_request(request_queue_t *q, struct request *req)
690{
691	struct cfq_data *cfqd = q->elevator->elevator_data;
692	struct cfq_rq *crq = RQ_DATA(req);
693
694	cfq_del_crq_hash(crq);
695	cfq_add_crq_hash(cfqd, crq);
696
697	if (rq_rb_key(req) != crq->rb_key) {
698		struct cfq_queue *cfqq = crq->cfq_queue;
699
700		cfq_update_next_crq(crq);
701		cfq_reposition_crq_rb(cfqq, crq);
702	}
703}
704
705static void
706cfq_merged_requests(request_queue_t *q, struct request *rq,
707		    struct request *next)
708{
709	cfq_merged_request(q, rq);
710
711	/*
712	 * reposition in fifo if next is older than rq
713	 */
714	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
715	    time_before(next->start_time, rq->start_time))
716		list_move(&rq->queuelist, &next->queuelist);
717
718	cfq_remove_request(next);
719}
720
721static inline void
722__cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
723{
724	if (cfqq) {
725		/*
726		 * stop potential idle class queues waiting service
727		 */
728		del_timer(&cfqd->idle_class_timer);
729
730		cfqq->slice_start = jiffies;
731		cfqq->slice_end = 0;
732		cfqq->slice_left = 0;
733		cfq_clear_cfqq_must_alloc_slice(cfqq);
734		cfq_clear_cfqq_fifo_expire(cfqq);
735	}
736
737	cfqd->active_queue = cfqq;
738}
739
740/*
741 * current cfqq expired its slice (or was too idle), select new one
742 */
743static void
744__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
745		    int preempted)
746{
747	unsigned long now = jiffies;
748
749	if (cfq_cfqq_wait_request(cfqq))
750		del_timer(&cfqd->idle_slice_timer);
751
752	if (!preempted && !cfq_cfqq_dispatched(cfqq)) {
753		cfqq->service_last = now;
754		cfq_schedule_dispatch(cfqd);
755	}
756
757	cfq_clear_cfqq_must_dispatch(cfqq);
758	cfq_clear_cfqq_wait_request(cfqq);
759
760	/*
761	 * store what was left of this slice, if the queue idled out
762	 * or was preempted
763	 */
764	if (time_after(cfqq->slice_end, now))
765		cfqq->slice_left = cfqq->slice_end - now;
766	else
767		cfqq->slice_left = 0;
768
769	if (cfq_cfqq_on_rr(cfqq))
770		cfq_resort_rr_list(cfqq, preempted);
771
772	if (cfqq == cfqd->active_queue)
773		cfqd->active_queue = NULL;
774
775	if (cfqd->active_cic) {
776		put_io_context(cfqd->active_cic->ioc);
777		cfqd->active_cic = NULL;
778	}
779
780	cfqd->dispatch_slice = 0;
781}
782
783static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted)
784{
785	struct cfq_queue *cfqq = cfqd->active_queue;
786
787	if (cfqq)
788		__cfq_slice_expired(cfqd, cfqq, preempted);
789}
790
791/*
792 * 0
793 * 0,1
794 * 0,1,2
795 * 0,1,2,3
796 * 0,1,2,3,4
797 * 0,1,2,3,4,5
798 * 0,1,2,3,4,5,6
799 * 0,1,2,3,4,5,6,7
800 */
801static int cfq_get_next_prio_level(struct cfq_data *cfqd)
802{
803	int prio, wrap;
804
805	prio = -1;
806	wrap = 0;
807	do {
808		int p;
809
810		for (p = cfqd->cur_prio; p <= cfqd->cur_end_prio; p++) {
811			if (!list_empty(&cfqd->rr_list[p])) {
812				prio = p;
813				break;
814			}
815		}
816
817		if (prio != -1)
818			break;
819		cfqd->cur_prio = 0;
820		if (++cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
821			cfqd->cur_end_prio = 0;
822			if (wrap)
823				break;
824			wrap = 1;
825		}
826	} while (1);
827
828	if (unlikely(prio == -1))
829		return -1;
830
831	BUG_ON(prio >= CFQ_PRIO_LISTS);
832
833	list_splice_init(&cfqd->rr_list[prio], &cfqd->cur_rr);
834
835	cfqd->cur_prio = prio + 1;
836	if (cfqd->cur_prio > cfqd->cur_end_prio) {
837		cfqd->cur_end_prio = cfqd->cur_prio;
838		cfqd->cur_prio = 0;
839	}
840	if (cfqd->cur_end_prio == CFQ_PRIO_LISTS) {
841		cfqd->cur_prio = 0;
842		cfqd->cur_end_prio = 0;
843	}
844
845	return prio;
846}
847
848static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
849{
850	struct cfq_queue *cfqq = NULL;
851
852	/*
853	 * if current list is non-empty, grab first entry. if it is empty,
854	 * get next prio level and grab first entry then if any are spliced
855	 */
856	if (!list_empty(&cfqd->cur_rr) || cfq_get_next_prio_level(cfqd) != -1)
857		cfqq = list_entry_cfqq(cfqd->cur_rr.next);
858
859	/*
860	 * if we have idle queues and no rt or be queues had pending
861	 * requests, either allow immediate service if the grace period
862	 * has passed or arm the idle grace timer
863	 */
864	if (!cfqq && !list_empty(&cfqd->idle_rr)) {
865		unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
866
867		if (time_after_eq(jiffies, end))
868			cfqq = list_entry_cfqq(cfqd->idle_rr.next);
869		else
870			mod_timer(&cfqd->idle_class_timer, end);
871	}
872
873	__cfq_set_active_queue(cfqd, cfqq);
874	return cfqq;
875}
876
877static int cfq_arm_slice_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
878
879{
880	unsigned long sl;
881
882	WARN_ON(!RB_EMPTY(&cfqq->sort_list));
883	WARN_ON(cfqq != cfqd->active_queue);
884
885	/*
886	 * idle is disabled, either manually or by past process history
887	 */
888	if (!cfqd->cfq_slice_idle)
889		return 0;
890	if (!cfq_cfqq_idle_window(cfqq))
891		return 0;
892	/*
893	 * task has exited, don't wait
894	 */
895	if (cfqd->active_cic && !cfqd->active_cic->ioc->task)
896		return 0;
897
898	cfq_mark_cfqq_must_dispatch(cfqq);
899	cfq_mark_cfqq_wait_request(cfqq);
900
901	sl = min(cfqq->slice_end - 1, (unsigned long) cfqd->cfq_slice_idle);
902	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
903	return 1;
904}
905
906static void cfq_dispatch_insert(request_queue_t *q, struct cfq_rq *crq)
907{
908	struct cfq_data *cfqd = q->elevator->elevator_data;
909	struct cfq_queue *cfqq = crq->cfq_queue;
910
911	cfqq->next_crq = cfq_find_next_crq(cfqd, cfqq, crq);
912	cfq_remove_request(crq->request);
913	cfqq->on_dispatch[cfq_crq_is_sync(crq)]++;
914	elv_dispatch_sort(q, crq->request);
915}
916
917/*
918 * return expired entry, or NULL to just start from scratch in rbtree
919 */
920static inline struct cfq_rq *cfq_check_fifo(struct cfq_queue *cfqq)
921{
922	struct cfq_data *cfqd = cfqq->cfqd;
923	struct request *rq;
924	struct cfq_rq *crq;
925
926	if (cfq_cfqq_fifo_expire(cfqq))
927		return NULL;
928
929	if (!list_empty(&cfqq->fifo)) {
930		int fifo = cfq_cfqq_class_sync(cfqq);
931
932		crq = RQ_DATA(list_entry_fifo(cfqq->fifo.next));
933		rq = crq->request;
934		if (time_after(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo])) {
935			cfq_mark_cfqq_fifo_expire(cfqq);
936			return crq;
937		}
938	}
939
940	return NULL;
941}
942
943/*
944 * Scale schedule slice based on io priority. Use the sync time slice only
945 * if a queue is marked sync and has sync io queued. A sync queue with async
946 * io only, should not get full sync slice length.
947 */
948static inline int
949cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
950{
951	const int base_slice = cfqd->cfq_slice[cfq_cfqq_sync(cfqq)];
952
953	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
954
955	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - cfqq->ioprio));
956}
957
958static inline void
959cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
960{
961	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
962}
963
964static inline int
965cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
966{
967	const int base_rq = cfqd->cfq_slice_async_rq;
968
969	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
970
971	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
972}
973
974/*
975 * get next queue for service
976 */
977static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
978{
979	unsigned long now = jiffies;
980	struct cfq_queue *cfqq;
981
982	cfqq = cfqd->active_queue;
983	if (!cfqq)
984		goto new_queue;
985
986	/*
987	 * slice has expired
988	 */
989	if (!cfq_cfqq_must_dispatch(cfqq) && time_after(now, cfqq->slice_end))
990		goto expire;
991
992	/*
993	 * if queue has requests, dispatch one. if not, check if
994	 * enough slice is left to wait for one
995	 */
996	if (!RB_EMPTY(&cfqq->sort_list))
997		goto keep_queue;
998	else if (cfq_cfqq_class_sync(cfqq) &&
999		 time_before(now, cfqq->slice_end)) {
1000		if (cfq_arm_slice_timer(cfqd, cfqq))
1001			return NULL;
1002	}
1003
1004expire:
1005	cfq_slice_expired(cfqd, 0);
1006new_queue:
1007	cfqq = cfq_set_active_queue(cfqd);
1008keep_queue:
1009	return cfqq;
1010}
1011
1012static int
1013__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1014			int max_dispatch)
1015{
1016	int dispatched = 0;
1017
1018	BUG_ON(RB_EMPTY(&cfqq->sort_list));
1019
1020	do {
1021		struct cfq_rq *crq;
1022
1023		/*
1024		 * follow expired path, else get first next available
1025		 */
1026		if ((crq = cfq_check_fifo(cfqq)) == NULL)
1027			crq = cfqq->next_crq;
1028
1029		/*
1030		 * finally, insert request into driver dispatch list
1031		 */
1032		cfq_dispatch_insert(cfqd->queue, crq);
1033
1034		cfqd->dispatch_slice++;
1035		dispatched++;
1036
1037		if (!cfqd->active_cic) {
1038			atomic_inc(&crq->io_context->ioc->refcount);
1039			cfqd->active_cic = crq->io_context;
1040		}
1041
1042		if (RB_EMPTY(&cfqq->sort_list))
1043			break;
1044
1045	} while (dispatched < max_dispatch);
1046
1047	/*
1048	 * if slice end isn't set yet, set it. if at least one request was
1049	 * sync, use the sync time slice value
1050	 */
1051	if (!cfqq->slice_end)
1052		cfq_set_prio_slice(cfqd, cfqq);
1053
1054	/*
1055	 * expire an async queue immediately if it has used up its slice. idle
1056	 * queue always expire after 1 dispatch round.
1057	 */
1058	if ((!cfq_cfqq_sync(cfqq) &&
1059	    cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1060	    cfq_class_idle(cfqq))
1061		cfq_slice_expired(cfqd, 0);
1062
1063	return dispatched;
1064}
1065
1066static int
1067cfq_forced_dispatch_cfqqs(struct list_head *list)
1068{
1069	int dispatched = 0;
1070	struct cfq_queue *cfqq, *next;
1071	struct cfq_rq *crq;
1072
1073	list_for_each_entry_safe(cfqq, next, list, cfq_list) {
1074		while ((crq = cfqq->next_crq)) {
1075			cfq_dispatch_insert(cfqq->cfqd->queue, crq);
1076			dispatched++;
1077		}
1078		BUG_ON(!list_empty(&cfqq->fifo));
1079	}
1080	return dispatched;
1081}
1082
1083static int
1084cfq_forced_dispatch(struct cfq_data *cfqd)
1085{
1086	int i, dispatched = 0;
1087
1088	for (i = 0; i < CFQ_PRIO_LISTS; i++)
1089		dispatched += cfq_forced_dispatch_cfqqs(&cfqd->rr_list[i]);
1090
1091	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->busy_rr);
1092	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1093	dispatched += cfq_forced_dispatch_cfqqs(&cfqd->idle_rr);
1094
1095	cfq_slice_expired(cfqd, 0);
1096
1097	BUG_ON(cfqd->busy_queues);
1098
1099	return dispatched;
1100}
1101
1102static int
1103cfq_dispatch_requests(request_queue_t *q, int force)
1104{
1105	struct cfq_data *cfqd = q->elevator->elevator_data;
1106	struct cfq_queue *cfqq;
1107
1108	if (!cfqd->busy_queues)
1109		return 0;
1110
1111	if (unlikely(force))
1112		return cfq_forced_dispatch(cfqd);
1113
1114	cfqq = cfq_select_queue(cfqd);
1115	if (cfqq) {
1116		int max_dispatch;
1117
1118		/*
1119		 * if idle window is disabled, allow queue buildup
1120		 */
1121		if (!cfq_cfqq_idle_window(cfqq) &&
1122		    cfqd->rq_in_driver >= cfqd->cfq_max_depth)
1123			return 0;
1124
1125		cfq_clear_cfqq_must_dispatch(cfqq);
1126		cfq_clear_cfqq_wait_request(cfqq);
1127		del_timer(&cfqd->idle_slice_timer);
1128
1129		max_dispatch = cfqd->cfq_quantum;
1130		if (cfq_class_idle(cfqq))
1131			max_dispatch = 1;
1132
1133		return __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1134	}
1135
1136	return 0;
1137}
1138
1139/*
1140 * task holds one reference to the queue, dropped when task exits. each crq
1141 * in-flight on this queue also holds a reference, dropped when crq is freed.
1142 *
1143 * queue lock must be held here.
1144 */
1145static void cfq_put_queue(struct cfq_queue *cfqq)
1146{
1147	struct cfq_data *cfqd = cfqq->cfqd;
1148
1149	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1150
1151	if (!atomic_dec_and_test(&cfqq->ref))
1152		return;
1153
1154	BUG_ON(rb_first(&cfqq->sort_list));
1155	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1156	BUG_ON(cfq_cfqq_on_rr(cfqq));
1157
1158	if (unlikely(cfqd->active_queue == cfqq))
1159		__cfq_slice_expired(cfqd, cfqq, 0);
1160
1161	/*
1162	 * it's on the empty list and still hashed
1163	 */
1164	list_del(&cfqq->cfq_list);
1165	hlist_del(&cfqq->cfq_hash);
1166	kmem_cache_free(cfq_pool, cfqq);
1167}
1168
1169static inline struct cfq_queue *
1170__cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1171		    const int hashval)
1172{
1173	struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1174	struct hlist_node *entry, *next;
1175
1176	hlist_for_each_safe(entry, next, hash_list) {
1177		struct cfq_queue *__cfqq = list_entry_qhash(entry);
1178		const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1179
1180		if (__cfqq->key == key && (__p == prio || prio == CFQ_KEY_ANY))
1181			return __cfqq;
1182	}
1183
1184	return NULL;
1185}
1186
1187static struct cfq_queue *
1188cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1189{
1190	return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1191}
1192
1193static void cfq_free_io_context(struct io_context *ioc)
1194{
1195	struct cfq_io_context *__cic;
1196	struct rb_node *n;
1197	int freed = 0;
1198
1199	while ((n = rb_first(&ioc->cic_root)) != NULL) {
1200		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1201		rb_erase(&__cic->rb_node, &ioc->cic_root);
1202		kmem_cache_free(cfq_ioc_pool, __cic);
1203		freed++;
1204	}
1205
1206	if (atomic_sub_and_test(freed, &ioc_count) && ioc_gone)
1207		complete(ioc_gone);
1208}
1209
1210static void cfq_trim(struct io_context *ioc)
1211{
1212	ioc->set_ioprio = NULL;
1213	cfq_free_io_context(ioc);
1214}
1215
1216/*
1217 * Called with interrupts disabled
1218 */
1219static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1220{
1221	struct cfq_data *cfqd = cic->key;
1222	request_queue_t *q;
1223
1224	if (!cfqd)
1225		return;
1226
1227	q = cfqd->queue;
1228
1229	WARN_ON(!irqs_disabled());
1230
1231	spin_lock(q->queue_lock);
1232
1233	if (cic->cfqq[ASYNC]) {
1234		if (unlikely(cic->cfqq[ASYNC] == cfqd->active_queue))
1235			__cfq_slice_expired(cfqd, cic->cfqq[ASYNC], 0);
1236		cfq_put_queue(cic->cfqq[ASYNC]);
1237		cic->cfqq[ASYNC] = NULL;
1238	}
1239
1240	if (cic->cfqq[SYNC]) {
1241		if (unlikely(cic->cfqq[SYNC] == cfqd->active_queue))
1242			__cfq_slice_expired(cfqd, cic->cfqq[SYNC], 0);
1243		cfq_put_queue(cic->cfqq[SYNC]);
1244		cic->cfqq[SYNC] = NULL;
1245	}
1246
1247	cic->key = NULL;
1248	list_del_init(&cic->queue_list);
1249	spin_unlock(q->queue_lock);
1250}
1251
1252static void cfq_exit_io_context(struct io_context *ioc)
1253{
1254	struct cfq_io_context *__cic;
1255	unsigned long flags;
1256	struct rb_node *n;
1257
1258	/*
1259	 * put the reference this task is holding to the various queues
1260	 */
1261	read_lock_irqsave(&cfq_exit_lock, flags);
1262
1263	n = rb_first(&ioc->cic_root);
1264	while (n != NULL) {
1265		__cic = rb_entry(n, struct cfq_io_context, rb_node);
1266
1267		cfq_exit_single_io_context(__cic);
1268		n = rb_next(n);
1269	}
1270
1271	read_unlock_irqrestore(&cfq_exit_lock, flags);
1272}
1273
1274static struct cfq_io_context *
1275cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1276{
1277	struct cfq_io_context *cic = kmem_cache_alloc(cfq_ioc_pool, gfp_mask);
1278
1279	if (cic) {
1280		RB_CLEAR(&cic->rb_node);
1281		cic->key = NULL;
1282		cic->cfqq[ASYNC] = NULL;
1283		cic->cfqq[SYNC] = NULL;
1284		cic->last_end_request = jiffies;
1285		cic->ttime_total = 0;
1286		cic->ttime_samples = 0;
1287		cic->ttime_mean = 0;
1288		cic->dtor = cfq_free_io_context;
1289		cic->exit = cfq_exit_io_context;
1290		INIT_LIST_HEAD(&cic->queue_list);
1291		atomic_inc(&ioc_count);
1292	}
1293
1294	return cic;
1295}
1296
1297static void cfq_init_prio_data(struct cfq_queue *cfqq)
1298{
1299	struct task_struct *tsk = current;
1300	int ioprio_class;
1301
1302	if (!cfq_cfqq_prio_changed(cfqq))
1303		return;
1304
1305	ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1306	switch (ioprio_class) {
1307		default:
1308			printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1309		case IOPRIO_CLASS_NONE:
1310			/*
1311			 * no prio set, place us in the middle of the BE classes
1312			 */
1313			cfqq->ioprio = task_nice_ioprio(tsk);
1314			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1315			break;
1316		case IOPRIO_CLASS_RT:
1317			cfqq->ioprio = task_ioprio(tsk);
1318			cfqq->ioprio_class = IOPRIO_CLASS_RT;
1319			break;
1320		case IOPRIO_CLASS_BE:
1321			cfqq->ioprio = task_ioprio(tsk);
1322			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1323			break;
1324		case IOPRIO_CLASS_IDLE:
1325			cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1326			cfqq->ioprio = 7;
1327			cfq_clear_cfqq_idle_window(cfqq);
1328			break;
1329	}
1330
1331	/*
1332	 * keep track of original prio settings in case we have to temporarily
1333	 * elevate the priority of this queue
1334	 */
1335	cfqq->org_ioprio = cfqq->ioprio;
1336	cfqq->org_ioprio_class = cfqq->ioprio_class;
1337
1338	if (cfq_cfqq_on_rr(cfqq))
1339		cfq_resort_rr_list(cfqq, 0);
1340
1341	cfq_clear_cfqq_prio_changed(cfqq);
1342}
1343
1344static inline void changed_ioprio(struct cfq_io_context *cic)
1345{
1346	struct cfq_data *cfqd = cic->key;
1347	struct cfq_queue *cfqq;
1348	if (cfqd) {
1349		spin_lock(cfqd->queue->queue_lock);
1350		cfqq = cic->cfqq[ASYNC];
1351		if (cfqq) {
1352			struct cfq_queue *new_cfqq;
1353			new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC,
1354						cic->ioc->task, GFP_ATOMIC);
1355			if (new_cfqq) {
1356				cic->cfqq[ASYNC] = new_cfqq;
1357				cfq_put_queue(cfqq);
1358			}
1359		}
1360		cfqq = cic->cfqq[SYNC];
1361		if (cfqq) {
1362			cfq_mark_cfqq_prio_changed(cfqq);
1363			cfq_init_prio_data(cfqq);
1364		}
1365		spin_unlock(cfqd->queue->queue_lock);
1366	}
1367}
1368
1369/*
1370 * callback from sys_ioprio_set, irqs are disabled
1371 */
1372static int cfq_ioc_set_ioprio(struct io_context *ioc, unsigned int ioprio)
1373{
1374	struct cfq_io_context *cic;
1375	struct rb_node *n;
1376
1377	write_lock(&cfq_exit_lock);
1378
1379	n = rb_first(&ioc->cic_root);
1380	while (n != NULL) {
1381		cic = rb_entry(n, struct cfq_io_context, rb_node);
1382
1383		changed_ioprio(cic);
1384		n = rb_next(n);
1385	}
1386
1387	write_unlock(&cfq_exit_lock);
1388
1389	return 0;
1390}
1391
1392static struct cfq_queue *
1393cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1394	      gfp_t gfp_mask)
1395{
1396	const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1397	struct cfq_queue *cfqq, *new_cfqq = NULL;
1398	unsigned short ioprio;
1399
1400retry:
1401	ioprio = tsk->ioprio;
1402	cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1403
1404	if (!cfqq) {
1405		if (new_cfqq) {
1406			cfqq = new_cfqq;
1407			new_cfqq = NULL;
1408		} else if (gfp_mask & __GFP_WAIT) {
1409			spin_unlock_irq(cfqd->queue->queue_lock);
1410			new_cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1411			spin_lock_irq(cfqd->queue->queue_lock);
1412			goto retry;
1413		} else {
1414			cfqq = kmem_cache_alloc(cfq_pool, gfp_mask);
1415			if (!cfqq)
1416				goto out;
1417		}
1418
1419		memset(cfqq, 0, sizeof(*cfqq));
1420
1421		INIT_HLIST_NODE(&cfqq->cfq_hash);
1422		INIT_LIST_HEAD(&cfqq->cfq_list);
1423		RB_CLEAR_ROOT(&cfqq->sort_list);
1424		INIT_LIST_HEAD(&cfqq->fifo);
1425
1426		cfqq->key = key;
1427		hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1428		atomic_set(&cfqq->ref, 0);
1429		cfqq->cfqd = cfqd;
1430		cfqq->service_last = 0;
1431		/*
1432		 * set ->slice_left to allow preemption for a new process
1433		 */
1434		cfqq->slice_left = 2 * cfqd->cfq_slice_idle;
1435		cfq_mark_cfqq_idle_window(cfqq);
1436		cfq_mark_cfqq_prio_changed(cfqq);
1437		cfq_init_prio_data(cfqq);
1438	}
1439
1440	if (new_cfqq)
1441		kmem_cache_free(cfq_pool, new_cfqq);
1442
1443	atomic_inc(&cfqq->ref);
1444out:
1445	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1446	return cfqq;
1447}
1448
1449static struct cfq_io_context *
1450cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1451{
1452	struct rb_node *n = ioc->cic_root.rb_node;
1453	struct cfq_io_context *cic;
1454	void *key = cfqd;
1455
1456	while (n) {
1457		cic = rb_entry(n, struct cfq_io_context, rb_node);
1458
1459		if (key < cic->key)
1460			n = n->rb_left;
1461		else if (key > cic->key)
1462			n = n->rb_right;
1463		else
1464			return cic;
1465	}
1466
1467	return NULL;
1468}
1469
1470static inline void
1471cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1472	     struct cfq_io_context *cic)
1473{
1474	struct rb_node **p = &ioc->cic_root.rb_node;
1475	struct rb_node *parent = NULL;
1476	struct cfq_io_context *__cic;
1477
1478	read_lock(&cfq_exit_lock);
1479
1480	cic->ioc = ioc;
1481	cic->key = cfqd;
1482
1483	ioc->set_ioprio = cfq_ioc_set_ioprio;
1484
1485	while (*p) {
1486		parent = *p;
1487		__cic = rb_entry(parent, struct cfq_io_context, rb_node);
1488
1489		if (cic->key < __cic->key)
1490			p = &(*p)->rb_left;
1491		else if (cic->key > __cic->key)
1492			p = &(*p)->rb_right;
1493		else
1494			BUG();
1495	}
1496
1497	rb_link_node(&cic->rb_node, parent, p);
1498	rb_insert_color(&cic->rb_node, &ioc->cic_root);
1499	list_add(&cic->queue_list, &cfqd->cic_list);
1500	read_unlock(&cfq_exit_lock);
1501}
1502
1503/*
1504 * Setup general io context and cfq io context. There can be several cfq
1505 * io contexts per general io context, if this process is doing io to more
1506 * than one device managed by cfq.
1507 */
1508static struct cfq_io_context *
1509cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1510{
1511	struct io_context *ioc = NULL;
1512	struct cfq_io_context *cic;
1513
1514	might_sleep_if(gfp_mask & __GFP_WAIT);
1515
1516	ioc = get_io_context(gfp_mask);
1517	if (!ioc)
1518		return NULL;
1519
1520	cic = cfq_cic_rb_lookup(cfqd, ioc);
1521	if (cic)
1522		goto out;
1523
1524	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1525	if (cic == NULL)
1526		goto err;
1527
1528	cfq_cic_link(cfqd, ioc, cic);
1529out:
1530	return cic;
1531err:
1532	put_io_context(ioc);
1533	return NULL;
1534}
1535
1536static void
1537cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1538{
1539	unsigned long elapsed, ttime;
1540
1541	/*
1542	 * if this context already has stuff queued, thinktime is from
1543	 * last queue not last end
1544	 */
1545#if 0
1546	if (time_after(cic->last_end_request, cic->last_queue))
1547		elapsed = jiffies - cic->last_end_request;
1548	else
1549		elapsed = jiffies - cic->last_queue;
1550#else
1551		elapsed = jiffies - cic->last_end_request;
1552#endif
1553
1554	ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1555
1556	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1557	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1558	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1559}
1560
1561#define sample_valid(samples)	((samples) > 80)
1562
1563/*
1564 * Disable idle window if the process thinks too long or seeks so much that
1565 * it doesn't matter
1566 */
1567static void
1568cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1569		       struct cfq_io_context *cic)
1570{
1571	int enable_idle = cfq_cfqq_idle_window(cfqq);
1572
1573	if (!cic->ioc->task || !cfqd->cfq_slice_idle)
1574		enable_idle = 0;
1575	else if (sample_valid(cic->ttime_samples)) {
1576		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1577			enable_idle = 0;
1578		else
1579			enable_idle = 1;
1580	}
1581
1582	if (enable_idle)
1583		cfq_mark_cfqq_idle_window(cfqq);
1584	else
1585		cfq_clear_cfqq_idle_window(cfqq);
1586}
1587
1588
1589/*
1590 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1591 * no or if we aren't sure, a 1 will cause a preempt.
1592 */
1593static int
1594cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1595		   struct cfq_rq *crq)
1596{
1597	struct cfq_queue *cfqq = cfqd->active_queue;
1598
1599	if (cfq_class_idle(new_cfqq))
1600		return 0;
1601
1602	if (!cfqq)
1603		return 1;
1604
1605	if (cfq_class_idle(cfqq))
1606		return 1;
1607	if (!cfq_cfqq_wait_request(new_cfqq))
1608		return 0;
1609	/*
1610	 * if it doesn't have slice left, forget it
1611	 */
1612	if (new_cfqq->slice_left < cfqd->cfq_slice_idle)
1613		return 0;
1614	if (cfq_crq_is_sync(crq) && !cfq_cfqq_sync(cfqq))
1615		return 1;
1616
1617	return 0;
1618}
1619
1620/*
1621 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1622 * let it have half of its nominal slice.
1623 */
1624static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1625{
1626	struct cfq_queue *__cfqq, *next;
1627
1628	list_for_each_entry_safe(__cfqq, next, &cfqd->cur_rr, cfq_list)
1629		cfq_resort_rr_list(__cfqq, 1);
1630
1631	if (!cfqq->slice_left)
1632		cfqq->slice_left = cfq_prio_to_slice(cfqd, cfqq) / 2;
1633
1634	cfqq->slice_end = cfqq->slice_left + jiffies;
1635	__cfq_slice_expired(cfqd, cfqq, 1);
1636	__cfq_set_active_queue(cfqd, cfqq);
1637}
1638
1639/*
1640 * should really be a ll_rw_blk.c helper
1641 */
1642static void cfq_start_queueing(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1643{
1644	request_queue_t *q = cfqd->queue;
1645
1646	if (!blk_queue_plugged(q))
1647		q->request_fn(q);
1648	else
1649		__generic_unplug_device(q);
1650}
1651
1652/*
1653 * Called when a new fs request (crq) is added (to cfqq). Check if there's
1654 * something we should do about it
1655 */
1656static void
1657cfq_crq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1658		 struct cfq_rq *crq)
1659{
1660	struct cfq_io_context *cic;
1661
1662	cfqq->next_crq = cfq_choose_req(cfqd, cfqq->next_crq, crq);
1663
1664	/*
1665	 * we never wait for an async request and we don't allow preemption
1666	 * of an async request. so just return early
1667	 */
1668	if (!cfq_crq_is_sync(crq))
1669		return;
1670
1671	cic = crq->io_context;
1672
1673	cfq_update_io_thinktime(cfqd, cic);
1674	cfq_update_idle_window(cfqd, cfqq, cic);
1675
1676	cic->last_queue = jiffies;
1677
1678	if (cfqq == cfqd->active_queue) {
1679		/*
1680		 * if we are waiting for a request for this queue, let it rip
1681		 * immediately and flag that we must not expire this queue
1682		 * just now
1683		 */
1684		if (cfq_cfqq_wait_request(cfqq)) {
1685			cfq_mark_cfqq_must_dispatch(cfqq);
1686			del_timer(&cfqd->idle_slice_timer);
1687			cfq_start_queueing(cfqd, cfqq);
1688		}
1689	} else if (cfq_should_preempt(cfqd, cfqq, crq)) {
1690		/*
1691		 * not the active queue - expire current slice if it is
1692		 * idle and has expired it's mean thinktime or this new queue
1693		 * has some old slice time left and is of higher priority
1694		 */
1695		cfq_preempt_queue(cfqd, cfqq);
1696		cfq_mark_cfqq_must_dispatch(cfqq);
1697		cfq_start_queueing(cfqd, cfqq);
1698	}
1699}
1700
1701static void cfq_insert_request(request_queue_t *q, struct request *rq)
1702{
1703	struct cfq_data *cfqd = q->elevator->elevator_data;
1704	struct cfq_rq *crq = RQ_DATA(rq);
1705	struct cfq_queue *cfqq = crq->cfq_queue;
1706
1707	cfq_init_prio_data(cfqq);
1708
1709	cfq_add_crq_rb(crq);
1710
1711	list_add_tail(&rq->queuelist, &cfqq->fifo);
1712
1713	if (rq_mergeable(rq))
1714		cfq_add_crq_hash(cfqd, crq);
1715
1716	cfq_crq_enqueued(cfqd, cfqq, crq);
1717}
1718
1719static void cfq_completed_request(request_queue_t *q, struct request *rq)
1720{
1721	struct cfq_rq *crq = RQ_DATA(rq);
1722	struct cfq_queue *cfqq = crq->cfq_queue;
1723	struct cfq_data *cfqd = cfqq->cfqd;
1724	const int sync = cfq_crq_is_sync(crq);
1725	unsigned long now;
1726
1727	now = jiffies;
1728
1729	WARN_ON(!cfqd->rq_in_driver);
1730	WARN_ON(!cfqq->on_dispatch[sync]);
1731	cfqd->rq_in_driver--;
1732	cfqq->on_dispatch[sync]--;
1733
1734	if (!cfq_class_idle(cfqq))
1735		cfqd->last_end_request = now;
1736
1737	if (!cfq_cfqq_dispatched(cfqq)) {
1738		if (cfq_cfqq_on_rr(cfqq)) {
1739			cfqq->service_last = now;
1740			cfq_resort_rr_list(cfqq, 0);
1741		}
1742		cfq_schedule_dispatch(cfqd);
1743	}
1744
1745	if (cfq_crq_is_sync(crq))
1746		crq->io_context->last_end_request = now;
1747}
1748
1749static struct request *
1750cfq_former_request(request_queue_t *q, struct request *rq)
1751{
1752	struct cfq_rq *crq = RQ_DATA(rq);
1753	struct rb_node *rbprev = rb_prev(&crq->rb_node);
1754
1755	if (rbprev)
1756		return rb_entry_crq(rbprev)->request;
1757
1758	return NULL;
1759}
1760
1761static struct request *
1762cfq_latter_request(request_queue_t *q, struct request *rq)
1763{
1764	struct cfq_rq *crq = RQ_DATA(rq);
1765	struct rb_node *rbnext = rb_next(&crq->rb_node);
1766
1767	if (rbnext)
1768		return rb_entry_crq(rbnext)->request;
1769
1770	return NULL;
1771}
1772
1773/*
1774 * we temporarily boost lower priority queues if they are holding fs exclusive
1775 * resources. they are boosted to normal prio (CLASS_BE/4)
1776 */
1777static void cfq_prio_boost(struct cfq_queue *cfqq)
1778{
1779	const int ioprio_class = cfqq->ioprio_class;
1780	const int ioprio = cfqq->ioprio;
1781
1782	if (has_fs_excl()) {
1783		/*
1784		 * boost idle prio on transactions that would lock out other
1785		 * users of the filesystem
1786		 */
1787		if (cfq_class_idle(cfqq))
1788			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1789		if (cfqq->ioprio > IOPRIO_NORM)
1790			cfqq->ioprio = IOPRIO_NORM;
1791	} else {
1792		/*
1793		 * check if we need to unboost the queue
1794		 */
1795		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1796			cfqq->ioprio_class = cfqq->org_ioprio_class;
1797		if (cfqq->ioprio != cfqq->org_ioprio)
1798			cfqq->ioprio = cfqq->org_ioprio;
1799	}
1800
1801	/*
1802	 * refile between round-robin lists if we moved the priority class
1803	 */
1804	if ((ioprio_class != cfqq->ioprio_class || ioprio != cfqq->ioprio) &&
1805	    cfq_cfqq_on_rr(cfqq))
1806		cfq_resort_rr_list(cfqq, 0);
1807}
1808
1809static inline pid_t cfq_queue_pid(struct task_struct *task, int rw)
1810{
1811	if (rw == READ || process_sync(task))
1812		return task->pid;
1813
1814	return CFQ_KEY_ASYNC;
1815}
1816
1817static inline int
1818__cfq_may_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1819		struct task_struct *task, int rw)
1820{
1821#if 1
1822	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1823	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1824		cfq_mark_cfqq_must_alloc_slice(cfqq);
1825		return ELV_MQUEUE_MUST;
1826	}
1827
1828	return ELV_MQUEUE_MAY;
1829#else
1830	if (!cfqq || task->flags & PF_MEMALLOC)
1831		return ELV_MQUEUE_MAY;
1832	if (!cfqq->allocated[rw] || cfq_cfqq_must_alloc(cfqq)) {
1833		if (cfq_cfqq_wait_request(cfqq))
1834			return ELV_MQUEUE_MUST;
1835
1836		/*
1837		 * only allow 1 ELV_MQUEUE_MUST per slice, otherwise we
1838		 * can quickly flood the queue with writes from a single task
1839		 */
1840		if (rw == READ || !cfq_cfqq_must_alloc_slice(cfqq)) {
1841			cfq_mark_cfqq_must_alloc_slice(cfqq);
1842			return ELV_MQUEUE_MUST;
1843		}
1844
1845		return ELV_MQUEUE_MAY;
1846	}
1847	if (cfq_class_idle(cfqq))
1848		return ELV_MQUEUE_NO;
1849	if (cfqq->allocated[rw] >= cfqd->max_queued) {
1850		struct io_context *ioc = get_io_context(GFP_ATOMIC);
1851		int ret = ELV_MQUEUE_NO;
1852
1853		if (ioc && ioc->nr_batch_requests)
1854			ret = ELV_MQUEUE_MAY;
1855
1856		put_io_context(ioc);
1857		return ret;
1858	}
1859
1860	return ELV_MQUEUE_MAY;
1861#endif
1862}
1863
1864static int cfq_may_queue(request_queue_t *q, int rw, struct bio *bio)
1865{
1866	struct cfq_data *cfqd = q->elevator->elevator_data;
1867	struct task_struct *tsk = current;
1868	struct cfq_queue *cfqq;
1869
1870	/*
1871	 * don't force setup of a queue from here, as a call to may_queue
1872	 * does not necessarily imply that a request actually will be queued.
1873	 * so just lookup a possibly existing queue, or return 'may queue'
1874	 * if that fails
1875	 */
1876	cfqq = cfq_find_cfq_hash(cfqd, cfq_queue_pid(tsk, rw), tsk->ioprio);
1877	if (cfqq) {
1878		cfq_init_prio_data(cfqq);
1879		cfq_prio_boost(cfqq);
1880
1881		return __cfq_may_queue(cfqd, cfqq, tsk, rw);
1882	}
1883
1884	return ELV_MQUEUE_MAY;
1885}
1886
1887static void cfq_check_waiters(request_queue_t *q, struct cfq_queue *cfqq)
1888{
1889	struct cfq_data *cfqd = q->elevator->elevator_data;
1890	struct request_list *rl = &q->rq;
1891
1892	if (cfqq->allocated[READ] <= cfqd->max_queued || cfqd->rq_starved) {
1893		smp_mb();
1894		if (waitqueue_active(&rl->wait[READ]))
1895			wake_up(&rl->wait[READ]);
1896	}
1897
1898	if (cfqq->allocated[WRITE] <= cfqd->max_queued || cfqd->rq_starved) {
1899		smp_mb();
1900		if (waitqueue_active(&rl->wait[WRITE]))
1901			wake_up(&rl->wait[WRITE]);
1902	}
1903}
1904
1905/*
1906 * queue lock held here
1907 */
1908static void cfq_put_request(request_queue_t *q, struct request *rq)
1909{
1910	struct cfq_data *cfqd = q->elevator->elevator_data;
1911	struct cfq_rq *crq = RQ_DATA(rq);
1912
1913	if (crq) {
1914		struct cfq_queue *cfqq = crq->cfq_queue;
1915		const int rw = rq_data_dir(rq);
1916
1917		BUG_ON(!cfqq->allocated[rw]);
1918		cfqq->allocated[rw]--;
1919
1920		put_io_context(crq->io_context->ioc);
1921
1922		mempool_free(crq, cfqd->crq_pool);
1923		rq->elevator_private = NULL;
1924
1925		cfq_check_waiters(q, cfqq);
1926		cfq_put_queue(cfqq);
1927	}
1928}
1929
1930/*
1931 * Allocate cfq data structures associated with this request.
1932 */
1933static int
1934cfq_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
1935		gfp_t gfp_mask)
1936{
1937	struct cfq_data *cfqd = q->elevator->elevator_data;
1938	struct task_struct *tsk = current;
1939	struct cfq_io_context *cic;
1940	const int rw = rq_data_dir(rq);
1941	pid_t key = cfq_queue_pid(tsk, rw);
1942	struct cfq_queue *cfqq;
1943	struct cfq_rq *crq;
1944	unsigned long flags;
1945	int is_sync = key != CFQ_KEY_ASYNC;
1946
1947	might_sleep_if(gfp_mask & __GFP_WAIT);
1948
1949	cic = cfq_get_io_context(cfqd, gfp_mask);
1950
1951	spin_lock_irqsave(q->queue_lock, flags);
1952
1953	if (!cic)
1954		goto queue_fail;
1955
1956	if (!cic->cfqq[is_sync]) {
1957		cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1958		if (!cfqq)
1959			goto queue_fail;
1960
1961		cic->cfqq[is_sync] = cfqq;
1962	} else
1963		cfqq = cic->cfqq[is_sync];
1964
1965	cfqq->allocated[rw]++;
1966	cfq_clear_cfqq_must_alloc(cfqq);
1967	cfqd->rq_starved = 0;
1968	atomic_inc(&cfqq->ref);
1969	spin_unlock_irqrestore(q->queue_lock, flags);
1970
1971	crq = mempool_alloc(cfqd->crq_pool, gfp_mask);
1972	if (crq) {
1973		RB_CLEAR(&crq->rb_node);
1974		crq->rb_key = 0;
1975		crq->request = rq;
1976		INIT_HLIST_NODE(&crq->hash);
1977		crq->cfq_queue = cfqq;
1978		crq->io_context = cic;
1979
1980		if (is_sync)
1981			cfq_mark_crq_is_sync(crq);
1982		else
1983			cfq_clear_crq_is_sync(crq);
1984
1985		rq->elevator_private = crq;
1986		return 0;
1987	}
1988
1989	spin_lock_irqsave(q->queue_lock, flags);
1990	cfqq->allocated[rw]--;
1991	if (!(cfqq->allocated[0] + cfqq->allocated[1]))
1992		cfq_mark_cfqq_must_alloc(cfqq);
1993	cfq_put_queue(cfqq);
1994queue_fail:
1995	if (cic)
1996		put_io_context(cic->ioc);
1997	/*
1998	 * mark us rq allocation starved. we need to kickstart the process
1999	 * ourselves if there are no pending requests that can do it for us.
2000	 * that would be an extremely rare OOM situation
2001	 */
2002	cfqd->rq_starved = 1;
2003	cfq_schedule_dispatch(cfqd);
2004	spin_unlock_irqrestore(q->queue_lock, flags);
2005	return 1;
2006}
2007
2008static void cfq_kick_queue(void *data)
2009{
2010	request_queue_t *q = data;
2011	struct cfq_data *cfqd = q->elevator->elevator_data;
2012	unsigned long flags;
2013
2014	spin_lock_irqsave(q->queue_lock, flags);
2015
2016	if (cfqd->rq_starved) {
2017		struct request_list *rl = &q->rq;
2018
2019		/*
2020		 * we aren't guaranteed to get a request after this, but we
2021		 * have to be opportunistic
2022		 */
2023		smp_mb();
2024		if (waitqueue_active(&rl->wait[READ]))
2025			wake_up(&rl->wait[READ]);
2026		if (waitqueue_active(&rl->wait[WRITE]))
2027			wake_up(&rl->wait[WRITE]);
2028	}
2029
2030	blk_remove_plug(q);
2031	q->request_fn(q);
2032	spin_unlock_irqrestore(q->queue_lock, flags);
2033}
2034
2035/*
2036 * Timer running if the active_queue is currently idling inside its time slice
2037 */
2038static void cfq_idle_slice_timer(unsigned long data)
2039{
2040	struct cfq_data *cfqd = (struct cfq_data *) data;
2041	struct cfq_queue *cfqq;
2042	unsigned long flags;
2043
2044	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2045
2046	if ((cfqq = cfqd->active_queue) != NULL) {
2047		unsigned long now = jiffies;
2048
2049		/*
2050		 * expired
2051		 */
2052		if (time_after(now, cfqq->slice_end))
2053			goto expire;
2054
2055		/*
2056		 * only expire and reinvoke request handler, if there are
2057		 * other queues with pending requests
2058		 */
2059		if (!cfqd->busy_queues) {
2060			cfqd->idle_slice_timer.expires = min(now + cfqd->cfq_slice_idle, cfqq->slice_end);
2061			add_timer(&cfqd->idle_slice_timer);
2062			goto out_cont;
2063		}
2064
2065		/*
2066		 * not expired and it has a request pending, let it dispatch
2067		 */
2068		if (!RB_EMPTY(&cfqq->sort_list)) {
2069			cfq_mark_cfqq_must_dispatch(cfqq);
2070			goto out_kick;
2071		}
2072	}
2073expire:
2074	cfq_slice_expired(cfqd, 0);
2075out_kick:
2076	cfq_schedule_dispatch(cfqd);
2077out_cont:
2078	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2079}
2080
2081/*
2082 * Timer running if an idle class queue is waiting for service
2083 */
2084static void cfq_idle_class_timer(unsigned long data)
2085{
2086	struct cfq_data *cfqd = (struct cfq_data *) data;
2087	unsigned long flags, end;
2088
2089	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2090
2091	/*
2092	 * race with a non-idle queue, reset timer
2093	 */
2094	end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2095	if (!time_after_eq(jiffies, end)) {
2096		cfqd->idle_class_timer.expires = end;
2097		add_timer(&cfqd->idle_class_timer);
2098	} else
2099		cfq_schedule_dispatch(cfqd);
2100
2101	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2102}
2103
2104static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2105{
2106	del_timer_sync(&cfqd->idle_slice_timer);
2107	del_timer_sync(&cfqd->idle_class_timer);
2108	blk_sync_queue(cfqd->queue);
2109}
2110
2111static void cfq_exit_queue(elevator_t *e)
2112{
2113	struct cfq_data *cfqd = e->elevator_data;
2114	request_queue_t *q = cfqd->queue;
2115
2116	cfq_shutdown_timer_wq(cfqd);
2117
2118	write_lock(&cfq_exit_lock);
2119	spin_lock_irq(q->queue_lock);
2120
2121	if (cfqd->active_queue)
2122		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2123
2124	while (!list_empty(&cfqd->cic_list)) {
2125		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2126							struct cfq_io_context,
2127							queue_list);
2128		if (cic->cfqq[ASYNC]) {
2129			cfq_put_queue(cic->cfqq[ASYNC]);
2130			cic->cfqq[ASYNC] = NULL;
2131		}
2132		if (cic->cfqq[SYNC]) {
2133			cfq_put_queue(cic->cfqq[SYNC]);
2134			cic->cfqq[SYNC] = NULL;
2135		}
2136		cic->key = NULL;
2137		list_del_init(&cic->queue_list);
2138	}
2139
2140	spin_unlock_irq(q->queue_lock);
2141	write_unlock(&cfq_exit_lock);
2142
2143	cfq_shutdown_timer_wq(cfqd);
2144
2145	mempool_destroy(cfqd->crq_pool);
2146	kfree(cfqd->crq_hash);
2147	kfree(cfqd->cfq_hash);
2148	kfree(cfqd);
2149}
2150
2151static int cfq_init_queue(request_queue_t *q, elevator_t *e)
2152{
2153	struct cfq_data *cfqd;
2154	int i;
2155
2156	cfqd = kmalloc(sizeof(*cfqd), GFP_KERNEL);
2157	if (!cfqd)
2158		return -ENOMEM;
2159
2160	memset(cfqd, 0, sizeof(*cfqd));
2161
2162	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2163		INIT_LIST_HEAD(&cfqd->rr_list[i]);
2164
2165	INIT_LIST_HEAD(&cfqd->busy_rr);
2166	INIT_LIST_HEAD(&cfqd->cur_rr);
2167	INIT_LIST_HEAD(&cfqd->idle_rr);
2168	INIT_LIST_HEAD(&cfqd->empty_list);
2169	INIT_LIST_HEAD(&cfqd->cic_list);
2170
2171	cfqd->crq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_MHASH_ENTRIES, GFP_KERNEL);
2172	if (!cfqd->crq_hash)
2173		goto out_crqhash;
2174
2175	cfqd->cfq_hash = kmalloc(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL);
2176	if (!cfqd->cfq_hash)
2177		goto out_cfqhash;
2178
2179	cfqd->crq_pool = mempool_create_slab_pool(BLKDEV_MIN_RQ, crq_pool);
2180	if (!cfqd->crq_pool)
2181		goto out_crqpool;
2182
2183	for (i = 0; i < CFQ_MHASH_ENTRIES; i++)
2184		INIT_HLIST_HEAD(&cfqd->crq_hash[i]);
2185	for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2186		INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2187
2188	e->elevator_data = cfqd;
2189
2190	cfqd->queue = q;
2191
2192	cfqd->max_queued = q->nr_requests / 4;
2193	q->nr_batching = cfq_queued;
2194
2195	init_timer(&cfqd->idle_slice_timer);
2196	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2197	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2198
2199	init_timer(&cfqd->idle_class_timer);
2200	cfqd->idle_class_timer.function = cfq_idle_class_timer;
2201	cfqd->idle_class_timer.data = (unsigned long) cfqd;
2202
2203	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue, q);
2204
2205	cfqd->cfq_queued = cfq_queued;
2206	cfqd->cfq_quantum = cfq_quantum;
2207	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2208	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2209	cfqd->cfq_back_max = cfq_back_max;
2210	cfqd->cfq_back_penalty = cfq_back_penalty;
2211	cfqd->cfq_slice[0] = cfq_slice_async;
2212	cfqd->cfq_slice[1] = cfq_slice_sync;
2213	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2214	cfqd->cfq_slice_idle = cfq_slice_idle;
2215	cfqd->cfq_max_depth = cfq_max_depth;
2216
2217	return 0;
2218out_crqpool:
2219	kfree(cfqd->cfq_hash);
2220out_cfqhash:
2221	kfree(cfqd->crq_hash);
2222out_crqhash:
2223	kfree(cfqd);
2224	return -ENOMEM;
2225}
2226
2227static void cfq_slab_kill(void)
2228{
2229	if (crq_pool)
2230		kmem_cache_destroy(crq_pool);
2231	if (cfq_pool)
2232		kmem_cache_destroy(cfq_pool);
2233	if (cfq_ioc_pool)
2234		kmem_cache_destroy(cfq_ioc_pool);
2235}
2236
2237static int __init cfq_slab_setup(void)
2238{
2239	crq_pool = kmem_cache_create("crq_pool", sizeof(struct cfq_rq), 0, 0,
2240					NULL, NULL);
2241	if (!crq_pool)
2242		goto fail;
2243
2244	cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2245					NULL, NULL);
2246	if (!cfq_pool)
2247		goto fail;
2248
2249	cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2250			sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2251	if (!cfq_ioc_pool)
2252		goto fail;
2253
2254	return 0;
2255fail:
2256	cfq_slab_kill();
2257	return -ENOMEM;
2258}
2259
2260/*
2261 * sysfs parts below -->
2262 */
2263
2264static ssize_t
2265cfq_var_show(unsigned int var, char *page)
2266{
2267	return sprintf(page, "%d\n", var);
2268}
2269
2270static ssize_t
2271cfq_var_store(unsigned int *var, const char *page, size_t count)
2272{
2273	char *p = (char *) page;
2274
2275	*var = simple_strtoul(p, &p, 10);
2276	return count;
2277}
2278
2279#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2280static ssize_t __FUNC(elevator_t *e, char *page)			\
2281{									\
2282	struct cfq_data *cfqd = e->elevator_data;			\
2283	unsigned int __data = __VAR;					\
2284	if (__CONV)							\
2285		__data = jiffies_to_msecs(__data);			\
2286	return cfq_var_show(__data, (page));				\
2287}
2288SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2289SHOW_FUNCTION(cfq_queued_show, cfqd->cfq_queued, 0);
2290SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2291SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2292SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2293SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2294SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2295SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2296SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2297SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2298SHOW_FUNCTION(cfq_max_depth_show, cfqd->cfq_max_depth, 0);
2299#undef SHOW_FUNCTION
2300
2301#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2302static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
2303{									\
2304	struct cfq_data *cfqd = e->elevator_data;			\
2305	unsigned int __data;						\
2306	int ret = cfq_var_store(&__data, (page), count);		\
2307	if (__data < (MIN))						\
2308		__data = (MIN);						\
2309	else if (__data > (MAX))					\
2310		__data = (MAX);						\
2311	if (__CONV)							\
2312		*(__PTR) = msecs_to_jiffies(__data);			\
2313	else								\
2314		*(__PTR) = __data;					\
2315	return ret;							\
2316}
2317STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2318STORE_FUNCTION(cfq_queued_store, &cfqd->cfq_queued, 1, UINT_MAX, 0);
2319STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2320STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2321STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2322STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2323STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2324STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2325STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2326STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2327STORE_FUNCTION(cfq_max_depth_store, &cfqd->cfq_max_depth, 1, UINT_MAX, 0);
2328#undef STORE_FUNCTION
2329
2330#define CFQ_ATTR(name) \
2331	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2332
2333static struct elv_fs_entry cfq_attrs[] = {
2334	CFQ_ATTR(quantum),
2335	CFQ_ATTR(queued),
2336	CFQ_ATTR(fifo_expire_sync),
2337	CFQ_ATTR(fifo_expire_async),
2338	CFQ_ATTR(back_seek_max),
2339	CFQ_ATTR(back_seek_penalty),
2340	CFQ_ATTR(slice_sync),
2341	CFQ_ATTR(slice_async),
2342	CFQ_ATTR(slice_async_rq),
2343	CFQ_ATTR(slice_idle),
2344	CFQ_ATTR(max_depth),
2345	__ATTR_NULL
2346};
2347
2348static struct elevator_type iosched_cfq = {
2349	.ops = {
2350		.elevator_merge_fn = 		cfq_merge,
2351		.elevator_merged_fn =		cfq_merged_request,
2352		.elevator_merge_req_fn =	cfq_merged_requests,
2353		.elevator_dispatch_fn =		cfq_dispatch_requests,
2354		.elevator_add_req_fn =		cfq_insert_request,
2355		.elevator_activate_req_fn =	cfq_activate_request,
2356		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2357		.elevator_queue_empty_fn =	cfq_queue_empty,
2358		.elevator_completed_req_fn =	cfq_completed_request,
2359		.elevator_former_req_fn =	cfq_former_request,
2360		.elevator_latter_req_fn =	cfq_latter_request,
2361		.elevator_set_req_fn =		cfq_set_request,
2362		.elevator_put_req_fn =		cfq_put_request,
2363		.elevator_may_queue_fn =	cfq_may_queue,
2364		.elevator_init_fn =		cfq_init_queue,
2365		.elevator_exit_fn =		cfq_exit_queue,
2366		.trim =				cfq_trim,
2367	},
2368	.elevator_attrs =	cfq_attrs,
2369	.elevator_name =	"cfq",
2370	.elevator_owner =	THIS_MODULE,
2371};
2372
2373static int __init cfq_init(void)
2374{
2375	int ret;
2376
2377	/*
2378	 * could be 0 on HZ < 1000 setups
2379	 */
2380	if (!cfq_slice_async)
2381		cfq_slice_async = 1;
2382	if (!cfq_slice_idle)
2383		cfq_slice_idle = 1;
2384
2385	if (cfq_slab_setup())
2386		return -ENOMEM;
2387
2388	ret = elv_register(&iosched_cfq);
2389	if (ret)
2390		cfq_slab_kill();
2391
2392	return ret;
2393}
2394
2395static void __exit cfq_exit(void)
2396{
2397	DECLARE_COMPLETION(all_gone);
2398	elv_unregister(&iosched_cfq);
2399	ioc_gone = &all_gone;
2400	barrier();
2401	if (atomic_read(&ioc_count))
2402		complete(ioc_gone);
2403	synchronize_rcu();
2404	cfq_slab_kill();
2405}
2406
2407module_init(cfq_init);
2408module_exit(cfq_exit);
2409
2410MODULE_AUTHOR("Jens Axboe");
2411MODULE_LICENSE("GPL");
2412MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2413