cfq-iosched.c revision e56da7e287967667474a58c4f60c286279e3f487
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/slab.h>
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
13#include <linux/jiffies.h>
14#include <linux/rbtree.h>
15#include <linux/ioprio.h>
16#include <linux/blktrace_api.h>
17#include "blk.h"
18#include "cfq.h"
19
20/*
21 * tunables
22 */
23/* max queue in one round of service */
24static const int cfq_quantum = 8;
25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
30static const int cfq_slice_sync = HZ / 10;
31static int cfq_slice_async = HZ / 25;
32static const int cfq_slice_async_rq = 2;
33static int cfq_slice_idle = HZ / 125;
34static int cfq_group_idle = HZ / 125;
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
37
38/*
39 * offset from end of service tree
40 */
41#define CFQ_IDLE_DELAY		(HZ / 5)
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT		(2)
47
48#define CFQ_SLICE_SCALE		(5)
49#define CFQ_HW_QUEUE_MIN	(5)
50#define CFQ_SERVICE_SHIFT       12
51
52#define CFQQ_SEEK_THR		(sector_t)(8 * 100)
53#define CFQQ_CLOSE_THR		(sector_t)(8 * 1024)
54#define CFQQ_SECT_THR_NONROT	(sector_t)(2 * 32)
55#define CFQQ_SEEKY(cfqq)	(hweight32(cfqq->seek_history) > 32/8)
56
57#define RQ_CIC(rq)		icq_to_cic((rq)->elv.icq)
58#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elv.priv[0])
59#define RQ_CFQG(rq)		(struct cfq_group *) ((rq)->elv.priv[1])
60
61static struct kmem_cache *cfq_pool;
62
63#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
64#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67#define sample_valid(samples)	((samples) > 80)
68#define rb_entry_cfqg(node)	rb_entry((node), struct cfq_group, rb_node)
69
70struct cfq_ttime {
71	unsigned long last_end_request;
72
73	unsigned long ttime_total;
74	unsigned long ttime_samples;
75	unsigned long ttime_mean;
76};
77
78/*
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
83 */
84struct cfq_rb_root {
85	struct rb_root rb;
86	struct rb_node *left;
87	unsigned count;
88	unsigned total_weight;
89	u64 min_vdisktime;
90	struct cfq_ttime ttime;
91};
92#define CFQ_RB_ROOT	(struct cfq_rb_root) { .rb = RB_ROOT, \
93			.ttime = {.last_end_request = jiffies,},}
94
95/*
96 * Per process-grouping structure
97 */
98struct cfq_queue {
99	/* reference count */
100	int ref;
101	/* various state flags, see below */
102	unsigned int flags;
103	/* parent cfq_data */
104	struct cfq_data *cfqd;
105	/* service_tree member */
106	struct rb_node rb_node;
107	/* service_tree key */
108	unsigned long rb_key;
109	/* prio tree member */
110	struct rb_node p_node;
111	/* prio tree root we belong to, if any */
112	struct rb_root *p_root;
113	/* sorted list of pending requests */
114	struct rb_root sort_list;
115	/* if fifo isn't expired, next request to serve */
116	struct request *next_rq;
117	/* requests queued in sort_list */
118	int queued[2];
119	/* currently allocated requests */
120	int allocated[2];
121	/* fifo list of requests in sort_list */
122	struct list_head fifo;
123
124	/* time when queue got scheduled in to dispatch first request. */
125	unsigned long dispatch_start;
126	unsigned int allocated_slice;
127	unsigned int slice_dispatch;
128	/* time when first request from queue completed and slice started. */
129	unsigned long slice_start;
130	unsigned long slice_end;
131	long slice_resid;
132
133	/* pending priority requests */
134	int prio_pending;
135	/* number of requests that are on the dispatch list or inside driver */
136	int dispatched;
137
138	/* io prio of this group */
139	unsigned short ioprio, org_ioprio;
140	unsigned short ioprio_class;
141
142	pid_t pid;
143
144	u32 seek_history;
145	sector_t last_request_pos;
146
147	struct cfq_rb_root *service_tree;
148	struct cfq_queue *new_cfqq;
149	struct cfq_group *cfqg;
150	/* Number of sectors dispatched from queue in single dispatch round */
151	unsigned long nr_sectors;
152};
153
154/*
155 * First index in the service_trees.
156 * IDLE is handled separately, so it has negative index
157 */
158enum wl_prio_t {
159	BE_WORKLOAD = 0,
160	RT_WORKLOAD = 1,
161	IDLE_WORKLOAD = 2,
162	CFQ_PRIO_NR,
163};
164
165/*
166 * Second index in the service_trees.
167 */
168enum wl_type_t {
169	ASYNC_WORKLOAD = 0,
170	SYNC_NOIDLE_WORKLOAD = 1,
171	SYNC_WORKLOAD = 2
172};
173
174/* This is per cgroup per device grouping structure */
175struct cfq_group {
176	/* group service_tree member */
177	struct rb_node rb_node;
178
179	/* group service_tree key */
180	u64 vdisktime;
181	unsigned int weight;
182	unsigned int new_weight;
183	bool needs_update;
184
185	/* number of cfqq currently on this group */
186	int nr_cfqq;
187
188	/*
189	 * Per group busy queues average. Useful for workload slice calc. We
190	 * create the array for each prio class but at run time it is used
191	 * only for RT and BE class and slot for IDLE class remains unused.
192	 * This is primarily done to avoid confusion and a gcc warning.
193	 */
194	unsigned int busy_queues_avg[CFQ_PRIO_NR];
195	/*
196	 * rr lists of queues with requests. We maintain service trees for
197	 * RT and BE classes. These trees are subdivided in subclasses
198	 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
199	 * class there is no subclassification and all the cfq queues go on
200	 * a single tree service_tree_idle.
201	 * Counts are embedded in the cfq_rb_root
202	 */
203	struct cfq_rb_root service_trees[2][3];
204	struct cfq_rb_root service_tree_idle;
205
206	unsigned long saved_workload_slice;
207	enum wl_type_t saved_workload;
208	enum wl_prio_t saved_serving_prio;
209	struct blkio_group blkg;
210#ifdef CONFIG_CFQ_GROUP_IOSCHED
211	struct hlist_node cfqd_node;
212	int ref;
213#endif
214	/* number of requests that are on the dispatch list or inside driver */
215	int dispatched;
216	struct cfq_ttime ttime;
217};
218
219struct cfq_io_cq {
220	struct io_cq		icq;		/* must be the first member */
221	struct cfq_queue	*cfqq[2];
222	struct cfq_ttime	ttime;
223};
224
225/*
226 * Per block device queue structure
227 */
228struct cfq_data {
229	struct request_queue *queue;
230	/* Root service tree for cfq_groups */
231	struct cfq_rb_root grp_service_tree;
232	struct cfq_group *root_group;
233
234	/*
235	 * The priority currently being served
236	 */
237	enum wl_prio_t serving_prio;
238	enum wl_type_t serving_type;
239	unsigned long workload_expires;
240	struct cfq_group *serving_group;
241
242	/*
243	 * Each priority tree is sorted by next_request position.  These
244	 * trees are used when determining if two or more queues are
245	 * interleaving requests (see cfq_close_cooperator).
246	 */
247	struct rb_root prio_trees[CFQ_PRIO_LISTS];
248
249	unsigned int busy_queues;
250	unsigned int busy_sync_queues;
251
252	int rq_in_driver;
253	int rq_in_flight[2];
254
255	/*
256	 * queue-depth detection
257	 */
258	int rq_queued;
259	int hw_tag;
260	/*
261	 * hw_tag can be
262	 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
263	 *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
264	 *  0 => no NCQ
265	 */
266	int hw_tag_est_depth;
267	unsigned int hw_tag_samples;
268
269	/*
270	 * idle window management
271	 */
272	struct timer_list idle_slice_timer;
273	struct work_struct unplug_work;
274
275	struct cfq_queue *active_queue;
276	struct cfq_io_cq *active_cic;
277
278	/*
279	 * async queue for each priority case
280	 */
281	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
282	struct cfq_queue *async_idle_cfqq;
283
284	sector_t last_position;
285
286	/*
287	 * tunables, see top of file
288	 */
289	unsigned int cfq_quantum;
290	unsigned int cfq_fifo_expire[2];
291	unsigned int cfq_back_penalty;
292	unsigned int cfq_back_max;
293	unsigned int cfq_slice[2];
294	unsigned int cfq_slice_async_rq;
295	unsigned int cfq_slice_idle;
296	unsigned int cfq_group_idle;
297	unsigned int cfq_latency;
298
299	/*
300	 * Fallback dummy cfqq for extreme OOM conditions
301	 */
302	struct cfq_queue oom_cfqq;
303
304	unsigned long last_delayed_sync;
305
306	/* List of cfq groups being managed on this device*/
307	struct hlist_head cfqg_list;
308
309	/* Number of groups which are on blkcg->blkg_list */
310	unsigned int nr_blkcg_linked_grps;
311};
312
313static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
314
315static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
316					    enum wl_prio_t prio,
317					    enum wl_type_t type)
318{
319	if (!cfqg)
320		return NULL;
321
322	if (prio == IDLE_WORKLOAD)
323		return &cfqg->service_tree_idle;
324
325	return &cfqg->service_trees[prio][type];
326}
327
328enum cfqq_state_flags {
329	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
330	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
331	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
332	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
333	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
334	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
335	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
336	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
337	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
338	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
339	CFQ_CFQQ_FLAG_split_coop,	/* shared cfqq will be splitted */
340	CFQ_CFQQ_FLAG_deep,		/* sync cfqq experienced large depth */
341	CFQ_CFQQ_FLAG_wait_busy,	/* Waiting for next request */
342};
343
344#define CFQ_CFQQ_FNS(name)						\
345static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
346{									\
347	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
348}									\
349static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
350{									\
351	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
352}									\
353static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
354{									\
355	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
356}
357
358CFQ_CFQQ_FNS(on_rr);
359CFQ_CFQQ_FNS(wait_request);
360CFQ_CFQQ_FNS(must_dispatch);
361CFQ_CFQQ_FNS(must_alloc_slice);
362CFQ_CFQQ_FNS(fifo_expire);
363CFQ_CFQQ_FNS(idle_window);
364CFQ_CFQQ_FNS(prio_changed);
365CFQ_CFQQ_FNS(slice_new);
366CFQ_CFQQ_FNS(sync);
367CFQ_CFQQ_FNS(coop);
368CFQ_CFQQ_FNS(split_coop);
369CFQ_CFQQ_FNS(deep);
370CFQ_CFQQ_FNS(wait_busy);
371#undef CFQ_CFQQ_FNS
372
373#ifdef CONFIG_CFQ_GROUP_IOSCHED
374#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
375	blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
376			cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
377			blkg_path(&(cfqq)->cfqg->blkg), ##args)
378
379#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)				\
380	blk_add_trace_msg((cfqd)->queue, "%s " fmt,			\
381				blkg_path(&(cfqg)->blkg), ##args)       \
382
383#else
384#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
385	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
386#define cfq_log_cfqg(cfqd, cfqg, fmt, args...)		do {} while (0)
387#endif
388#define cfq_log(cfqd, fmt, args...)	\
389	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
390
391/* Traverses through cfq group service trees */
392#define for_each_cfqg_st(cfqg, i, j, st) \
393	for (i = 0; i <= IDLE_WORKLOAD; i++) \
394		for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
395			: &cfqg->service_tree_idle; \
396			(i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
397			(i == IDLE_WORKLOAD && j == 0); \
398			j++, st = i < IDLE_WORKLOAD ? \
399			&cfqg->service_trees[i][j]: NULL) \
400
401static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
402	struct cfq_ttime *ttime, bool group_idle)
403{
404	unsigned long slice;
405	if (!sample_valid(ttime->ttime_samples))
406		return false;
407	if (group_idle)
408		slice = cfqd->cfq_group_idle;
409	else
410		slice = cfqd->cfq_slice_idle;
411	return ttime->ttime_mean > slice;
412}
413
414static inline bool iops_mode(struct cfq_data *cfqd)
415{
416	/*
417	 * If we are not idling on queues and it is a NCQ drive, parallel
418	 * execution of requests is on and measuring time is not possible
419	 * in most of the cases until and unless we drive shallower queue
420	 * depths and that becomes a performance bottleneck. In such cases
421	 * switch to start providing fairness in terms of number of IOs.
422	 */
423	if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
424		return true;
425	else
426		return false;
427}
428
429static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
430{
431	if (cfq_class_idle(cfqq))
432		return IDLE_WORKLOAD;
433	if (cfq_class_rt(cfqq))
434		return RT_WORKLOAD;
435	return BE_WORKLOAD;
436}
437
438
439static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
440{
441	if (!cfq_cfqq_sync(cfqq))
442		return ASYNC_WORKLOAD;
443	if (!cfq_cfqq_idle_window(cfqq))
444		return SYNC_NOIDLE_WORKLOAD;
445	return SYNC_WORKLOAD;
446}
447
448static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
449					struct cfq_data *cfqd,
450					struct cfq_group *cfqg)
451{
452	if (wl == IDLE_WORKLOAD)
453		return cfqg->service_tree_idle.count;
454
455	return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
456		+ cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
457		+ cfqg->service_trees[wl][SYNC_WORKLOAD].count;
458}
459
460static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
461					struct cfq_group *cfqg)
462{
463	return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
464		+ cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
465}
466
467static void cfq_dispatch_insert(struct request_queue *, struct request *);
468static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
469				       struct io_context *, gfp_t);
470
471static inline struct cfq_io_cq *icq_to_cic(struct io_cq *icq)
472{
473	/* cic->icq is the first member, %NULL will convert to %NULL */
474	return container_of(icq, struct cfq_io_cq, icq);
475}
476
477static inline struct cfq_io_cq *cfq_cic_lookup(struct cfq_data *cfqd,
478					       struct io_context *ioc)
479{
480	if (ioc)
481		return icq_to_cic(ioc_lookup_icq(ioc, cfqd->queue));
482	return NULL;
483}
484
485static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_cq *cic, bool is_sync)
486{
487	return cic->cfqq[is_sync];
488}
489
490static inline void cic_set_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq,
491				bool is_sync)
492{
493	cic->cfqq[is_sync] = cfqq;
494}
495
496static inline struct cfq_data *cic_to_cfqd(struct cfq_io_cq *cic)
497{
498	return cic->icq.q->elevator->elevator_data;
499}
500
501/*
502 * We regard a request as SYNC, if it's either a read or has the SYNC bit
503 * set (in which case it could also be direct WRITE).
504 */
505static inline bool cfq_bio_sync(struct bio *bio)
506{
507	return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
508}
509
510/*
511 * scheduler run of queue, if there are requests pending and no one in the
512 * driver that will restart queueing
513 */
514static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
515{
516	if (cfqd->busy_queues) {
517		cfq_log(cfqd, "schedule dispatch");
518		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
519	}
520}
521
522/*
523 * Scale schedule slice based on io priority. Use the sync time slice only
524 * if a queue is marked sync and has sync io queued. A sync queue with async
525 * io only, should not get full sync slice length.
526 */
527static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
528				 unsigned short prio)
529{
530	const int base_slice = cfqd->cfq_slice[sync];
531
532	WARN_ON(prio >= IOPRIO_BE_NR);
533
534	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
535}
536
537static inline int
538cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
539{
540	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
541}
542
543static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
544{
545	u64 d = delta << CFQ_SERVICE_SHIFT;
546
547	d = d * BLKIO_WEIGHT_DEFAULT;
548	do_div(d, cfqg->weight);
549	return d;
550}
551
552static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
553{
554	s64 delta = (s64)(vdisktime - min_vdisktime);
555	if (delta > 0)
556		min_vdisktime = vdisktime;
557
558	return min_vdisktime;
559}
560
561static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
562{
563	s64 delta = (s64)(vdisktime - min_vdisktime);
564	if (delta < 0)
565		min_vdisktime = vdisktime;
566
567	return min_vdisktime;
568}
569
570static void update_min_vdisktime(struct cfq_rb_root *st)
571{
572	struct cfq_group *cfqg;
573
574	if (st->left) {
575		cfqg = rb_entry_cfqg(st->left);
576		st->min_vdisktime = max_vdisktime(st->min_vdisktime,
577						  cfqg->vdisktime);
578	}
579}
580
581/*
582 * get averaged number of queues of RT/BE priority.
583 * average is updated, with a formula that gives more weight to higher numbers,
584 * to quickly follows sudden increases and decrease slowly
585 */
586
587static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
588					struct cfq_group *cfqg, bool rt)
589{
590	unsigned min_q, max_q;
591	unsigned mult  = cfq_hist_divisor - 1;
592	unsigned round = cfq_hist_divisor / 2;
593	unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
594
595	min_q = min(cfqg->busy_queues_avg[rt], busy);
596	max_q = max(cfqg->busy_queues_avg[rt], busy);
597	cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
598		cfq_hist_divisor;
599	return cfqg->busy_queues_avg[rt];
600}
601
602static inline unsigned
603cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
604{
605	struct cfq_rb_root *st = &cfqd->grp_service_tree;
606
607	return cfq_target_latency * cfqg->weight / st->total_weight;
608}
609
610static inline unsigned
611cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
612{
613	unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
614	if (cfqd->cfq_latency) {
615		/*
616		 * interested queues (we consider only the ones with the same
617		 * priority class in the cfq group)
618		 */
619		unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
620						cfq_class_rt(cfqq));
621		unsigned sync_slice = cfqd->cfq_slice[1];
622		unsigned expect_latency = sync_slice * iq;
623		unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
624
625		if (expect_latency > group_slice) {
626			unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
627			/* scale low_slice according to IO priority
628			 * and sync vs async */
629			unsigned low_slice =
630				min(slice, base_low_slice * slice / sync_slice);
631			/* the adapted slice value is scaled to fit all iqs
632			 * into the target latency */
633			slice = max(slice * group_slice / expect_latency,
634				    low_slice);
635		}
636	}
637	return slice;
638}
639
640static inline void
641cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
642{
643	unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
644
645	cfqq->slice_start = jiffies;
646	cfqq->slice_end = jiffies + slice;
647	cfqq->allocated_slice = slice;
648	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
649}
650
651/*
652 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
653 * isn't valid until the first request from the dispatch is activated
654 * and the slice time set.
655 */
656static inline bool cfq_slice_used(struct cfq_queue *cfqq)
657{
658	if (cfq_cfqq_slice_new(cfqq))
659		return false;
660	if (time_before(jiffies, cfqq->slice_end))
661		return false;
662
663	return true;
664}
665
666/*
667 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
668 * We choose the request that is closest to the head right now. Distance
669 * behind the head is penalized and only allowed to a certain extent.
670 */
671static struct request *
672cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
673{
674	sector_t s1, s2, d1 = 0, d2 = 0;
675	unsigned long back_max;
676#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
677#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
678	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
679
680	if (rq1 == NULL || rq1 == rq2)
681		return rq2;
682	if (rq2 == NULL)
683		return rq1;
684
685	if (rq_is_sync(rq1) != rq_is_sync(rq2))
686		return rq_is_sync(rq1) ? rq1 : rq2;
687
688	if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
689		return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
690
691	s1 = blk_rq_pos(rq1);
692	s2 = blk_rq_pos(rq2);
693
694	/*
695	 * by definition, 1KiB is 2 sectors
696	 */
697	back_max = cfqd->cfq_back_max * 2;
698
699	/*
700	 * Strict one way elevator _except_ in the case where we allow
701	 * short backward seeks which are biased as twice the cost of a
702	 * similar forward seek.
703	 */
704	if (s1 >= last)
705		d1 = s1 - last;
706	else if (s1 + back_max >= last)
707		d1 = (last - s1) * cfqd->cfq_back_penalty;
708	else
709		wrap |= CFQ_RQ1_WRAP;
710
711	if (s2 >= last)
712		d2 = s2 - last;
713	else if (s2 + back_max >= last)
714		d2 = (last - s2) * cfqd->cfq_back_penalty;
715	else
716		wrap |= CFQ_RQ2_WRAP;
717
718	/* Found required data */
719
720	/*
721	 * By doing switch() on the bit mask "wrap" we avoid having to
722	 * check two variables for all permutations: --> faster!
723	 */
724	switch (wrap) {
725	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
726		if (d1 < d2)
727			return rq1;
728		else if (d2 < d1)
729			return rq2;
730		else {
731			if (s1 >= s2)
732				return rq1;
733			else
734				return rq2;
735		}
736
737	case CFQ_RQ2_WRAP:
738		return rq1;
739	case CFQ_RQ1_WRAP:
740		return rq2;
741	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
742	default:
743		/*
744		 * Since both rqs are wrapped,
745		 * start with the one that's further behind head
746		 * (--> only *one* back seek required),
747		 * since back seek takes more time than forward.
748		 */
749		if (s1 <= s2)
750			return rq1;
751		else
752			return rq2;
753	}
754}
755
756/*
757 * The below is leftmost cache rbtree addon
758 */
759static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
760{
761	/* Service tree is empty */
762	if (!root->count)
763		return NULL;
764
765	if (!root->left)
766		root->left = rb_first(&root->rb);
767
768	if (root->left)
769		return rb_entry(root->left, struct cfq_queue, rb_node);
770
771	return NULL;
772}
773
774static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
775{
776	if (!root->left)
777		root->left = rb_first(&root->rb);
778
779	if (root->left)
780		return rb_entry_cfqg(root->left);
781
782	return NULL;
783}
784
785static void rb_erase_init(struct rb_node *n, struct rb_root *root)
786{
787	rb_erase(n, root);
788	RB_CLEAR_NODE(n);
789}
790
791static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
792{
793	if (root->left == n)
794		root->left = NULL;
795	rb_erase_init(n, &root->rb);
796	--root->count;
797}
798
799/*
800 * would be nice to take fifo expire time into account as well
801 */
802static struct request *
803cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
804		  struct request *last)
805{
806	struct rb_node *rbnext = rb_next(&last->rb_node);
807	struct rb_node *rbprev = rb_prev(&last->rb_node);
808	struct request *next = NULL, *prev = NULL;
809
810	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
811
812	if (rbprev)
813		prev = rb_entry_rq(rbprev);
814
815	if (rbnext)
816		next = rb_entry_rq(rbnext);
817	else {
818		rbnext = rb_first(&cfqq->sort_list);
819		if (rbnext && rbnext != &last->rb_node)
820			next = rb_entry_rq(rbnext);
821	}
822
823	return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
824}
825
826static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
827				      struct cfq_queue *cfqq)
828{
829	/*
830	 * just an approximation, should be ok.
831	 */
832	return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
833		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
834}
835
836static inline s64
837cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
838{
839	return cfqg->vdisktime - st->min_vdisktime;
840}
841
842static void
843__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
844{
845	struct rb_node **node = &st->rb.rb_node;
846	struct rb_node *parent = NULL;
847	struct cfq_group *__cfqg;
848	s64 key = cfqg_key(st, cfqg);
849	int left = 1;
850
851	while (*node != NULL) {
852		parent = *node;
853		__cfqg = rb_entry_cfqg(parent);
854
855		if (key < cfqg_key(st, __cfqg))
856			node = &parent->rb_left;
857		else {
858			node = &parent->rb_right;
859			left = 0;
860		}
861	}
862
863	if (left)
864		st->left = &cfqg->rb_node;
865
866	rb_link_node(&cfqg->rb_node, parent, node);
867	rb_insert_color(&cfqg->rb_node, &st->rb);
868}
869
870static void
871cfq_update_group_weight(struct cfq_group *cfqg)
872{
873	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
874	if (cfqg->needs_update) {
875		cfqg->weight = cfqg->new_weight;
876		cfqg->needs_update = false;
877	}
878}
879
880static void
881cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
882{
883	BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
884
885	cfq_update_group_weight(cfqg);
886	__cfq_group_service_tree_add(st, cfqg);
887	st->total_weight += cfqg->weight;
888}
889
890static void
891cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
892{
893	struct cfq_rb_root *st = &cfqd->grp_service_tree;
894	struct cfq_group *__cfqg;
895	struct rb_node *n;
896
897	cfqg->nr_cfqq++;
898	if (!RB_EMPTY_NODE(&cfqg->rb_node))
899		return;
900
901	/*
902	 * Currently put the group at the end. Later implement something
903	 * so that groups get lesser vtime based on their weights, so that
904	 * if group does not loose all if it was not continuously backlogged.
905	 */
906	n = rb_last(&st->rb);
907	if (n) {
908		__cfqg = rb_entry_cfqg(n);
909		cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
910	} else
911		cfqg->vdisktime = st->min_vdisktime;
912	cfq_group_service_tree_add(st, cfqg);
913}
914
915static void
916cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
917{
918	st->total_weight -= cfqg->weight;
919	if (!RB_EMPTY_NODE(&cfqg->rb_node))
920		cfq_rb_erase(&cfqg->rb_node, st);
921}
922
923static void
924cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
925{
926	struct cfq_rb_root *st = &cfqd->grp_service_tree;
927
928	BUG_ON(cfqg->nr_cfqq < 1);
929	cfqg->nr_cfqq--;
930
931	/* If there are other cfq queues under this group, don't delete it */
932	if (cfqg->nr_cfqq)
933		return;
934
935	cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
936	cfq_group_service_tree_del(st, cfqg);
937	cfqg->saved_workload_slice = 0;
938	cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
939}
940
941static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
942						unsigned int *unaccounted_time)
943{
944	unsigned int slice_used;
945
946	/*
947	 * Queue got expired before even a single request completed or
948	 * got expired immediately after first request completion.
949	 */
950	if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
951		/*
952		 * Also charge the seek time incurred to the group, otherwise
953		 * if there are mutiple queues in the group, each can dispatch
954		 * a single request on seeky media and cause lots of seek time
955		 * and group will never know it.
956		 */
957		slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
958					1);
959	} else {
960		slice_used = jiffies - cfqq->slice_start;
961		if (slice_used > cfqq->allocated_slice) {
962			*unaccounted_time = slice_used - cfqq->allocated_slice;
963			slice_used = cfqq->allocated_slice;
964		}
965		if (time_after(cfqq->slice_start, cfqq->dispatch_start))
966			*unaccounted_time += cfqq->slice_start -
967					cfqq->dispatch_start;
968	}
969
970	return slice_used;
971}
972
973static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
974				struct cfq_queue *cfqq)
975{
976	struct cfq_rb_root *st = &cfqd->grp_service_tree;
977	unsigned int used_sl, charge, unaccounted_sl = 0;
978	int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
979			- cfqg->service_tree_idle.count;
980
981	BUG_ON(nr_sync < 0);
982	used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
983
984	if (iops_mode(cfqd))
985		charge = cfqq->slice_dispatch;
986	else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
987		charge = cfqq->allocated_slice;
988
989	/* Can't update vdisktime while group is on service tree */
990	cfq_group_service_tree_del(st, cfqg);
991	cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
992	/* If a new weight was requested, update now, off tree */
993	cfq_group_service_tree_add(st, cfqg);
994
995	/* This group is being expired. Save the context */
996	if (time_after(cfqd->workload_expires, jiffies)) {
997		cfqg->saved_workload_slice = cfqd->workload_expires
998						- jiffies;
999		cfqg->saved_workload = cfqd->serving_type;
1000		cfqg->saved_serving_prio = cfqd->serving_prio;
1001	} else
1002		cfqg->saved_workload_slice = 0;
1003
1004	cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
1005					st->min_vdisktime);
1006	cfq_log_cfqq(cfqq->cfqd, cfqq,
1007		     "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
1008		     used_sl, cfqq->slice_dispatch, charge,
1009		     iops_mode(cfqd), cfqq->nr_sectors);
1010	cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
1011					  unaccounted_sl);
1012	cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1013}
1014
1015/**
1016 * cfq_init_cfqg_base - initialize base part of a cfq_group
1017 * @cfqg: cfq_group to initialize
1018 *
1019 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1020 * is enabled or not.
1021 */
1022static void cfq_init_cfqg_base(struct cfq_group *cfqg)
1023{
1024	struct cfq_rb_root *st;
1025	int i, j;
1026
1027	for_each_cfqg_st(cfqg, i, j, st)
1028		*st = CFQ_RB_ROOT;
1029	RB_CLEAR_NODE(&cfqg->rb_node);
1030
1031	cfqg->ttime.last_end_request = jiffies;
1032}
1033
1034#ifdef CONFIG_CFQ_GROUP_IOSCHED
1035static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
1036{
1037	if (blkg)
1038		return container_of(blkg, struct cfq_group, blkg);
1039	return NULL;
1040}
1041
1042static void cfq_update_blkio_group_weight(struct request_queue *q,
1043					  struct blkio_group *blkg,
1044					  unsigned int weight)
1045{
1046	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1047	cfqg->new_weight = weight;
1048	cfqg->needs_update = true;
1049}
1050
1051static void cfq_link_blkio_group(struct request_queue *q,
1052				 struct blkio_group *blkg)
1053{
1054	struct cfq_data *cfqd = q->elevator->elevator_data;
1055	struct backing_dev_info *bdi = &q->backing_dev_info;
1056	struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1057	unsigned int major, minor;
1058
1059	/*
1060	 * Add group onto cgroup list. It might happen that bdi->dev is
1061	 * not initialized yet. Initialize this new group without major
1062	 * and minor info and this info will be filled in once a new thread
1063	 * comes for IO.
1064	 */
1065	if (bdi->dev) {
1066		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1067		blkg->dev = MKDEV(major, minor);
1068	}
1069
1070	cfqd->nr_blkcg_linked_grps++;
1071
1072	/* Add group on cfqd list */
1073	hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1074}
1075
1076static struct blkio_group *cfq_alloc_blkio_group(struct request_queue *q,
1077						 struct blkio_cgroup *blkcg)
1078{
1079	struct cfq_group *cfqg;
1080
1081	cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, q->node);
1082	if (!cfqg)
1083		return NULL;
1084
1085	cfq_init_cfqg_base(cfqg);
1086	cfqg->weight = blkcg->weight;
1087
1088	/*
1089	 * Take the initial reference that will be released on destroy
1090	 * This can be thought of a joint reference by cgroup and
1091	 * elevator which will be dropped by either elevator exit
1092	 * or cgroup deletion path depending on who is exiting first.
1093	 */
1094	cfqg->ref = 1;
1095
1096	return &cfqg->blkg;
1097}
1098
1099/*
1100 * Search for the cfq group current task belongs to. request_queue lock must
1101 * be held.
1102 */
1103static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1104						struct blkio_cgroup *blkcg)
1105{
1106	struct request_queue *q = cfqd->queue;
1107	struct backing_dev_info *bdi = &q->backing_dev_info;
1108	struct cfq_group *cfqg = NULL;
1109
1110	/* avoid lookup for the common case where there's no blkio cgroup */
1111	if (blkcg == &blkio_root_cgroup) {
1112		cfqg = cfqd->root_group;
1113	} else {
1114		struct blkio_group *blkg;
1115
1116		blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_PROP, false);
1117		if (!IS_ERR(blkg))
1118			cfqg = cfqg_of_blkg(blkg);
1119	}
1120
1121	if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1122		unsigned int major, minor;
1123
1124		sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1125		cfqg->blkg.dev = MKDEV(major, minor);
1126	}
1127
1128	return cfqg;
1129}
1130
1131static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1132{
1133	cfqg->ref++;
1134	return cfqg;
1135}
1136
1137static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1138{
1139	/* Currently, all async queues are mapped to root group */
1140	if (!cfq_cfqq_sync(cfqq))
1141		cfqg = cfqq->cfqd->root_group;
1142
1143	cfqq->cfqg = cfqg;
1144	/* cfqq reference on cfqg */
1145	cfqq->cfqg->ref++;
1146}
1147
1148static void cfq_put_cfqg(struct cfq_group *cfqg)
1149{
1150	struct cfq_rb_root *st;
1151	int i, j;
1152
1153	BUG_ON(cfqg->ref <= 0);
1154	cfqg->ref--;
1155	if (cfqg->ref)
1156		return;
1157	for_each_cfqg_st(cfqg, i, j, st)
1158		BUG_ON(!RB_EMPTY_ROOT(&st->rb));
1159	free_percpu(cfqg->blkg.stats_cpu);
1160	kfree(cfqg);
1161}
1162
1163static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1164{
1165	/* Something wrong if we are trying to remove same group twice */
1166	BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1167
1168	hlist_del_init(&cfqg->cfqd_node);
1169
1170	BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1171	cfqd->nr_blkcg_linked_grps--;
1172
1173	/*
1174	 * Put the reference taken at the time of creation so that when all
1175	 * queues are gone, group can be destroyed.
1176	 */
1177	cfq_put_cfqg(cfqg);
1178}
1179
1180static bool cfq_release_cfq_groups(struct cfq_data *cfqd)
1181{
1182	struct hlist_node *pos, *n;
1183	struct cfq_group *cfqg;
1184	bool empty = true;
1185
1186	hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1187		/*
1188		 * If cgroup removal path got to blk_group first and removed
1189		 * it from cgroup list, then it will take care of destroying
1190		 * cfqg also.
1191		 */
1192		if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
1193			cfq_destroy_cfqg(cfqd, cfqg);
1194		else
1195			empty = false;
1196	}
1197	return empty;
1198}
1199
1200/*
1201 * Blk cgroup controller notification saying that blkio_group object is being
1202 * delinked as associated cgroup object is going away. That also means that
1203 * no new IO will come in this group. So get rid of this group as soon as
1204 * any pending IO in the group is finished.
1205 *
1206 * This function is called under rcu_read_lock(). key is the rcu protected
1207 * pointer. That means @q is a valid request_queue pointer as long as we
1208 * are rcu read lock.
1209 *
1210 * @q was fetched from blkio_group under blkio_cgroup->lock. That means
1211 * it should not be NULL as even if elevator was exiting, cgroup deltion
1212 * path got to it first.
1213 */
1214static void cfq_unlink_blkio_group(struct request_queue *q,
1215				   struct blkio_group *blkg)
1216{
1217	struct cfq_data *cfqd = q->elevator->elevator_data;
1218	unsigned long flags;
1219
1220	spin_lock_irqsave(q->queue_lock, flags);
1221	cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1222	spin_unlock_irqrestore(q->queue_lock, flags);
1223}
1224
1225static struct elevator_type iosched_cfq;
1226
1227static bool cfq_clear_queue(struct request_queue *q)
1228{
1229	lockdep_assert_held(q->queue_lock);
1230
1231	/* shoot down blkgs iff the current elevator is cfq */
1232	if (!q->elevator || q->elevator->type != &iosched_cfq)
1233		return true;
1234
1235	return cfq_release_cfq_groups(q->elevator->elevator_data);
1236}
1237
1238#else /* GROUP_IOSCHED */
1239static struct cfq_group *cfq_lookup_create_cfqg(struct cfq_data *cfqd,
1240						struct blkio_cgroup *blkcg)
1241{
1242	return cfqd->root_group;
1243}
1244
1245static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1246{
1247	return cfqg;
1248}
1249
1250static inline void
1251cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1252	cfqq->cfqg = cfqg;
1253}
1254
1255static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1256static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1257
1258#endif /* GROUP_IOSCHED */
1259
1260/*
1261 * The cfqd->service_trees holds all pending cfq_queue's that have
1262 * requests waiting to be processed. It is sorted in the order that
1263 * we will service the queues.
1264 */
1265static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1266				 bool add_front)
1267{
1268	struct rb_node **p, *parent;
1269	struct cfq_queue *__cfqq;
1270	unsigned long rb_key;
1271	struct cfq_rb_root *service_tree;
1272	int left;
1273	int new_cfqq = 1;
1274
1275	service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1276						cfqq_type(cfqq));
1277	if (cfq_class_idle(cfqq)) {
1278		rb_key = CFQ_IDLE_DELAY;
1279		parent = rb_last(&service_tree->rb);
1280		if (parent && parent != &cfqq->rb_node) {
1281			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1282			rb_key += __cfqq->rb_key;
1283		} else
1284			rb_key += jiffies;
1285	} else if (!add_front) {
1286		/*
1287		 * Get our rb key offset. Subtract any residual slice
1288		 * value carried from last service. A negative resid
1289		 * count indicates slice overrun, and this should position
1290		 * the next service time further away in the tree.
1291		 */
1292		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1293		rb_key -= cfqq->slice_resid;
1294		cfqq->slice_resid = 0;
1295	} else {
1296		rb_key = -HZ;
1297		__cfqq = cfq_rb_first(service_tree);
1298		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1299	}
1300
1301	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1302		new_cfqq = 0;
1303		/*
1304		 * same position, nothing more to do
1305		 */
1306		if (rb_key == cfqq->rb_key &&
1307		    cfqq->service_tree == service_tree)
1308			return;
1309
1310		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1311		cfqq->service_tree = NULL;
1312	}
1313
1314	left = 1;
1315	parent = NULL;
1316	cfqq->service_tree = service_tree;
1317	p = &service_tree->rb.rb_node;
1318	while (*p) {
1319		struct rb_node **n;
1320
1321		parent = *p;
1322		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1323
1324		/*
1325		 * sort by key, that represents service time.
1326		 */
1327		if (time_before(rb_key, __cfqq->rb_key))
1328			n = &(*p)->rb_left;
1329		else {
1330			n = &(*p)->rb_right;
1331			left = 0;
1332		}
1333
1334		p = n;
1335	}
1336
1337	if (left)
1338		service_tree->left = &cfqq->rb_node;
1339
1340	cfqq->rb_key = rb_key;
1341	rb_link_node(&cfqq->rb_node, parent, p);
1342	rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1343	service_tree->count++;
1344	if (add_front || !new_cfqq)
1345		return;
1346	cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1347}
1348
1349static struct cfq_queue *
1350cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1351		     sector_t sector, struct rb_node **ret_parent,
1352		     struct rb_node ***rb_link)
1353{
1354	struct rb_node **p, *parent;
1355	struct cfq_queue *cfqq = NULL;
1356
1357	parent = NULL;
1358	p = &root->rb_node;
1359	while (*p) {
1360		struct rb_node **n;
1361
1362		parent = *p;
1363		cfqq = rb_entry(parent, struct cfq_queue, p_node);
1364
1365		/*
1366		 * Sort strictly based on sector.  Smallest to the left,
1367		 * largest to the right.
1368		 */
1369		if (sector > blk_rq_pos(cfqq->next_rq))
1370			n = &(*p)->rb_right;
1371		else if (sector < blk_rq_pos(cfqq->next_rq))
1372			n = &(*p)->rb_left;
1373		else
1374			break;
1375		p = n;
1376		cfqq = NULL;
1377	}
1378
1379	*ret_parent = parent;
1380	if (rb_link)
1381		*rb_link = p;
1382	return cfqq;
1383}
1384
1385static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1386{
1387	struct rb_node **p, *parent;
1388	struct cfq_queue *__cfqq;
1389
1390	if (cfqq->p_root) {
1391		rb_erase(&cfqq->p_node, cfqq->p_root);
1392		cfqq->p_root = NULL;
1393	}
1394
1395	if (cfq_class_idle(cfqq))
1396		return;
1397	if (!cfqq->next_rq)
1398		return;
1399
1400	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1401	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1402				      blk_rq_pos(cfqq->next_rq), &parent, &p);
1403	if (!__cfqq) {
1404		rb_link_node(&cfqq->p_node, parent, p);
1405		rb_insert_color(&cfqq->p_node, cfqq->p_root);
1406	} else
1407		cfqq->p_root = NULL;
1408}
1409
1410/*
1411 * Update cfqq's position in the service tree.
1412 */
1413static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1414{
1415	/*
1416	 * Resorting requires the cfqq to be on the RR list already.
1417	 */
1418	if (cfq_cfqq_on_rr(cfqq)) {
1419		cfq_service_tree_add(cfqd, cfqq, 0);
1420		cfq_prio_tree_add(cfqd, cfqq);
1421	}
1422}
1423
1424/*
1425 * add to busy list of queues for service, trying to be fair in ordering
1426 * the pending list according to last request service
1427 */
1428static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1429{
1430	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1431	BUG_ON(cfq_cfqq_on_rr(cfqq));
1432	cfq_mark_cfqq_on_rr(cfqq);
1433	cfqd->busy_queues++;
1434	if (cfq_cfqq_sync(cfqq))
1435		cfqd->busy_sync_queues++;
1436
1437	cfq_resort_rr_list(cfqd, cfqq);
1438}
1439
1440/*
1441 * Called when the cfqq no longer has requests pending, remove it from
1442 * the service tree.
1443 */
1444static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1445{
1446	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1447	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1448	cfq_clear_cfqq_on_rr(cfqq);
1449
1450	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1451		cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1452		cfqq->service_tree = NULL;
1453	}
1454	if (cfqq->p_root) {
1455		rb_erase(&cfqq->p_node, cfqq->p_root);
1456		cfqq->p_root = NULL;
1457	}
1458
1459	cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1460	BUG_ON(!cfqd->busy_queues);
1461	cfqd->busy_queues--;
1462	if (cfq_cfqq_sync(cfqq))
1463		cfqd->busy_sync_queues--;
1464}
1465
1466/*
1467 * rb tree support functions
1468 */
1469static void cfq_del_rq_rb(struct request *rq)
1470{
1471	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1472	const int sync = rq_is_sync(rq);
1473
1474	BUG_ON(!cfqq->queued[sync]);
1475	cfqq->queued[sync]--;
1476
1477	elv_rb_del(&cfqq->sort_list, rq);
1478
1479	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1480		/*
1481		 * Queue will be deleted from service tree when we actually
1482		 * expire it later. Right now just remove it from prio tree
1483		 * as it is empty.
1484		 */
1485		if (cfqq->p_root) {
1486			rb_erase(&cfqq->p_node, cfqq->p_root);
1487			cfqq->p_root = NULL;
1488		}
1489	}
1490}
1491
1492static void cfq_add_rq_rb(struct request *rq)
1493{
1494	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1495	struct cfq_data *cfqd = cfqq->cfqd;
1496	struct request *prev;
1497
1498	cfqq->queued[rq_is_sync(rq)]++;
1499
1500	elv_rb_add(&cfqq->sort_list, rq);
1501
1502	if (!cfq_cfqq_on_rr(cfqq))
1503		cfq_add_cfqq_rr(cfqd, cfqq);
1504
1505	/*
1506	 * check if this request is a better next-serve candidate
1507	 */
1508	prev = cfqq->next_rq;
1509	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1510
1511	/*
1512	 * adjust priority tree position, if ->next_rq changes
1513	 */
1514	if (prev != cfqq->next_rq)
1515		cfq_prio_tree_add(cfqd, cfqq);
1516
1517	BUG_ON(!cfqq->next_rq);
1518}
1519
1520static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1521{
1522	elv_rb_del(&cfqq->sort_list, rq);
1523	cfqq->queued[rq_is_sync(rq)]--;
1524	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1525					rq_data_dir(rq), rq_is_sync(rq));
1526	cfq_add_rq_rb(rq);
1527	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
1528			&cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1529			rq_is_sync(rq));
1530}
1531
1532static struct request *
1533cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1534{
1535	struct task_struct *tsk = current;
1536	struct cfq_io_cq *cic;
1537	struct cfq_queue *cfqq;
1538
1539	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1540	if (!cic)
1541		return NULL;
1542
1543	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1544	if (cfqq) {
1545		sector_t sector = bio->bi_sector + bio_sectors(bio);
1546
1547		return elv_rb_find(&cfqq->sort_list, sector);
1548	}
1549
1550	return NULL;
1551}
1552
1553static void cfq_activate_request(struct request_queue *q, struct request *rq)
1554{
1555	struct cfq_data *cfqd = q->elevator->elevator_data;
1556
1557	cfqd->rq_in_driver++;
1558	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1559						cfqd->rq_in_driver);
1560
1561	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1562}
1563
1564static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1565{
1566	struct cfq_data *cfqd = q->elevator->elevator_data;
1567
1568	WARN_ON(!cfqd->rq_in_driver);
1569	cfqd->rq_in_driver--;
1570	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1571						cfqd->rq_in_driver);
1572}
1573
1574static void cfq_remove_request(struct request *rq)
1575{
1576	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1577
1578	if (cfqq->next_rq == rq)
1579		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1580
1581	list_del_init(&rq->queuelist);
1582	cfq_del_rq_rb(rq);
1583
1584	cfqq->cfqd->rq_queued--;
1585	cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1586					rq_data_dir(rq), rq_is_sync(rq));
1587	if (rq->cmd_flags & REQ_PRIO) {
1588		WARN_ON(!cfqq->prio_pending);
1589		cfqq->prio_pending--;
1590	}
1591}
1592
1593static int cfq_merge(struct request_queue *q, struct request **req,
1594		     struct bio *bio)
1595{
1596	struct cfq_data *cfqd = q->elevator->elevator_data;
1597	struct request *__rq;
1598
1599	__rq = cfq_find_rq_fmerge(cfqd, bio);
1600	if (__rq && elv_rq_merge_ok(__rq, bio)) {
1601		*req = __rq;
1602		return ELEVATOR_FRONT_MERGE;
1603	}
1604
1605	return ELEVATOR_NO_MERGE;
1606}
1607
1608static void cfq_merged_request(struct request_queue *q, struct request *req,
1609			       int type)
1610{
1611	if (type == ELEVATOR_FRONT_MERGE) {
1612		struct cfq_queue *cfqq = RQ_CFQQ(req);
1613
1614		cfq_reposition_rq_rb(cfqq, req);
1615	}
1616}
1617
1618static void cfq_bio_merged(struct request_queue *q, struct request *req,
1619				struct bio *bio)
1620{
1621	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1622					bio_data_dir(bio), cfq_bio_sync(bio));
1623}
1624
1625static void
1626cfq_merged_requests(struct request_queue *q, struct request *rq,
1627		    struct request *next)
1628{
1629	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1630	struct cfq_data *cfqd = q->elevator->elevator_data;
1631
1632	/*
1633	 * reposition in fifo if next is older than rq
1634	 */
1635	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1636	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1637		list_move(&rq->queuelist, &next->queuelist);
1638		rq_set_fifo_time(rq, rq_fifo_time(next));
1639	}
1640
1641	if (cfqq->next_rq == next)
1642		cfqq->next_rq = rq;
1643	cfq_remove_request(next);
1644	cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1645					rq_data_dir(next), rq_is_sync(next));
1646
1647	cfqq = RQ_CFQQ(next);
1648	/*
1649	 * all requests of this queue are merged to other queues, delete it
1650	 * from the service tree. If it's the active_queue,
1651	 * cfq_dispatch_requests() will choose to expire it or do idle
1652	 */
1653	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list) &&
1654	    cfqq != cfqd->active_queue)
1655		cfq_del_cfqq_rr(cfqd, cfqq);
1656}
1657
1658static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1659			   struct bio *bio)
1660{
1661	struct cfq_data *cfqd = q->elevator->elevator_data;
1662	struct cfq_io_cq *cic;
1663	struct cfq_queue *cfqq;
1664
1665	/*
1666	 * Disallow merge of a sync bio into an async request.
1667	 */
1668	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1669		return false;
1670
1671	/*
1672	 * Lookup the cfqq that this bio will be queued with and allow
1673	 * merge only if rq is queued there.
1674	 */
1675	cic = cfq_cic_lookup(cfqd, current->io_context);
1676	if (!cic)
1677		return false;
1678
1679	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1680	return cfqq == RQ_CFQQ(rq);
1681}
1682
1683static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1684{
1685	del_timer(&cfqd->idle_slice_timer);
1686	cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
1687}
1688
1689static void __cfq_set_active_queue(struct cfq_data *cfqd,
1690				   struct cfq_queue *cfqq)
1691{
1692	if (cfqq) {
1693		cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1694				cfqd->serving_prio, cfqd->serving_type);
1695		cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1696		cfqq->slice_start = 0;
1697		cfqq->dispatch_start = jiffies;
1698		cfqq->allocated_slice = 0;
1699		cfqq->slice_end = 0;
1700		cfqq->slice_dispatch = 0;
1701		cfqq->nr_sectors = 0;
1702
1703		cfq_clear_cfqq_wait_request(cfqq);
1704		cfq_clear_cfqq_must_dispatch(cfqq);
1705		cfq_clear_cfqq_must_alloc_slice(cfqq);
1706		cfq_clear_cfqq_fifo_expire(cfqq);
1707		cfq_mark_cfqq_slice_new(cfqq);
1708
1709		cfq_del_timer(cfqd, cfqq);
1710	}
1711
1712	cfqd->active_queue = cfqq;
1713}
1714
1715/*
1716 * current cfqq expired its slice (or was too idle), select new one
1717 */
1718static void
1719__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1720		    bool timed_out)
1721{
1722	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1723
1724	if (cfq_cfqq_wait_request(cfqq))
1725		cfq_del_timer(cfqd, cfqq);
1726
1727	cfq_clear_cfqq_wait_request(cfqq);
1728	cfq_clear_cfqq_wait_busy(cfqq);
1729
1730	/*
1731	 * If this cfqq is shared between multiple processes, check to
1732	 * make sure that those processes are still issuing I/Os within
1733	 * the mean seek distance.  If not, it may be time to break the
1734	 * queues apart again.
1735	 */
1736	if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1737		cfq_mark_cfqq_split_coop(cfqq);
1738
1739	/*
1740	 * store what was left of this slice, if the queue idled/timed out
1741	 */
1742	if (timed_out) {
1743		if (cfq_cfqq_slice_new(cfqq))
1744			cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
1745		else
1746			cfqq->slice_resid = cfqq->slice_end - jiffies;
1747		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1748	}
1749
1750	cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1751
1752	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1753		cfq_del_cfqq_rr(cfqd, cfqq);
1754
1755	cfq_resort_rr_list(cfqd, cfqq);
1756
1757	if (cfqq == cfqd->active_queue)
1758		cfqd->active_queue = NULL;
1759
1760	if (cfqd->active_cic) {
1761		put_io_context(cfqd->active_cic->icq.ioc);
1762		cfqd->active_cic = NULL;
1763	}
1764}
1765
1766static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1767{
1768	struct cfq_queue *cfqq = cfqd->active_queue;
1769
1770	if (cfqq)
1771		__cfq_slice_expired(cfqd, cfqq, timed_out);
1772}
1773
1774/*
1775 * Get next queue for service. Unless we have a queue preemption,
1776 * we'll simply select the first cfqq in the service tree.
1777 */
1778static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1779{
1780	struct cfq_rb_root *service_tree =
1781		service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1782					cfqd->serving_type);
1783
1784	if (!cfqd->rq_queued)
1785		return NULL;
1786
1787	/* There is nothing to dispatch */
1788	if (!service_tree)
1789		return NULL;
1790	if (RB_EMPTY_ROOT(&service_tree->rb))
1791		return NULL;
1792	return cfq_rb_first(service_tree);
1793}
1794
1795static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1796{
1797	struct cfq_group *cfqg;
1798	struct cfq_queue *cfqq;
1799	int i, j;
1800	struct cfq_rb_root *st;
1801
1802	if (!cfqd->rq_queued)
1803		return NULL;
1804
1805	cfqg = cfq_get_next_cfqg(cfqd);
1806	if (!cfqg)
1807		return NULL;
1808
1809	for_each_cfqg_st(cfqg, i, j, st)
1810		if ((cfqq = cfq_rb_first(st)) != NULL)
1811			return cfqq;
1812	return NULL;
1813}
1814
1815/*
1816 * Get and set a new active queue for service.
1817 */
1818static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1819					      struct cfq_queue *cfqq)
1820{
1821	if (!cfqq)
1822		cfqq = cfq_get_next_queue(cfqd);
1823
1824	__cfq_set_active_queue(cfqd, cfqq);
1825	return cfqq;
1826}
1827
1828static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1829					  struct request *rq)
1830{
1831	if (blk_rq_pos(rq) >= cfqd->last_position)
1832		return blk_rq_pos(rq) - cfqd->last_position;
1833	else
1834		return cfqd->last_position - blk_rq_pos(rq);
1835}
1836
1837static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1838			       struct request *rq)
1839{
1840	return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
1841}
1842
1843static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1844				    struct cfq_queue *cur_cfqq)
1845{
1846	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1847	struct rb_node *parent, *node;
1848	struct cfq_queue *__cfqq;
1849	sector_t sector = cfqd->last_position;
1850
1851	if (RB_EMPTY_ROOT(root))
1852		return NULL;
1853
1854	/*
1855	 * First, if we find a request starting at the end of the last
1856	 * request, choose it.
1857	 */
1858	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1859	if (__cfqq)
1860		return __cfqq;
1861
1862	/*
1863	 * If the exact sector wasn't found, the parent of the NULL leaf
1864	 * will contain the closest sector.
1865	 */
1866	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1867	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1868		return __cfqq;
1869
1870	if (blk_rq_pos(__cfqq->next_rq) < sector)
1871		node = rb_next(&__cfqq->p_node);
1872	else
1873		node = rb_prev(&__cfqq->p_node);
1874	if (!node)
1875		return NULL;
1876
1877	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1878	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1879		return __cfqq;
1880
1881	return NULL;
1882}
1883
1884/*
1885 * cfqd - obvious
1886 * cur_cfqq - passed in so that we don't decide that the current queue is
1887 * 	      closely cooperating with itself.
1888 *
1889 * So, basically we're assuming that that cur_cfqq has dispatched at least
1890 * one request, and that cfqd->last_position reflects a position on the disk
1891 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1892 * assumption.
1893 */
1894static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1895					      struct cfq_queue *cur_cfqq)
1896{
1897	struct cfq_queue *cfqq;
1898
1899	if (cfq_class_idle(cur_cfqq))
1900		return NULL;
1901	if (!cfq_cfqq_sync(cur_cfqq))
1902		return NULL;
1903	if (CFQQ_SEEKY(cur_cfqq))
1904		return NULL;
1905
1906	/*
1907	 * Don't search priority tree if it's the only queue in the group.
1908	 */
1909	if (cur_cfqq->cfqg->nr_cfqq == 1)
1910		return NULL;
1911
1912	/*
1913	 * We should notice if some of the queues are cooperating, eg
1914	 * working closely on the same area of the disk. In that case,
1915	 * we can group them together and don't waste time idling.
1916	 */
1917	cfqq = cfqq_close(cfqd, cur_cfqq);
1918	if (!cfqq)
1919		return NULL;
1920
1921	/* If new queue belongs to different cfq_group, don't choose it */
1922	if (cur_cfqq->cfqg != cfqq->cfqg)
1923		return NULL;
1924
1925	/*
1926	 * It only makes sense to merge sync queues.
1927	 */
1928	if (!cfq_cfqq_sync(cfqq))
1929		return NULL;
1930	if (CFQQ_SEEKY(cfqq))
1931		return NULL;
1932
1933	/*
1934	 * Do not merge queues of different priority classes
1935	 */
1936	if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1937		return NULL;
1938
1939	return cfqq;
1940}
1941
1942/*
1943 * Determine whether we should enforce idle window for this queue.
1944 */
1945
1946static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1947{
1948	enum wl_prio_t prio = cfqq_prio(cfqq);
1949	struct cfq_rb_root *service_tree = cfqq->service_tree;
1950
1951	BUG_ON(!service_tree);
1952	BUG_ON(!service_tree->count);
1953
1954	if (!cfqd->cfq_slice_idle)
1955		return false;
1956
1957	/* We never do for idle class queues. */
1958	if (prio == IDLE_WORKLOAD)
1959		return false;
1960
1961	/* We do for queues that were marked with idle window flag. */
1962	if (cfq_cfqq_idle_window(cfqq) &&
1963	   !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1964		return true;
1965
1966	/*
1967	 * Otherwise, we do only if they are the last ones
1968	 * in their service tree.
1969	 */
1970	if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1971	   !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
1972		return true;
1973	cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1974			service_tree->count);
1975	return false;
1976}
1977
1978static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1979{
1980	struct cfq_queue *cfqq = cfqd->active_queue;
1981	struct cfq_io_cq *cic;
1982	unsigned long sl, group_idle = 0;
1983
1984	/*
1985	 * SSD device without seek penalty, disable idling. But only do so
1986	 * for devices that support queuing, otherwise we still have a problem
1987	 * with sync vs async workloads.
1988	 */
1989	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1990		return;
1991
1992	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1993	WARN_ON(cfq_cfqq_slice_new(cfqq));
1994
1995	/*
1996	 * idle is disabled, either manually or by past process history
1997	 */
1998	if (!cfq_should_idle(cfqd, cfqq)) {
1999		/* no queue idling. Check for group idling */
2000		if (cfqd->cfq_group_idle)
2001			group_idle = cfqd->cfq_group_idle;
2002		else
2003			return;
2004	}
2005
2006	/*
2007	 * still active requests from this queue, don't idle
2008	 */
2009	if (cfqq->dispatched)
2010		return;
2011
2012	/*
2013	 * task has exited, don't wait
2014	 */
2015	cic = cfqd->active_cic;
2016	if (!cic || !atomic_read(&cic->icq.ioc->nr_tasks))
2017		return;
2018
2019	/*
2020	 * If our average think time is larger than the remaining time
2021	 * slice, then don't idle. This avoids overrunning the allotted
2022	 * time slice.
2023	 */
2024	if (sample_valid(cic->ttime.ttime_samples) &&
2025	    (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
2026		cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
2027			     cic->ttime.ttime_mean);
2028		return;
2029	}
2030
2031	/* There are other queues in the group, don't do group idle */
2032	if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2033		return;
2034
2035	cfq_mark_cfqq_wait_request(cfqq);
2036
2037	if (group_idle)
2038		sl = cfqd->cfq_group_idle;
2039	else
2040		sl = cfqd->cfq_slice_idle;
2041
2042	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
2043	cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
2044	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2045			group_idle ? 1 : 0);
2046}
2047
2048/*
2049 * Move request from internal lists to the request queue dispatch list.
2050 */
2051static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
2052{
2053	struct cfq_data *cfqd = q->elevator->elevator_data;
2054	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2055
2056	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2057
2058	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
2059	cfq_remove_request(rq);
2060	cfqq->dispatched++;
2061	(RQ_CFQG(rq))->dispatched++;
2062	elv_dispatch_sort(q, rq);
2063
2064	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
2065	cfqq->nr_sectors += blk_rq_sectors(rq);
2066	cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
2067					rq_data_dir(rq), rq_is_sync(rq));
2068}
2069
2070/*
2071 * return expired entry, or NULL to just start from scratch in rbtree
2072 */
2073static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
2074{
2075	struct request *rq = NULL;
2076
2077	if (cfq_cfqq_fifo_expire(cfqq))
2078		return NULL;
2079
2080	cfq_mark_cfqq_fifo_expire(cfqq);
2081
2082	if (list_empty(&cfqq->fifo))
2083		return NULL;
2084
2085	rq = rq_entry_fifo(cfqq->fifo.next);
2086	if (time_before(jiffies, rq_fifo_time(rq)))
2087		rq = NULL;
2088
2089	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
2090	return rq;
2091}
2092
2093static inline int
2094cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2095{
2096	const int base_rq = cfqd->cfq_slice_async_rq;
2097
2098	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
2099
2100	return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
2101}
2102
2103/*
2104 * Must be called with the queue_lock held.
2105 */
2106static int cfqq_process_refs(struct cfq_queue *cfqq)
2107{
2108	int process_refs, io_refs;
2109
2110	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
2111	process_refs = cfqq->ref - io_refs;
2112	BUG_ON(process_refs < 0);
2113	return process_refs;
2114}
2115
2116static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2117{
2118	int process_refs, new_process_refs;
2119	struct cfq_queue *__cfqq;
2120
2121	/*
2122	 * If there are no process references on the new_cfqq, then it is
2123	 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2124	 * chain may have dropped their last reference (not just their
2125	 * last process reference).
2126	 */
2127	if (!cfqq_process_refs(new_cfqq))
2128		return;
2129
2130	/* Avoid a circular list and skip interim queue merges */
2131	while ((__cfqq = new_cfqq->new_cfqq)) {
2132		if (__cfqq == cfqq)
2133			return;
2134		new_cfqq = __cfqq;
2135	}
2136
2137	process_refs = cfqq_process_refs(cfqq);
2138	new_process_refs = cfqq_process_refs(new_cfqq);
2139	/*
2140	 * If the process for the cfqq has gone away, there is no
2141	 * sense in merging the queues.
2142	 */
2143	if (process_refs == 0 || new_process_refs == 0)
2144		return;
2145
2146	/*
2147	 * Merge in the direction of the lesser amount of work.
2148	 */
2149	if (new_process_refs >= process_refs) {
2150		cfqq->new_cfqq = new_cfqq;
2151		new_cfqq->ref += process_refs;
2152	} else {
2153		new_cfqq->new_cfqq = cfqq;
2154		cfqq->ref += new_process_refs;
2155	}
2156}
2157
2158static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
2159				struct cfq_group *cfqg, enum wl_prio_t prio)
2160{
2161	struct cfq_queue *queue;
2162	int i;
2163	bool key_valid = false;
2164	unsigned long lowest_key = 0;
2165	enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2166
2167	for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2168		/* select the one with lowest rb_key */
2169		queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
2170		if (queue &&
2171		    (!key_valid || time_before(queue->rb_key, lowest_key))) {
2172			lowest_key = queue->rb_key;
2173			cur_best = i;
2174			key_valid = true;
2175		}
2176	}
2177
2178	return cur_best;
2179}
2180
2181static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2182{
2183	unsigned slice;
2184	unsigned count;
2185	struct cfq_rb_root *st;
2186	unsigned group_slice;
2187	enum wl_prio_t original_prio = cfqd->serving_prio;
2188
2189	/* Choose next priority. RT > BE > IDLE */
2190	if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2191		cfqd->serving_prio = RT_WORKLOAD;
2192	else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2193		cfqd->serving_prio = BE_WORKLOAD;
2194	else {
2195		cfqd->serving_prio = IDLE_WORKLOAD;
2196		cfqd->workload_expires = jiffies + 1;
2197		return;
2198	}
2199
2200	if (original_prio != cfqd->serving_prio)
2201		goto new_workload;
2202
2203	/*
2204	 * For RT and BE, we have to choose also the type
2205	 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2206	 * expiration time
2207	 */
2208	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2209	count = st->count;
2210
2211	/*
2212	 * check workload expiration, and that we still have other queues ready
2213	 */
2214	if (count && !time_after(jiffies, cfqd->workload_expires))
2215		return;
2216
2217new_workload:
2218	/* otherwise select new workload type */
2219	cfqd->serving_type =
2220		cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2221	st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
2222	count = st->count;
2223
2224	/*
2225	 * the workload slice is computed as a fraction of target latency
2226	 * proportional to the number of queues in that workload, over
2227	 * all the queues in the same priority class
2228	 */
2229	group_slice = cfq_group_slice(cfqd, cfqg);
2230
2231	slice = group_slice * count /
2232		max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2233		      cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2234
2235	if (cfqd->serving_type == ASYNC_WORKLOAD) {
2236		unsigned int tmp;
2237
2238		/*
2239		 * Async queues are currently system wide. Just taking
2240		 * proportion of queues with-in same group will lead to higher
2241		 * async ratio system wide as generally root group is going
2242		 * to have higher weight. A more accurate thing would be to
2243		 * calculate system wide asnc/sync ratio.
2244		 */
2245		tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2246		tmp = tmp/cfqd->busy_queues;
2247		slice = min_t(unsigned, slice, tmp);
2248
2249		/* async workload slice is scaled down according to
2250		 * the sync/async slice ratio. */
2251		slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2252	} else
2253		/* sync workload slice is at least 2 * cfq_slice_idle */
2254		slice = max(slice, 2 * cfqd->cfq_slice_idle);
2255
2256	slice = max_t(unsigned, slice, CFQ_MIN_TT);
2257	cfq_log(cfqd, "workload slice:%d", slice);
2258	cfqd->workload_expires = jiffies + slice;
2259}
2260
2261static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2262{
2263	struct cfq_rb_root *st = &cfqd->grp_service_tree;
2264	struct cfq_group *cfqg;
2265
2266	if (RB_EMPTY_ROOT(&st->rb))
2267		return NULL;
2268	cfqg = cfq_rb_first_group(st);
2269	update_min_vdisktime(st);
2270	return cfqg;
2271}
2272
2273static void cfq_choose_cfqg(struct cfq_data *cfqd)
2274{
2275	struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2276
2277	cfqd->serving_group = cfqg;
2278
2279	/* Restore the workload type data */
2280	if (cfqg->saved_workload_slice) {
2281		cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2282		cfqd->serving_type = cfqg->saved_workload;
2283		cfqd->serving_prio = cfqg->saved_serving_prio;
2284	} else
2285		cfqd->workload_expires = jiffies - 1;
2286
2287	choose_service_tree(cfqd, cfqg);
2288}
2289
2290/*
2291 * Select a queue for service. If we have a current active queue,
2292 * check whether to continue servicing it, or retrieve and set a new one.
2293 */
2294static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2295{
2296	struct cfq_queue *cfqq, *new_cfqq = NULL;
2297
2298	cfqq = cfqd->active_queue;
2299	if (!cfqq)
2300		goto new_queue;
2301
2302	if (!cfqd->rq_queued)
2303		return NULL;
2304
2305	/*
2306	 * We were waiting for group to get backlogged. Expire the queue
2307	 */
2308	if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2309		goto expire;
2310
2311	/*
2312	 * The active queue has run out of time, expire it and select new.
2313	 */
2314	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2315		/*
2316		 * If slice had not expired at the completion of last request
2317		 * we might not have turned on wait_busy flag. Don't expire
2318		 * the queue yet. Allow the group to get backlogged.
2319		 *
2320		 * The very fact that we have used the slice, that means we
2321		 * have been idling all along on this queue and it should be
2322		 * ok to wait for this request to complete.
2323		 */
2324		if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2325		    && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2326			cfqq = NULL;
2327			goto keep_queue;
2328		} else
2329			goto check_group_idle;
2330	}
2331
2332	/*
2333	 * The active queue has requests and isn't expired, allow it to
2334	 * dispatch.
2335	 */
2336	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2337		goto keep_queue;
2338
2339	/*
2340	 * If another queue has a request waiting within our mean seek
2341	 * distance, let it run.  The expire code will check for close
2342	 * cooperators and put the close queue at the front of the service
2343	 * tree.  If possible, merge the expiring queue with the new cfqq.
2344	 */
2345	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2346	if (new_cfqq) {
2347		if (!cfqq->new_cfqq)
2348			cfq_setup_merge(cfqq, new_cfqq);
2349		goto expire;
2350	}
2351
2352	/*
2353	 * No requests pending. If the active queue still has requests in
2354	 * flight or is idling for a new request, allow either of these
2355	 * conditions to happen (or time out) before selecting a new queue.
2356	 */
2357	if (timer_pending(&cfqd->idle_slice_timer)) {
2358		cfqq = NULL;
2359		goto keep_queue;
2360	}
2361
2362	/*
2363	 * This is a deep seek queue, but the device is much faster than
2364	 * the queue can deliver, don't idle
2365	 **/
2366	if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2367	    (cfq_cfqq_slice_new(cfqq) ||
2368	    (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2369		cfq_clear_cfqq_deep(cfqq);
2370		cfq_clear_cfqq_idle_window(cfqq);
2371	}
2372
2373	if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2374		cfqq = NULL;
2375		goto keep_queue;
2376	}
2377
2378	/*
2379	 * If group idle is enabled and there are requests dispatched from
2380	 * this group, wait for requests to complete.
2381	 */
2382check_group_idle:
2383	if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2384	    cfqq->cfqg->dispatched &&
2385	    !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
2386		cfqq = NULL;
2387		goto keep_queue;
2388	}
2389
2390expire:
2391	cfq_slice_expired(cfqd, 0);
2392new_queue:
2393	/*
2394	 * Current queue expired. Check if we have to switch to a new
2395	 * service tree
2396	 */
2397	if (!new_cfqq)
2398		cfq_choose_cfqg(cfqd);
2399
2400	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2401keep_queue:
2402	return cfqq;
2403}
2404
2405static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2406{
2407	int dispatched = 0;
2408
2409	while (cfqq->next_rq) {
2410		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2411		dispatched++;
2412	}
2413
2414	BUG_ON(!list_empty(&cfqq->fifo));
2415
2416	/* By default cfqq is not expired if it is empty. Do it explicitly */
2417	__cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2418	return dispatched;
2419}
2420
2421/*
2422 * Drain our current requests. Used for barriers and when switching
2423 * io schedulers on-the-fly.
2424 */
2425static int cfq_forced_dispatch(struct cfq_data *cfqd)
2426{
2427	struct cfq_queue *cfqq;
2428	int dispatched = 0;
2429
2430	/* Expire the timeslice of the current active queue first */
2431	cfq_slice_expired(cfqd, 0);
2432	while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2433		__cfq_set_active_queue(cfqd, cfqq);
2434		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2435	}
2436
2437	BUG_ON(cfqd->busy_queues);
2438
2439	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2440	return dispatched;
2441}
2442
2443static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2444	struct cfq_queue *cfqq)
2445{
2446	/* the queue hasn't finished any request, can't estimate */
2447	if (cfq_cfqq_slice_new(cfqq))
2448		return true;
2449	if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2450		cfqq->slice_end))
2451		return true;
2452
2453	return false;
2454}
2455
2456static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2457{
2458	unsigned int max_dispatch;
2459
2460	/*
2461	 * Drain async requests before we start sync IO
2462	 */
2463	if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
2464		return false;
2465
2466	/*
2467	 * If this is an async queue and we have sync IO in flight, let it wait
2468	 */
2469	if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
2470		return false;
2471
2472	max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2473	if (cfq_class_idle(cfqq))
2474		max_dispatch = 1;
2475
2476	/*
2477	 * Does this cfqq already have too much IO in flight?
2478	 */
2479	if (cfqq->dispatched >= max_dispatch) {
2480		bool promote_sync = false;
2481		/*
2482		 * idle queue must always only have a single IO in flight
2483		 */
2484		if (cfq_class_idle(cfqq))
2485			return false;
2486
2487		/*
2488		 * If there is only one sync queue
2489		 * we can ignore async queue here and give the sync
2490		 * queue no dispatch limit. The reason is a sync queue can
2491		 * preempt async queue, limiting the sync queue doesn't make
2492		 * sense. This is useful for aiostress test.
2493		 */
2494		if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2495			promote_sync = true;
2496
2497		/*
2498		 * We have other queues, don't allow more IO from this one
2499		 */
2500		if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2501				!promote_sync)
2502			return false;
2503
2504		/*
2505		 * Sole queue user, no limit
2506		 */
2507		if (cfqd->busy_queues == 1 || promote_sync)
2508			max_dispatch = -1;
2509		else
2510			/*
2511			 * Normally we start throttling cfqq when cfq_quantum/2
2512			 * requests have been dispatched. But we can drive
2513			 * deeper queue depths at the beginning of slice
2514			 * subjected to upper limit of cfq_quantum.
2515			 * */
2516			max_dispatch = cfqd->cfq_quantum;
2517	}
2518
2519	/*
2520	 * Async queues must wait a bit before being allowed dispatch.
2521	 * We also ramp up the dispatch depth gradually for async IO,
2522	 * based on the last sync IO we serviced
2523	 */
2524	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2525		unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2526		unsigned int depth;
2527
2528		depth = last_sync / cfqd->cfq_slice[1];
2529		if (!depth && !cfqq->dispatched)
2530			depth = 1;
2531		if (depth < max_dispatch)
2532			max_dispatch = depth;
2533	}
2534
2535	/*
2536	 * If we're below the current max, allow a dispatch
2537	 */
2538	return cfqq->dispatched < max_dispatch;
2539}
2540
2541/*
2542 * Dispatch a request from cfqq, moving them to the request queue
2543 * dispatch list.
2544 */
2545static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2546{
2547	struct request *rq;
2548
2549	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2550
2551	if (!cfq_may_dispatch(cfqd, cfqq))
2552		return false;
2553
2554	/*
2555	 * follow expired path, else get first next available
2556	 */
2557	rq = cfq_check_fifo(cfqq);
2558	if (!rq)
2559		rq = cfqq->next_rq;
2560
2561	/*
2562	 * insert request into driver dispatch list
2563	 */
2564	cfq_dispatch_insert(cfqd->queue, rq);
2565
2566	if (!cfqd->active_cic) {
2567		struct cfq_io_cq *cic = RQ_CIC(rq);
2568
2569		atomic_long_inc(&cic->icq.ioc->refcount);
2570		cfqd->active_cic = cic;
2571	}
2572
2573	return true;
2574}
2575
2576/*
2577 * Find the cfqq that we need to service and move a request from that to the
2578 * dispatch list
2579 */
2580static int cfq_dispatch_requests(struct request_queue *q, int force)
2581{
2582	struct cfq_data *cfqd = q->elevator->elevator_data;
2583	struct cfq_queue *cfqq;
2584
2585	if (!cfqd->busy_queues)
2586		return 0;
2587
2588	if (unlikely(force))
2589		return cfq_forced_dispatch(cfqd);
2590
2591	cfqq = cfq_select_queue(cfqd);
2592	if (!cfqq)
2593		return 0;
2594
2595	/*
2596	 * Dispatch a request from this cfqq, if it is allowed
2597	 */
2598	if (!cfq_dispatch_request(cfqd, cfqq))
2599		return 0;
2600
2601	cfqq->slice_dispatch++;
2602	cfq_clear_cfqq_must_dispatch(cfqq);
2603
2604	/*
2605	 * expire an async queue immediately if it has used up its slice. idle
2606	 * queue always expire after 1 dispatch round.
2607	 */
2608	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2609	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2610	    cfq_class_idle(cfqq))) {
2611		cfqq->slice_end = jiffies + 1;
2612		cfq_slice_expired(cfqd, 0);
2613	}
2614
2615	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2616	return 1;
2617}
2618
2619/*
2620 * task holds one reference to the queue, dropped when task exits. each rq
2621 * in-flight on this queue also holds a reference, dropped when rq is freed.
2622 *
2623 * Each cfq queue took a reference on the parent group. Drop it now.
2624 * queue lock must be held here.
2625 */
2626static void cfq_put_queue(struct cfq_queue *cfqq)
2627{
2628	struct cfq_data *cfqd = cfqq->cfqd;
2629	struct cfq_group *cfqg;
2630
2631	BUG_ON(cfqq->ref <= 0);
2632
2633	cfqq->ref--;
2634	if (cfqq->ref)
2635		return;
2636
2637	cfq_log_cfqq(cfqd, cfqq, "put_queue");
2638	BUG_ON(rb_first(&cfqq->sort_list));
2639	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2640	cfqg = cfqq->cfqg;
2641
2642	if (unlikely(cfqd->active_queue == cfqq)) {
2643		__cfq_slice_expired(cfqd, cfqq, 0);
2644		cfq_schedule_dispatch(cfqd);
2645	}
2646
2647	BUG_ON(cfq_cfqq_on_rr(cfqq));
2648	kmem_cache_free(cfq_pool, cfqq);
2649	cfq_put_cfqg(cfqg);
2650}
2651
2652static void cfq_put_cooperator(struct cfq_queue *cfqq)
2653{
2654	struct cfq_queue *__cfqq, *next;
2655
2656	/*
2657	 * If this queue was scheduled to merge with another queue, be
2658	 * sure to drop the reference taken on that queue (and others in
2659	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2660	 */
2661	__cfqq = cfqq->new_cfqq;
2662	while (__cfqq) {
2663		if (__cfqq == cfqq) {
2664			WARN(1, "cfqq->new_cfqq loop detected\n");
2665			break;
2666		}
2667		next = __cfqq->new_cfqq;
2668		cfq_put_queue(__cfqq);
2669		__cfqq = next;
2670	}
2671}
2672
2673static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2674{
2675	if (unlikely(cfqq == cfqd->active_queue)) {
2676		__cfq_slice_expired(cfqd, cfqq, 0);
2677		cfq_schedule_dispatch(cfqd);
2678	}
2679
2680	cfq_put_cooperator(cfqq);
2681
2682	cfq_put_queue(cfqq);
2683}
2684
2685static void cfq_init_icq(struct io_cq *icq)
2686{
2687	struct cfq_io_cq *cic = icq_to_cic(icq);
2688
2689	cic->ttime.last_end_request = jiffies;
2690}
2691
2692static void cfq_exit_icq(struct io_cq *icq)
2693{
2694	struct cfq_io_cq *cic = icq_to_cic(icq);
2695	struct cfq_data *cfqd = cic_to_cfqd(cic);
2696
2697	if (cic->cfqq[BLK_RW_ASYNC]) {
2698		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2699		cic->cfqq[BLK_RW_ASYNC] = NULL;
2700	}
2701
2702	if (cic->cfqq[BLK_RW_SYNC]) {
2703		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2704		cic->cfqq[BLK_RW_SYNC] = NULL;
2705	}
2706}
2707
2708static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2709{
2710	struct task_struct *tsk = current;
2711	int ioprio_class;
2712
2713	if (!cfq_cfqq_prio_changed(cfqq))
2714		return;
2715
2716	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2717	switch (ioprio_class) {
2718	default:
2719		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2720	case IOPRIO_CLASS_NONE:
2721		/*
2722		 * no prio set, inherit CPU scheduling settings
2723		 */
2724		cfqq->ioprio = task_nice_ioprio(tsk);
2725		cfqq->ioprio_class = task_nice_ioclass(tsk);
2726		break;
2727	case IOPRIO_CLASS_RT:
2728		cfqq->ioprio = task_ioprio(ioc);
2729		cfqq->ioprio_class = IOPRIO_CLASS_RT;
2730		break;
2731	case IOPRIO_CLASS_BE:
2732		cfqq->ioprio = task_ioprio(ioc);
2733		cfqq->ioprio_class = IOPRIO_CLASS_BE;
2734		break;
2735	case IOPRIO_CLASS_IDLE:
2736		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2737		cfqq->ioprio = 7;
2738		cfq_clear_cfqq_idle_window(cfqq);
2739		break;
2740	}
2741
2742	/*
2743	 * keep track of original prio settings in case we have to temporarily
2744	 * elevate the priority of this queue
2745	 */
2746	cfqq->org_ioprio = cfqq->ioprio;
2747	cfq_clear_cfqq_prio_changed(cfqq);
2748}
2749
2750static void changed_ioprio(struct cfq_io_cq *cic)
2751{
2752	struct cfq_data *cfqd = cic_to_cfqd(cic);
2753	struct cfq_queue *cfqq;
2754
2755	if (unlikely(!cfqd))
2756		return;
2757
2758	cfqq = cic->cfqq[BLK_RW_ASYNC];
2759	if (cfqq) {
2760		struct cfq_queue *new_cfqq;
2761		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->icq.ioc,
2762						GFP_ATOMIC);
2763		if (new_cfqq) {
2764			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2765			cfq_put_queue(cfqq);
2766		}
2767	}
2768
2769	cfqq = cic->cfqq[BLK_RW_SYNC];
2770	if (cfqq)
2771		cfq_mark_cfqq_prio_changed(cfqq);
2772}
2773
2774static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2775			  pid_t pid, bool is_sync)
2776{
2777	RB_CLEAR_NODE(&cfqq->rb_node);
2778	RB_CLEAR_NODE(&cfqq->p_node);
2779	INIT_LIST_HEAD(&cfqq->fifo);
2780
2781	cfqq->ref = 0;
2782	cfqq->cfqd = cfqd;
2783
2784	cfq_mark_cfqq_prio_changed(cfqq);
2785
2786	if (is_sync) {
2787		if (!cfq_class_idle(cfqq))
2788			cfq_mark_cfqq_idle_window(cfqq);
2789		cfq_mark_cfqq_sync(cfqq);
2790	}
2791	cfqq->pid = pid;
2792}
2793
2794#ifdef CONFIG_CFQ_GROUP_IOSCHED
2795static void changed_cgroup(struct cfq_io_cq *cic)
2796{
2797	struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2798	struct cfq_data *cfqd = cic_to_cfqd(cic);
2799	struct request_queue *q;
2800
2801	if (unlikely(!cfqd))
2802		return;
2803
2804	q = cfqd->queue;
2805
2806	if (sync_cfqq) {
2807		/*
2808		 * Drop reference to sync queue. A new sync queue will be
2809		 * assigned in new group upon arrival of a fresh request.
2810		 */
2811		cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2812		cic_set_cfqq(cic, NULL, 1);
2813		cfq_put_queue(sync_cfqq);
2814	}
2815}
2816#endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2817
2818static struct cfq_queue *
2819cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2820		     struct io_context *ioc, gfp_t gfp_mask)
2821{
2822	struct blkio_cgroup *blkcg;
2823	struct cfq_queue *cfqq, *new_cfqq = NULL;
2824	struct cfq_io_cq *cic;
2825	struct cfq_group *cfqg;
2826
2827retry:
2828	rcu_read_lock();
2829
2830	blkcg = task_blkio_cgroup(current);
2831
2832	cfqg = cfq_lookup_create_cfqg(cfqd, blkcg);
2833
2834	cic = cfq_cic_lookup(cfqd, ioc);
2835	/* cic always exists here */
2836	cfqq = cic_to_cfqq(cic, is_sync);
2837
2838	/*
2839	 * Always try a new alloc if we fell back to the OOM cfqq
2840	 * originally, since it should just be a temporary situation.
2841	 */
2842	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2843		cfqq = NULL;
2844		if (new_cfqq) {
2845			cfqq = new_cfqq;
2846			new_cfqq = NULL;
2847		} else if (gfp_mask & __GFP_WAIT) {
2848			rcu_read_unlock();
2849			spin_unlock_irq(cfqd->queue->queue_lock);
2850			new_cfqq = kmem_cache_alloc_node(cfq_pool,
2851					gfp_mask | __GFP_ZERO,
2852					cfqd->queue->node);
2853			spin_lock_irq(cfqd->queue->queue_lock);
2854			if (new_cfqq)
2855				goto retry;
2856		} else {
2857			cfqq = kmem_cache_alloc_node(cfq_pool,
2858					gfp_mask | __GFP_ZERO,
2859					cfqd->queue->node);
2860		}
2861
2862		if (cfqq) {
2863			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2864			cfq_init_prio_data(cfqq, ioc);
2865			cfq_link_cfqq_cfqg(cfqq, cfqg);
2866			cfq_log_cfqq(cfqd, cfqq, "alloced");
2867		} else
2868			cfqq = &cfqd->oom_cfqq;
2869	}
2870
2871	if (new_cfqq)
2872		kmem_cache_free(cfq_pool, new_cfqq);
2873
2874	rcu_read_unlock();
2875	return cfqq;
2876}
2877
2878static struct cfq_queue **
2879cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2880{
2881	switch (ioprio_class) {
2882	case IOPRIO_CLASS_RT:
2883		return &cfqd->async_cfqq[0][ioprio];
2884	case IOPRIO_CLASS_BE:
2885		return &cfqd->async_cfqq[1][ioprio];
2886	case IOPRIO_CLASS_IDLE:
2887		return &cfqd->async_idle_cfqq;
2888	default:
2889		BUG();
2890	}
2891}
2892
2893static struct cfq_queue *
2894cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2895	      gfp_t gfp_mask)
2896{
2897	const int ioprio = task_ioprio(ioc);
2898	const int ioprio_class = task_ioprio_class(ioc);
2899	struct cfq_queue **async_cfqq = NULL;
2900	struct cfq_queue *cfqq = NULL;
2901
2902	if (!is_sync) {
2903		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2904		cfqq = *async_cfqq;
2905	}
2906
2907	if (!cfqq)
2908		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2909
2910	/*
2911	 * pin the queue now that it's allocated, scheduler exit will prune it
2912	 */
2913	if (!is_sync && !(*async_cfqq)) {
2914		cfqq->ref++;
2915		*async_cfqq = cfqq;
2916	}
2917
2918	cfqq->ref++;
2919	return cfqq;
2920}
2921
2922static void
2923__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
2924{
2925	unsigned long elapsed = jiffies - ttime->last_end_request;
2926	elapsed = min(elapsed, 2UL * slice_idle);
2927
2928	ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
2929	ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
2930	ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
2931}
2932
2933static void
2934cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2935			struct cfq_io_cq *cic)
2936{
2937	if (cfq_cfqq_sync(cfqq)) {
2938		__cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
2939		__cfq_update_io_thinktime(&cfqq->service_tree->ttime,
2940			cfqd->cfq_slice_idle);
2941	}
2942#ifdef CONFIG_CFQ_GROUP_IOSCHED
2943	__cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
2944#endif
2945}
2946
2947static void
2948cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2949		       struct request *rq)
2950{
2951	sector_t sdist = 0;
2952	sector_t n_sec = blk_rq_sectors(rq);
2953	if (cfqq->last_request_pos) {
2954		if (cfqq->last_request_pos < blk_rq_pos(rq))
2955			sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2956		else
2957			sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2958	}
2959
2960	cfqq->seek_history <<= 1;
2961	if (blk_queue_nonrot(cfqd->queue))
2962		cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
2963	else
2964		cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
2965}
2966
2967/*
2968 * Disable idle window if the process thinks too long or seeks so much that
2969 * it doesn't matter
2970 */
2971static void
2972cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2973		       struct cfq_io_cq *cic)
2974{
2975	int old_idle, enable_idle;
2976
2977	/*
2978	 * Don't idle for async or idle io prio class
2979	 */
2980	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2981		return;
2982
2983	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2984
2985	if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2986		cfq_mark_cfqq_deep(cfqq);
2987
2988	if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
2989		enable_idle = 0;
2990	else if (!atomic_read(&cic->icq.ioc->nr_tasks) ||
2991		 !cfqd->cfq_slice_idle ||
2992		 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
2993		enable_idle = 0;
2994	else if (sample_valid(cic->ttime.ttime_samples)) {
2995		if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
2996			enable_idle = 0;
2997		else
2998			enable_idle = 1;
2999	}
3000
3001	if (old_idle != enable_idle) {
3002		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3003		if (enable_idle)
3004			cfq_mark_cfqq_idle_window(cfqq);
3005		else
3006			cfq_clear_cfqq_idle_window(cfqq);
3007	}
3008}
3009
3010/*
3011 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3012 * no or if we aren't sure, a 1 will cause a preempt.
3013 */
3014static bool
3015cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3016		   struct request *rq)
3017{
3018	struct cfq_queue *cfqq;
3019
3020	cfqq = cfqd->active_queue;
3021	if (!cfqq)
3022		return false;
3023
3024	if (cfq_class_idle(new_cfqq))
3025		return false;
3026
3027	if (cfq_class_idle(cfqq))
3028		return true;
3029
3030	/*
3031	 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3032	 */
3033	if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3034		return false;
3035
3036	/*
3037	 * if the new request is sync, but the currently running queue is
3038	 * not, let the sync request have priority.
3039	 */
3040	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3041		return true;
3042
3043	if (new_cfqq->cfqg != cfqq->cfqg)
3044		return false;
3045
3046	if (cfq_slice_used(cfqq))
3047		return true;
3048
3049	/* Allow preemption only if we are idling on sync-noidle tree */
3050	if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3051	    cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3052	    new_cfqq->service_tree->count == 2 &&
3053	    RB_EMPTY_ROOT(&cfqq->sort_list))
3054		return true;
3055
3056	/*
3057	 * So both queues are sync. Let the new request get disk time if
3058	 * it's a metadata request and the current queue is doing regular IO.
3059	 */
3060	if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
3061		return true;
3062
3063	/*
3064	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3065	 */
3066	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3067		return true;
3068
3069	/* An idle queue should not be idle now for some reason */
3070	if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3071		return true;
3072
3073	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3074		return false;
3075
3076	/*
3077	 * if this request is as-good as one we would expect from the
3078	 * current cfqq, let it preempt
3079	 */
3080	if (cfq_rq_close(cfqd, cfqq, rq))
3081		return true;
3082
3083	return false;
3084}
3085
3086/*
3087 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3088 * let it have half of its nominal slice.
3089 */
3090static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3091{
3092	enum wl_type_t old_type = cfqq_type(cfqd->active_queue);
3093
3094	cfq_log_cfqq(cfqd, cfqq, "preempt");
3095	cfq_slice_expired(cfqd, 1);
3096
3097	/*
3098	 * workload type is changed, don't save slice, otherwise preempt
3099	 * doesn't happen
3100	 */
3101	if (old_type != cfqq_type(cfqq))
3102		cfqq->cfqg->saved_workload_slice = 0;
3103
3104	/*
3105	 * Put the new queue at the front of the of the current list,
3106	 * so we know that it will be selected next.
3107	 */
3108	BUG_ON(!cfq_cfqq_on_rr(cfqq));
3109
3110	cfq_service_tree_add(cfqd, cfqq, 1);
3111
3112	cfqq->slice_end = 0;
3113	cfq_mark_cfqq_slice_new(cfqq);
3114}
3115
3116/*
3117 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3118 * something we should do about it
3119 */
3120static void
3121cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3122		struct request *rq)
3123{
3124	struct cfq_io_cq *cic = RQ_CIC(rq);
3125
3126	cfqd->rq_queued++;
3127	if (rq->cmd_flags & REQ_PRIO)
3128		cfqq->prio_pending++;
3129
3130	cfq_update_io_thinktime(cfqd, cfqq, cic);
3131	cfq_update_io_seektime(cfqd, cfqq, rq);
3132	cfq_update_idle_window(cfqd, cfqq, cic);
3133
3134	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3135
3136	if (cfqq == cfqd->active_queue) {
3137		/*
3138		 * Remember that we saw a request from this process, but
3139		 * don't start queuing just yet. Otherwise we risk seeing lots
3140		 * of tiny requests, because we disrupt the normal plugging
3141		 * and merging. If the request is already larger than a single
3142		 * page, let it rip immediately. For that case we assume that
3143		 * merging is already done. Ditto for a busy system that
3144		 * has other work pending, don't risk delaying until the
3145		 * idle timer unplug to continue working.
3146		 */
3147		if (cfq_cfqq_wait_request(cfqq)) {
3148			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3149			    cfqd->busy_queues > 1) {
3150				cfq_del_timer(cfqd, cfqq);
3151				cfq_clear_cfqq_wait_request(cfqq);
3152				__blk_run_queue(cfqd->queue);
3153			} else {
3154				cfq_blkiocg_update_idle_time_stats(
3155						&cfqq->cfqg->blkg);
3156				cfq_mark_cfqq_must_dispatch(cfqq);
3157			}
3158		}
3159	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3160		/*
3161		 * not the active queue - expire current slice if it is
3162		 * idle and has expired it's mean thinktime or this new queue
3163		 * has some old slice time left and is of higher priority or
3164		 * this new queue is RT and the current one is BE
3165		 */
3166		cfq_preempt_queue(cfqd, cfqq);
3167		__blk_run_queue(cfqd->queue);
3168	}
3169}
3170
3171static void cfq_insert_request(struct request_queue *q, struct request *rq)
3172{
3173	struct cfq_data *cfqd = q->elevator->elevator_data;
3174	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3175
3176	cfq_log_cfqq(cfqd, cfqq, "insert_request");
3177	cfq_init_prio_data(cfqq, RQ_CIC(rq)->icq.ioc);
3178
3179	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3180	list_add_tail(&rq->queuelist, &cfqq->fifo);
3181	cfq_add_rq_rb(rq);
3182	cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
3183			&cfqd->serving_group->blkg, rq_data_dir(rq),
3184			rq_is_sync(rq));
3185	cfq_rq_enqueued(cfqd, cfqq, rq);
3186}
3187
3188/*
3189 * Update hw_tag based on peak queue depth over 50 samples under
3190 * sufficient load.
3191 */
3192static void cfq_update_hw_tag(struct cfq_data *cfqd)
3193{
3194	struct cfq_queue *cfqq = cfqd->active_queue;
3195
3196	if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3197		cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
3198
3199	if (cfqd->hw_tag == 1)
3200		return;
3201
3202	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3203	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
3204		return;
3205
3206	/*
3207	 * If active queue hasn't enough requests and can idle, cfq might not
3208	 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3209	 * case
3210	 */
3211	if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3212	    cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3213	    CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
3214		return;
3215
3216	if (cfqd->hw_tag_samples++ < 50)
3217		return;
3218
3219	if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3220		cfqd->hw_tag = 1;
3221	else
3222		cfqd->hw_tag = 0;
3223}
3224
3225static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3226{
3227	struct cfq_io_cq *cic = cfqd->active_cic;
3228
3229	/* If the queue already has requests, don't wait */
3230	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3231		return false;
3232
3233	/* If there are other queues in the group, don't wait */
3234	if (cfqq->cfqg->nr_cfqq > 1)
3235		return false;
3236
3237	/* the only queue in the group, but think time is big */
3238	if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3239		return false;
3240
3241	if (cfq_slice_used(cfqq))
3242		return true;
3243
3244	/* if slice left is less than think time, wait busy */
3245	if (cic && sample_valid(cic->ttime.ttime_samples)
3246	    && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
3247		return true;
3248
3249	/*
3250	 * If think times is less than a jiffy than ttime_mean=0 and above
3251	 * will not be true. It might happen that slice has not expired yet
3252	 * but will expire soon (4-5 ns) during select_queue(). To cover the
3253	 * case where think time is less than a jiffy, mark the queue wait
3254	 * busy if only 1 jiffy is left in the slice.
3255	 */
3256	if (cfqq->slice_end - jiffies == 1)
3257		return true;
3258
3259	return false;
3260}
3261
3262static void cfq_completed_request(struct request_queue *q, struct request *rq)
3263{
3264	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3265	struct cfq_data *cfqd = cfqq->cfqd;
3266	const int sync = rq_is_sync(rq);
3267	unsigned long now;
3268
3269	now = jiffies;
3270	cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3271		     !!(rq->cmd_flags & REQ_NOIDLE));
3272
3273	cfq_update_hw_tag(cfqd);
3274
3275	WARN_ON(!cfqd->rq_in_driver);
3276	WARN_ON(!cfqq->dispatched);
3277	cfqd->rq_in_driver--;
3278	cfqq->dispatched--;
3279	(RQ_CFQG(rq))->dispatched--;
3280	cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3281			rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3282			rq_data_dir(rq), rq_is_sync(rq));
3283
3284	cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3285
3286	if (sync) {
3287		struct cfq_rb_root *service_tree;
3288
3289		RQ_CIC(rq)->ttime.last_end_request = now;
3290
3291		if (cfq_cfqq_on_rr(cfqq))
3292			service_tree = cfqq->service_tree;
3293		else
3294			service_tree = service_tree_for(cfqq->cfqg,
3295				cfqq_prio(cfqq), cfqq_type(cfqq));
3296		service_tree->ttime.last_end_request = now;
3297		if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3298			cfqd->last_delayed_sync = now;
3299	}
3300
3301#ifdef CONFIG_CFQ_GROUP_IOSCHED
3302	cfqq->cfqg->ttime.last_end_request = now;
3303#endif
3304
3305	/*
3306	 * If this is the active queue, check if it needs to be expired,
3307	 * or if we want to idle in case it has no pending requests.
3308	 */
3309	if (cfqd->active_queue == cfqq) {
3310		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3311
3312		if (cfq_cfqq_slice_new(cfqq)) {
3313			cfq_set_prio_slice(cfqd, cfqq);
3314			cfq_clear_cfqq_slice_new(cfqq);
3315		}
3316
3317		/*
3318		 * Should we wait for next request to come in before we expire
3319		 * the queue.
3320		 */
3321		if (cfq_should_wait_busy(cfqd, cfqq)) {
3322			unsigned long extend_sl = cfqd->cfq_slice_idle;
3323			if (!cfqd->cfq_slice_idle)
3324				extend_sl = cfqd->cfq_group_idle;
3325			cfqq->slice_end = jiffies + extend_sl;
3326			cfq_mark_cfqq_wait_busy(cfqq);
3327			cfq_log_cfqq(cfqd, cfqq, "will busy wait");
3328		}
3329
3330		/*
3331		 * Idling is not enabled on:
3332		 * - expired queues
3333		 * - idle-priority queues
3334		 * - async queues
3335		 * - queues with still some requests queued
3336		 * - when there is a close cooperator
3337		 */
3338		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3339			cfq_slice_expired(cfqd, 1);
3340		else if (sync && cfqq_empty &&
3341			 !cfq_close_cooperator(cfqd, cfqq)) {
3342			cfq_arm_slice_timer(cfqd);
3343		}
3344	}
3345
3346	if (!cfqd->rq_in_driver)
3347		cfq_schedule_dispatch(cfqd);
3348}
3349
3350static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3351{
3352	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3353		cfq_mark_cfqq_must_alloc_slice(cfqq);
3354		return ELV_MQUEUE_MUST;
3355	}
3356
3357	return ELV_MQUEUE_MAY;
3358}
3359
3360static int cfq_may_queue(struct request_queue *q, int rw)
3361{
3362	struct cfq_data *cfqd = q->elevator->elevator_data;
3363	struct task_struct *tsk = current;
3364	struct cfq_io_cq *cic;
3365	struct cfq_queue *cfqq;
3366
3367	/*
3368	 * don't force setup of a queue from here, as a call to may_queue
3369	 * does not necessarily imply that a request actually will be queued.
3370	 * so just lookup a possibly existing queue, or return 'may queue'
3371	 * if that fails
3372	 */
3373	cic = cfq_cic_lookup(cfqd, tsk->io_context);
3374	if (!cic)
3375		return ELV_MQUEUE_MAY;
3376
3377	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3378	if (cfqq) {
3379		cfq_init_prio_data(cfqq, cic->icq.ioc);
3380
3381		return __cfq_may_queue(cfqq);
3382	}
3383
3384	return ELV_MQUEUE_MAY;
3385}
3386
3387/*
3388 * queue lock held here
3389 */
3390static void cfq_put_request(struct request *rq)
3391{
3392	struct cfq_queue *cfqq = RQ_CFQQ(rq);
3393
3394	if (cfqq) {
3395		const int rw = rq_data_dir(rq);
3396
3397		BUG_ON(!cfqq->allocated[rw]);
3398		cfqq->allocated[rw]--;
3399
3400		/* Put down rq reference on cfqg */
3401		cfq_put_cfqg(RQ_CFQG(rq));
3402		rq->elv.priv[0] = NULL;
3403		rq->elv.priv[1] = NULL;
3404
3405		cfq_put_queue(cfqq);
3406	}
3407}
3408
3409static struct cfq_queue *
3410cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_cq *cic,
3411		struct cfq_queue *cfqq)
3412{
3413	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3414	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3415	cfq_mark_cfqq_coop(cfqq->new_cfqq);
3416	cfq_put_queue(cfqq);
3417	return cic_to_cfqq(cic, 1);
3418}
3419
3420/*
3421 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3422 * was the last process referring to said cfqq.
3423 */
3424static struct cfq_queue *
3425split_cfqq(struct cfq_io_cq *cic, struct cfq_queue *cfqq)
3426{
3427	if (cfqq_process_refs(cfqq) == 1) {
3428		cfqq->pid = current->pid;
3429		cfq_clear_cfqq_coop(cfqq);
3430		cfq_clear_cfqq_split_coop(cfqq);
3431		return cfqq;
3432	}
3433
3434	cic_set_cfqq(cic, NULL, 1);
3435
3436	cfq_put_cooperator(cfqq);
3437
3438	cfq_put_queue(cfqq);
3439	return NULL;
3440}
3441/*
3442 * Allocate cfq data structures associated with this request.
3443 */
3444static int
3445cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3446{
3447	struct cfq_data *cfqd = q->elevator->elevator_data;
3448	struct cfq_io_cq *cic = icq_to_cic(rq->elv.icq);
3449	const int rw = rq_data_dir(rq);
3450	const bool is_sync = rq_is_sync(rq);
3451	struct cfq_queue *cfqq;
3452	unsigned int changed;
3453
3454	might_sleep_if(gfp_mask & __GFP_WAIT);
3455
3456	spin_lock_irq(q->queue_lock);
3457
3458	/* handle changed notifications */
3459	changed = icq_get_changed(&cic->icq);
3460	if (unlikely(changed & ICQ_IOPRIO_CHANGED))
3461		changed_ioprio(cic);
3462#ifdef CONFIG_CFQ_GROUP_IOSCHED
3463	if (unlikely(changed & ICQ_CGROUP_CHANGED))
3464		changed_cgroup(cic);
3465#endif
3466
3467new_queue:
3468	cfqq = cic_to_cfqq(cic, is_sync);
3469	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3470		cfqq = cfq_get_queue(cfqd, is_sync, cic->icq.ioc, gfp_mask);
3471		cic_set_cfqq(cic, cfqq, is_sync);
3472	} else {
3473		/*
3474		 * If the queue was seeky for too long, break it apart.
3475		 */
3476		if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
3477			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3478			cfqq = split_cfqq(cic, cfqq);
3479			if (!cfqq)
3480				goto new_queue;
3481		}
3482
3483		/*
3484		 * Check to see if this queue is scheduled to merge with
3485		 * another, closely cooperating queue.  The merging of
3486		 * queues happens here as it must be done in process context.
3487		 * The reference on new_cfqq was taken in merge_cfqqs.
3488		 */
3489		if (cfqq->new_cfqq)
3490			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3491	}
3492
3493	cfqq->allocated[rw]++;
3494
3495	cfqq->ref++;
3496	rq->elv.priv[0] = cfqq;
3497	rq->elv.priv[1] = cfq_ref_get_cfqg(cfqq->cfqg);
3498	spin_unlock_irq(q->queue_lock);
3499	return 0;
3500}
3501
3502static void cfq_kick_queue(struct work_struct *work)
3503{
3504	struct cfq_data *cfqd =
3505		container_of(work, struct cfq_data, unplug_work);
3506	struct request_queue *q = cfqd->queue;
3507
3508	spin_lock_irq(q->queue_lock);
3509	__blk_run_queue(cfqd->queue);
3510	spin_unlock_irq(q->queue_lock);
3511}
3512
3513/*
3514 * Timer running if the active_queue is currently idling inside its time slice
3515 */
3516static void cfq_idle_slice_timer(unsigned long data)
3517{
3518	struct cfq_data *cfqd = (struct cfq_data *) data;
3519	struct cfq_queue *cfqq;
3520	unsigned long flags;
3521	int timed_out = 1;
3522
3523	cfq_log(cfqd, "idle timer fired");
3524
3525	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3526
3527	cfqq = cfqd->active_queue;
3528	if (cfqq) {
3529		timed_out = 0;
3530
3531		/*
3532		 * We saw a request before the queue expired, let it through
3533		 */
3534		if (cfq_cfqq_must_dispatch(cfqq))
3535			goto out_kick;
3536
3537		/*
3538		 * expired
3539		 */
3540		if (cfq_slice_used(cfqq))
3541			goto expire;
3542
3543		/*
3544		 * only expire and reinvoke request handler, if there are
3545		 * other queues with pending requests
3546		 */
3547		if (!cfqd->busy_queues)
3548			goto out_cont;
3549
3550		/*
3551		 * not expired and it has a request pending, let it dispatch
3552		 */
3553		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3554			goto out_kick;
3555
3556		/*
3557		 * Queue depth flag is reset only when the idle didn't succeed
3558		 */
3559		cfq_clear_cfqq_deep(cfqq);
3560	}
3561expire:
3562	cfq_slice_expired(cfqd, timed_out);
3563out_kick:
3564	cfq_schedule_dispatch(cfqd);
3565out_cont:
3566	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3567}
3568
3569static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3570{
3571	del_timer_sync(&cfqd->idle_slice_timer);
3572	cancel_work_sync(&cfqd->unplug_work);
3573}
3574
3575static void cfq_put_async_queues(struct cfq_data *cfqd)
3576{
3577	int i;
3578
3579	for (i = 0; i < IOPRIO_BE_NR; i++) {
3580		if (cfqd->async_cfqq[0][i])
3581			cfq_put_queue(cfqd->async_cfqq[0][i]);
3582		if (cfqd->async_cfqq[1][i])
3583			cfq_put_queue(cfqd->async_cfqq[1][i]);
3584	}
3585
3586	if (cfqd->async_idle_cfqq)
3587		cfq_put_queue(cfqd->async_idle_cfqq);
3588}
3589
3590static void cfq_exit_queue(struct elevator_queue *e)
3591{
3592	struct cfq_data *cfqd = e->elevator_data;
3593	struct request_queue *q = cfqd->queue;
3594	bool wait = false;
3595
3596	cfq_shutdown_timer_wq(cfqd);
3597
3598	spin_lock_irq(q->queue_lock);
3599
3600	if (cfqd->active_queue)
3601		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3602
3603	cfq_put_async_queues(cfqd);
3604	cfq_release_cfq_groups(cfqd);
3605
3606	/*
3607	 * If there are groups which we could not unlink from blkcg list,
3608	 * wait for a rcu period for them to be freed.
3609	 */
3610	if (cfqd->nr_blkcg_linked_grps)
3611		wait = true;
3612
3613	spin_unlock_irq(q->queue_lock);
3614
3615	cfq_shutdown_timer_wq(cfqd);
3616
3617	/*
3618	 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3619	 * Do this wait only if there are other unlinked groups out
3620	 * there. This can happen if cgroup deletion path claimed the
3621	 * responsibility of cleaning up a group before queue cleanup code
3622	 * get to the group.
3623	 *
3624	 * Do not call synchronize_rcu() unconditionally as there are drivers
3625	 * which create/delete request queue hundreds of times during scan/boot
3626	 * and synchronize_rcu() can take significant time and slow down boot.
3627	 */
3628	if (wait)
3629		synchronize_rcu();
3630
3631#ifndef CONFIG_CFQ_GROUP_IOSCHED
3632	kfree(cfqd->root_group);
3633#endif
3634	kfree(cfqd);
3635}
3636
3637static int cfq_init_queue(struct request_queue *q)
3638{
3639	struct cfq_data *cfqd;
3640	struct blkio_group *blkg __maybe_unused;
3641	int i;
3642
3643	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3644	if (!cfqd)
3645		return -ENOMEM;
3646
3647	cfqd->queue = q;
3648	q->elevator->elevator_data = cfqd;
3649
3650	/* Init root service tree */
3651	cfqd->grp_service_tree = CFQ_RB_ROOT;
3652
3653	/* Init root group and prefer root group over other groups by default */
3654#ifdef CONFIG_CFQ_GROUP_IOSCHED
3655	rcu_read_lock();
3656	spin_lock_irq(q->queue_lock);
3657
3658	blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_PROP,
3659				  true);
3660	if (!IS_ERR(blkg))
3661		cfqd->root_group = cfqg_of_blkg(blkg);
3662
3663	spin_unlock_irq(q->queue_lock);
3664	rcu_read_unlock();
3665#else
3666	cfqd->root_group = kzalloc_node(sizeof(*cfqd->root_group),
3667					GFP_KERNEL, cfqd->queue->node);
3668	if (cfqd->root_group)
3669		cfq_init_cfqg_base(cfqd->root_group);
3670#endif
3671	if (!cfqd->root_group) {
3672		kfree(cfqd);
3673		return -ENOMEM;
3674	}
3675
3676	cfqd->root_group->weight = 2*BLKIO_WEIGHT_DEFAULT;
3677
3678	/*
3679	 * Not strictly needed (since RB_ROOT just clears the node and we
3680	 * zeroed cfqd on alloc), but better be safe in case someone decides
3681	 * to add magic to the rb code
3682	 */
3683	for (i = 0; i < CFQ_PRIO_LISTS; i++)
3684		cfqd->prio_trees[i] = RB_ROOT;
3685
3686	/*
3687	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3688	 * Grab a permanent reference to it, so that the normal code flow
3689	 * will not attempt to free it.  oom_cfqq is linked to root_group
3690	 * but shouldn't hold a reference as it'll never be unlinked.  Lose
3691	 * the reference from linking right away.
3692	 */
3693	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3694	cfqd->oom_cfqq.ref++;
3695	cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, cfqd->root_group);
3696	cfq_put_cfqg(cfqd->root_group);
3697
3698	init_timer(&cfqd->idle_slice_timer);
3699	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3700	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3701
3702	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3703
3704	cfqd->cfq_quantum = cfq_quantum;
3705	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3706	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3707	cfqd->cfq_back_max = cfq_back_max;
3708	cfqd->cfq_back_penalty = cfq_back_penalty;
3709	cfqd->cfq_slice[0] = cfq_slice_async;
3710	cfqd->cfq_slice[1] = cfq_slice_sync;
3711	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3712	cfqd->cfq_slice_idle = cfq_slice_idle;
3713	cfqd->cfq_group_idle = cfq_group_idle;
3714	cfqd->cfq_latency = 1;
3715	cfqd->hw_tag = -1;
3716	/*
3717	 * we optimistically start assuming sync ops weren't delayed in last
3718	 * second, in order to have larger depth for async operations.
3719	 */
3720	cfqd->last_delayed_sync = jiffies - HZ;
3721	return 0;
3722}
3723
3724/*
3725 * sysfs parts below -->
3726 */
3727static ssize_t
3728cfq_var_show(unsigned int var, char *page)
3729{
3730	return sprintf(page, "%d\n", var);
3731}
3732
3733static ssize_t
3734cfq_var_store(unsigned int *var, const char *page, size_t count)
3735{
3736	char *p = (char *) page;
3737
3738	*var = simple_strtoul(p, &p, 10);
3739	return count;
3740}
3741
3742#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
3743static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
3744{									\
3745	struct cfq_data *cfqd = e->elevator_data;			\
3746	unsigned int __data = __VAR;					\
3747	if (__CONV)							\
3748		__data = jiffies_to_msecs(__data);			\
3749	return cfq_var_show(__data, (page));				\
3750}
3751SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3752SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3753SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3754SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3755SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3756SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3757SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
3758SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3759SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3760SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3761SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3762#undef SHOW_FUNCTION
3763
3764#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
3765static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
3766{									\
3767	struct cfq_data *cfqd = e->elevator_data;			\
3768	unsigned int __data;						\
3769	int ret = cfq_var_store(&__data, (page), count);		\
3770	if (__data < (MIN))						\
3771		__data = (MIN);						\
3772	else if (__data > (MAX))					\
3773		__data = (MAX);						\
3774	if (__CONV)							\
3775		*(__PTR) = msecs_to_jiffies(__data);			\
3776	else								\
3777		*(__PTR) = __data;					\
3778	return ret;							\
3779}
3780STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3781STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3782		UINT_MAX, 1);
3783STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3784		UINT_MAX, 1);
3785STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3786STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3787		UINT_MAX, 0);
3788STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3789STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
3790STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3791STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3792STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3793		UINT_MAX, 0);
3794STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3795#undef STORE_FUNCTION
3796
3797#define CFQ_ATTR(name) \
3798	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3799
3800static struct elv_fs_entry cfq_attrs[] = {
3801	CFQ_ATTR(quantum),
3802	CFQ_ATTR(fifo_expire_sync),
3803	CFQ_ATTR(fifo_expire_async),
3804	CFQ_ATTR(back_seek_max),
3805	CFQ_ATTR(back_seek_penalty),
3806	CFQ_ATTR(slice_sync),
3807	CFQ_ATTR(slice_async),
3808	CFQ_ATTR(slice_async_rq),
3809	CFQ_ATTR(slice_idle),
3810	CFQ_ATTR(group_idle),
3811	CFQ_ATTR(low_latency),
3812	__ATTR_NULL
3813};
3814
3815static struct elevator_type iosched_cfq = {
3816	.ops = {
3817		.elevator_merge_fn = 		cfq_merge,
3818		.elevator_merged_fn =		cfq_merged_request,
3819		.elevator_merge_req_fn =	cfq_merged_requests,
3820		.elevator_allow_merge_fn =	cfq_allow_merge,
3821		.elevator_bio_merged_fn =	cfq_bio_merged,
3822		.elevator_dispatch_fn =		cfq_dispatch_requests,
3823		.elevator_add_req_fn =		cfq_insert_request,
3824		.elevator_activate_req_fn =	cfq_activate_request,
3825		.elevator_deactivate_req_fn =	cfq_deactivate_request,
3826		.elevator_completed_req_fn =	cfq_completed_request,
3827		.elevator_former_req_fn =	elv_rb_former_request,
3828		.elevator_latter_req_fn =	elv_rb_latter_request,
3829		.elevator_init_icq_fn =		cfq_init_icq,
3830		.elevator_exit_icq_fn =		cfq_exit_icq,
3831		.elevator_set_req_fn =		cfq_set_request,
3832		.elevator_put_req_fn =		cfq_put_request,
3833		.elevator_may_queue_fn =	cfq_may_queue,
3834		.elevator_init_fn =		cfq_init_queue,
3835		.elevator_exit_fn =		cfq_exit_queue,
3836	},
3837	.icq_size	=	sizeof(struct cfq_io_cq),
3838	.icq_align	=	__alignof__(struct cfq_io_cq),
3839	.elevator_attrs =	cfq_attrs,
3840	.elevator_name	=	"cfq",
3841	.elevator_owner =	THIS_MODULE,
3842};
3843
3844#ifdef CONFIG_CFQ_GROUP_IOSCHED
3845static struct blkio_policy_type blkio_policy_cfq = {
3846	.ops = {
3847		.blkio_alloc_group_fn =		cfq_alloc_blkio_group,
3848		.blkio_link_group_fn =		cfq_link_blkio_group,
3849		.blkio_unlink_group_fn =	cfq_unlink_blkio_group,
3850		.blkio_clear_queue_fn = cfq_clear_queue,
3851		.blkio_update_group_weight_fn =	cfq_update_blkio_group_weight,
3852	},
3853	.plid = BLKIO_POLICY_PROP,
3854};
3855#endif
3856
3857static int __init cfq_init(void)
3858{
3859	int ret;
3860
3861	/*
3862	 * could be 0 on HZ < 1000 setups
3863	 */
3864	if (!cfq_slice_async)
3865		cfq_slice_async = 1;
3866	if (!cfq_slice_idle)
3867		cfq_slice_idle = 1;
3868
3869#ifdef CONFIG_CFQ_GROUP_IOSCHED
3870	if (!cfq_group_idle)
3871		cfq_group_idle = 1;
3872#else
3873		cfq_group_idle = 0;
3874#endif
3875	cfq_pool = KMEM_CACHE(cfq_queue, 0);
3876	if (!cfq_pool)
3877		return -ENOMEM;
3878
3879	ret = elv_register(&iosched_cfq);
3880	if (ret) {
3881		kmem_cache_destroy(cfq_pool);
3882		return ret;
3883	}
3884
3885#ifdef CONFIG_CFQ_GROUP_IOSCHED
3886	blkio_policy_register(&blkio_policy_cfq);
3887#endif
3888	return 0;
3889}
3890
3891static void __exit cfq_exit(void)
3892{
3893#ifdef CONFIG_CFQ_GROUP_IOSCHED
3894	blkio_policy_unregister(&blkio_policy_cfq);
3895#endif
3896	elv_unregister(&iosched_cfq);
3897	kmem_cache_destroy(cfq_pool);
3898}
3899
3900module_init(cfq_init);
3901module_exit(cfq_exit);
3902
3903MODULE_AUTHOR("Jens Axboe");
3904MODULE_LICENSE("GPL");
3905MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
3906