cfq-iosched.c revision e6c5bc737ab71e4af6025ef7d150f5a26ae5f146
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY		(HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT		(2)
40
41/*
42 * Allow merged cfqqs to perform this amount of seeky I/O before
43 * deciding to break the queues up again.
44 */
45#define CFQQ_COOP_TOUT		(HZ)
46
47#define CFQ_SLICE_SCALE		(5)
48#define CFQ_HW_QUEUE_MIN	(5)
49
50#define RQ_CIC(rq)		\
51	((struct cfq_io_context *) (rq)->elevator_private)
52#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
53
54static struct kmem_cache *cfq_pool;
55static struct kmem_cache *cfq_ioc_pool;
56
57static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
58static struct completion *ioc_gone;
59static DEFINE_SPINLOCK(ioc_gone_lock);
60
61#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
62#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
64
65#define sample_valid(samples)	((samples) > 80)
66
67/*
68 * Most of our rbtree usage is for sorting with min extraction, so
69 * if we cache the leftmost node we don't have to walk down the tree
70 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
71 * move this into the elevator for the rq sorting as well.
72 */
73struct cfq_rb_root {
74	struct rb_root rb;
75	struct rb_node *left;
76};
77#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
78
79/*
80 * Per process-grouping structure
81 */
82struct cfq_queue {
83	/* reference count */
84	atomic_t ref;
85	/* various state flags, see below */
86	unsigned int flags;
87	/* parent cfq_data */
88	struct cfq_data *cfqd;
89	/* service_tree member */
90	struct rb_node rb_node;
91	/* service_tree key */
92	unsigned long rb_key;
93	/* prio tree member */
94	struct rb_node p_node;
95	/* prio tree root we belong to, if any */
96	struct rb_root *p_root;
97	/* sorted list of pending requests */
98	struct rb_root sort_list;
99	/* if fifo isn't expired, next request to serve */
100	struct request *next_rq;
101	/* requests queued in sort_list */
102	int queued[2];
103	/* currently allocated requests */
104	int allocated[2];
105	/* fifo list of requests in sort_list */
106	struct list_head fifo;
107
108	unsigned long slice_end;
109	long slice_resid;
110	unsigned int slice_dispatch;
111
112	/* pending metadata requests */
113	int meta_pending;
114	/* number of requests that are on the dispatch list or inside driver */
115	int dispatched;
116
117	/* io prio of this group */
118	unsigned short ioprio, org_ioprio;
119	unsigned short ioprio_class, org_ioprio_class;
120
121	unsigned int seek_samples;
122	u64 seek_total;
123	sector_t seek_mean;
124	sector_t last_request_pos;
125	unsigned long seeky_start;
126
127	pid_t pid;
128
129	struct cfq_queue *new_cfqq;
130};
131
132/*
133 * Per block device queue structure
134 */
135struct cfq_data {
136	struct request_queue *queue;
137
138	/*
139	 * rr list of queues with requests and the count of them
140	 */
141	struct cfq_rb_root service_tree;
142
143	/*
144	 * Each priority tree is sorted by next_request position.  These
145	 * trees are used when determining if two or more queues are
146	 * interleaving requests (see cfq_close_cooperator).
147	 */
148	struct rb_root prio_trees[CFQ_PRIO_LISTS];
149
150	unsigned int busy_queues;
151
152	int rq_in_driver[2];
153	int sync_flight;
154
155	/*
156	 * queue-depth detection
157	 */
158	int rq_queued;
159	int hw_tag;
160	int hw_tag_samples;
161	int rq_in_driver_peak;
162
163	/*
164	 * idle window management
165	 */
166	struct timer_list idle_slice_timer;
167	struct work_struct unplug_work;
168
169	struct cfq_queue *active_queue;
170	struct cfq_io_context *active_cic;
171
172	/*
173	 * async queue for each priority case
174	 */
175	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
176	struct cfq_queue *async_idle_cfqq;
177
178	sector_t last_position;
179
180	/*
181	 * tunables, see top of file
182	 */
183	unsigned int cfq_quantum;
184	unsigned int cfq_fifo_expire[2];
185	unsigned int cfq_back_penalty;
186	unsigned int cfq_back_max;
187	unsigned int cfq_slice[2];
188	unsigned int cfq_slice_async_rq;
189	unsigned int cfq_slice_idle;
190	unsigned int cfq_latency;
191
192	struct list_head cic_list;
193
194	/*
195	 * Fallback dummy cfqq for extreme OOM conditions
196	 */
197	struct cfq_queue oom_cfqq;
198
199	unsigned long last_end_sync_rq;
200};
201
202enum cfqq_state_flags {
203	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
204	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
205	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
206	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
207	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
208	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
209	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
210	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
211	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
212	CFQ_CFQQ_FLAG_coop,		/* cfqq is shared */
213};
214
215#define CFQ_CFQQ_FNS(name)						\
216static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
217{									\
218	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
219}									\
220static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
221{									\
222	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
223}									\
224static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
225{									\
226	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
227}
228
229CFQ_CFQQ_FNS(on_rr);
230CFQ_CFQQ_FNS(wait_request);
231CFQ_CFQQ_FNS(must_dispatch);
232CFQ_CFQQ_FNS(must_alloc_slice);
233CFQ_CFQQ_FNS(fifo_expire);
234CFQ_CFQQ_FNS(idle_window);
235CFQ_CFQQ_FNS(prio_changed);
236CFQ_CFQQ_FNS(slice_new);
237CFQ_CFQQ_FNS(sync);
238CFQ_CFQQ_FNS(coop);
239#undef CFQ_CFQQ_FNS
240
241#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
242	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
243#define cfq_log(cfqd, fmt, args...)	\
244	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
245
246static void cfq_dispatch_insert(struct request_queue *, struct request *);
247static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
248				       struct io_context *, gfp_t);
249static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
250						struct io_context *);
251
252static inline int rq_in_driver(struct cfq_data *cfqd)
253{
254	return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
255}
256
257static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
258					    bool is_sync)
259{
260	return cic->cfqq[is_sync];
261}
262
263static inline void cic_set_cfqq(struct cfq_io_context *cic,
264				struct cfq_queue *cfqq, bool is_sync)
265{
266	cic->cfqq[is_sync] = cfqq;
267}
268
269/*
270 * We regard a request as SYNC, if it's either a read or has the SYNC bit
271 * set (in which case it could also be direct WRITE).
272 */
273static inline bool cfq_bio_sync(struct bio *bio)
274{
275	return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
276}
277
278/*
279 * scheduler run of queue, if there are requests pending and no one in the
280 * driver that will restart queueing
281 */
282static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
283{
284	if (cfqd->busy_queues) {
285		cfq_log(cfqd, "schedule dispatch");
286		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
287	}
288}
289
290static int cfq_queue_empty(struct request_queue *q)
291{
292	struct cfq_data *cfqd = q->elevator->elevator_data;
293
294	return !cfqd->busy_queues;
295}
296
297/*
298 * Scale schedule slice based on io priority. Use the sync time slice only
299 * if a queue is marked sync and has sync io queued. A sync queue with async
300 * io only, should not get full sync slice length.
301 */
302static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
303				 unsigned short prio)
304{
305	const int base_slice = cfqd->cfq_slice[sync];
306
307	WARN_ON(prio >= IOPRIO_BE_NR);
308
309	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
310}
311
312static inline int
313cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
314{
315	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
316}
317
318static inline void
319cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
320{
321	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
322	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
323}
324
325/*
326 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
327 * isn't valid until the first request from the dispatch is activated
328 * and the slice time set.
329 */
330static inline bool cfq_slice_used(struct cfq_queue *cfqq)
331{
332	if (cfq_cfqq_slice_new(cfqq))
333		return 0;
334	if (time_before(jiffies, cfqq->slice_end))
335		return 0;
336
337	return 1;
338}
339
340/*
341 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
342 * We choose the request that is closest to the head right now. Distance
343 * behind the head is penalized and only allowed to a certain extent.
344 */
345static struct request *
346cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
347{
348	sector_t last, s1, s2, d1 = 0, d2 = 0;
349	unsigned long back_max;
350#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
351#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
352	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
353
354	if (rq1 == NULL || rq1 == rq2)
355		return rq2;
356	if (rq2 == NULL)
357		return rq1;
358
359	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
360		return rq1;
361	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
362		return rq2;
363	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
364		return rq1;
365	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
366		return rq2;
367
368	s1 = blk_rq_pos(rq1);
369	s2 = blk_rq_pos(rq2);
370
371	last = cfqd->last_position;
372
373	/*
374	 * by definition, 1KiB is 2 sectors
375	 */
376	back_max = cfqd->cfq_back_max * 2;
377
378	/*
379	 * Strict one way elevator _except_ in the case where we allow
380	 * short backward seeks which are biased as twice the cost of a
381	 * similar forward seek.
382	 */
383	if (s1 >= last)
384		d1 = s1 - last;
385	else if (s1 + back_max >= last)
386		d1 = (last - s1) * cfqd->cfq_back_penalty;
387	else
388		wrap |= CFQ_RQ1_WRAP;
389
390	if (s2 >= last)
391		d2 = s2 - last;
392	else if (s2 + back_max >= last)
393		d2 = (last - s2) * cfqd->cfq_back_penalty;
394	else
395		wrap |= CFQ_RQ2_WRAP;
396
397	/* Found required data */
398
399	/*
400	 * By doing switch() on the bit mask "wrap" we avoid having to
401	 * check two variables for all permutations: --> faster!
402	 */
403	switch (wrap) {
404	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
405		if (d1 < d2)
406			return rq1;
407		else if (d2 < d1)
408			return rq2;
409		else {
410			if (s1 >= s2)
411				return rq1;
412			else
413				return rq2;
414		}
415
416	case CFQ_RQ2_WRAP:
417		return rq1;
418	case CFQ_RQ1_WRAP:
419		return rq2;
420	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
421	default:
422		/*
423		 * Since both rqs are wrapped,
424		 * start with the one that's further behind head
425		 * (--> only *one* back seek required),
426		 * since back seek takes more time than forward.
427		 */
428		if (s1 <= s2)
429			return rq1;
430		else
431			return rq2;
432	}
433}
434
435/*
436 * The below is leftmost cache rbtree addon
437 */
438static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
439{
440	if (!root->left)
441		root->left = rb_first(&root->rb);
442
443	if (root->left)
444		return rb_entry(root->left, struct cfq_queue, rb_node);
445
446	return NULL;
447}
448
449static void rb_erase_init(struct rb_node *n, struct rb_root *root)
450{
451	rb_erase(n, root);
452	RB_CLEAR_NODE(n);
453}
454
455static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
456{
457	if (root->left == n)
458		root->left = NULL;
459	rb_erase_init(n, &root->rb);
460}
461
462/*
463 * would be nice to take fifo expire time into account as well
464 */
465static struct request *
466cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
467		  struct request *last)
468{
469	struct rb_node *rbnext = rb_next(&last->rb_node);
470	struct rb_node *rbprev = rb_prev(&last->rb_node);
471	struct request *next = NULL, *prev = NULL;
472
473	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
474
475	if (rbprev)
476		prev = rb_entry_rq(rbprev);
477
478	if (rbnext)
479		next = rb_entry_rq(rbnext);
480	else {
481		rbnext = rb_first(&cfqq->sort_list);
482		if (rbnext && rbnext != &last->rb_node)
483			next = rb_entry_rq(rbnext);
484	}
485
486	return cfq_choose_req(cfqd, next, prev);
487}
488
489static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
490				      struct cfq_queue *cfqq)
491{
492	/*
493	 * just an approximation, should be ok.
494	 */
495	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
496		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
497}
498
499/*
500 * The cfqd->service_tree holds all pending cfq_queue's that have
501 * requests waiting to be processed. It is sorted in the order that
502 * we will service the queues.
503 */
504static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
505				 bool add_front)
506{
507	struct rb_node **p, *parent;
508	struct cfq_queue *__cfqq;
509	unsigned long rb_key;
510	int left;
511
512	if (cfq_class_idle(cfqq)) {
513		rb_key = CFQ_IDLE_DELAY;
514		parent = rb_last(&cfqd->service_tree.rb);
515		if (parent && parent != &cfqq->rb_node) {
516			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
517			rb_key += __cfqq->rb_key;
518		} else
519			rb_key += jiffies;
520	} else if (!add_front) {
521		/*
522		 * Get our rb key offset. Subtract any residual slice
523		 * value carried from last service. A negative resid
524		 * count indicates slice overrun, and this should position
525		 * the next service time further away in the tree.
526		 */
527		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
528		rb_key -= cfqq->slice_resid;
529		cfqq->slice_resid = 0;
530	} else {
531		rb_key = -HZ;
532		__cfqq = cfq_rb_first(&cfqd->service_tree);
533		rb_key += __cfqq ? __cfqq->rb_key : jiffies;
534	}
535
536	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
537		/*
538		 * same position, nothing more to do
539		 */
540		if (rb_key == cfqq->rb_key)
541			return;
542
543		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
544	}
545
546	left = 1;
547	parent = NULL;
548	p = &cfqd->service_tree.rb.rb_node;
549	while (*p) {
550		struct rb_node **n;
551
552		parent = *p;
553		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
554
555		/*
556		 * sort RT queues first, we always want to give
557		 * preference to them. IDLE queues goes to the back.
558		 * after that, sort on the next service time.
559		 */
560		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
561			n = &(*p)->rb_left;
562		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
563			n = &(*p)->rb_right;
564		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
565			n = &(*p)->rb_left;
566		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
567			n = &(*p)->rb_right;
568		else if (time_before(rb_key, __cfqq->rb_key))
569			n = &(*p)->rb_left;
570		else
571			n = &(*p)->rb_right;
572
573		if (n == &(*p)->rb_right)
574			left = 0;
575
576		p = n;
577	}
578
579	if (left)
580		cfqd->service_tree.left = &cfqq->rb_node;
581
582	cfqq->rb_key = rb_key;
583	rb_link_node(&cfqq->rb_node, parent, p);
584	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
585}
586
587static struct cfq_queue *
588cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
589		     sector_t sector, struct rb_node **ret_parent,
590		     struct rb_node ***rb_link)
591{
592	struct rb_node **p, *parent;
593	struct cfq_queue *cfqq = NULL;
594
595	parent = NULL;
596	p = &root->rb_node;
597	while (*p) {
598		struct rb_node **n;
599
600		parent = *p;
601		cfqq = rb_entry(parent, struct cfq_queue, p_node);
602
603		/*
604		 * Sort strictly based on sector.  Smallest to the left,
605		 * largest to the right.
606		 */
607		if (sector > blk_rq_pos(cfqq->next_rq))
608			n = &(*p)->rb_right;
609		else if (sector < blk_rq_pos(cfqq->next_rq))
610			n = &(*p)->rb_left;
611		else
612			break;
613		p = n;
614		cfqq = NULL;
615	}
616
617	*ret_parent = parent;
618	if (rb_link)
619		*rb_link = p;
620	return cfqq;
621}
622
623static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
624{
625	struct rb_node **p, *parent;
626	struct cfq_queue *__cfqq;
627
628	if (cfqq->p_root) {
629		rb_erase(&cfqq->p_node, cfqq->p_root);
630		cfqq->p_root = NULL;
631	}
632
633	if (cfq_class_idle(cfqq))
634		return;
635	if (!cfqq->next_rq)
636		return;
637
638	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
639	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
640				      blk_rq_pos(cfqq->next_rq), &parent, &p);
641	if (!__cfqq) {
642		rb_link_node(&cfqq->p_node, parent, p);
643		rb_insert_color(&cfqq->p_node, cfqq->p_root);
644	} else
645		cfqq->p_root = NULL;
646}
647
648/*
649 * Update cfqq's position in the service tree.
650 */
651static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
652{
653	/*
654	 * Resorting requires the cfqq to be on the RR list already.
655	 */
656	if (cfq_cfqq_on_rr(cfqq)) {
657		cfq_service_tree_add(cfqd, cfqq, 0);
658		cfq_prio_tree_add(cfqd, cfqq);
659	}
660}
661
662/*
663 * add to busy list of queues for service, trying to be fair in ordering
664 * the pending list according to last request service
665 */
666static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
667{
668	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
669	BUG_ON(cfq_cfqq_on_rr(cfqq));
670	cfq_mark_cfqq_on_rr(cfqq);
671	cfqd->busy_queues++;
672
673	cfq_resort_rr_list(cfqd, cfqq);
674}
675
676/*
677 * Called when the cfqq no longer has requests pending, remove it from
678 * the service tree.
679 */
680static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
681{
682	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
683	BUG_ON(!cfq_cfqq_on_rr(cfqq));
684	cfq_clear_cfqq_on_rr(cfqq);
685
686	if (!RB_EMPTY_NODE(&cfqq->rb_node))
687		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
688	if (cfqq->p_root) {
689		rb_erase(&cfqq->p_node, cfqq->p_root);
690		cfqq->p_root = NULL;
691	}
692
693	BUG_ON(!cfqd->busy_queues);
694	cfqd->busy_queues--;
695}
696
697/*
698 * rb tree support functions
699 */
700static void cfq_del_rq_rb(struct request *rq)
701{
702	struct cfq_queue *cfqq = RQ_CFQQ(rq);
703	struct cfq_data *cfqd = cfqq->cfqd;
704	const int sync = rq_is_sync(rq);
705
706	BUG_ON(!cfqq->queued[sync]);
707	cfqq->queued[sync]--;
708
709	elv_rb_del(&cfqq->sort_list, rq);
710
711	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
712		cfq_del_cfqq_rr(cfqd, cfqq);
713}
714
715static void cfq_add_rq_rb(struct request *rq)
716{
717	struct cfq_queue *cfqq = RQ_CFQQ(rq);
718	struct cfq_data *cfqd = cfqq->cfqd;
719	struct request *__alias, *prev;
720
721	cfqq->queued[rq_is_sync(rq)]++;
722
723	/*
724	 * looks a little odd, but the first insert might return an alias.
725	 * if that happens, put the alias on the dispatch list
726	 */
727	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
728		cfq_dispatch_insert(cfqd->queue, __alias);
729
730	if (!cfq_cfqq_on_rr(cfqq))
731		cfq_add_cfqq_rr(cfqd, cfqq);
732
733	/*
734	 * check if this request is a better next-serve candidate
735	 */
736	prev = cfqq->next_rq;
737	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
738
739	/*
740	 * adjust priority tree position, if ->next_rq changes
741	 */
742	if (prev != cfqq->next_rq)
743		cfq_prio_tree_add(cfqd, cfqq);
744
745	BUG_ON(!cfqq->next_rq);
746}
747
748static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
749{
750	elv_rb_del(&cfqq->sort_list, rq);
751	cfqq->queued[rq_is_sync(rq)]--;
752	cfq_add_rq_rb(rq);
753}
754
755static struct request *
756cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
757{
758	struct task_struct *tsk = current;
759	struct cfq_io_context *cic;
760	struct cfq_queue *cfqq;
761
762	cic = cfq_cic_lookup(cfqd, tsk->io_context);
763	if (!cic)
764		return NULL;
765
766	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
767	if (cfqq) {
768		sector_t sector = bio->bi_sector + bio_sectors(bio);
769
770		return elv_rb_find(&cfqq->sort_list, sector);
771	}
772
773	return NULL;
774}
775
776static void cfq_activate_request(struct request_queue *q, struct request *rq)
777{
778	struct cfq_data *cfqd = q->elevator->elevator_data;
779
780	cfqd->rq_in_driver[rq_is_sync(rq)]++;
781	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
782						rq_in_driver(cfqd));
783
784	cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
785}
786
787static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
788{
789	struct cfq_data *cfqd = q->elevator->elevator_data;
790	const int sync = rq_is_sync(rq);
791
792	WARN_ON(!cfqd->rq_in_driver[sync]);
793	cfqd->rq_in_driver[sync]--;
794	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
795						rq_in_driver(cfqd));
796}
797
798static void cfq_remove_request(struct request *rq)
799{
800	struct cfq_queue *cfqq = RQ_CFQQ(rq);
801
802	if (cfqq->next_rq == rq)
803		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
804
805	list_del_init(&rq->queuelist);
806	cfq_del_rq_rb(rq);
807
808	cfqq->cfqd->rq_queued--;
809	if (rq_is_meta(rq)) {
810		WARN_ON(!cfqq->meta_pending);
811		cfqq->meta_pending--;
812	}
813}
814
815static int cfq_merge(struct request_queue *q, struct request **req,
816		     struct bio *bio)
817{
818	struct cfq_data *cfqd = q->elevator->elevator_data;
819	struct request *__rq;
820
821	__rq = cfq_find_rq_fmerge(cfqd, bio);
822	if (__rq && elv_rq_merge_ok(__rq, bio)) {
823		*req = __rq;
824		return ELEVATOR_FRONT_MERGE;
825	}
826
827	return ELEVATOR_NO_MERGE;
828}
829
830static void cfq_merged_request(struct request_queue *q, struct request *req,
831			       int type)
832{
833	if (type == ELEVATOR_FRONT_MERGE) {
834		struct cfq_queue *cfqq = RQ_CFQQ(req);
835
836		cfq_reposition_rq_rb(cfqq, req);
837	}
838}
839
840static void
841cfq_merged_requests(struct request_queue *q, struct request *rq,
842		    struct request *next)
843{
844	/*
845	 * reposition in fifo if next is older than rq
846	 */
847	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
848	    time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
849		list_move(&rq->queuelist, &next->queuelist);
850		rq_set_fifo_time(rq, rq_fifo_time(next));
851	}
852
853	cfq_remove_request(next);
854}
855
856static int cfq_allow_merge(struct request_queue *q, struct request *rq,
857			   struct bio *bio)
858{
859	struct cfq_data *cfqd = q->elevator->elevator_data;
860	struct cfq_io_context *cic;
861	struct cfq_queue *cfqq;
862
863	/*
864	 * Disallow merge of a sync bio into an async request.
865	 */
866	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
867		return false;
868
869	/*
870	 * Lookup the cfqq that this bio will be queued with. Allow
871	 * merge only if rq is queued there.
872	 */
873	cic = cfq_cic_lookup(cfqd, current->io_context);
874	if (!cic)
875		return false;
876
877	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
878	return cfqq == RQ_CFQQ(rq);
879}
880
881static void __cfq_set_active_queue(struct cfq_data *cfqd,
882				   struct cfq_queue *cfqq)
883{
884	if (cfqq) {
885		cfq_log_cfqq(cfqd, cfqq, "set_active");
886		cfqq->slice_end = 0;
887		cfqq->slice_dispatch = 0;
888
889		cfq_clear_cfqq_wait_request(cfqq);
890		cfq_clear_cfqq_must_dispatch(cfqq);
891		cfq_clear_cfqq_must_alloc_slice(cfqq);
892		cfq_clear_cfqq_fifo_expire(cfqq);
893		cfq_mark_cfqq_slice_new(cfqq);
894
895		del_timer(&cfqd->idle_slice_timer);
896	}
897
898	cfqd->active_queue = cfqq;
899}
900
901/*
902 * current cfqq expired its slice (or was too idle), select new one
903 */
904static void
905__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
906		    bool timed_out)
907{
908	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
909
910	if (cfq_cfqq_wait_request(cfqq))
911		del_timer(&cfqd->idle_slice_timer);
912
913	cfq_clear_cfqq_wait_request(cfqq);
914
915	/*
916	 * store what was left of this slice, if the queue idled/timed out
917	 */
918	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
919		cfqq->slice_resid = cfqq->slice_end - jiffies;
920		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
921	}
922
923	cfq_resort_rr_list(cfqd, cfqq);
924
925	if (cfqq == cfqd->active_queue)
926		cfqd->active_queue = NULL;
927
928	if (cfqd->active_cic) {
929		put_io_context(cfqd->active_cic->ioc);
930		cfqd->active_cic = NULL;
931	}
932}
933
934static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
935{
936	struct cfq_queue *cfqq = cfqd->active_queue;
937
938	if (cfqq)
939		__cfq_slice_expired(cfqd, cfqq, timed_out);
940}
941
942/*
943 * Get next queue for service. Unless we have a queue preemption,
944 * we'll simply select the first cfqq in the service tree.
945 */
946static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
947{
948	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
949		return NULL;
950
951	return cfq_rb_first(&cfqd->service_tree);
952}
953
954/*
955 * Get and set a new active queue for service.
956 */
957static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
958					      struct cfq_queue *cfqq)
959{
960	if (!cfqq)
961		cfqq = cfq_get_next_queue(cfqd);
962
963	__cfq_set_active_queue(cfqd, cfqq);
964	return cfqq;
965}
966
967static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
968					  struct request *rq)
969{
970	if (blk_rq_pos(rq) >= cfqd->last_position)
971		return blk_rq_pos(rq) - cfqd->last_position;
972	else
973		return cfqd->last_position - blk_rq_pos(rq);
974}
975
976#define CFQQ_SEEK_THR		8 * 1024
977#define CFQQ_SEEKY(cfqq)	((cfqq)->seek_mean > CFQQ_SEEK_THR)
978
979static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
980			       struct request *rq)
981{
982	sector_t sdist = cfqq->seek_mean;
983
984	if (!sample_valid(cfqq->seek_samples))
985		sdist = CFQQ_SEEK_THR;
986
987	return cfq_dist_from_last(cfqd, rq) <= sdist;
988}
989
990static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
991				    struct cfq_queue *cur_cfqq)
992{
993	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
994	struct rb_node *parent, *node;
995	struct cfq_queue *__cfqq;
996	sector_t sector = cfqd->last_position;
997
998	if (RB_EMPTY_ROOT(root))
999		return NULL;
1000
1001	/*
1002	 * First, if we find a request starting at the end of the last
1003	 * request, choose it.
1004	 */
1005	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1006	if (__cfqq)
1007		return __cfqq;
1008
1009	/*
1010	 * If the exact sector wasn't found, the parent of the NULL leaf
1011	 * will contain the closest sector.
1012	 */
1013	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
1014	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1015		return __cfqq;
1016
1017	if (blk_rq_pos(__cfqq->next_rq) < sector)
1018		node = rb_next(&__cfqq->p_node);
1019	else
1020		node = rb_prev(&__cfqq->p_node);
1021	if (!node)
1022		return NULL;
1023
1024	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1025	if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1026		return __cfqq;
1027
1028	return NULL;
1029}
1030
1031/*
1032 * cfqd - obvious
1033 * cur_cfqq - passed in so that we don't decide that the current queue is
1034 * 	      closely cooperating with itself.
1035 *
1036 * So, basically we're assuming that that cur_cfqq has dispatched at least
1037 * one request, and that cfqd->last_position reflects a position on the disk
1038 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1039 * assumption.
1040 */
1041static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1042					      struct cfq_queue *cur_cfqq)
1043{
1044	struct cfq_queue *cfqq;
1045
1046	if (!cfq_cfqq_sync(cur_cfqq))
1047		return NULL;
1048	if (CFQQ_SEEKY(cur_cfqq))
1049		return NULL;
1050
1051	/*
1052	 * We should notice if some of the queues are cooperating, eg
1053	 * working closely on the same area of the disk. In that case,
1054	 * we can group them together and don't waste time idling.
1055	 */
1056	cfqq = cfqq_close(cfqd, cur_cfqq);
1057	if (!cfqq)
1058		return NULL;
1059
1060	/*
1061	 * It only makes sense to merge sync queues.
1062	 */
1063	if (!cfq_cfqq_sync(cfqq))
1064		return NULL;
1065	if (CFQQ_SEEKY(cfqq))
1066		return NULL;
1067
1068	return cfqq;
1069}
1070
1071static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1072{
1073	struct cfq_queue *cfqq = cfqd->active_queue;
1074	struct cfq_io_context *cic;
1075	unsigned long sl;
1076
1077	/*
1078	 * SSD device without seek penalty, disable idling. But only do so
1079	 * for devices that support queuing, otherwise we still have a problem
1080	 * with sync vs async workloads.
1081	 */
1082	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1083		return;
1084
1085	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1086	WARN_ON(cfq_cfqq_slice_new(cfqq));
1087
1088	/*
1089	 * idle is disabled, either manually or by past process history
1090	 */
1091	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1092		return;
1093
1094	/*
1095	 * still requests with the driver, don't idle
1096	 */
1097	if (rq_in_driver(cfqd))
1098		return;
1099
1100	/*
1101	 * task has exited, don't wait
1102	 */
1103	cic = cfqd->active_cic;
1104	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1105		return;
1106
1107	/*
1108	 * If our average think time is larger than the remaining time
1109	 * slice, then don't idle. This avoids overrunning the allotted
1110	 * time slice.
1111	 */
1112	if (sample_valid(cic->ttime_samples) &&
1113	    (cfqq->slice_end - jiffies < cic->ttime_mean))
1114		return;
1115
1116	cfq_mark_cfqq_wait_request(cfqq);
1117
1118	/*
1119	 * we don't want to idle for seeks, but we do want to allow
1120	 * fair distribution of slice time for a process doing back-to-back
1121	 * seeks. so allow a little bit of time for him to submit a new rq
1122	 */
1123	sl = cfqd->cfq_slice_idle;
1124	if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1125		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1126
1127	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1128	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1129}
1130
1131/*
1132 * Move request from internal lists to the request queue dispatch list.
1133 */
1134static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1135{
1136	struct cfq_data *cfqd = q->elevator->elevator_data;
1137	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1138
1139	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1140
1141	cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1142	cfq_remove_request(rq);
1143	cfqq->dispatched++;
1144	elv_dispatch_sort(q, rq);
1145
1146	if (cfq_cfqq_sync(cfqq))
1147		cfqd->sync_flight++;
1148}
1149
1150/*
1151 * return expired entry, or NULL to just start from scratch in rbtree
1152 */
1153static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1154{
1155	struct request *rq = NULL;
1156
1157	if (cfq_cfqq_fifo_expire(cfqq))
1158		return NULL;
1159
1160	cfq_mark_cfqq_fifo_expire(cfqq);
1161
1162	if (list_empty(&cfqq->fifo))
1163		return NULL;
1164
1165	rq = rq_entry_fifo(cfqq->fifo.next);
1166	if (time_before(jiffies, rq_fifo_time(rq)))
1167		rq = NULL;
1168
1169	cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1170	return rq;
1171}
1172
1173static inline int
1174cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1175{
1176	const int base_rq = cfqd->cfq_slice_async_rq;
1177
1178	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1179
1180	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1181}
1182
1183/*
1184 * Must be called with the queue_lock held.
1185 */
1186static int cfqq_process_refs(struct cfq_queue *cfqq)
1187{
1188	int process_refs, io_refs;
1189
1190	io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1191	process_refs = atomic_read(&cfqq->ref) - io_refs;
1192	BUG_ON(process_refs < 0);
1193	return process_refs;
1194}
1195
1196static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1197{
1198	int process_refs, new_process_refs;
1199	struct cfq_queue *__cfqq;
1200
1201	/* Avoid a circular list and skip interim queue merges */
1202	while ((__cfqq = new_cfqq->new_cfqq)) {
1203		if (__cfqq == cfqq)
1204			return;
1205		new_cfqq = __cfqq;
1206	}
1207
1208	process_refs = cfqq_process_refs(cfqq);
1209	/*
1210	 * If the process for the cfqq has gone away, there is no
1211	 * sense in merging the queues.
1212	 */
1213	if (process_refs == 0)
1214		return;
1215
1216	/*
1217	 * Merge in the direction of the lesser amount of work.
1218	 */
1219	new_process_refs = cfqq_process_refs(new_cfqq);
1220	if (new_process_refs >= process_refs) {
1221		cfqq->new_cfqq = new_cfqq;
1222		atomic_add(process_refs, &new_cfqq->ref);
1223	} else {
1224		new_cfqq->new_cfqq = cfqq;
1225		atomic_add(new_process_refs, &cfqq->ref);
1226	}
1227}
1228
1229/*
1230 * Select a queue for service. If we have a current active queue,
1231 * check whether to continue servicing it, or retrieve and set a new one.
1232 */
1233static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1234{
1235	struct cfq_queue *cfqq, *new_cfqq = NULL;
1236
1237	cfqq = cfqd->active_queue;
1238	if (!cfqq)
1239		goto new_queue;
1240
1241	/*
1242	 * The active queue has run out of time, expire it and select new.
1243	 */
1244	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1245		goto expire;
1246
1247	/*
1248	 * The active queue has requests and isn't expired, allow it to
1249	 * dispatch.
1250	 */
1251	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1252		goto keep_queue;
1253
1254	/*
1255	 * If another queue has a request waiting within our mean seek
1256	 * distance, let it run.  The expire code will check for close
1257	 * cooperators and put the close queue at the front of the service
1258	 * tree.  If possible, merge the expiring queue with the new cfqq.
1259	 */
1260	new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1261	if (new_cfqq) {
1262		if (!cfqq->new_cfqq)
1263			cfq_setup_merge(cfqq, new_cfqq);
1264		goto expire;
1265	}
1266
1267	/*
1268	 * No requests pending. If the active queue still has requests in
1269	 * flight or is idling for a new request, allow either of these
1270	 * conditions to happen (or time out) before selecting a new queue.
1271	 */
1272	if (timer_pending(&cfqd->idle_slice_timer) ||
1273	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1274		cfqq = NULL;
1275		goto keep_queue;
1276	}
1277
1278expire:
1279	cfq_slice_expired(cfqd, 0);
1280new_queue:
1281	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1282keep_queue:
1283	return cfqq;
1284}
1285
1286static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1287{
1288	int dispatched = 0;
1289
1290	while (cfqq->next_rq) {
1291		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1292		dispatched++;
1293	}
1294
1295	BUG_ON(!list_empty(&cfqq->fifo));
1296	return dispatched;
1297}
1298
1299/*
1300 * Drain our current requests. Used for barriers and when switching
1301 * io schedulers on-the-fly.
1302 */
1303static int cfq_forced_dispatch(struct cfq_data *cfqd)
1304{
1305	struct cfq_queue *cfqq;
1306	int dispatched = 0;
1307
1308	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1309		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1310
1311	cfq_slice_expired(cfqd, 0);
1312
1313	BUG_ON(cfqd->busy_queues);
1314
1315	cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1316	return dispatched;
1317}
1318
1319static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1320{
1321	unsigned int max_dispatch;
1322
1323	/*
1324	 * Drain async requests before we start sync IO
1325	 */
1326	if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1327		return false;
1328
1329	/*
1330	 * If this is an async queue and we have sync IO in flight, let it wait
1331	 */
1332	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1333		return false;
1334
1335	max_dispatch = cfqd->cfq_quantum;
1336	if (cfq_class_idle(cfqq))
1337		max_dispatch = 1;
1338
1339	/*
1340	 * Does this cfqq already have too much IO in flight?
1341	 */
1342	if (cfqq->dispatched >= max_dispatch) {
1343		/*
1344		 * idle queue must always only have a single IO in flight
1345		 */
1346		if (cfq_class_idle(cfqq))
1347			return false;
1348
1349		/*
1350		 * We have other queues, don't allow more IO from this one
1351		 */
1352		if (cfqd->busy_queues > 1)
1353			return false;
1354
1355		/*
1356		 * Sole queue user, allow bigger slice
1357		 */
1358		max_dispatch *= 4;
1359	}
1360
1361	/*
1362	 * Async queues must wait a bit before being allowed dispatch.
1363	 * We also ramp up the dispatch depth gradually for async IO,
1364	 * based on the last sync IO we serviced
1365	 */
1366	if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1367		unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1368		unsigned int depth;
1369
1370		depth = last_sync / cfqd->cfq_slice[1];
1371		if (!depth && !cfqq->dispatched)
1372			depth = 1;
1373		if (depth < max_dispatch)
1374			max_dispatch = depth;
1375	}
1376
1377	/*
1378	 * If we're below the current max, allow a dispatch
1379	 */
1380	return cfqq->dispatched < max_dispatch;
1381}
1382
1383/*
1384 * Dispatch a request from cfqq, moving them to the request queue
1385 * dispatch list.
1386 */
1387static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1388{
1389	struct request *rq;
1390
1391	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1392
1393	if (!cfq_may_dispatch(cfqd, cfqq))
1394		return false;
1395
1396	/*
1397	 * follow expired path, else get first next available
1398	 */
1399	rq = cfq_check_fifo(cfqq);
1400	if (!rq)
1401		rq = cfqq->next_rq;
1402
1403	/*
1404	 * insert request into driver dispatch list
1405	 */
1406	cfq_dispatch_insert(cfqd->queue, rq);
1407
1408	if (!cfqd->active_cic) {
1409		struct cfq_io_context *cic = RQ_CIC(rq);
1410
1411		atomic_long_inc(&cic->ioc->refcount);
1412		cfqd->active_cic = cic;
1413	}
1414
1415	return true;
1416}
1417
1418/*
1419 * Find the cfqq that we need to service and move a request from that to the
1420 * dispatch list
1421 */
1422static int cfq_dispatch_requests(struct request_queue *q, int force)
1423{
1424	struct cfq_data *cfqd = q->elevator->elevator_data;
1425	struct cfq_queue *cfqq;
1426
1427	if (!cfqd->busy_queues)
1428		return 0;
1429
1430	if (unlikely(force))
1431		return cfq_forced_dispatch(cfqd);
1432
1433	cfqq = cfq_select_queue(cfqd);
1434	if (!cfqq)
1435		return 0;
1436
1437	/*
1438	 * Dispatch a request from this cfqq, if it is allowed
1439	 */
1440	if (!cfq_dispatch_request(cfqd, cfqq))
1441		return 0;
1442
1443	cfqq->slice_dispatch++;
1444	cfq_clear_cfqq_must_dispatch(cfqq);
1445
1446	/*
1447	 * expire an async queue immediately if it has used up its slice. idle
1448	 * queue always expire after 1 dispatch round.
1449	 */
1450	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1451	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1452	    cfq_class_idle(cfqq))) {
1453		cfqq->slice_end = jiffies + 1;
1454		cfq_slice_expired(cfqd, 0);
1455	}
1456
1457	cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1458	return 1;
1459}
1460
1461/*
1462 * task holds one reference to the queue, dropped when task exits. each rq
1463 * in-flight on this queue also holds a reference, dropped when rq is freed.
1464 *
1465 * queue lock must be held here.
1466 */
1467static void cfq_put_queue(struct cfq_queue *cfqq)
1468{
1469	struct cfq_data *cfqd = cfqq->cfqd;
1470
1471	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1472
1473	if (!atomic_dec_and_test(&cfqq->ref))
1474		return;
1475
1476	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1477	BUG_ON(rb_first(&cfqq->sort_list));
1478	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1479	BUG_ON(cfq_cfqq_on_rr(cfqq));
1480
1481	if (unlikely(cfqd->active_queue == cfqq)) {
1482		__cfq_slice_expired(cfqd, cfqq, 0);
1483		cfq_schedule_dispatch(cfqd);
1484	}
1485
1486	kmem_cache_free(cfq_pool, cfqq);
1487}
1488
1489/*
1490 * Must always be called with the rcu_read_lock() held
1491 */
1492static void
1493__call_for_each_cic(struct io_context *ioc,
1494		    void (*func)(struct io_context *, struct cfq_io_context *))
1495{
1496	struct cfq_io_context *cic;
1497	struct hlist_node *n;
1498
1499	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1500		func(ioc, cic);
1501}
1502
1503/*
1504 * Call func for each cic attached to this ioc.
1505 */
1506static void
1507call_for_each_cic(struct io_context *ioc,
1508		  void (*func)(struct io_context *, struct cfq_io_context *))
1509{
1510	rcu_read_lock();
1511	__call_for_each_cic(ioc, func);
1512	rcu_read_unlock();
1513}
1514
1515static void cfq_cic_free_rcu(struct rcu_head *head)
1516{
1517	struct cfq_io_context *cic;
1518
1519	cic = container_of(head, struct cfq_io_context, rcu_head);
1520
1521	kmem_cache_free(cfq_ioc_pool, cic);
1522	elv_ioc_count_dec(cfq_ioc_count);
1523
1524	if (ioc_gone) {
1525		/*
1526		 * CFQ scheduler is exiting, grab exit lock and check
1527		 * the pending io context count. If it hits zero,
1528		 * complete ioc_gone and set it back to NULL
1529		 */
1530		spin_lock(&ioc_gone_lock);
1531		if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1532			complete(ioc_gone);
1533			ioc_gone = NULL;
1534		}
1535		spin_unlock(&ioc_gone_lock);
1536	}
1537}
1538
1539static void cfq_cic_free(struct cfq_io_context *cic)
1540{
1541	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1542}
1543
1544static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1545{
1546	unsigned long flags;
1547
1548	BUG_ON(!cic->dead_key);
1549
1550	spin_lock_irqsave(&ioc->lock, flags);
1551	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1552	hlist_del_rcu(&cic->cic_list);
1553	spin_unlock_irqrestore(&ioc->lock, flags);
1554
1555	cfq_cic_free(cic);
1556}
1557
1558/*
1559 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1560 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1561 * and ->trim() which is called with the task lock held
1562 */
1563static void cfq_free_io_context(struct io_context *ioc)
1564{
1565	/*
1566	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1567	 * so no more cic's are allowed to be linked into this ioc.  So it
1568	 * should be ok to iterate over the known list, we will see all cic's
1569	 * since no new ones are added.
1570	 */
1571	__call_for_each_cic(ioc, cic_free_func);
1572}
1573
1574static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1575{
1576	struct cfq_queue *__cfqq, *next;
1577
1578	if (unlikely(cfqq == cfqd->active_queue)) {
1579		__cfq_slice_expired(cfqd, cfqq, 0);
1580		cfq_schedule_dispatch(cfqd);
1581	}
1582
1583	/*
1584	 * If this queue was scheduled to merge with another queue, be
1585	 * sure to drop the reference taken on that queue (and others in
1586	 * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1587	 */
1588	__cfqq = cfqq->new_cfqq;
1589	while (__cfqq) {
1590		if (__cfqq == cfqq) {
1591			WARN(1, "cfqq->new_cfqq loop detected\n");
1592			break;
1593		}
1594		next = __cfqq->new_cfqq;
1595		cfq_put_queue(__cfqq);
1596		__cfqq = next;
1597	}
1598
1599	cfq_put_queue(cfqq);
1600}
1601
1602static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1603					 struct cfq_io_context *cic)
1604{
1605	struct io_context *ioc = cic->ioc;
1606
1607	list_del_init(&cic->queue_list);
1608
1609	/*
1610	 * Make sure key == NULL is seen for dead queues
1611	 */
1612	smp_wmb();
1613	cic->dead_key = (unsigned long) cic->key;
1614	cic->key = NULL;
1615
1616	if (ioc->ioc_data == cic)
1617		rcu_assign_pointer(ioc->ioc_data, NULL);
1618
1619	if (cic->cfqq[BLK_RW_ASYNC]) {
1620		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1621		cic->cfqq[BLK_RW_ASYNC] = NULL;
1622	}
1623
1624	if (cic->cfqq[BLK_RW_SYNC]) {
1625		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1626		cic->cfqq[BLK_RW_SYNC] = NULL;
1627	}
1628}
1629
1630static void cfq_exit_single_io_context(struct io_context *ioc,
1631				       struct cfq_io_context *cic)
1632{
1633	struct cfq_data *cfqd = cic->key;
1634
1635	if (cfqd) {
1636		struct request_queue *q = cfqd->queue;
1637		unsigned long flags;
1638
1639		spin_lock_irqsave(q->queue_lock, flags);
1640
1641		/*
1642		 * Ensure we get a fresh copy of the ->key to prevent
1643		 * race between exiting task and queue
1644		 */
1645		smp_read_barrier_depends();
1646		if (cic->key)
1647			__cfq_exit_single_io_context(cfqd, cic);
1648
1649		spin_unlock_irqrestore(q->queue_lock, flags);
1650	}
1651}
1652
1653/*
1654 * The process that ioc belongs to has exited, we need to clean up
1655 * and put the internal structures we have that belongs to that process.
1656 */
1657static void cfq_exit_io_context(struct io_context *ioc)
1658{
1659	call_for_each_cic(ioc, cfq_exit_single_io_context);
1660}
1661
1662static struct cfq_io_context *
1663cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1664{
1665	struct cfq_io_context *cic;
1666
1667	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1668							cfqd->queue->node);
1669	if (cic) {
1670		cic->last_end_request = jiffies;
1671		INIT_LIST_HEAD(&cic->queue_list);
1672		INIT_HLIST_NODE(&cic->cic_list);
1673		cic->dtor = cfq_free_io_context;
1674		cic->exit = cfq_exit_io_context;
1675		elv_ioc_count_inc(cfq_ioc_count);
1676	}
1677
1678	return cic;
1679}
1680
1681static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1682{
1683	struct task_struct *tsk = current;
1684	int ioprio_class;
1685
1686	if (!cfq_cfqq_prio_changed(cfqq))
1687		return;
1688
1689	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1690	switch (ioprio_class) {
1691	default:
1692		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1693	case IOPRIO_CLASS_NONE:
1694		/*
1695		 * no prio set, inherit CPU scheduling settings
1696		 */
1697		cfqq->ioprio = task_nice_ioprio(tsk);
1698		cfqq->ioprio_class = task_nice_ioclass(tsk);
1699		break;
1700	case IOPRIO_CLASS_RT:
1701		cfqq->ioprio = task_ioprio(ioc);
1702		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1703		break;
1704	case IOPRIO_CLASS_BE:
1705		cfqq->ioprio = task_ioprio(ioc);
1706		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1707		break;
1708	case IOPRIO_CLASS_IDLE:
1709		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1710		cfqq->ioprio = 7;
1711		cfq_clear_cfqq_idle_window(cfqq);
1712		break;
1713	}
1714
1715	/*
1716	 * keep track of original prio settings in case we have to temporarily
1717	 * elevate the priority of this queue
1718	 */
1719	cfqq->org_ioprio = cfqq->ioprio;
1720	cfqq->org_ioprio_class = cfqq->ioprio_class;
1721	cfq_clear_cfqq_prio_changed(cfqq);
1722}
1723
1724static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1725{
1726	struct cfq_data *cfqd = cic->key;
1727	struct cfq_queue *cfqq;
1728	unsigned long flags;
1729
1730	if (unlikely(!cfqd))
1731		return;
1732
1733	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1734
1735	cfqq = cic->cfqq[BLK_RW_ASYNC];
1736	if (cfqq) {
1737		struct cfq_queue *new_cfqq;
1738		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1739						GFP_ATOMIC);
1740		if (new_cfqq) {
1741			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1742			cfq_put_queue(cfqq);
1743		}
1744	}
1745
1746	cfqq = cic->cfqq[BLK_RW_SYNC];
1747	if (cfqq)
1748		cfq_mark_cfqq_prio_changed(cfqq);
1749
1750	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1751}
1752
1753static void cfq_ioc_set_ioprio(struct io_context *ioc)
1754{
1755	call_for_each_cic(ioc, changed_ioprio);
1756	ioc->ioprio_changed = 0;
1757}
1758
1759static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1760			  pid_t pid, bool is_sync)
1761{
1762	RB_CLEAR_NODE(&cfqq->rb_node);
1763	RB_CLEAR_NODE(&cfqq->p_node);
1764	INIT_LIST_HEAD(&cfqq->fifo);
1765
1766	atomic_set(&cfqq->ref, 0);
1767	cfqq->cfqd = cfqd;
1768
1769	cfq_mark_cfqq_prio_changed(cfqq);
1770
1771	if (is_sync) {
1772		if (!cfq_class_idle(cfqq))
1773			cfq_mark_cfqq_idle_window(cfqq);
1774		cfq_mark_cfqq_sync(cfqq);
1775	}
1776	cfqq->pid = pid;
1777}
1778
1779static struct cfq_queue *
1780cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1781		     struct io_context *ioc, gfp_t gfp_mask)
1782{
1783	struct cfq_queue *cfqq, *new_cfqq = NULL;
1784	struct cfq_io_context *cic;
1785
1786retry:
1787	cic = cfq_cic_lookup(cfqd, ioc);
1788	/* cic always exists here */
1789	cfqq = cic_to_cfqq(cic, is_sync);
1790
1791	/*
1792	 * Always try a new alloc if we fell back to the OOM cfqq
1793	 * originally, since it should just be a temporary situation.
1794	 */
1795	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1796		cfqq = NULL;
1797		if (new_cfqq) {
1798			cfqq = new_cfqq;
1799			new_cfqq = NULL;
1800		} else if (gfp_mask & __GFP_WAIT) {
1801			spin_unlock_irq(cfqd->queue->queue_lock);
1802			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1803					gfp_mask | __GFP_ZERO,
1804					cfqd->queue->node);
1805			spin_lock_irq(cfqd->queue->queue_lock);
1806			if (new_cfqq)
1807				goto retry;
1808		} else {
1809			cfqq = kmem_cache_alloc_node(cfq_pool,
1810					gfp_mask | __GFP_ZERO,
1811					cfqd->queue->node);
1812		}
1813
1814		if (cfqq) {
1815			cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1816			cfq_init_prio_data(cfqq, ioc);
1817			cfq_log_cfqq(cfqd, cfqq, "alloced");
1818		} else
1819			cfqq = &cfqd->oom_cfqq;
1820	}
1821
1822	if (new_cfqq)
1823		kmem_cache_free(cfq_pool, new_cfqq);
1824
1825	return cfqq;
1826}
1827
1828static struct cfq_queue **
1829cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1830{
1831	switch (ioprio_class) {
1832	case IOPRIO_CLASS_RT:
1833		return &cfqd->async_cfqq[0][ioprio];
1834	case IOPRIO_CLASS_BE:
1835		return &cfqd->async_cfqq[1][ioprio];
1836	case IOPRIO_CLASS_IDLE:
1837		return &cfqd->async_idle_cfqq;
1838	default:
1839		BUG();
1840	}
1841}
1842
1843static struct cfq_queue *
1844cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1845	      gfp_t gfp_mask)
1846{
1847	const int ioprio = task_ioprio(ioc);
1848	const int ioprio_class = task_ioprio_class(ioc);
1849	struct cfq_queue **async_cfqq = NULL;
1850	struct cfq_queue *cfqq = NULL;
1851
1852	if (!is_sync) {
1853		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1854		cfqq = *async_cfqq;
1855	}
1856
1857	if (!cfqq)
1858		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1859
1860	/*
1861	 * pin the queue now that it's allocated, scheduler exit will prune it
1862	 */
1863	if (!is_sync && !(*async_cfqq)) {
1864		atomic_inc(&cfqq->ref);
1865		*async_cfqq = cfqq;
1866	}
1867
1868	atomic_inc(&cfqq->ref);
1869	return cfqq;
1870}
1871
1872/*
1873 * We drop cfq io contexts lazily, so we may find a dead one.
1874 */
1875static void
1876cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1877		  struct cfq_io_context *cic)
1878{
1879	unsigned long flags;
1880
1881	WARN_ON(!list_empty(&cic->queue_list));
1882
1883	spin_lock_irqsave(&ioc->lock, flags);
1884
1885	BUG_ON(ioc->ioc_data == cic);
1886
1887	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1888	hlist_del_rcu(&cic->cic_list);
1889	spin_unlock_irqrestore(&ioc->lock, flags);
1890
1891	cfq_cic_free(cic);
1892}
1893
1894static struct cfq_io_context *
1895cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1896{
1897	struct cfq_io_context *cic;
1898	unsigned long flags;
1899	void *k;
1900
1901	if (unlikely(!ioc))
1902		return NULL;
1903
1904	rcu_read_lock();
1905
1906	/*
1907	 * we maintain a last-hit cache, to avoid browsing over the tree
1908	 */
1909	cic = rcu_dereference(ioc->ioc_data);
1910	if (cic && cic->key == cfqd) {
1911		rcu_read_unlock();
1912		return cic;
1913	}
1914
1915	do {
1916		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1917		rcu_read_unlock();
1918		if (!cic)
1919			break;
1920		/* ->key must be copied to avoid race with cfq_exit_queue() */
1921		k = cic->key;
1922		if (unlikely(!k)) {
1923			cfq_drop_dead_cic(cfqd, ioc, cic);
1924			rcu_read_lock();
1925			continue;
1926		}
1927
1928		spin_lock_irqsave(&ioc->lock, flags);
1929		rcu_assign_pointer(ioc->ioc_data, cic);
1930		spin_unlock_irqrestore(&ioc->lock, flags);
1931		break;
1932	} while (1);
1933
1934	return cic;
1935}
1936
1937/*
1938 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1939 * the process specific cfq io context when entered from the block layer.
1940 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1941 */
1942static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1943			struct cfq_io_context *cic, gfp_t gfp_mask)
1944{
1945	unsigned long flags;
1946	int ret;
1947
1948	ret = radix_tree_preload(gfp_mask);
1949	if (!ret) {
1950		cic->ioc = ioc;
1951		cic->key = cfqd;
1952
1953		spin_lock_irqsave(&ioc->lock, flags);
1954		ret = radix_tree_insert(&ioc->radix_root,
1955						(unsigned long) cfqd, cic);
1956		if (!ret)
1957			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1958		spin_unlock_irqrestore(&ioc->lock, flags);
1959
1960		radix_tree_preload_end();
1961
1962		if (!ret) {
1963			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1964			list_add(&cic->queue_list, &cfqd->cic_list);
1965			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1966		}
1967	}
1968
1969	if (ret)
1970		printk(KERN_ERR "cfq: cic link failed!\n");
1971
1972	return ret;
1973}
1974
1975/*
1976 * Setup general io context and cfq io context. There can be several cfq
1977 * io contexts per general io context, if this process is doing io to more
1978 * than one device managed by cfq.
1979 */
1980static struct cfq_io_context *
1981cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1982{
1983	struct io_context *ioc = NULL;
1984	struct cfq_io_context *cic;
1985
1986	might_sleep_if(gfp_mask & __GFP_WAIT);
1987
1988	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1989	if (!ioc)
1990		return NULL;
1991
1992	cic = cfq_cic_lookup(cfqd, ioc);
1993	if (cic)
1994		goto out;
1995
1996	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1997	if (cic == NULL)
1998		goto err;
1999
2000	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2001		goto err_free;
2002
2003out:
2004	smp_read_barrier_depends();
2005	if (unlikely(ioc->ioprio_changed))
2006		cfq_ioc_set_ioprio(ioc);
2007
2008	return cic;
2009err_free:
2010	cfq_cic_free(cic);
2011err:
2012	put_io_context(ioc);
2013	return NULL;
2014}
2015
2016static void
2017cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2018{
2019	unsigned long elapsed = jiffies - cic->last_end_request;
2020	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2021
2022	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2023	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2024	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2025}
2026
2027static void
2028cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2029		       struct request *rq)
2030{
2031	sector_t sdist;
2032	u64 total;
2033
2034	if (!cfqq->last_request_pos)
2035		sdist = 0;
2036	else if (cfqq->last_request_pos < blk_rq_pos(rq))
2037		sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2038	else
2039		sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2040
2041	/*
2042	 * Don't allow the seek distance to get too large from the
2043	 * odd fragment, pagein, etc
2044	 */
2045	if (cfqq->seek_samples <= 60) /* second&third seek */
2046		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2047	else
2048		sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2049
2050	cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2051	cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2052	total = cfqq->seek_total + (cfqq->seek_samples/2);
2053	do_div(total, cfqq->seek_samples);
2054	cfqq->seek_mean = (sector_t)total;
2055
2056	/*
2057	 * If this cfqq is shared between multiple processes, check to
2058	 * make sure that those processes are still issuing I/Os within
2059	 * the mean seek distance.  If not, it may be time to break the
2060	 * queues apart again.
2061	 */
2062	if (cfq_cfqq_coop(cfqq)) {
2063		if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2064			cfqq->seeky_start = jiffies;
2065		else if (!CFQQ_SEEKY(cfqq))
2066			cfqq->seeky_start = 0;
2067	}
2068}
2069
2070/*
2071 * Disable idle window if the process thinks too long or seeks so much that
2072 * it doesn't matter
2073 */
2074static void
2075cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2076		       struct cfq_io_context *cic)
2077{
2078	int old_idle, enable_idle;
2079
2080	/*
2081	 * Don't idle for async or idle io prio class
2082	 */
2083	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2084		return;
2085
2086	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2087
2088	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2089	    (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
2090		enable_idle = 0;
2091	else if (sample_valid(cic->ttime_samples)) {
2092		unsigned int slice_idle = cfqd->cfq_slice_idle;
2093		if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2094			slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2095		if (cic->ttime_mean > slice_idle)
2096			enable_idle = 0;
2097		else
2098			enable_idle = 1;
2099	}
2100
2101	if (old_idle != enable_idle) {
2102		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2103		if (enable_idle)
2104			cfq_mark_cfqq_idle_window(cfqq);
2105		else
2106			cfq_clear_cfqq_idle_window(cfqq);
2107	}
2108}
2109
2110/*
2111 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2112 * no or if we aren't sure, a 1 will cause a preempt.
2113 */
2114static bool
2115cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2116		   struct request *rq)
2117{
2118	struct cfq_queue *cfqq;
2119
2120	cfqq = cfqd->active_queue;
2121	if (!cfqq)
2122		return false;
2123
2124	if (cfq_slice_used(cfqq))
2125		return true;
2126
2127	if (cfq_class_idle(new_cfqq))
2128		return false;
2129
2130	if (cfq_class_idle(cfqq))
2131		return true;
2132
2133	/*
2134	 * if the new request is sync, but the currently running queue is
2135	 * not, let the sync request have priority.
2136	 */
2137	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2138		return true;
2139
2140	/*
2141	 * So both queues are sync. Let the new request get disk time if
2142	 * it's a metadata request and the current queue is doing regular IO.
2143	 */
2144	if (rq_is_meta(rq) && !cfqq->meta_pending)
2145		return false;
2146
2147	/*
2148	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2149	 */
2150	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2151		return true;
2152
2153	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2154		return false;
2155
2156	/*
2157	 * if this request is as-good as one we would expect from the
2158	 * current cfqq, let it preempt
2159	 */
2160	if (cfq_rq_close(cfqd, cfqq, rq))
2161		return true;
2162
2163	return false;
2164}
2165
2166/*
2167 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2168 * let it have half of its nominal slice.
2169 */
2170static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2171{
2172	cfq_log_cfqq(cfqd, cfqq, "preempt");
2173	cfq_slice_expired(cfqd, 1);
2174
2175	/*
2176	 * Put the new queue at the front of the of the current list,
2177	 * so we know that it will be selected next.
2178	 */
2179	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2180
2181	cfq_service_tree_add(cfqd, cfqq, 1);
2182
2183	cfqq->slice_end = 0;
2184	cfq_mark_cfqq_slice_new(cfqq);
2185}
2186
2187/*
2188 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2189 * something we should do about it
2190 */
2191static void
2192cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2193		struct request *rq)
2194{
2195	struct cfq_io_context *cic = RQ_CIC(rq);
2196
2197	cfqd->rq_queued++;
2198	if (rq_is_meta(rq))
2199		cfqq->meta_pending++;
2200
2201	cfq_update_io_thinktime(cfqd, cic);
2202	cfq_update_io_seektime(cfqd, cfqq, rq);
2203	cfq_update_idle_window(cfqd, cfqq, cic);
2204
2205	cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2206
2207	if (cfqq == cfqd->active_queue) {
2208		/*
2209		 * Remember that we saw a request from this process, but
2210		 * don't start queuing just yet. Otherwise we risk seeing lots
2211		 * of tiny requests, because we disrupt the normal plugging
2212		 * and merging. If the request is already larger than a single
2213		 * page, let it rip immediately. For that case we assume that
2214		 * merging is already done. Ditto for a busy system that
2215		 * has other work pending, don't risk delaying until the
2216		 * idle timer unplug to continue working.
2217		 */
2218		if (cfq_cfqq_wait_request(cfqq)) {
2219			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2220			    cfqd->busy_queues > 1) {
2221				del_timer(&cfqd->idle_slice_timer);
2222			__blk_run_queue(cfqd->queue);
2223			}
2224			cfq_mark_cfqq_must_dispatch(cfqq);
2225		}
2226	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2227		/*
2228		 * not the active queue - expire current slice if it is
2229		 * idle and has expired it's mean thinktime or this new queue
2230		 * has some old slice time left and is of higher priority or
2231		 * this new queue is RT and the current one is BE
2232		 */
2233		cfq_preempt_queue(cfqd, cfqq);
2234		__blk_run_queue(cfqd->queue);
2235	}
2236}
2237
2238static void cfq_insert_request(struct request_queue *q, struct request *rq)
2239{
2240	struct cfq_data *cfqd = q->elevator->elevator_data;
2241	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2242
2243	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2244	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2245
2246	cfq_add_rq_rb(rq);
2247
2248	rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2249	list_add_tail(&rq->queuelist, &cfqq->fifo);
2250
2251	cfq_rq_enqueued(cfqd, cfqq, rq);
2252}
2253
2254/*
2255 * Update hw_tag based on peak queue depth over 50 samples under
2256 * sufficient load.
2257 */
2258static void cfq_update_hw_tag(struct cfq_data *cfqd)
2259{
2260	if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2261		cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2262
2263	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2264	    rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2265		return;
2266
2267	if (cfqd->hw_tag_samples++ < 50)
2268		return;
2269
2270	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2271		cfqd->hw_tag = 1;
2272	else
2273		cfqd->hw_tag = 0;
2274
2275	cfqd->hw_tag_samples = 0;
2276	cfqd->rq_in_driver_peak = 0;
2277}
2278
2279static void cfq_completed_request(struct request_queue *q, struct request *rq)
2280{
2281	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2282	struct cfq_data *cfqd = cfqq->cfqd;
2283	const int sync = rq_is_sync(rq);
2284	unsigned long now;
2285
2286	now = jiffies;
2287	cfq_log_cfqq(cfqd, cfqq, "complete");
2288
2289	cfq_update_hw_tag(cfqd);
2290
2291	WARN_ON(!cfqd->rq_in_driver[sync]);
2292	WARN_ON(!cfqq->dispatched);
2293	cfqd->rq_in_driver[sync]--;
2294	cfqq->dispatched--;
2295
2296	if (cfq_cfqq_sync(cfqq))
2297		cfqd->sync_flight--;
2298
2299	if (sync) {
2300		RQ_CIC(rq)->last_end_request = now;
2301		cfqd->last_end_sync_rq = now;
2302	}
2303
2304	/*
2305	 * If this is the active queue, check if it needs to be expired,
2306	 * or if we want to idle in case it has no pending requests.
2307	 */
2308	if (cfqd->active_queue == cfqq) {
2309		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2310
2311		if (cfq_cfqq_slice_new(cfqq)) {
2312			cfq_set_prio_slice(cfqd, cfqq);
2313			cfq_clear_cfqq_slice_new(cfqq);
2314		}
2315		/*
2316		 * If there are no requests waiting in this queue, and
2317		 * there are other queues ready to issue requests, AND
2318		 * those other queues are issuing requests within our
2319		 * mean seek distance, give them a chance to run instead
2320		 * of idling.
2321		 */
2322		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2323			cfq_slice_expired(cfqd, 1);
2324		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2325			 sync && !rq_noidle(rq))
2326			cfq_arm_slice_timer(cfqd);
2327	}
2328
2329	if (!rq_in_driver(cfqd))
2330		cfq_schedule_dispatch(cfqd);
2331}
2332
2333/*
2334 * we temporarily boost lower priority queues if they are holding fs exclusive
2335 * resources. they are boosted to normal prio (CLASS_BE/4)
2336 */
2337static void cfq_prio_boost(struct cfq_queue *cfqq)
2338{
2339	if (has_fs_excl()) {
2340		/*
2341		 * boost idle prio on transactions that would lock out other
2342		 * users of the filesystem
2343		 */
2344		if (cfq_class_idle(cfqq))
2345			cfqq->ioprio_class = IOPRIO_CLASS_BE;
2346		if (cfqq->ioprio > IOPRIO_NORM)
2347			cfqq->ioprio = IOPRIO_NORM;
2348	} else {
2349		/*
2350		 * check if we need to unboost the queue
2351		 */
2352		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2353			cfqq->ioprio_class = cfqq->org_ioprio_class;
2354		if (cfqq->ioprio != cfqq->org_ioprio)
2355			cfqq->ioprio = cfqq->org_ioprio;
2356	}
2357}
2358
2359static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2360{
2361	if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2362		cfq_mark_cfqq_must_alloc_slice(cfqq);
2363		return ELV_MQUEUE_MUST;
2364	}
2365
2366	return ELV_MQUEUE_MAY;
2367}
2368
2369static int cfq_may_queue(struct request_queue *q, int rw)
2370{
2371	struct cfq_data *cfqd = q->elevator->elevator_data;
2372	struct task_struct *tsk = current;
2373	struct cfq_io_context *cic;
2374	struct cfq_queue *cfqq;
2375
2376	/*
2377	 * don't force setup of a queue from here, as a call to may_queue
2378	 * does not necessarily imply that a request actually will be queued.
2379	 * so just lookup a possibly existing queue, or return 'may queue'
2380	 * if that fails
2381	 */
2382	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2383	if (!cic)
2384		return ELV_MQUEUE_MAY;
2385
2386	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2387	if (cfqq) {
2388		cfq_init_prio_data(cfqq, cic->ioc);
2389		cfq_prio_boost(cfqq);
2390
2391		return __cfq_may_queue(cfqq);
2392	}
2393
2394	return ELV_MQUEUE_MAY;
2395}
2396
2397/*
2398 * queue lock held here
2399 */
2400static void cfq_put_request(struct request *rq)
2401{
2402	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2403
2404	if (cfqq) {
2405		const int rw = rq_data_dir(rq);
2406
2407		BUG_ON(!cfqq->allocated[rw]);
2408		cfqq->allocated[rw]--;
2409
2410		put_io_context(RQ_CIC(rq)->ioc);
2411
2412		rq->elevator_private = NULL;
2413		rq->elevator_private2 = NULL;
2414
2415		cfq_put_queue(cfqq);
2416	}
2417}
2418
2419static struct cfq_queue *
2420cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2421		struct cfq_queue *cfqq)
2422{
2423	cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2424	cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2425	cfq_mark_cfqq_coop(cfqq->new_cfqq);
2426	cfq_put_queue(cfqq);
2427	return cic_to_cfqq(cic, 1);
2428}
2429
2430static int should_split_cfqq(struct cfq_queue *cfqq)
2431{
2432	if (cfqq->seeky_start &&
2433	    time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2434		return 1;
2435	return 0;
2436}
2437
2438/*
2439 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2440 * was the last process referring to said cfqq.
2441 */
2442static struct cfq_queue *
2443split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2444{
2445	if (cfqq_process_refs(cfqq) == 1) {
2446		cfqq->seeky_start = 0;
2447		cfqq->pid = current->pid;
2448		cfq_clear_cfqq_coop(cfqq);
2449		return cfqq;
2450	}
2451
2452	cic_set_cfqq(cic, NULL, 1);
2453	cfq_put_queue(cfqq);
2454	return NULL;
2455}
2456/*
2457 * Allocate cfq data structures associated with this request.
2458 */
2459static int
2460cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2461{
2462	struct cfq_data *cfqd = q->elevator->elevator_data;
2463	struct cfq_io_context *cic;
2464	const int rw = rq_data_dir(rq);
2465	const bool is_sync = rq_is_sync(rq);
2466	struct cfq_queue *cfqq;
2467	unsigned long flags;
2468
2469	might_sleep_if(gfp_mask & __GFP_WAIT);
2470
2471	cic = cfq_get_io_context(cfqd, gfp_mask);
2472
2473	spin_lock_irqsave(q->queue_lock, flags);
2474
2475	if (!cic)
2476		goto queue_fail;
2477
2478new_queue:
2479	cfqq = cic_to_cfqq(cic, is_sync);
2480	if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2481		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2482		cic_set_cfqq(cic, cfqq, is_sync);
2483	} else {
2484		/*
2485		 * If the queue was seeky for too long, break it apart.
2486		 */
2487		if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2488			cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2489			cfqq = split_cfqq(cic, cfqq);
2490			if (!cfqq)
2491				goto new_queue;
2492		}
2493
2494		/*
2495		 * Check to see if this queue is scheduled to merge with
2496		 * another, closely cooperating queue.  The merging of
2497		 * queues happens here as it must be done in process context.
2498		 * The reference on new_cfqq was taken in merge_cfqqs.
2499		 */
2500		if (cfqq->new_cfqq)
2501			cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2502	}
2503
2504	cfqq->allocated[rw]++;
2505	atomic_inc(&cfqq->ref);
2506
2507	spin_unlock_irqrestore(q->queue_lock, flags);
2508
2509	rq->elevator_private = cic;
2510	rq->elevator_private2 = cfqq;
2511	return 0;
2512
2513queue_fail:
2514	if (cic)
2515		put_io_context(cic->ioc);
2516
2517	cfq_schedule_dispatch(cfqd);
2518	spin_unlock_irqrestore(q->queue_lock, flags);
2519	cfq_log(cfqd, "set_request fail");
2520	return 1;
2521}
2522
2523static void cfq_kick_queue(struct work_struct *work)
2524{
2525	struct cfq_data *cfqd =
2526		container_of(work, struct cfq_data, unplug_work);
2527	struct request_queue *q = cfqd->queue;
2528
2529	spin_lock_irq(q->queue_lock);
2530	__blk_run_queue(cfqd->queue);
2531	spin_unlock_irq(q->queue_lock);
2532}
2533
2534/*
2535 * Timer running if the active_queue is currently idling inside its time slice
2536 */
2537static void cfq_idle_slice_timer(unsigned long data)
2538{
2539	struct cfq_data *cfqd = (struct cfq_data *) data;
2540	struct cfq_queue *cfqq;
2541	unsigned long flags;
2542	int timed_out = 1;
2543
2544	cfq_log(cfqd, "idle timer fired");
2545
2546	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2547
2548	cfqq = cfqd->active_queue;
2549	if (cfqq) {
2550		timed_out = 0;
2551
2552		/*
2553		 * We saw a request before the queue expired, let it through
2554		 */
2555		if (cfq_cfqq_must_dispatch(cfqq))
2556			goto out_kick;
2557
2558		/*
2559		 * expired
2560		 */
2561		if (cfq_slice_used(cfqq))
2562			goto expire;
2563
2564		/*
2565		 * only expire and reinvoke request handler, if there are
2566		 * other queues with pending requests
2567		 */
2568		if (!cfqd->busy_queues)
2569			goto out_cont;
2570
2571		/*
2572		 * not expired and it has a request pending, let it dispatch
2573		 */
2574		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2575			goto out_kick;
2576	}
2577expire:
2578	cfq_slice_expired(cfqd, timed_out);
2579out_kick:
2580	cfq_schedule_dispatch(cfqd);
2581out_cont:
2582	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2583}
2584
2585static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2586{
2587	del_timer_sync(&cfqd->idle_slice_timer);
2588	cancel_work_sync(&cfqd->unplug_work);
2589}
2590
2591static void cfq_put_async_queues(struct cfq_data *cfqd)
2592{
2593	int i;
2594
2595	for (i = 0; i < IOPRIO_BE_NR; i++) {
2596		if (cfqd->async_cfqq[0][i])
2597			cfq_put_queue(cfqd->async_cfqq[0][i]);
2598		if (cfqd->async_cfqq[1][i])
2599			cfq_put_queue(cfqd->async_cfqq[1][i]);
2600	}
2601
2602	if (cfqd->async_idle_cfqq)
2603		cfq_put_queue(cfqd->async_idle_cfqq);
2604}
2605
2606static void cfq_exit_queue(struct elevator_queue *e)
2607{
2608	struct cfq_data *cfqd = e->elevator_data;
2609	struct request_queue *q = cfqd->queue;
2610
2611	cfq_shutdown_timer_wq(cfqd);
2612
2613	spin_lock_irq(q->queue_lock);
2614
2615	if (cfqd->active_queue)
2616		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2617
2618	while (!list_empty(&cfqd->cic_list)) {
2619		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2620							struct cfq_io_context,
2621							queue_list);
2622
2623		__cfq_exit_single_io_context(cfqd, cic);
2624	}
2625
2626	cfq_put_async_queues(cfqd);
2627
2628	spin_unlock_irq(q->queue_lock);
2629
2630	cfq_shutdown_timer_wq(cfqd);
2631
2632	kfree(cfqd);
2633}
2634
2635static void *cfq_init_queue(struct request_queue *q)
2636{
2637	struct cfq_data *cfqd;
2638	int i;
2639
2640	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2641	if (!cfqd)
2642		return NULL;
2643
2644	cfqd->service_tree = CFQ_RB_ROOT;
2645
2646	/*
2647	 * Not strictly needed (since RB_ROOT just clears the node and we
2648	 * zeroed cfqd on alloc), but better be safe in case someone decides
2649	 * to add magic to the rb code
2650	 */
2651	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2652		cfqd->prio_trees[i] = RB_ROOT;
2653
2654	/*
2655	 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2656	 * Grab a permanent reference to it, so that the normal code flow
2657	 * will not attempt to free it.
2658	 */
2659	cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2660	atomic_inc(&cfqd->oom_cfqq.ref);
2661
2662	INIT_LIST_HEAD(&cfqd->cic_list);
2663
2664	cfqd->queue = q;
2665
2666	init_timer(&cfqd->idle_slice_timer);
2667	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2668	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2669
2670	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2671
2672	cfqd->cfq_quantum = cfq_quantum;
2673	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2674	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2675	cfqd->cfq_back_max = cfq_back_max;
2676	cfqd->cfq_back_penalty = cfq_back_penalty;
2677	cfqd->cfq_slice[0] = cfq_slice_async;
2678	cfqd->cfq_slice[1] = cfq_slice_sync;
2679	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2680	cfqd->cfq_slice_idle = cfq_slice_idle;
2681	cfqd->cfq_latency = 1;
2682	cfqd->hw_tag = 1;
2683	cfqd->last_end_sync_rq = jiffies;
2684	return cfqd;
2685}
2686
2687static void cfq_slab_kill(void)
2688{
2689	/*
2690	 * Caller already ensured that pending RCU callbacks are completed,
2691	 * so we should have no busy allocations at this point.
2692	 */
2693	if (cfq_pool)
2694		kmem_cache_destroy(cfq_pool);
2695	if (cfq_ioc_pool)
2696		kmem_cache_destroy(cfq_ioc_pool);
2697}
2698
2699static int __init cfq_slab_setup(void)
2700{
2701	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2702	if (!cfq_pool)
2703		goto fail;
2704
2705	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2706	if (!cfq_ioc_pool)
2707		goto fail;
2708
2709	return 0;
2710fail:
2711	cfq_slab_kill();
2712	return -ENOMEM;
2713}
2714
2715/*
2716 * sysfs parts below -->
2717 */
2718static ssize_t
2719cfq_var_show(unsigned int var, char *page)
2720{
2721	return sprintf(page, "%d\n", var);
2722}
2723
2724static ssize_t
2725cfq_var_store(unsigned int *var, const char *page, size_t count)
2726{
2727	char *p = (char *) page;
2728
2729	*var = simple_strtoul(p, &p, 10);
2730	return count;
2731}
2732
2733#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2734static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
2735{									\
2736	struct cfq_data *cfqd = e->elevator_data;			\
2737	unsigned int __data = __VAR;					\
2738	if (__CONV)							\
2739		__data = jiffies_to_msecs(__data);			\
2740	return cfq_var_show(__data, (page));				\
2741}
2742SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2743SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2744SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2745SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2746SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2747SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2748SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2749SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2750SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2751SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2752#undef SHOW_FUNCTION
2753
2754#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2755static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
2756{									\
2757	struct cfq_data *cfqd = e->elevator_data;			\
2758	unsigned int __data;						\
2759	int ret = cfq_var_store(&__data, (page), count);		\
2760	if (__data < (MIN))						\
2761		__data = (MIN);						\
2762	else if (__data > (MAX))					\
2763		__data = (MAX);						\
2764	if (__CONV)							\
2765		*(__PTR) = msecs_to_jiffies(__data);			\
2766	else								\
2767		*(__PTR) = __data;					\
2768	return ret;							\
2769}
2770STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2771STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2772		UINT_MAX, 1);
2773STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2774		UINT_MAX, 1);
2775STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2776STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2777		UINT_MAX, 0);
2778STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2779STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2780STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2781STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2782		UINT_MAX, 0);
2783STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2784#undef STORE_FUNCTION
2785
2786#define CFQ_ATTR(name) \
2787	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2788
2789static struct elv_fs_entry cfq_attrs[] = {
2790	CFQ_ATTR(quantum),
2791	CFQ_ATTR(fifo_expire_sync),
2792	CFQ_ATTR(fifo_expire_async),
2793	CFQ_ATTR(back_seek_max),
2794	CFQ_ATTR(back_seek_penalty),
2795	CFQ_ATTR(slice_sync),
2796	CFQ_ATTR(slice_async),
2797	CFQ_ATTR(slice_async_rq),
2798	CFQ_ATTR(slice_idle),
2799	CFQ_ATTR(low_latency),
2800	__ATTR_NULL
2801};
2802
2803static struct elevator_type iosched_cfq = {
2804	.ops = {
2805		.elevator_merge_fn = 		cfq_merge,
2806		.elevator_merged_fn =		cfq_merged_request,
2807		.elevator_merge_req_fn =	cfq_merged_requests,
2808		.elevator_allow_merge_fn =	cfq_allow_merge,
2809		.elevator_dispatch_fn =		cfq_dispatch_requests,
2810		.elevator_add_req_fn =		cfq_insert_request,
2811		.elevator_activate_req_fn =	cfq_activate_request,
2812		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2813		.elevator_queue_empty_fn =	cfq_queue_empty,
2814		.elevator_completed_req_fn =	cfq_completed_request,
2815		.elevator_former_req_fn =	elv_rb_former_request,
2816		.elevator_latter_req_fn =	elv_rb_latter_request,
2817		.elevator_set_req_fn =		cfq_set_request,
2818		.elevator_put_req_fn =		cfq_put_request,
2819		.elevator_may_queue_fn =	cfq_may_queue,
2820		.elevator_init_fn =		cfq_init_queue,
2821		.elevator_exit_fn =		cfq_exit_queue,
2822		.trim =				cfq_free_io_context,
2823	},
2824	.elevator_attrs =	cfq_attrs,
2825	.elevator_name =	"cfq",
2826	.elevator_owner =	THIS_MODULE,
2827};
2828
2829static int __init cfq_init(void)
2830{
2831	/*
2832	 * could be 0 on HZ < 1000 setups
2833	 */
2834	if (!cfq_slice_async)
2835		cfq_slice_async = 1;
2836	if (!cfq_slice_idle)
2837		cfq_slice_idle = 1;
2838
2839	if (cfq_slab_setup())
2840		return -ENOMEM;
2841
2842	elv_register(&iosched_cfq);
2843
2844	return 0;
2845}
2846
2847static void __exit cfq_exit(void)
2848{
2849	DECLARE_COMPLETION_ONSTACK(all_gone);
2850	elv_unregister(&iosched_cfq);
2851	ioc_gone = &all_gone;
2852	/* ioc_gone's update must be visible before reading ioc_count */
2853	smp_wmb();
2854
2855	/*
2856	 * this also protects us from entering cfq_slab_kill() with
2857	 * pending RCU callbacks
2858	 */
2859	if (elv_ioc_count_read(cfq_ioc_count))
2860		wait_for_completion(&all_gone);
2861	cfq_slab_kill();
2862}
2863
2864module_init(cfq_init);
2865module_exit(cfq_exit);
2866
2867MODULE_AUTHOR("Jens Axboe");
2868MODULE_LICENSE("GPL");
2869MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2870