cfq-iosched.c revision f2d1f0ae7851be5ebd9613a80dac139270938809
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY		(HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT		(2)
40
41#define CFQ_SLICE_SCALE		(5)
42#define CFQ_HW_QUEUE_MIN	(5)
43
44#define RQ_CIC(rq)		\
45	((struct cfq_io_context *) (rq)->elevator_private)
46#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
47
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
50
51static DEFINE_PER_CPU(unsigned long, ioc_count);
52static struct completion *ioc_gone;
53static DEFINE_SPINLOCK(ioc_gone_lock);
54
55#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
56#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59#define sample_valid(samples)	((samples) > 80)
60
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68	struct rb_root rb;
69	struct rb_node *left;
70};
71#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
72
73/*
74 * Per block device queue structure
75 */
76struct cfq_data {
77	struct request_queue *queue;
78
79	/*
80	 * rr list of queues with requests and the count of them
81	 */
82	struct cfq_rb_root service_tree;
83
84	/*
85	 * Each priority tree is sorted by next_request position.  These
86	 * trees are used when determining if two or more queues are
87	 * interleaving requests (see cfq_close_cooperator).
88	 */
89	struct rb_root prio_trees[CFQ_PRIO_LISTS];
90
91	unsigned int busy_queues;
92	/*
93	 * Used to track any pending rt requests so we can pre-empt current
94	 * non-RT cfqq in service when this value is non-zero.
95	 */
96	unsigned int busy_rt_queues;
97
98	int rq_in_driver;
99	int sync_flight;
100
101	/*
102	 * queue-depth detection
103	 */
104	int rq_queued;
105	int hw_tag;
106	int hw_tag_samples;
107	int rq_in_driver_peak;
108
109	/*
110	 * idle window management
111	 */
112	struct timer_list idle_slice_timer;
113	struct work_struct unplug_work;
114
115	struct cfq_queue *active_queue;
116	struct cfq_io_context *active_cic;
117
118	/*
119	 * async queue for each priority case
120	 */
121	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122	struct cfq_queue *async_idle_cfqq;
123
124	sector_t last_position;
125	unsigned long last_end_request;
126
127	/*
128	 * tunables, see top of file
129	 */
130	unsigned int cfq_quantum;
131	unsigned int cfq_fifo_expire[2];
132	unsigned int cfq_back_penalty;
133	unsigned int cfq_back_max;
134	unsigned int cfq_slice[2];
135	unsigned int cfq_slice_async_rq;
136	unsigned int cfq_slice_idle;
137
138	struct list_head cic_list;
139};
140
141/*
142 * Per process-grouping structure
143 */
144struct cfq_queue {
145	/* reference count */
146	atomic_t ref;
147	/* various state flags, see below */
148	unsigned int flags;
149	/* parent cfq_data */
150	struct cfq_data *cfqd;
151	/* service_tree member */
152	struct rb_node rb_node;
153	/* service_tree key */
154	unsigned long rb_key;
155	/* prio tree member */
156	struct rb_node p_node;
157	/* prio tree root we belong to, if any */
158	struct rb_root *p_root;
159	/* sorted list of pending requests */
160	struct rb_root sort_list;
161	/* if fifo isn't expired, next request to serve */
162	struct request *next_rq;
163	/* requests queued in sort_list */
164	int queued[2];
165	/* currently allocated requests */
166	int allocated[2];
167	/* fifo list of requests in sort_list */
168	struct list_head fifo;
169
170	unsigned long slice_end;
171	long slice_resid;
172	unsigned int slice_dispatch;
173
174	/* pending metadata requests */
175	int meta_pending;
176	/* number of requests that are on the dispatch list or inside driver */
177	int dispatched;
178
179	/* io prio of this group */
180	unsigned short ioprio, org_ioprio;
181	unsigned short ioprio_class, org_ioprio_class;
182
183	pid_t pid;
184};
185
186enum cfqq_state_flags {
187	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
188	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
189	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
190	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
191	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
192	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
193	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
194	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
195	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
196	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
197	CFQ_CFQQ_FLAG_coop,		/* has done a coop jump of the queue */
198};
199
200#define CFQ_CFQQ_FNS(name)						\
201static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
202{									\
203	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
204}									\
205static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
206{									\
207	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
208}									\
209static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
210{									\
211	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
212}
213
214CFQ_CFQQ_FNS(on_rr);
215CFQ_CFQQ_FNS(wait_request);
216CFQ_CFQQ_FNS(must_dispatch);
217CFQ_CFQQ_FNS(must_alloc);
218CFQ_CFQQ_FNS(must_alloc_slice);
219CFQ_CFQQ_FNS(fifo_expire);
220CFQ_CFQQ_FNS(idle_window);
221CFQ_CFQQ_FNS(prio_changed);
222CFQ_CFQQ_FNS(slice_new);
223CFQ_CFQQ_FNS(sync);
224CFQ_CFQQ_FNS(coop);
225#undef CFQ_CFQQ_FNS
226
227#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
228	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229#define cfq_log(cfqd, fmt, args...)	\
230	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
232static void cfq_dispatch_insert(struct request_queue *, struct request *);
233static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
234				       struct io_context *, gfp_t);
235static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
236						struct io_context *);
237
238static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
239					    int is_sync)
240{
241	return cic->cfqq[!!is_sync];
242}
243
244static inline void cic_set_cfqq(struct cfq_io_context *cic,
245				struct cfq_queue *cfqq, int is_sync)
246{
247	cic->cfqq[!!is_sync] = cfqq;
248}
249
250/*
251 * We regard a request as SYNC, if it's either a read or has the SYNC bit
252 * set (in which case it could also be direct WRITE).
253 */
254static inline int cfq_bio_sync(struct bio *bio)
255{
256	if (bio_data_dir(bio) == READ || bio_sync(bio))
257		return 1;
258
259	return 0;
260}
261
262/*
263 * scheduler run of queue, if there are requests pending and no one in the
264 * driver that will restart queueing
265 */
266static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
267{
268	if (cfqd->busy_queues) {
269		cfq_log(cfqd, "schedule dispatch");
270		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
271	}
272}
273
274static int cfq_queue_empty(struct request_queue *q)
275{
276	struct cfq_data *cfqd = q->elevator->elevator_data;
277
278	return !cfqd->busy_queues;
279}
280
281/*
282 * Scale schedule slice based on io priority. Use the sync time slice only
283 * if a queue is marked sync and has sync io queued. A sync queue with async
284 * io only, should not get full sync slice length.
285 */
286static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
287				 unsigned short prio)
288{
289	const int base_slice = cfqd->cfq_slice[sync];
290
291	WARN_ON(prio >= IOPRIO_BE_NR);
292
293	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
294}
295
296static inline int
297cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
298{
299	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
300}
301
302static inline void
303cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
304{
305	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
306	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
307}
308
309/*
310 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
311 * isn't valid until the first request from the dispatch is activated
312 * and the slice time set.
313 */
314static inline int cfq_slice_used(struct cfq_queue *cfqq)
315{
316	if (cfq_cfqq_slice_new(cfqq))
317		return 0;
318	if (time_before(jiffies, cfqq->slice_end))
319		return 0;
320
321	return 1;
322}
323
324/*
325 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
326 * We choose the request that is closest to the head right now. Distance
327 * behind the head is penalized and only allowed to a certain extent.
328 */
329static struct request *
330cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
331{
332	sector_t last, s1, s2, d1 = 0, d2 = 0;
333	unsigned long back_max;
334#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
335#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
336	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
337
338	if (rq1 == NULL || rq1 == rq2)
339		return rq2;
340	if (rq2 == NULL)
341		return rq1;
342
343	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
344		return rq1;
345	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
346		return rq2;
347	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
348		return rq1;
349	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
350		return rq2;
351
352	s1 = rq1->sector;
353	s2 = rq2->sector;
354
355	last = cfqd->last_position;
356
357	/*
358	 * by definition, 1KiB is 2 sectors
359	 */
360	back_max = cfqd->cfq_back_max * 2;
361
362	/*
363	 * Strict one way elevator _except_ in the case where we allow
364	 * short backward seeks which are biased as twice the cost of a
365	 * similar forward seek.
366	 */
367	if (s1 >= last)
368		d1 = s1 - last;
369	else if (s1 + back_max >= last)
370		d1 = (last - s1) * cfqd->cfq_back_penalty;
371	else
372		wrap |= CFQ_RQ1_WRAP;
373
374	if (s2 >= last)
375		d2 = s2 - last;
376	else if (s2 + back_max >= last)
377		d2 = (last - s2) * cfqd->cfq_back_penalty;
378	else
379		wrap |= CFQ_RQ2_WRAP;
380
381	/* Found required data */
382
383	/*
384	 * By doing switch() on the bit mask "wrap" we avoid having to
385	 * check two variables for all permutations: --> faster!
386	 */
387	switch (wrap) {
388	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
389		if (d1 < d2)
390			return rq1;
391		else if (d2 < d1)
392			return rq2;
393		else {
394			if (s1 >= s2)
395				return rq1;
396			else
397				return rq2;
398		}
399
400	case CFQ_RQ2_WRAP:
401		return rq1;
402	case CFQ_RQ1_WRAP:
403		return rq2;
404	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
405	default:
406		/*
407		 * Since both rqs are wrapped,
408		 * start with the one that's further behind head
409		 * (--> only *one* back seek required),
410		 * since back seek takes more time than forward.
411		 */
412		if (s1 <= s2)
413			return rq1;
414		else
415			return rq2;
416	}
417}
418
419/*
420 * The below is leftmost cache rbtree addon
421 */
422static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
423{
424	if (!root->left)
425		root->left = rb_first(&root->rb);
426
427	if (root->left)
428		return rb_entry(root->left, struct cfq_queue, rb_node);
429
430	return NULL;
431}
432
433static void rb_erase_init(struct rb_node *n, struct rb_root *root)
434{
435	rb_erase(n, root);
436	RB_CLEAR_NODE(n);
437}
438
439static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
440{
441	if (root->left == n)
442		root->left = NULL;
443	rb_erase_init(n, &root->rb);
444}
445
446/*
447 * would be nice to take fifo expire time into account as well
448 */
449static struct request *
450cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
451		  struct request *last)
452{
453	struct rb_node *rbnext = rb_next(&last->rb_node);
454	struct rb_node *rbprev = rb_prev(&last->rb_node);
455	struct request *next = NULL, *prev = NULL;
456
457	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
458
459	if (rbprev)
460		prev = rb_entry_rq(rbprev);
461
462	if (rbnext)
463		next = rb_entry_rq(rbnext);
464	else {
465		rbnext = rb_first(&cfqq->sort_list);
466		if (rbnext && rbnext != &last->rb_node)
467			next = rb_entry_rq(rbnext);
468	}
469
470	return cfq_choose_req(cfqd, next, prev);
471}
472
473static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
474				      struct cfq_queue *cfqq)
475{
476	/*
477	 * just an approximation, should be ok.
478	 */
479	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
480		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
481}
482
483/*
484 * The cfqd->service_tree holds all pending cfq_queue's that have
485 * requests waiting to be processed. It is sorted in the order that
486 * we will service the queues.
487 */
488static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
489				 int add_front)
490{
491	struct rb_node **p, *parent;
492	struct cfq_queue *__cfqq;
493	unsigned long rb_key;
494	int left;
495
496	if (cfq_class_idle(cfqq)) {
497		rb_key = CFQ_IDLE_DELAY;
498		parent = rb_last(&cfqd->service_tree.rb);
499		if (parent && parent != &cfqq->rb_node) {
500			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
501			rb_key += __cfqq->rb_key;
502		} else
503			rb_key += jiffies;
504	} else if (!add_front) {
505		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
506		rb_key += cfqq->slice_resid;
507		cfqq->slice_resid = 0;
508	} else
509		rb_key = 0;
510
511	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
512		/*
513		 * same position, nothing more to do
514		 */
515		if (rb_key == cfqq->rb_key)
516			return;
517
518		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
519	}
520
521	left = 1;
522	parent = NULL;
523	p = &cfqd->service_tree.rb.rb_node;
524	while (*p) {
525		struct rb_node **n;
526
527		parent = *p;
528		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
529
530		/*
531		 * sort RT queues first, we always want to give
532		 * preference to them. IDLE queues goes to the back.
533		 * after that, sort on the next service time.
534		 */
535		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
536			n = &(*p)->rb_left;
537		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
538			n = &(*p)->rb_right;
539		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
540			n = &(*p)->rb_left;
541		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
542			n = &(*p)->rb_right;
543		else if (rb_key < __cfqq->rb_key)
544			n = &(*p)->rb_left;
545		else
546			n = &(*p)->rb_right;
547
548		if (n == &(*p)->rb_right)
549			left = 0;
550
551		p = n;
552	}
553
554	if (left)
555		cfqd->service_tree.left = &cfqq->rb_node;
556
557	cfqq->rb_key = rb_key;
558	rb_link_node(&cfqq->rb_node, parent, p);
559	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
560}
561
562static struct cfq_queue *
563cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
564		     sector_t sector, struct rb_node **ret_parent,
565		     struct rb_node ***rb_link)
566{
567	struct rb_node **p, *parent;
568	struct cfq_queue *cfqq = NULL;
569
570	parent = NULL;
571	p = &root->rb_node;
572	while (*p) {
573		struct rb_node **n;
574
575		parent = *p;
576		cfqq = rb_entry(parent, struct cfq_queue, p_node);
577
578		/*
579		 * Sort strictly based on sector.  Smallest to the left,
580		 * largest to the right.
581		 */
582		if (sector > cfqq->next_rq->sector)
583			n = &(*p)->rb_right;
584		else if (sector < cfqq->next_rq->sector)
585			n = &(*p)->rb_left;
586		else
587			break;
588		p = n;
589		cfqq = NULL;
590	}
591
592	*ret_parent = parent;
593	if (rb_link)
594		*rb_link = p;
595	return cfqq;
596}
597
598static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
599{
600	struct rb_node **p, *parent;
601	struct cfq_queue *__cfqq;
602
603	if (cfqq->p_root) {
604		rb_erase(&cfqq->p_node, cfqq->p_root);
605		cfqq->p_root = NULL;
606	}
607
608	if (cfq_class_idle(cfqq))
609		return;
610	if (!cfqq->next_rq)
611		return;
612
613	cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
614	__cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root, cfqq->next_rq->sector,
615					 &parent, &p);
616	if (!__cfqq) {
617		rb_link_node(&cfqq->p_node, parent, p);
618		rb_insert_color(&cfqq->p_node, cfqq->p_root);
619	} else
620		cfqq->p_root = NULL;
621}
622
623/*
624 * Update cfqq's position in the service tree.
625 */
626static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
627{
628	/*
629	 * Resorting requires the cfqq to be on the RR list already.
630	 */
631	if (cfq_cfqq_on_rr(cfqq)) {
632		cfq_service_tree_add(cfqd, cfqq, 0);
633		cfq_prio_tree_add(cfqd, cfqq);
634	}
635}
636
637/*
638 * add to busy list of queues for service, trying to be fair in ordering
639 * the pending list according to last request service
640 */
641static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
642{
643	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
644	BUG_ON(cfq_cfqq_on_rr(cfqq));
645	cfq_mark_cfqq_on_rr(cfqq);
646	cfqd->busy_queues++;
647	if (cfq_class_rt(cfqq))
648		cfqd->busy_rt_queues++;
649
650	cfq_resort_rr_list(cfqd, cfqq);
651}
652
653/*
654 * Called when the cfqq no longer has requests pending, remove it from
655 * the service tree.
656 */
657static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
658{
659	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
660	BUG_ON(!cfq_cfqq_on_rr(cfqq));
661	cfq_clear_cfqq_on_rr(cfqq);
662
663	if (!RB_EMPTY_NODE(&cfqq->rb_node))
664		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
665	if (cfqq->p_root) {
666		rb_erase(&cfqq->p_node, cfqq->p_root);
667		cfqq->p_root = NULL;
668	}
669
670	BUG_ON(!cfqd->busy_queues);
671	cfqd->busy_queues--;
672	if (cfq_class_rt(cfqq))
673		cfqd->busy_rt_queues--;
674}
675
676/*
677 * rb tree support functions
678 */
679static void cfq_del_rq_rb(struct request *rq)
680{
681	struct cfq_queue *cfqq = RQ_CFQQ(rq);
682	struct cfq_data *cfqd = cfqq->cfqd;
683	const int sync = rq_is_sync(rq);
684
685	BUG_ON(!cfqq->queued[sync]);
686	cfqq->queued[sync]--;
687
688	elv_rb_del(&cfqq->sort_list, rq);
689
690	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
691		cfq_del_cfqq_rr(cfqd, cfqq);
692}
693
694static void cfq_add_rq_rb(struct request *rq)
695{
696	struct cfq_queue *cfqq = RQ_CFQQ(rq);
697	struct cfq_data *cfqd = cfqq->cfqd;
698	struct request *__alias, *prev;
699
700	cfqq->queued[rq_is_sync(rq)]++;
701
702	/*
703	 * looks a little odd, but the first insert might return an alias.
704	 * if that happens, put the alias on the dispatch list
705	 */
706	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
707		cfq_dispatch_insert(cfqd->queue, __alias);
708
709	if (!cfq_cfqq_on_rr(cfqq))
710		cfq_add_cfqq_rr(cfqd, cfqq);
711
712	/*
713	 * check if this request is a better next-serve candidate
714	 */
715	prev = cfqq->next_rq;
716	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
717
718	/*
719	 * adjust priority tree position, if ->next_rq changes
720	 */
721	if (prev != cfqq->next_rq)
722		cfq_prio_tree_add(cfqd, cfqq);
723
724	BUG_ON(!cfqq->next_rq);
725}
726
727static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
728{
729	elv_rb_del(&cfqq->sort_list, rq);
730	cfqq->queued[rq_is_sync(rq)]--;
731	cfq_add_rq_rb(rq);
732}
733
734static struct request *
735cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
736{
737	struct task_struct *tsk = current;
738	struct cfq_io_context *cic;
739	struct cfq_queue *cfqq;
740
741	cic = cfq_cic_lookup(cfqd, tsk->io_context);
742	if (!cic)
743		return NULL;
744
745	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
746	if (cfqq) {
747		sector_t sector = bio->bi_sector + bio_sectors(bio);
748
749		return elv_rb_find(&cfqq->sort_list, sector);
750	}
751
752	return NULL;
753}
754
755static void cfq_activate_request(struct request_queue *q, struct request *rq)
756{
757	struct cfq_data *cfqd = q->elevator->elevator_data;
758
759	cfqd->rq_in_driver++;
760	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
761						cfqd->rq_in_driver);
762
763	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
764}
765
766static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
767{
768	struct cfq_data *cfqd = q->elevator->elevator_data;
769
770	WARN_ON(!cfqd->rq_in_driver);
771	cfqd->rq_in_driver--;
772	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
773						cfqd->rq_in_driver);
774}
775
776static void cfq_remove_request(struct request *rq)
777{
778	struct cfq_queue *cfqq = RQ_CFQQ(rq);
779
780	if (cfqq->next_rq == rq)
781		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
782
783	list_del_init(&rq->queuelist);
784	cfq_del_rq_rb(rq);
785
786	cfqq->cfqd->rq_queued--;
787	if (rq_is_meta(rq)) {
788		WARN_ON(!cfqq->meta_pending);
789		cfqq->meta_pending--;
790	}
791}
792
793static int cfq_merge(struct request_queue *q, struct request **req,
794		     struct bio *bio)
795{
796	struct cfq_data *cfqd = q->elevator->elevator_data;
797	struct request *__rq;
798
799	__rq = cfq_find_rq_fmerge(cfqd, bio);
800	if (__rq && elv_rq_merge_ok(__rq, bio)) {
801		*req = __rq;
802		return ELEVATOR_FRONT_MERGE;
803	}
804
805	return ELEVATOR_NO_MERGE;
806}
807
808static void cfq_merged_request(struct request_queue *q, struct request *req,
809			       int type)
810{
811	if (type == ELEVATOR_FRONT_MERGE) {
812		struct cfq_queue *cfqq = RQ_CFQQ(req);
813
814		cfq_reposition_rq_rb(cfqq, req);
815	}
816}
817
818static void
819cfq_merged_requests(struct request_queue *q, struct request *rq,
820		    struct request *next)
821{
822	/*
823	 * reposition in fifo if next is older than rq
824	 */
825	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
826	    time_before(next->start_time, rq->start_time))
827		list_move(&rq->queuelist, &next->queuelist);
828
829	cfq_remove_request(next);
830}
831
832static int cfq_allow_merge(struct request_queue *q, struct request *rq,
833			   struct bio *bio)
834{
835	struct cfq_data *cfqd = q->elevator->elevator_data;
836	struct cfq_io_context *cic;
837	struct cfq_queue *cfqq;
838
839	/*
840	 * Disallow merge of a sync bio into an async request.
841	 */
842	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
843		return 0;
844
845	/*
846	 * Lookup the cfqq that this bio will be queued with. Allow
847	 * merge only if rq is queued there.
848	 */
849	cic = cfq_cic_lookup(cfqd, current->io_context);
850	if (!cic)
851		return 0;
852
853	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
854	if (cfqq == RQ_CFQQ(rq))
855		return 1;
856
857	return 0;
858}
859
860static void __cfq_set_active_queue(struct cfq_data *cfqd,
861				   struct cfq_queue *cfqq)
862{
863	if (cfqq) {
864		cfq_log_cfqq(cfqd, cfqq, "set_active");
865		cfqq->slice_end = 0;
866		cfqq->slice_dispatch = 0;
867
868		cfq_clear_cfqq_wait_request(cfqq);
869		cfq_clear_cfqq_must_dispatch(cfqq);
870		cfq_clear_cfqq_must_alloc_slice(cfqq);
871		cfq_clear_cfqq_fifo_expire(cfqq);
872		cfq_mark_cfqq_slice_new(cfqq);
873
874		del_timer(&cfqd->idle_slice_timer);
875	}
876
877	cfqd->active_queue = cfqq;
878}
879
880/*
881 * current cfqq expired its slice (or was too idle), select new one
882 */
883static void
884__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
885		    int timed_out)
886{
887	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
888
889	if (cfq_cfqq_wait_request(cfqq))
890		del_timer(&cfqd->idle_slice_timer);
891
892	cfq_clear_cfqq_wait_request(cfqq);
893
894	/*
895	 * store what was left of this slice, if the queue idled/timed out
896	 */
897	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
898		cfqq->slice_resid = cfqq->slice_end - jiffies;
899		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
900	}
901
902	cfq_resort_rr_list(cfqd, cfqq);
903
904	if (cfqq == cfqd->active_queue)
905		cfqd->active_queue = NULL;
906
907	if (cfqd->active_cic) {
908		put_io_context(cfqd->active_cic->ioc);
909		cfqd->active_cic = NULL;
910	}
911}
912
913static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
914{
915	struct cfq_queue *cfqq = cfqd->active_queue;
916
917	if (cfqq)
918		__cfq_slice_expired(cfqd, cfqq, timed_out);
919}
920
921/*
922 * Get next queue for service. Unless we have a queue preemption,
923 * we'll simply select the first cfqq in the service tree.
924 */
925static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
926{
927	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
928		return NULL;
929
930	return cfq_rb_first(&cfqd->service_tree);
931}
932
933/*
934 * Get and set a new active queue for service.
935 */
936static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
937					      struct cfq_queue *cfqq)
938{
939	if (!cfqq) {
940		cfqq = cfq_get_next_queue(cfqd);
941		if (cfqq)
942			cfq_clear_cfqq_coop(cfqq);
943	}
944
945	__cfq_set_active_queue(cfqd, cfqq);
946	return cfqq;
947}
948
949static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
950					  struct request *rq)
951{
952	if (rq->sector >= cfqd->last_position)
953		return rq->sector - cfqd->last_position;
954	else
955		return cfqd->last_position - rq->sector;
956}
957
958#define CIC_SEEK_THR	8 * 1024
959#define CIC_SEEKY(cic)	((cic)->seek_mean > CIC_SEEK_THR)
960
961static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
962{
963	struct cfq_io_context *cic = cfqd->active_cic;
964	sector_t sdist = cic->seek_mean;
965
966	if (!sample_valid(cic->seek_samples))
967		sdist = CIC_SEEK_THR;
968
969	return cfq_dist_from_last(cfqd, rq) <= sdist;
970}
971
972static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
973				    struct cfq_queue *cur_cfqq)
974{
975	struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
976	struct rb_node *parent, *node;
977	struct cfq_queue *__cfqq;
978	sector_t sector = cfqd->last_position;
979
980	if (RB_EMPTY_ROOT(root))
981		return NULL;
982
983	/*
984	 * First, if we find a request starting at the end of the last
985	 * request, choose it.
986	 */
987	__cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
988	if (__cfqq)
989		return __cfqq;
990
991	/*
992	 * If the exact sector wasn't found, the parent of the NULL leaf
993	 * will contain the closest sector.
994	 */
995	__cfqq = rb_entry(parent, struct cfq_queue, p_node);
996	if (cfq_rq_close(cfqd, __cfqq->next_rq))
997		return __cfqq;
998
999	if (__cfqq->next_rq->sector < sector)
1000		node = rb_next(&__cfqq->p_node);
1001	else
1002		node = rb_prev(&__cfqq->p_node);
1003	if (!node)
1004		return NULL;
1005
1006	__cfqq = rb_entry(node, struct cfq_queue, p_node);
1007	if (cfq_rq_close(cfqd, __cfqq->next_rq))
1008		return __cfqq;
1009
1010	return NULL;
1011}
1012
1013/*
1014 * cfqd - obvious
1015 * cur_cfqq - passed in so that we don't decide that the current queue is
1016 * 	      closely cooperating with itself.
1017 *
1018 * So, basically we're assuming that that cur_cfqq has dispatched at least
1019 * one request, and that cfqd->last_position reflects a position on the disk
1020 * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1021 * assumption.
1022 */
1023static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1024					      struct cfq_queue *cur_cfqq,
1025					      int probe)
1026{
1027	struct cfq_queue *cfqq;
1028
1029	/*
1030	 * A valid cfq_io_context is necessary to compare requests against
1031	 * the seek_mean of the current cfqq.
1032	 */
1033	if (!cfqd->active_cic)
1034		return NULL;
1035
1036	/*
1037	 * We should notice if some of the queues are cooperating, eg
1038	 * working closely on the same area of the disk. In that case,
1039	 * we can group them together and don't waste time idling.
1040	 */
1041	cfqq = cfqq_close(cfqd, cur_cfqq);
1042	if (!cfqq)
1043		return NULL;
1044
1045	if (cfq_cfqq_coop(cfqq))
1046		return NULL;
1047
1048	if (!probe)
1049		cfq_mark_cfqq_coop(cfqq);
1050	return cfqq;
1051}
1052
1053static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1054{
1055	struct cfq_queue *cfqq = cfqd->active_queue;
1056	struct cfq_io_context *cic;
1057	unsigned long sl;
1058
1059	/*
1060	 * SSD device without seek penalty, disable idling. But only do so
1061	 * for devices that support queuing, otherwise we still have a problem
1062	 * with sync vs async workloads.
1063	 */
1064	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1065		return;
1066
1067	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1068	WARN_ON(cfq_cfqq_slice_new(cfqq));
1069
1070	/*
1071	 * idle is disabled, either manually or by past process history
1072	 */
1073	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1074		return;
1075
1076	/*
1077	 * still requests with the driver, don't idle
1078	 */
1079	if (cfqd->rq_in_driver)
1080		return;
1081
1082	/*
1083	 * task has exited, don't wait
1084	 */
1085	cic = cfqd->active_cic;
1086	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1087		return;
1088
1089	cfq_mark_cfqq_wait_request(cfqq);
1090
1091	/*
1092	 * we don't want to idle for seeks, but we do want to allow
1093	 * fair distribution of slice time for a process doing back-to-back
1094	 * seeks. so allow a little bit of time for him to submit a new rq
1095	 */
1096	sl = cfqd->cfq_slice_idle;
1097	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1098		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1099
1100	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1101	cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1102}
1103
1104/*
1105 * Move request from internal lists to the request queue dispatch list.
1106 */
1107static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1108{
1109	struct cfq_data *cfqd = q->elevator->elevator_data;
1110	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1111
1112	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1113
1114	cfq_remove_request(rq);
1115	cfqq->dispatched++;
1116	elv_dispatch_sort(q, rq);
1117
1118	if (cfq_cfqq_sync(cfqq))
1119		cfqd->sync_flight++;
1120}
1121
1122/*
1123 * return expired entry, or NULL to just start from scratch in rbtree
1124 */
1125static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1126{
1127	struct cfq_data *cfqd = cfqq->cfqd;
1128	struct request *rq;
1129	int fifo;
1130
1131	if (cfq_cfqq_fifo_expire(cfqq))
1132		return NULL;
1133
1134	cfq_mark_cfqq_fifo_expire(cfqq);
1135
1136	if (list_empty(&cfqq->fifo))
1137		return NULL;
1138
1139	fifo = cfq_cfqq_sync(cfqq);
1140	rq = rq_entry_fifo(cfqq->fifo.next);
1141
1142	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1143		rq = NULL;
1144
1145	cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1146	return rq;
1147}
1148
1149static inline int
1150cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1151{
1152	const int base_rq = cfqd->cfq_slice_async_rq;
1153
1154	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1155
1156	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1157}
1158
1159/*
1160 * Select a queue for service. If we have a current active queue,
1161 * check whether to continue servicing it, or retrieve and set a new one.
1162 */
1163static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1164{
1165	struct cfq_queue *cfqq, *new_cfqq = NULL;
1166
1167	cfqq = cfqd->active_queue;
1168	if (!cfqq)
1169		goto new_queue;
1170
1171	/*
1172	 * The active queue has run out of time, expire it and select new.
1173	 */
1174	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1175		goto expire;
1176
1177	/*
1178	 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1179	 * cfqq.
1180	 */
1181	if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1182		/*
1183		 * We simulate this as cfqq timed out so that it gets to bank
1184		 * the remaining of its time slice.
1185		 */
1186		cfq_log_cfqq(cfqd, cfqq, "preempt");
1187		cfq_slice_expired(cfqd, 1);
1188		goto new_queue;
1189	}
1190
1191	/*
1192	 * The active queue has requests and isn't expired, allow it to
1193	 * dispatch.
1194	 */
1195	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1196		goto keep_queue;
1197
1198	/*
1199	 * If another queue has a request waiting within our mean seek
1200	 * distance, let it run.  The expire code will check for close
1201	 * cooperators and put the close queue at the front of the service
1202	 * tree.
1203	 */
1204	new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1205	if (new_cfqq)
1206		goto expire;
1207
1208	/*
1209	 * No requests pending. If the active queue still has requests in
1210	 * flight or is idling for a new request, allow either of these
1211	 * conditions to happen (or time out) before selecting a new queue.
1212	 */
1213	if (timer_pending(&cfqd->idle_slice_timer) ||
1214	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1215		cfqq = NULL;
1216		goto keep_queue;
1217	}
1218
1219expire:
1220	cfq_slice_expired(cfqd, 0);
1221new_queue:
1222	cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1223keep_queue:
1224	return cfqq;
1225}
1226
1227static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1228{
1229	int dispatched = 0;
1230
1231	while (cfqq->next_rq) {
1232		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1233		dispatched++;
1234	}
1235
1236	BUG_ON(!list_empty(&cfqq->fifo));
1237	return dispatched;
1238}
1239
1240/*
1241 * Drain our current requests. Used for barriers and when switching
1242 * io schedulers on-the-fly.
1243 */
1244static int cfq_forced_dispatch(struct cfq_data *cfqd)
1245{
1246	struct cfq_queue *cfqq;
1247	int dispatched = 0;
1248
1249	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1250		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1251
1252	cfq_slice_expired(cfqd, 0);
1253
1254	BUG_ON(cfqd->busy_queues);
1255
1256	cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1257	return dispatched;
1258}
1259
1260/*
1261 * Dispatch a request from cfqq, moving them to the request queue
1262 * dispatch list.
1263 */
1264static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265{
1266	struct request *rq;
1267
1268	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1269
1270	/*
1271	 * follow expired path, else get first next available
1272	 */
1273	rq = cfq_check_fifo(cfqq);
1274	if (!rq)
1275		rq = cfqq->next_rq;
1276
1277	/*
1278	 * insert request into driver dispatch list
1279	 */
1280	cfq_dispatch_insert(cfqd->queue, rq);
1281
1282	if (!cfqd->active_cic) {
1283		struct cfq_io_context *cic = RQ_CIC(rq);
1284
1285		atomic_inc(&cic->ioc->refcount);
1286		cfqd->active_cic = cic;
1287	}
1288}
1289
1290/*
1291 * Find the cfqq that we need to service and move a request from that to the
1292 * dispatch list
1293 */
1294static int cfq_dispatch_requests(struct request_queue *q, int force)
1295{
1296	struct cfq_data *cfqd = q->elevator->elevator_data;
1297	struct cfq_queue *cfqq;
1298	unsigned int max_dispatch;
1299
1300	if (!cfqd->busy_queues)
1301		return 0;
1302
1303	if (unlikely(force))
1304		return cfq_forced_dispatch(cfqd);
1305
1306	cfqq = cfq_select_queue(cfqd);
1307	if (!cfqq)
1308		return 0;
1309
1310	/*
1311	 * If this is an async queue and we have sync IO in flight, let it wait
1312	 */
1313	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1314		return 0;
1315
1316	max_dispatch = cfqd->cfq_quantum;
1317	if (cfq_class_idle(cfqq))
1318		max_dispatch = 1;
1319
1320	/*
1321	 * Does this cfqq already have too much IO in flight?
1322	 */
1323	if (cfqq->dispatched >= max_dispatch) {
1324		/*
1325		 * idle queue must always only have a single IO in flight
1326		 */
1327		if (cfq_class_idle(cfqq))
1328			return 0;
1329
1330		/*
1331		 * We have other queues, don't allow more IO from this one
1332		 */
1333		if (cfqd->busy_queues > 1)
1334			return 0;
1335
1336		/*
1337		 * we are the only queue, allow up to 4 times of 'quantum'
1338		 */
1339		if (cfqq->dispatched >= 4 * max_dispatch)
1340			return 0;
1341	}
1342
1343	/*
1344	 * Dispatch a request from this cfqq
1345	 */
1346	cfq_dispatch_request(cfqd, cfqq);
1347	cfqq->slice_dispatch++;
1348	cfq_clear_cfqq_must_dispatch(cfqq);
1349
1350	/*
1351	 * expire an async queue immediately if it has used up its slice. idle
1352	 * queue always expire after 1 dispatch round.
1353	 */
1354	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1355	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1356	    cfq_class_idle(cfqq))) {
1357		cfqq->slice_end = jiffies + 1;
1358		cfq_slice_expired(cfqd, 0);
1359	}
1360
1361	cfq_log(cfqd, "dispatched a request");
1362	return 1;
1363}
1364
1365/*
1366 * task holds one reference to the queue, dropped when task exits. each rq
1367 * in-flight on this queue also holds a reference, dropped when rq is freed.
1368 *
1369 * queue lock must be held here.
1370 */
1371static void cfq_put_queue(struct cfq_queue *cfqq)
1372{
1373	struct cfq_data *cfqd = cfqq->cfqd;
1374
1375	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1376
1377	if (!atomic_dec_and_test(&cfqq->ref))
1378		return;
1379
1380	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1381	BUG_ON(rb_first(&cfqq->sort_list));
1382	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1383	BUG_ON(cfq_cfqq_on_rr(cfqq));
1384
1385	if (unlikely(cfqd->active_queue == cfqq)) {
1386		__cfq_slice_expired(cfqd, cfqq, 0);
1387		cfq_schedule_dispatch(cfqd);
1388	}
1389
1390	kmem_cache_free(cfq_pool, cfqq);
1391}
1392
1393/*
1394 * Must always be called with the rcu_read_lock() held
1395 */
1396static void
1397__call_for_each_cic(struct io_context *ioc,
1398		    void (*func)(struct io_context *, struct cfq_io_context *))
1399{
1400	struct cfq_io_context *cic;
1401	struct hlist_node *n;
1402
1403	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1404		func(ioc, cic);
1405}
1406
1407/*
1408 * Call func for each cic attached to this ioc.
1409 */
1410static void
1411call_for_each_cic(struct io_context *ioc,
1412		  void (*func)(struct io_context *, struct cfq_io_context *))
1413{
1414	rcu_read_lock();
1415	__call_for_each_cic(ioc, func);
1416	rcu_read_unlock();
1417}
1418
1419static void cfq_cic_free_rcu(struct rcu_head *head)
1420{
1421	struct cfq_io_context *cic;
1422
1423	cic = container_of(head, struct cfq_io_context, rcu_head);
1424
1425	kmem_cache_free(cfq_ioc_pool, cic);
1426	elv_ioc_count_dec(ioc_count);
1427
1428	if (ioc_gone) {
1429		/*
1430		 * CFQ scheduler is exiting, grab exit lock and check
1431		 * the pending io context count. If it hits zero,
1432		 * complete ioc_gone and set it back to NULL
1433		 */
1434		spin_lock(&ioc_gone_lock);
1435		if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1436			complete(ioc_gone);
1437			ioc_gone = NULL;
1438		}
1439		spin_unlock(&ioc_gone_lock);
1440	}
1441}
1442
1443static void cfq_cic_free(struct cfq_io_context *cic)
1444{
1445	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1446}
1447
1448static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1449{
1450	unsigned long flags;
1451
1452	BUG_ON(!cic->dead_key);
1453
1454	spin_lock_irqsave(&ioc->lock, flags);
1455	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1456	hlist_del_rcu(&cic->cic_list);
1457	spin_unlock_irqrestore(&ioc->lock, flags);
1458
1459	cfq_cic_free(cic);
1460}
1461
1462/*
1463 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1464 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1465 * and ->trim() which is called with the task lock held
1466 */
1467static void cfq_free_io_context(struct io_context *ioc)
1468{
1469	/*
1470	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1471	 * so no more cic's are allowed to be linked into this ioc.  So it
1472	 * should be ok to iterate over the known list, we will see all cic's
1473	 * since no new ones are added.
1474	 */
1475	__call_for_each_cic(ioc, cic_free_func);
1476}
1477
1478static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1479{
1480	if (unlikely(cfqq == cfqd->active_queue)) {
1481		__cfq_slice_expired(cfqd, cfqq, 0);
1482		cfq_schedule_dispatch(cfqd);
1483	}
1484
1485	cfq_put_queue(cfqq);
1486}
1487
1488static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1489					 struct cfq_io_context *cic)
1490{
1491	struct io_context *ioc = cic->ioc;
1492
1493	list_del_init(&cic->queue_list);
1494
1495	/*
1496	 * Make sure key == NULL is seen for dead queues
1497	 */
1498	smp_wmb();
1499	cic->dead_key = (unsigned long) cic->key;
1500	cic->key = NULL;
1501
1502	if (ioc->ioc_data == cic)
1503		rcu_assign_pointer(ioc->ioc_data, NULL);
1504
1505	if (cic->cfqq[BLK_RW_ASYNC]) {
1506		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1507		cic->cfqq[BLK_RW_ASYNC] = NULL;
1508	}
1509
1510	if (cic->cfqq[BLK_RW_SYNC]) {
1511		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1512		cic->cfqq[BLK_RW_SYNC] = NULL;
1513	}
1514}
1515
1516static void cfq_exit_single_io_context(struct io_context *ioc,
1517				       struct cfq_io_context *cic)
1518{
1519	struct cfq_data *cfqd = cic->key;
1520
1521	if (cfqd) {
1522		struct request_queue *q = cfqd->queue;
1523		unsigned long flags;
1524
1525		spin_lock_irqsave(q->queue_lock, flags);
1526
1527		/*
1528		 * Ensure we get a fresh copy of the ->key to prevent
1529		 * race between exiting task and queue
1530		 */
1531		smp_read_barrier_depends();
1532		if (cic->key)
1533			__cfq_exit_single_io_context(cfqd, cic);
1534
1535		spin_unlock_irqrestore(q->queue_lock, flags);
1536	}
1537}
1538
1539/*
1540 * The process that ioc belongs to has exited, we need to clean up
1541 * and put the internal structures we have that belongs to that process.
1542 */
1543static void cfq_exit_io_context(struct io_context *ioc)
1544{
1545	call_for_each_cic(ioc, cfq_exit_single_io_context);
1546}
1547
1548static struct cfq_io_context *
1549cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1550{
1551	struct cfq_io_context *cic;
1552
1553	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1554							cfqd->queue->node);
1555	if (cic) {
1556		cic->last_end_request = jiffies;
1557		INIT_LIST_HEAD(&cic->queue_list);
1558		INIT_HLIST_NODE(&cic->cic_list);
1559		cic->dtor = cfq_free_io_context;
1560		cic->exit = cfq_exit_io_context;
1561		elv_ioc_count_inc(ioc_count);
1562	}
1563
1564	return cic;
1565}
1566
1567static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1568{
1569	struct task_struct *tsk = current;
1570	int ioprio_class;
1571
1572	if (!cfq_cfqq_prio_changed(cfqq))
1573		return;
1574
1575	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1576	switch (ioprio_class) {
1577	default:
1578		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1579	case IOPRIO_CLASS_NONE:
1580		/*
1581		 * no prio set, inherit CPU scheduling settings
1582		 */
1583		cfqq->ioprio = task_nice_ioprio(tsk);
1584		cfqq->ioprio_class = task_nice_ioclass(tsk);
1585		break;
1586	case IOPRIO_CLASS_RT:
1587		cfqq->ioprio = task_ioprio(ioc);
1588		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1589		break;
1590	case IOPRIO_CLASS_BE:
1591		cfqq->ioprio = task_ioprio(ioc);
1592		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1593		break;
1594	case IOPRIO_CLASS_IDLE:
1595		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1596		cfqq->ioprio = 7;
1597		cfq_clear_cfqq_idle_window(cfqq);
1598		break;
1599	}
1600
1601	/*
1602	 * keep track of original prio settings in case we have to temporarily
1603	 * elevate the priority of this queue
1604	 */
1605	cfqq->org_ioprio = cfqq->ioprio;
1606	cfqq->org_ioprio_class = cfqq->ioprio_class;
1607	cfq_clear_cfqq_prio_changed(cfqq);
1608}
1609
1610static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1611{
1612	struct cfq_data *cfqd = cic->key;
1613	struct cfq_queue *cfqq;
1614	unsigned long flags;
1615
1616	if (unlikely(!cfqd))
1617		return;
1618
1619	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1620
1621	cfqq = cic->cfqq[BLK_RW_ASYNC];
1622	if (cfqq) {
1623		struct cfq_queue *new_cfqq;
1624		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1625						GFP_ATOMIC);
1626		if (new_cfqq) {
1627			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1628			cfq_put_queue(cfqq);
1629		}
1630	}
1631
1632	cfqq = cic->cfqq[BLK_RW_SYNC];
1633	if (cfqq)
1634		cfq_mark_cfqq_prio_changed(cfqq);
1635
1636	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1637}
1638
1639static void cfq_ioc_set_ioprio(struct io_context *ioc)
1640{
1641	call_for_each_cic(ioc, changed_ioprio);
1642	ioc->ioprio_changed = 0;
1643}
1644
1645static struct cfq_queue *
1646cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1647		     struct io_context *ioc, gfp_t gfp_mask)
1648{
1649	struct cfq_queue *cfqq, *new_cfqq = NULL;
1650	struct cfq_io_context *cic;
1651
1652retry:
1653	cic = cfq_cic_lookup(cfqd, ioc);
1654	/* cic always exists here */
1655	cfqq = cic_to_cfqq(cic, is_sync);
1656
1657	if (!cfqq) {
1658		if (new_cfqq) {
1659			cfqq = new_cfqq;
1660			new_cfqq = NULL;
1661		} else if (gfp_mask & __GFP_WAIT) {
1662			/*
1663			 * Inform the allocator of the fact that we will
1664			 * just repeat this allocation if it fails, to allow
1665			 * the allocator to do whatever it needs to attempt to
1666			 * free memory.
1667			 */
1668			spin_unlock_irq(cfqd->queue->queue_lock);
1669			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1670					gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1671					cfqd->queue->node);
1672			spin_lock_irq(cfqd->queue->queue_lock);
1673			goto retry;
1674		} else {
1675			cfqq = kmem_cache_alloc_node(cfq_pool,
1676					gfp_mask | __GFP_ZERO,
1677					cfqd->queue->node);
1678			if (!cfqq)
1679				goto out;
1680		}
1681
1682		RB_CLEAR_NODE(&cfqq->rb_node);
1683		RB_CLEAR_NODE(&cfqq->p_node);
1684		INIT_LIST_HEAD(&cfqq->fifo);
1685
1686		atomic_set(&cfqq->ref, 0);
1687		cfqq->cfqd = cfqd;
1688
1689		cfq_mark_cfqq_prio_changed(cfqq);
1690
1691		cfq_init_prio_data(cfqq, ioc);
1692
1693		if (is_sync) {
1694			if (!cfq_class_idle(cfqq))
1695				cfq_mark_cfqq_idle_window(cfqq);
1696			cfq_mark_cfqq_sync(cfqq);
1697		}
1698		cfqq->pid = current->pid;
1699		cfq_log_cfqq(cfqd, cfqq, "alloced");
1700	}
1701
1702	if (new_cfqq)
1703		kmem_cache_free(cfq_pool, new_cfqq);
1704
1705out:
1706	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1707	return cfqq;
1708}
1709
1710static struct cfq_queue **
1711cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1712{
1713	switch (ioprio_class) {
1714	case IOPRIO_CLASS_RT:
1715		return &cfqd->async_cfqq[0][ioprio];
1716	case IOPRIO_CLASS_BE:
1717		return &cfqd->async_cfqq[1][ioprio];
1718	case IOPRIO_CLASS_IDLE:
1719		return &cfqd->async_idle_cfqq;
1720	default:
1721		BUG();
1722	}
1723}
1724
1725static struct cfq_queue *
1726cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1727	      gfp_t gfp_mask)
1728{
1729	const int ioprio = task_ioprio(ioc);
1730	const int ioprio_class = task_ioprio_class(ioc);
1731	struct cfq_queue **async_cfqq = NULL;
1732	struct cfq_queue *cfqq = NULL;
1733
1734	if (!is_sync) {
1735		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1736		cfqq = *async_cfqq;
1737	}
1738
1739	if (!cfqq) {
1740		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1741		if (!cfqq)
1742			return NULL;
1743	}
1744
1745	/*
1746	 * pin the queue now that it's allocated, scheduler exit will prune it
1747	 */
1748	if (!is_sync && !(*async_cfqq)) {
1749		atomic_inc(&cfqq->ref);
1750		*async_cfqq = cfqq;
1751	}
1752
1753	atomic_inc(&cfqq->ref);
1754	return cfqq;
1755}
1756
1757/*
1758 * We drop cfq io contexts lazily, so we may find a dead one.
1759 */
1760static void
1761cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1762		  struct cfq_io_context *cic)
1763{
1764	unsigned long flags;
1765
1766	WARN_ON(!list_empty(&cic->queue_list));
1767
1768	spin_lock_irqsave(&ioc->lock, flags);
1769
1770	BUG_ON(ioc->ioc_data == cic);
1771
1772	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1773	hlist_del_rcu(&cic->cic_list);
1774	spin_unlock_irqrestore(&ioc->lock, flags);
1775
1776	cfq_cic_free(cic);
1777}
1778
1779static struct cfq_io_context *
1780cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1781{
1782	struct cfq_io_context *cic;
1783	unsigned long flags;
1784	void *k;
1785
1786	if (unlikely(!ioc))
1787		return NULL;
1788
1789	rcu_read_lock();
1790
1791	/*
1792	 * we maintain a last-hit cache, to avoid browsing over the tree
1793	 */
1794	cic = rcu_dereference(ioc->ioc_data);
1795	if (cic && cic->key == cfqd) {
1796		rcu_read_unlock();
1797		return cic;
1798	}
1799
1800	do {
1801		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1802		rcu_read_unlock();
1803		if (!cic)
1804			break;
1805		/* ->key must be copied to avoid race with cfq_exit_queue() */
1806		k = cic->key;
1807		if (unlikely(!k)) {
1808			cfq_drop_dead_cic(cfqd, ioc, cic);
1809			rcu_read_lock();
1810			continue;
1811		}
1812
1813		spin_lock_irqsave(&ioc->lock, flags);
1814		rcu_assign_pointer(ioc->ioc_data, cic);
1815		spin_unlock_irqrestore(&ioc->lock, flags);
1816		break;
1817	} while (1);
1818
1819	return cic;
1820}
1821
1822/*
1823 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1824 * the process specific cfq io context when entered from the block layer.
1825 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1826 */
1827static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1828			struct cfq_io_context *cic, gfp_t gfp_mask)
1829{
1830	unsigned long flags;
1831	int ret;
1832
1833	ret = radix_tree_preload(gfp_mask);
1834	if (!ret) {
1835		cic->ioc = ioc;
1836		cic->key = cfqd;
1837
1838		spin_lock_irqsave(&ioc->lock, flags);
1839		ret = radix_tree_insert(&ioc->radix_root,
1840						(unsigned long) cfqd, cic);
1841		if (!ret)
1842			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1843		spin_unlock_irqrestore(&ioc->lock, flags);
1844
1845		radix_tree_preload_end();
1846
1847		if (!ret) {
1848			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1849			list_add(&cic->queue_list, &cfqd->cic_list);
1850			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1851		}
1852	}
1853
1854	if (ret)
1855		printk(KERN_ERR "cfq: cic link failed!\n");
1856
1857	return ret;
1858}
1859
1860/*
1861 * Setup general io context and cfq io context. There can be several cfq
1862 * io contexts per general io context, if this process is doing io to more
1863 * than one device managed by cfq.
1864 */
1865static struct cfq_io_context *
1866cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1867{
1868	struct io_context *ioc = NULL;
1869	struct cfq_io_context *cic;
1870
1871	might_sleep_if(gfp_mask & __GFP_WAIT);
1872
1873	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1874	if (!ioc)
1875		return NULL;
1876
1877	cic = cfq_cic_lookup(cfqd, ioc);
1878	if (cic)
1879		goto out;
1880
1881	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1882	if (cic == NULL)
1883		goto err;
1884
1885	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1886		goto err_free;
1887
1888out:
1889	smp_read_barrier_depends();
1890	if (unlikely(ioc->ioprio_changed))
1891		cfq_ioc_set_ioprio(ioc);
1892
1893	return cic;
1894err_free:
1895	cfq_cic_free(cic);
1896err:
1897	put_io_context(ioc);
1898	return NULL;
1899}
1900
1901static void
1902cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1903{
1904	unsigned long elapsed = jiffies - cic->last_end_request;
1905	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1906
1907	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1908	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1909	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1910}
1911
1912static void
1913cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1914		       struct request *rq)
1915{
1916	sector_t sdist;
1917	u64 total;
1918
1919	if (!cic->last_request_pos)
1920		sdist = 0;
1921	else if (cic->last_request_pos < rq->sector)
1922		sdist = rq->sector - cic->last_request_pos;
1923	else
1924		sdist = cic->last_request_pos - rq->sector;
1925
1926	/*
1927	 * Don't allow the seek distance to get too large from the
1928	 * odd fragment, pagein, etc
1929	 */
1930	if (cic->seek_samples <= 60) /* second&third seek */
1931		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1932	else
1933		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1934
1935	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1936	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1937	total = cic->seek_total + (cic->seek_samples/2);
1938	do_div(total, cic->seek_samples);
1939	cic->seek_mean = (sector_t)total;
1940}
1941
1942/*
1943 * Disable idle window if the process thinks too long or seeks so much that
1944 * it doesn't matter
1945 */
1946static void
1947cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1948		       struct cfq_io_context *cic)
1949{
1950	int old_idle, enable_idle;
1951
1952	/*
1953	 * Don't idle for async or idle io prio class
1954	 */
1955	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1956		return;
1957
1958	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1959
1960	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1961	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1962		enable_idle = 0;
1963	else if (sample_valid(cic->ttime_samples)) {
1964		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1965			enable_idle = 0;
1966		else
1967			enable_idle = 1;
1968	}
1969
1970	if (old_idle != enable_idle) {
1971		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1972		if (enable_idle)
1973			cfq_mark_cfqq_idle_window(cfqq);
1974		else
1975			cfq_clear_cfqq_idle_window(cfqq);
1976	}
1977}
1978
1979/*
1980 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1981 * no or if we aren't sure, a 1 will cause a preempt.
1982 */
1983static int
1984cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1985		   struct request *rq)
1986{
1987	struct cfq_queue *cfqq;
1988
1989	cfqq = cfqd->active_queue;
1990	if (!cfqq)
1991		return 0;
1992
1993	if (cfq_slice_used(cfqq))
1994		return 1;
1995
1996	if (cfq_class_idle(new_cfqq))
1997		return 0;
1998
1999	if (cfq_class_idle(cfqq))
2000		return 1;
2001
2002	/*
2003	 * if the new request is sync, but the currently running queue is
2004	 * not, let the sync request have priority.
2005	 */
2006	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2007		return 1;
2008
2009	/*
2010	 * So both queues are sync. Let the new request get disk time if
2011	 * it's a metadata request and the current queue is doing regular IO.
2012	 */
2013	if (rq_is_meta(rq) && !cfqq->meta_pending)
2014		return 1;
2015
2016	/*
2017	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2018	 */
2019	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2020		return 1;
2021
2022	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2023		return 0;
2024
2025	/*
2026	 * if this request is as-good as one we would expect from the
2027	 * current cfqq, let it preempt
2028	 */
2029	if (cfq_rq_close(cfqd, rq))
2030		return 1;
2031
2032	return 0;
2033}
2034
2035/*
2036 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2037 * let it have half of its nominal slice.
2038 */
2039static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2040{
2041	cfq_log_cfqq(cfqd, cfqq, "preempt");
2042	cfq_slice_expired(cfqd, 1);
2043
2044	/*
2045	 * Put the new queue at the front of the of the current list,
2046	 * so we know that it will be selected next.
2047	 */
2048	BUG_ON(!cfq_cfqq_on_rr(cfqq));
2049
2050	cfq_service_tree_add(cfqd, cfqq, 1);
2051
2052	cfqq->slice_end = 0;
2053	cfq_mark_cfqq_slice_new(cfqq);
2054}
2055
2056/*
2057 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2058 * something we should do about it
2059 */
2060static void
2061cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2062		struct request *rq)
2063{
2064	struct cfq_io_context *cic = RQ_CIC(rq);
2065
2066	cfqd->rq_queued++;
2067	if (rq_is_meta(rq))
2068		cfqq->meta_pending++;
2069
2070	cfq_update_io_thinktime(cfqd, cic);
2071	cfq_update_io_seektime(cfqd, cic, rq);
2072	cfq_update_idle_window(cfqd, cfqq, cic);
2073
2074	cic->last_request_pos = rq->sector + rq->nr_sectors;
2075
2076	if (cfqq == cfqd->active_queue) {
2077		/*
2078		 * Remember that we saw a request from this process, but
2079		 * don't start queuing just yet. Otherwise we risk seeing lots
2080		 * of tiny requests, because we disrupt the normal plugging
2081		 * and merging. If the request is already larger than a single
2082		 * page, let it rip immediately. For that case we assume that
2083		 * merging is already done. Ditto for a busy system that
2084		 * has other work pending, don't risk delaying until the
2085		 * idle timer unplug to continue working.
2086		 */
2087		if (cfq_cfqq_wait_request(cfqq)) {
2088			if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2089			    cfqd->busy_queues > 1) {
2090				del_timer(&cfqd->idle_slice_timer);
2091				blk_start_queueing(cfqd->queue);
2092			}
2093			cfq_mark_cfqq_must_dispatch(cfqq);
2094		}
2095	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2096		/*
2097		 * not the active queue - expire current slice if it is
2098		 * idle and has expired it's mean thinktime or this new queue
2099		 * has some old slice time left and is of higher priority or
2100		 * this new queue is RT and the current one is BE
2101		 */
2102		cfq_preempt_queue(cfqd, cfqq);
2103		blk_start_queueing(cfqd->queue);
2104	}
2105}
2106
2107static void cfq_insert_request(struct request_queue *q, struct request *rq)
2108{
2109	struct cfq_data *cfqd = q->elevator->elevator_data;
2110	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2111
2112	cfq_log_cfqq(cfqd, cfqq, "insert_request");
2113	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2114
2115	cfq_add_rq_rb(rq);
2116
2117	list_add_tail(&rq->queuelist, &cfqq->fifo);
2118
2119	cfq_rq_enqueued(cfqd, cfqq, rq);
2120}
2121
2122/*
2123 * Update hw_tag based on peak queue depth over 50 samples under
2124 * sufficient load.
2125 */
2126static void cfq_update_hw_tag(struct cfq_data *cfqd)
2127{
2128	if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2129		cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2130
2131	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2132	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2133		return;
2134
2135	if (cfqd->hw_tag_samples++ < 50)
2136		return;
2137
2138	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2139		cfqd->hw_tag = 1;
2140	else
2141		cfqd->hw_tag = 0;
2142
2143	cfqd->hw_tag_samples = 0;
2144	cfqd->rq_in_driver_peak = 0;
2145}
2146
2147static void cfq_completed_request(struct request_queue *q, struct request *rq)
2148{
2149	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2150	struct cfq_data *cfqd = cfqq->cfqd;
2151	const int sync = rq_is_sync(rq);
2152	unsigned long now;
2153
2154	now = jiffies;
2155	cfq_log_cfqq(cfqd, cfqq, "complete");
2156
2157	cfq_update_hw_tag(cfqd);
2158
2159	WARN_ON(!cfqd->rq_in_driver);
2160	WARN_ON(!cfqq->dispatched);
2161	cfqd->rq_in_driver--;
2162	cfqq->dispatched--;
2163
2164	if (cfq_cfqq_sync(cfqq))
2165		cfqd->sync_flight--;
2166
2167	if (!cfq_class_idle(cfqq))
2168		cfqd->last_end_request = now;
2169
2170	if (sync)
2171		RQ_CIC(rq)->last_end_request = now;
2172
2173	/*
2174	 * If this is the active queue, check if it needs to be expired,
2175	 * or if we want to idle in case it has no pending requests.
2176	 */
2177	if (cfqd->active_queue == cfqq) {
2178		const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2179
2180		if (cfq_cfqq_slice_new(cfqq)) {
2181			cfq_set_prio_slice(cfqd, cfqq);
2182			cfq_clear_cfqq_slice_new(cfqq);
2183		}
2184		/*
2185		 * If there are no requests waiting in this queue, and
2186		 * there are other queues ready to issue requests, AND
2187		 * those other queues are issuing requests within our
2188		 * mean seek distance, give them a chance to run instead
2189		 * of idling.
2190		 */
2191		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2192			cfq_slice_expired(cfqd, 1);
2193		else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2194			 sync && !rq_noidle(rq))
2195			cfq_arm_slice_timer(cfqd);
2196	}
2197
2198	if (!cfqd->rq_in_driver)
2199		cfq_schedule_dispatch(cfqd);
2200}
2201
2202/*
2203 * we temporarily boost lower priority queues if they are holding fs exclusive
2204 * resources. they are boosted to normal prio (CLASS_BE/4)
2205 */
2206static void cfq_prio_boost(struct cfq_queue *cfqq)
2207{
2208	if (has_fs_excl()) {
2209		/*
2210		 * boost idle prio on transactions that would lock out other
2211		 * users of the filesystem
2212		 */
2213		if (cfq_class_idle(cfqq))
2214			cfqq->ioprio_class = IOPRIO_CLASS_BE;
2215		if (cfqq->ioprio > IOPRIO_NORM)
2216			cfqq->ioprio = IOPRIO_NORM;
2217	} else {
2218		/*
2219		 * check if we need to unboost the queue
2220		 */
2221		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2222			cfqq->ioprio_class = cfqq->org_ioprio_class;
2223		if (cfqq->ioprio != cfqq->org_ioprio)
2224			cfqq->ioprio = cfqq->org_ioprio;
2225	}
2226}
2227
2228static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2229{
2230	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2231	    !cfq_cfqq_must_alloc_slice(cfqq)) {
2232		cfq_mark_cfqq_must_alloc_slice(cfqq);
2233		return ELV_MQUEUE_MUST;
2234	}
2235
2236	return ELV_MQUEUE_MAY;
2237}
2238
2239static int cfq_may_queue(struct request_queue *q, int rw)
2240{
2241	struct cfq_data *cfqd = q->elevator->elevator_data;
2242	struct task_struct *tsk = current;
2243	struct cfq_io_context *cic;
2244	struct cfq_queue *cfqq;
2245
2246	/*
2247	 * don't force setup of a queue from here, as a call to may_queue
2248	 * does not necessarily imply that a request actually will be queued.
2249	 * so just lookup a possibly existing queue, or return 'may queue'
2250	 * if that fails
2251	 */
2252	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2253	if (!cic)
2254		return ELV_MQUEUE_MAY;
2255
2256	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2257	if (cfqq) {
2258		cfq_init_prio_data(cfqq, cic->ioc);
2259		cfq_prio_boost(cfqq);
2260
2261		return __cfq_may_queue(cfqq);
2262	}
2263
2264	return ELV_MQUEUE_MAY;
2265}
2266
2267/*
2268 * queue lock held here
2269 */
2270static void cfq_put_request(struct request *rq)
2271{
2272	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2273
2274	if (cfqq) {
2275		const int rw = rq_data_dir(rq);
2276
2277		BUG_ON(!cfqq->allocated[rw]);
2278		cfqq->allocated[rw]--;
2279
2280		put_io_context(RQ_CIC(rq)->ioc);
2281
2282		rq->elevator_private = NULL;
2283		rq->elevator_private2 = NULL;
2284
2285		cfq_put_queue(cfqq);
2286	}
2287}
2288
2289/*
2290 * Allocate cfq data structures associated with this request.
2291 */
2292static int
2293cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2294{
2295	struct cfq_data *cfqd = q->elevator->elevator_data;
2296	struct cfq_io_context *cic;
2297	const int rw = rq_data_dir(rq);
2298	const int is_sync = rq_is_sync(rq);
2299	struct cfq_queue *cfqq;
2300	unsigned long flags;
2301
2302	might_sleep_if(gfp_mask & __GFP_WAIT);
2303
2304	cic = cfq_get_io_context(cfqd, gfp_mask);
2305
2306	spin_lock_irqsave(q->queue_lock, flags);
2307
2308	if (!cic)
2309		goto queue_fail;
2310
2311	cfqq = cic_to_cfqq(cic, is_sync);
2312	if (!cfqq) {
2313		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2314
2315		if (!cfqq)
2316			goto queue_fail;
2317
2318		cic_set_cfqq(cic, cfqq, is_sync);
2319	}
2320
2321	cfqq->allocated[rw]++;
2322	cfq_clear_cfqq_must_alloc(cfqq);
2323	atomic_inc(&cfqq->ref);
2324
2325	spin_unlock_irqrestore(q->queue_lock, flags);
2326
2327	rq->elevator_private = cic;
2328	rq->elevator_private2 = cfqq;
2329	return 0;
2330
2331queue_fail:
2332	if (cic)
2333		put_io_context(cic->ioc);
2334
2335	cfq_schedule_dispatch(cfqd);
2336	spin_unlock_irqrestore(q->queue_lock, flags);
2337	cfq_log(cfqd, "set_request fail");
2338	return 1;
2339}
2340
2341static void cfq_kick_queue(struct work_struct *work)
2342{
2343	struct cfq_data *cfqd =
2344		container_of(work, struct cfq_data, unplug_work);
2345	struct request_queue *q = cfqd->queue;
2346
2347	spin_lock_irq(q->queue_lock);
2348	blk_start_queueing(q);
2349	spin_unlock_irq(q->queue_lock);
2350}
2351
2352/*
2353 * Timer running if the active_queue is currently idling inside its time slice
2354 */
2355static void cfq_idle_slice_timer(unsigned long data)
2356{
2357	struct cfq_data *cfqd = (struct cfq_data *) data;
2358	struct cfq_queue *cfqq;
2359	unsigned long flags;
2360	int timed_out = 1;
2361
2362	cfq_log(cfqd, "idle timer fired");
2363
2364	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2365
2366	cfqq = cfqd->active_queue;
2367	if (cfqq) {
2368		timed_out = 0;
2369
2370		/*
2371		 * We saw a request before the queue expired, let it through
2372		 */
2373		if (cfq_cfqq_must_dispatch(cfqq))
2374			goto out_kick;
2375
2376		/*
2377		 * expired
2378		 */
2379		if (cfq_slice_used(cfqq))
2380			goto expire;
2381
2382		/*
2383		 * only expire and reinvoke request handler, if there are
2384		 * other queues with pending requests
2385		 */
2386		if (!cfqd->busy_queues)
2387			goto out_cont;
2388
2389		/*
2390		 * not expired and it has a request pending, let it dispatch
2391		 */
2392		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2393			goto out_kick;
2394	}
2395expire:
2396	cfq_slice_expired(cfqd, timed_out);
2397out_kick:
2398	cfq_schedule_dispatch(cfqd);
2399out_cont:
2400	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2401}
2402
2403static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2404{
2405	del_timer_sync(&cfqd->idle_slice_timer);
2406	cancel_work_sync(&cfqd->unplug_work);
2407}
2408
2409static void cfq_put_async_queues(struct cfq_data *cfqd)
2410{
2411	int i;
2412
2413	for (i = 0; i < IOPRIO_BE_NR; i++) {
2414		if (cfqd->async_cfqq[0][i])
2415			cfq_put_queue(cfqd->async_cfqq[0][i]);
2416		if (cfqd->async_cfqq[1][i])
2417			cfq_put_queue(cfqd->async_cfqq[1][i]);
2418	}
2419
2420	if (cfqd->async_idle_cfqq)
2421		cfq_put_queue(cfqd->async_idle_cfqq);
2422}
2423
2424static void cfq_exit_queue(struct elevator_queue *e)
2425{
2426	struct cfq_data *cfqd = e->elevator_data;
2427	struct request_queue *q = cfqd->queue;
2428
2429	cfq_shutdown_timer_wq(cfqd);
2430
2431	spin_lock_irq(q->queue_lock);
2432
2433	if (cfqd->active_queue)
2434		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2435
2436	while (!list_empty(&cfqd->cic_list)) {
2437		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2438							struct cfq_io_context,
2439							queue_list);
2440
2441		__cfq_exit_single_io_context(cfqd, cic);
2442	}
2443
2444	cfq_put_async_queues(cfqd);
2445
2446	spin_unlock_irq(q->queue_lock);
2447
2448	cfq_shutdown_timer_wq(cfqd);
2449
2450	kfree(cfqd);
2451}
2452
2453static void *cfq_init_queue(struct request_queue *q)
2454{
2455	struct cfq_data *cfqd;
2456	int i;
2457
2458	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2459	if (!cfqd)
2460		return NULL;
2461
2462	cfqd->service_tree = CFQ_RB_ROOT;
2463
2464	/*
2465	 * Not strictly needed (since RB_ROOT just clears the node and we
2466	 * zeroed cfqd on alloc), but better be safe in case someone decides
2467	 * to add magic to the rb code
2468	 */
2469	for (i = 0; i < CFQ_PRIO_LISTS; i++)
2470		cfqd->prio_trees[i] = RB_ROOT;
2471
2472	INIT_LIST_HEAD(&cfqd->cic_list);
2473
2474	cfqd->queue = q;
2475
2476	init_timer(&cfqd->idle_slice_timer);
2477	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2478	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2479
2480	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2481
2482	cfqd->last_end_request = jiffies;
2483	cfqd->cfq_quantum = cfq_quantum;
2484	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2485	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2486	cfqd->cfq_back_max = cfq_back_max;
2487	cfqd->cfq_back_penalty = cfq_back_penalty;
2488	cfqd->cfq_slice[0] = cfq_slice_async;
2489	cfqd->cfq_slice[1] = cfq_slice_sync;
2490	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2491	cfqd->cfq_slice_idle = cfq_slice_idle;
2492	cfqd->hw_tag = 1;
2493
2494	return cfqd;
2495}
2496
2497static void cfq_slab_kill(void)
2498{
2499	/*
2500	 * Caller already ensured that pending RCU callbacks are completed,
2501	 * so we should have no busy allocations at this point.
2502	 */
2503	if (cfq_pool)
2504		kmem_cache_destroy(cfq_pool);
2505	if (cfq_ioc_pool)
2506		kmem_cache_destroy(cfq_ioc_pool);
2507}
2508
2509static int __init cfq_slab_setup(void)
2510{
2511	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2512	if (!cfq_pool)
2513		goto fail;
2514
2515	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2516	if (!cfq_ioc_pool)
2517		goto fail;
2518
2519	return 0;
2520fail:
2521	cfq_slab_kill();
2522	return -ENOMEM;
2523}
2524
2525/*
2526 * sysfs parts below -->
2527 */
2528static ssize_t
2529cfq_var_show(unsigned int var, char *page)
2530{
2531	return sprintf(page, "%d\n", var);
2532}
2533
2534static ssize_t
2535cfq_var_store(unsigned int *var, const char *page, size_t count)
2536{
2537	char *p = (char *) page;
2538
2539	*var = simple_strtoul(p, &p, 10);
2540	return count;
2541}
2542
2543#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2544static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
2545{									\
2546	struct cfq_data *cfqd = e->elevator_data;			\
2547	unsigned int __data = __VAR;					\
2548	if (__CONV)							\
2549		__data = jiffies_to_msecs(__data);			\
2550	return cfq_var_show(__data, (page));				\
2551}
2552SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2553SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2554SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2555SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2556SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2557SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2558SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2559SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2560SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2561#undef SHOW_FUNCTION
2562
2563#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2564static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
2565{									\
2566	struct cfq_data *cfqd = e->elevator_data;			\
2567	unsigned int __data;						\
2568	int ret = cfq_var_store(&__data, (page), count);		\
2569	if (__data < (MIN))						\
2570		__data = (MIN);						\
2571	else if (__data > (MAX))					\
2572		__data = (MAX);						\
2573	if (__CONV)							\
2574		*(__PTR) = msecs_to_jiffies(__data);			\
2575	else								\
2576		*(__PTR) = __data;					\
2577	return ret;							\
2578}
2579STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2580STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2581		UINT_MAX, 1);
2582STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2583		UINT_MAX, 1);
2584STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2585STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2586		UINT_MAX, 0);
2587STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2588STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2589STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2590STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2591		UINT_MAX, 0);
2592#undef STORE_FUNCTION
2593
2594#define CFQ_ATTR(name) \
2595	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2596
2597static struct elv_fs_entry cfq_attrs[] = {
2598	CFQ_ATTR(quantum),
2599	CFQ_ATTR(fifo_expire_sync),
2600	CFQ_ATTR(fifo_expire_async),
2601	CFQ_ATTR(back_seek_max),
2602	CFQ_ATTR(back_seek_penalty),
2603	CFQ_ATTR(slice_sync),
2604	CFQ_ATTR(slice_async),
2605	CFQ_ATTR(slice_async_rq),
2606	CFQ_ATTR(slice_idle),
2607	__ATTR_NULL
2608};
2609
2610static struct elevator_type iosched_cfq = {
2611	.ops = {
2612		.elevator_merge_fn = 		cfq_merge,
2613		.elevator_merged_fn =		cfq_merged_request,
2614		.elevator_merge_req_fn =	cfq_merged_requests,
2615		.elevator_allow_merge_fn =	cfq_allow_merge,
2616		.elevator_dispatch_fn =		cfq_dispatch_requests,
2617		.elevator_add_req_fn =		cfq_insert_request,
2618		.elevator_activate_req_fn =	cfq_activate_request,
2619		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2620		.elevator_queue_empty_fn =	cfq_queue_empty,
2621		.elevator_completed_req_fn =	cfq_completed_request,
2622		.elevator_former_req_fn =	elv_rb_former_request,
2623		.elevator_latter_req_fn =	elv_rb_latter_request,
2624		.elevator_set_req_fn =		cfq_set_request,
2625		.elevator_put_req_fn =		cfq_put_request,
2626		.elevator_may_queue_fn =	cfq_may_queue,
2627		.elevator_init_fn =		cfq_init_queue,
2628		.elevator_exit_fn =		cfq_exit_queue,
2629		.trim =				cfq_free_io_context,
2630	},
2631	.elevator_attrs =	cfq_attrs,
2632	.elevator_name =	"cfq",
2633	.elevator_owner =	THIS_MODULE,
2634};
2635
2636static int __init cfq_init(void)
2637{
2638	/*
2639	 * could be 0 on HZ < 1000 setups
2640	 */
2641	if (!cfq_slice_async)
2642		cfq_slice_async = 1;
2643	if (!cfq_slice_idle)
2644		cfq_slice_idle = 1;
2645
2646	if (cfq_slab_setup())
2647		return -ENOMEM;
2648
2649	elv_register(&iosched_cfq);
2650
2651	return 0;
2652}
2653
2654static void __exit cfq_exit(void)
2655{
2656	DECLARE_COMPLETION_ONSTACK(all_gone);
2657	elv_unregister(&iosched_cfq);
2658	ioc_gone = &all_gone;
2659	/* ioc_gone's update must be visible before reading ioc_count */
2660	smp_wmb();
2661
2662	/*
2663	 * this also protects us from entering cfq_slab_kill() with
2664	 * pending RCU callbacks
2665	 */
2666	if (elv_ioc_count_read(ioc_count))
2667		wait_for_completion(&all_gone);
2668	cfq_slab_kill();
2669}
2670
2671module_init(cfq_init);
2672module_exit(cfq_exit);
2673
2674MODULE_AUTHOR("Jens Axboe");
2675MODULE_LICENSE("GPL");
2676MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2677