cfq-iosched.c revision ff6657c6c8ac99444e5dd4c4f7c1dc9271173382
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14#include <linux/blktrace_api.h>
15
16/*
17 * tunables
18 */
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
26static const int cfq_slice_sync = HZ / 10;
27static int cfq_slice_async = HZ / 25;
28static const int cfq_slice_async_rq = 2;
29static int cfq_slice_idle = HZ / 125;
30
31/*
32 * offset from end of service tree
33 */
34#define CFQ_IDLE_DELAY		(HZ / 5)
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT		(2)
40
41#define CFQ_SLICE_SCALE		(5)
42#define CFQ_HW_QUEUE_MIN	(5)
43
44#define RQ_CIC(rq)		\
45	((struct cfq_io_context *) (rq)->elevator_private)
46#define RQ_CFQQ(rq)		(struct cfq_queue *) ((rq)->elevator_private2)
47
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
50
51static DEFINE_PER_CPU(unsigned long, ioc_count);
52static struct completion *ioc_gone;
53static DEFINE_SPINLOCK(ioc_gone_lock);
54
55#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
56#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59#define sample_valid(samples)	((samples) > 80)
60
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68	struct rb_root rb;
69	struct rb_node *left;
70};
71#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
72
73/*
74 * Per block device queue structure
75 */
76struct cfq_data {
77	struct request_queue *queue;
78
79	/*
80	 * rr list of queues with requests and the count of them
81	 */
82	struct cfq_rb_root service_tree;
83	unsigned int busy_queues;
84	/*
85	 * Used to track any pending rt requests so we can pre-empt current
86	 * non-RT cfqq in service when this value is non-zero.
87	 */
88	unsigned int busy_rt_queues;
89
90	int rq_in_driver;
91	int sync_flight;
92
93	/*
94	 * queue-depth detection
95	 */
96	int rq_queued;
97	int hw_tag;
98	int hw_tag_samples;
99	int rq_in_driver_peak;
100
101	/*
102	 * idle window management
103	 */
104	struct timer_list idle_slice_timer;
105	struct work_struct unplug_work;
106
107	struct cfq_queue *active_queue;
108	struct cfq_io_context *active_cic;
109
110	/*
111	 * async queue for each priority case
112	 */
113	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
114	struct cfq_queue *async_idle_cfqq;
115
116	sector_t last_position;
117	unsigned long last_end_request;
118
119	/*
120	 * tunables, see top of file
121	 */
122	unsigned int cfq_quantum;
123	unsigned int cfq_fifo_expire[2];
124	unsigned int cfq_back_penalty;
125	unsigned int cfq_back_max;
126	unsigned int cfq_slice[2];
127	unsigned int cfq_slice_async_rq;
128	unsigned int cfq_slice_idle;
129
130	struct list_head cic_list;
131};
132
133/*
134 * Per process-grouping structure
135 */
136struct cfq_queue {
137	/* reference count */
138	atomic_t ref;
139	/* various state flags, see below */
140	unsigned int flags;
141	/* parent cfq_data */
142	struct cfq_data *cfqd;
143	/* service_tree member */
144	struct rb_node rb_node;
145	/* service_tree key */
146	unsigned long rb_key;
147	/* sorted list of pending requests */
148	struct rb_root sort_list;
149	/* if fifo isn't expired, next request to serve */
150	struct request *next_rq;
151	/* requests queued in sort_list */
152	int queued[2];
153	/* currently allocated requests */
154	int allocated[2];
155	/* fifo list of requests in sort_list */
156	struct list_head fifo;
157
158	unsigned long slice_end;
159	long slice_resid;
160	unsigned int slice_dispatch;
161
162	/* pending metadata requests */
163	int meta_pending;
164	/* number of requests that are on the dispatch list or inside driver */
165	int dispatched;
166
167	/* io prio of this group */
168	unsigned short ioprio, org_ioprio;
169	unsigned short ioprio_class, org_ioprio_class;
170
171	pid_t pid;
172};
173
174enum cfqq_state_flags {
175	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
176	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
177	CFQ_CFQQ_FLAG_must_dispatch,	/* must be allowed a dispatch */
178	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
179	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
180	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
181	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
182	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
183	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
184	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
185};
186
187#define CFQ_CFQQ_FNS(name)						\
188static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
189{									\
190	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
191}									\
192static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
193{									\
194	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
195}									\
196static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
197{									\
198	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
199}
200
201CFQ_CFQQ_FNS(on_rr);
202CFQ_CFQQ_FNS(wait_request);
203CFQ_CFQQ_FNS(must_dispatch);
204CFQ_CFQQ_FNS(must_alloc);
205CFQ_CFQQ_FNS(must_alloc_slice);
206CFQ_CFQQ_FNS(fifo_expire);
207CFQ_CFQQ_FNS(idle_window);
208CFQ_CFQQ_FNS(prio_changed);
209CFQ_CFQQ_FNS(slice_new);
210CFQ_CFQQ_FNS(sync);
211#undef CFQ_CFQQ_FNS
212
213#define cfq_log_cfqq(cfqd, cfqq, fmt, args...)	\
214	blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
215#define cfq_log(cfqd, fmt, args...)	\
216	blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
217
218static void cfq_dispatch_insert(struct request_queue *, struct request *);
219static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
220				       struct io_context *, gfp_t);
221static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
222						struct io_context *);
223
224static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
225					    int is_sync)
226{
227	return cic->cfqq[!!is_sync];
228}
229
230static inline void cic_set_cfqq(struct cfq_io_context *cic,
231				struct cfq_queue *cfqq, int is_sync)
232{
233	cic->cfqq[!!is_sync] = cfqq;
234}
235
236/*
237 * We regard a request as SYNC, if it's either a read or has the SYNC bit
238 * set (in which case it could also be direct WRITE).
239 */
240static inline int cfq_bio_sync(struct bio *bio)
241{
242	if (bio_data_dir(bio) == READ || bio_sync(bio))
243		return 1;
244
245	return 0;
246}
247
248/*
249 * scheduler run of queue, if there are requests pending and no one in the
250 * driver that will restart queueing
251 */
252static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
253{
254	if (cfqd->busy_queues) {
255		cfq_log(cfqd, "schedule dispatch");
256		kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
257	}
258}
259
260static int cfq_queue_empty(struct request_queue *q)
261{
262	struct cfq_data *cfqd = q->elevator->elevator_data;
263
264	return !cfqd->busy_queues;
265}
266
267/*
268 * Scale schedule slice based on io priority. Use the sync time slice only
269 * if a queue is marked sync and has sync io queued. A sync queue with async
270 * io only, should not get full sync slice length.
271 */
272static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
273				 unsigned short prio)
274{
275	const int base_slice = cfqd->cfq_slice[sync];
276
277	WARN_ON(prio >= IOPRIO_BE_NR);
278
279	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
280}
281
282static inline int
283cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
284{
285	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
286}
287
288static inline void
289cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
290{
291	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
292	cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
293}
294
295/*
296 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
297 * isn't valid until the first request from the dispatch is activated
298 * and the slice time set.
299 */
300static inline int cfq_slice_used(struct cfq_queue *cfqq)
301{
302	if (cfq_cfqq_slice_new(cfqq))
303		return 0;
304	if (time_before(jiffies, cfqq->slice_end))
305		return 0;
306
307	return 1;
308}
309
310/*
311 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
312 * We choose the request that is closest to the head right now. Distance
313 * behind the head is penalized and only allowed to a certain extent.
314 */
315static struct request *
316cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
317{
318	sector_t last, s1, s2, d1 = 0, d2 = 0;
319	unsigned long back_max;
320#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
321#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
322	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
323
324	if (rq1 == NULL || rq1 == rq2)
325		return rq2;
326	if (rq2 == NULL)
327		return rq1;
328
329	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
330		return rq1;
331	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
332		return rq2;
333	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
334		return rq1;
335	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
336		return rq2;
337
338	s1 = rq1->sector;
339	s2 = rq2->sector;
340
341	last = cfqd->last_position;
342
343	/*
344	 * by definition, 1KiB is 2 sectors
345	 */
346	back_max = cfqd->cfq_back_max * 2;
347
348	/*
349	 * Strict one way elevator _except_ in the case where we allow
350	 * short backward seeks which are biased as twice the cost of a
351	 * similar forward seek.
352	 */
353	if (s1 >= last)
354		d1 = s1 - last;
355	else if (s1 + back_max >= last)
356		d1 = (last - s1) * cfqd->cfq_back_penalty;
357	else
358		wrap |= CFQ_RQ1_WRAP;
359
360	if (s2 >= last)
361		d2 = s2 - last;
362	else if (s2 + back_max >= last)
363		d2 = (last - s2) * cfqd->cfq_back_penalty;
364	else
365		wrap |= CFQ_RQ2_WRAP;
366
367	/* Found required data */
368
369	/*
370	 * By doing switch() on the bit mask "wrap" we avoid having to
371	 * check two variables for all permutations: --> faster!
372	 */
373	switch (wrap) {
374	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
375		if (d1 < d2)
376			return rq1;
377		else if (d2 < d1)
378			return rq2;
379		else {
380			if (s1 >= s2)
381				return rq1;
382			else
383				return rq2;
384		}
385
386	case CFQ_RQ2_WRAP:
387		return rq1;
388	case CFQ_RQ1_WRAP:
389		return rq2;
390	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
391	default:
392		/*
393		 * Since both rqs are wrapped,
394		 * start with the one that's further behind head
395		 * (--> only *one* back seek required),
396		 * since back seek takes more time than forward.
397		 */
398		if (s1 <= s2)
399			return rq1;
400		else
401			return rq2;
402	}
403}
404
405/*
406 * The below is leftmost cache rbtree addon
407 */
408static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
409{
410	if (!root->left)
411		root->left = rb_first(&root->rb);
412
413	if (root->left)
414		return rb_entry(root->left, struct cfq_queue, rb_node);
415
416	return NULL;
417}
418
419static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
420{
421	if (root->left == n)
422		root->left = NULL;
423
424	rb_erase(n, &root->rb);
425	RB_CLEAR_NODE(n);
426}
427
428/*
429 * would be nice to take fifo expire time into account as well
430 */
431static struct request *
432cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
433		  struct request *last)
434{
435	struct rb_node *rbnext = rb_next(&last->rb_node);
436	struct rb_node *rbprev = rb_prev(&last->rb_node);
437	struct request *next = NULL, *prev = NULL;
438
439	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
440
441	if (rbprev)
442		prev = rb_entry_rq(rbprev);
443
444	if (rbnext)
445		next = rb_entry_rq(rbnext);
446	else {
447		rbnext = rb_first(&cfqq->sort_list);
448		if (rbnext && rbnext != &last->rb_node)
449			next = rb_entry_rq(rbnext);
450	}
451
452	return cfq_choose_req(cfqd, next, prev);
453}
454
455static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
456				      struct cfq_queue *cfqq)
457{
458	/*
459	 * just an approximation, should be ok.
460	 */
461	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
462		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
463}
464
465/*
466 * The cfqd->service_tree holds all pending cfq_queue's that have
467 * requests waiting to be processed. It is sorted in the order that
468 * we will service the queues.
469 */
470static void cfq_service_tree_add(struct cfq_data *cfqd,
471				    struct cfq_queue *cfqq, int add_front)
472{
473	struct rb_node **p, *parent;
474	struct cfq_queue *__cfqq;
475	unsigned long rb_key;
476	int left;
477
478	if (cfq_class_idle(cfqq)) {
479		rb_key = CFQ_IDLE_DELAY;
480		parent = rb_last(&cfqd->service_tree.rb);
481		if (parent && parent != &cfqq->rb_node) {
482			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
483			rb_key += __cfqq->rb_key;
484		} else
485			rb_key += jiffies;
486	} else if (!add_front) {
487		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
488		rb_key += cfqq->slice_resid;
489		cfqq->slice_resid = 0;
490	} else
491		rb_key = 0;
492
493	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
494		/*
495		 * same position, nothing more to do
496		 */
497		if (rb_key == cfqq->rb_key)
498			return;
499
500		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
501	}
502
503	left = 1;
504	parent = NULL;
505	p = &cfqd->service_tree.rb.rb_node;
506	while (*p) {
507		struct rb_node **n;
508
509		parent = *p;
510		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
511
512		/*
513		 * sort RT queues first, we always want to give
514		 * preference to them. IDLE queues goes to the back.
515		 * after that, sort on the next service time.
516		 */
517		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
518			n = &(*p)->rb_left;
519		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
520			n = &(*p)->rb_right;
521		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
522			n = &(*p)->rb_left;
523		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
524			n = &(*p)->rb_right;
525		else if (rb_key < __cfqq->rb_key)
526			n = &(*p)->rb_left;
527		else
528			n = &(*p)->rb_right;
529
530		if (n == &(*p)->rb_right)
531			left = 0;
532
533		p = n;
534	}
535
536	if (left)
537		cfqd->service_tree.left = &cfqq->rb_node;
538
539	cfqq->rb_key = rb_key;
540	rb_link_node(&cfqq->rb_node, parent, p);
541	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
542}
543
544/*
545 * Update cfqq's position in the service tree.
546 */
547static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
548{
549	/*
550	 * Resorting requires the cfqq to be on the RR list already.
551	 */
552	if (cfq_cfqq_on_rr(cfqq))
553		cfq_service_tree_add(cfqd, cfqq, 0);
554}
555
556/*
557 * add to busy list of queues for service, trying to be fair in ordering
558 * the pending list according to last request service
559 */
560static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
561{
562	cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
563	BUG_ON(cfq_cfqq_on_rr(cfqq));
564	cfq_mark_cfqq_on_rr(cfqq);
565	cfqd->busy_queues++;
566	if (cfq_class_rt(cfqq))
567		cfqd->busy_rt_queues++;
568
569	cfq_resort_rr_list(cfqd, cfqq);
570}
571
572/*
573 * Called when the cfqq no longer has requests pending, remove it from
574 * the service tree.
575 */
576static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
577{
578	cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
579	BUG_ON(!cfq_cfqq_on_rr(cfqq));
580	cfq_clear_cfqq_on_rr(cfqq);
581
582	if (!RB_EMPTY_NODE(&cfqq->rb_node))
583		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
584
585	BUG_ON(!cfqd->busy_queues);
586	cfqd->busy_queues--;
587	if (cfq_class_rt(cfqq))
588		cfqd->busy_rt_queues--;
589}
590
591/*
592 * rb tree support functions
593 */
594static void cfq_del_rq_rb(struct request *rq)
595{
596	struct cfq_queue *cfqq = RQ_CFQQ(rq);
597	struct cfq_data *cfqd = cfqq->cfqd;
598	const int sync = rq_is_sync(rq);
599
600	BUG_ON(!cfqq->queued[sync]);
601	cfqq->queued[sync]--;
602
603	elv_rb_del(&cfqq->sort_list, rq);
604
605	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
606		cfq_del_cfqq_rr(cfqd, cfqq);
607}
608
609static void cfq_add_rq_rb(struct request *rq)
610{
611	struct cfq_queue *cfqq = RQ_CFQQ(rq);
612	struct cfq_data *cfqd = cfqq->cfqd;
613	struct request *__alias;
614
615	cfqq->queued[rq_is_sync(rq)]++;
616
617	/*
618	 * looks a little odd, but the first insert might return an alias.
619	 * if that happens, put the alias on the dispatch list
620	 */
621	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
622		cfq_dispatch_insert(cfqd->queue, __alias);
623
624	if (!cfq_cfqq_on_rr(cfqq))
625		cfq_add_cfqq_rr(cfqd, cfqq);
626
627	/*
628	 * check if this request is a better next-serve candidate
629	 */
630	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
631	BUG_ON(!cfqq->next_rq);
632}
633
634static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
635{
636	elv_rb_del(&cfqq->sort_list, rq);
637	cfqq->queued[rq_is_sync(rq)]--;
638	cfq_add_rq_rb(rq);
639}
640
641static struct request *
642cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
643{
644	struct task_struct *tsk = current;
645	struct cfq_io_context *cic;
646	struct cfq_queue *cfqq;
647
648	cic = cfq_cic_lookup(cfqd, tsk->io_context);
649	if (!cic)
650		return NULL;
651
652	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
653	if (cfqq) {
654		sector_t sector = bio->bi_sector + bio_sectors(bio);
655
656		return elv_rb_find(&cfqq->sort_list, sector);
657	}
658
659	return NULL;
660}
661
662static void cfq_activate_request(struct request_queue *q, struct request *rq)
663{
664	struct cfq_data *cfqd = q->elevator->elevator_data;
665
666	cfqd->rq_in_driver++;
667	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
668						cfqd->rq_in_driver);
669
670	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
671}
672
673static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
674{
675	struct cfq_data *cfqd = q->elevator->elevator_data;
676
677	WARN_ON(!cfqd->rq_in_driver);
678	cfqd->rq_in_driver--;
679	cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
680						cfqd->rq_in_driver);
681}
682
683static void cfq_remove_request(struct request *rq)
684{
685	struct cfq_queue *cfqq = RQ_CFQQ(rq);
686
687	if (cfqq->next_rq == rq)
688		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
689
690	list_del_init(&rq->queuelist);
691	cfq_del_rq_rb(rq);
692
693	cfqq->cfqd->rq_queued--;
694	if (rq_is_meta(rq)) {
695		WARN_ON(!cfqq->meta_pending);
696		cfqq->meta_pending--;
697	}
698}
699
700static int cfq_merge(struct request_queue *q, struct request **req,
701		     struct bio *bio)
702{
703	struct cfq_data *cfqd = q->elevator->elevator_data;
704	struct request *__rq;
705
706	__rq = cfq_find_rq_fmerge(cfqd, bio);
707	if (__rq && elv_rq_merge_ok(__rq, bio)) {
708		*req = __rq;
709		return ELEVATOR_FRONT_MERGE;
710	}
711
712	return ELEVATOR_NO_MERGE;
713}
714
715static void cfq_merged_request(struct request_queue *q, struct request *req,
716			       int type)
717{
718	if (type == ELEVATOR_FRONT_MERGE) {
719		struct cfq_queue *cfqq = RQ_CFQQ(req);
720
721		cfq_reposition_rq_rb(cfqq, req);
722	}
723}
724
725static void
726cfq_merged_requests(struct request_queue *q, struct request *rq,
727		    struct request *next)
728{
729	/*
730	 * reposition in fifo if next is older than rq
731	 */
732	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
733	    time_before(next->start_time, rq->start_time))
734		list_move(&rq->queuelist, &next->queuelist);
735
736	cfq_remove_request(next);
737}
738
739static int cfq_allow_merge(struct request_queue *q, struct request *rq,
740			   struct bio *bio)
741{
742	struct cfq_data *cfqd = q->elevator->elevator_data;
743	struct cfq_io_context *cic;
744	struct cfq_queue *cfqq;
745
746	/*
747	 * Disallow merge of a sync bio into an async request.
748	 */
749	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
750		return 0;
751
752	/*
753	 * Lookup the cfqq that this bio will be queued with. Allow
754	 * merge only if rq is queued there.
755	 */
756	cic = cfq_cic_lookup(cfqd, current->io_context);
757	if (!cic)
758		return 0;
759
760	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
761	if (cfqq == RQ_CFQQ(rq))
762		return 1;
763
764	return 0;
765}
766
767static void __cfq_set_active_queue(struct cfq_data *cfqd,
768				   struct cfq_queue *cfqq)
769{
770	if (cfqq) {
771		cfq_log_cfqq(cfqd, cfqq, "set_active");
772		cfqq->slice_end = 0;
773		cfqq->slice_dispatch = 0;
774
775		cfq_clear_cfqq_wait_request(cfqq);
776		cfq_clear_cfqq_must_dispatch(cfqq);
777		cfq_clear_cfqq_must_alloc_slice(cfqq);
778		cfq_clear_cfqq_fifo_expire(cfqq);
779		cfq_mark_cfqq_slice_new(cfqq);
780
781		del_timer(&cfqd->idle_slice_timer);
782	}
783
784	cfqd->active_queue = cfqq;
785}
786
787/*
788 * current cfqq expired its slice (or was too idle), select new one
789 */
790static void
791__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
792		    int timed_out)
793{
794	cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
795
796	if (cfq_cfqq_wait_request(cfqq))
797		del_timer(&cfqd->idle_slice_timer);
798
799	cfq_clear_cfqq_wait_request(cfqq);
800
801	/*
802	 * store what was left of this slice, if the queue idled/timed out
803	 */
804	if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
805		cfqq->slice_resid = cfqq->slice_end - jiffies;
806		cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
807	}
808
809	cfq_resort_rr_list(cfqd, cfqq);
810
811	if (cfqq == cfqd->active_queue)
812		cfqd->active_queue = NULL;
813
814	if (cfqd->active_cic) {
815		put_io_context(cfqd->active_cic->ioc);
816		cfqd->active_cic = NULL;
817	}
818}
819
820static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
821{
822	struct cfq_queue *cfqq = cfqd->active_queue;
823
824	if (cfqq)
825		__cfq_slice_expired(cfqd, cfqq, timed_out);
826}
827
828/*
829 * Get next queue for service. Unless we have a queue preemption,
830 * we'll simply select the first cfqq in the service tree.
831 */
832static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
833{
834	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
835		return NULL;
836
837	return cfq_rb_first(&cfqd->service_tree);
838}
839
840/*
841 * Get and set a new active queue for service.
842 */
843static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
844{
845	struct cfq_queue *cfqq;
846
847	cfqq = cfq_get_next_queue(cfqd);
848	__cfq_set_active_queue(cfqd, cfqq);
849	return cfqq;
850}
851
852static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
853					  struct request *rq)
854{
855	if (rq->sector >= cfqd->last_position)
856		return rq->sector - cfqd->last_position;
857	else
858		return cfqd->last_position - rq->sector;
859}
860
861static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
862{
863	struct cfq_io_context *cic = cfqd->active_cic;
864
865	if (!sample_valid(cic->seek_samples))
866		return 0;
867
868	return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
869}
870
871static int cfq_close_cooperator(struct cfq_data *cfq_data,
872				struct cfq_queue *cfqq)
873{
874	/*
875	 * We should notice if some of the queues are cooperating, eg
876	 * working closely on the same area of the disk. In that case,
877	 * we can group them together and don't waste time idling.
878	 */
879	return 0;
880}
881
882#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
883
884static void cfq_arm_slice_timer(struct cfq_data *cfqd)
885{
886	struct cfq_queue *cfqq = cfqd->active_queue;
887	struct cfq_io_context *cic;
888	unsigned long sl;
889
890	/*
891	 * SSD device without seek penalty, disable idling. But only do so
892	 * for devices that support queuing, otherwise we still have a problem
893	 * with sync vs async workloads.
894	 */
895	if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
896		return;
897
898	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
899	WARN_ON(cfq_cfqq_slice_new(cfqq));
900
901	/*
902	 * idle is disabled, either manually or by past process history
903	 */
904	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
905		return;
906
907	/*
908	 * still requests with the driver, don't idle
909	 */
910	if (cfqd->rq_in_driver)
911		return;
912
913	/*
914	 * task has exited, don't wait
915	 */
916	cic = cfqd->active_cic;
917	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
918		return;
919
920	/*
921	 * See if this prio level has a good candidate
922	 */
923	if (cfq_close_cooperator(cfqd, cfqq) &&
924	    (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
925		return;
926
927	cfq_mark_cfqq_wait_request(cfqq);
928
929	/*
930	 * we don't want to idle for seeks, but we do want to allow
931	 * fair distribution of slice time for a process doing back-to-back
932	 * seeks. so allow a little bit of time for him to submit a new rq
933	 */
934	sl = cfqd->cfq_slice_idle;
935	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
936		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
937
938	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
939	cfq_log(cfqd, "arm_idle: %lu", sl);
940}
941
942/*
943 * Move request from internal lists to the request queue dispatch list.
944 */
945static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
946{
947	struct cfq_data *cfqd = q->elevator->elevator_data;
948	struct cfq_queue *cfqq = RQ_CFQQ(rq);
949
950	cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
951
952	cfq_remove_request(rq);
953	cfqq->dispatched++;
954	elv_dispatch_sort(q, rq);
955
956	if (cfq_cfqq_sync(cfqq))
957		cfqd->sync_flight++;
958}
959
960/*
961 * return expired entry, or NULL to just start from scratch in rbtree
962 */
963static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
964{
965	struct cfq_data *cfqd = cfqq->cfqd;
966	struct request *rq;
967	int fifo;
968
969	if (cfq_cfqq_fifo_expire(cfqq))
970		return NULL;
971
972	cfq_mark_cfqq_fifo_expire(cfqq);
973
974	if (list_empty(&cfqq->fifo))
975		return NULL;
976
977	fifo = cfq_cfqq_sync(cfqq);
978	rq = rq_entry_fifo(cfqq->fifo.next);
979
980	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
981		rq = NULL;
982
983	cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
984	return rq;
985}
986
987static inline int
988cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
989{
990	const int base_rq = cfqd->cfq_slice_async_rq;
991
992	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
993
994	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
995}
996
997/*
998 * Select a queue for service. If we have a current active queue,
999 * check whether to continue servicing it, or retrieve and set a new one.
1000 */
1001static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1002{
1003	struct cfq_queue *cfqq;
1004
1005	cfqq = cfqd->active_queue;
1006	if (!cfqq)
1007		goto new_queue;
1008
1009	/*
1010	 * The active queue has run out of time, expire it and select new.
1011	 */
1012	if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1013		goto expire;
1014
1015	/*
1016	 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1017	 * cfqq.
1018	 */
1019	if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1020		/*
1021		 * We simulate this as cfqq timed out so that it gets to bank
1022		 * the remaining of its time slice.
1023		 */
1024		cfq_log_cfqq(cfqd, cfqq, "preempt");
1025		cfq_slice_expired(cfqd, 1);
1026		goto new_queue;
1027	}
1028
1029	/*
1030	 * The active queue has requests and isn't expired, allow it to
1031	 * dispatch.
1032	 */
1033	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1034		goto keep_queue;
1035
1036	/*
1037	 * No requests pending. If the active queue still has requests in
1038	 * flight or is idling for a new request, allow either of these
1039	 * conditions to happen (or time out) before selecting a new queue.
1040	 */
1041	if (timer_pending(&cfqd->idle_slice_timer) ||
1042	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1043		cfqq = NULL;
1044		goto keep_queue;
1045	}
1046
1047expire:
1048	cfq_slice_expired(cfqd, 0);
1049new_queue:
1050	cfqq = cfq_set_active_queue(cfqd);
1051keep_queue:
1052	return cfqq;
1053}
1054
1055static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1056{
1057	int dispatched = 0;
1058
1059	while (cfqq->next_rq) {
1060		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1061		dispatched++;
1062	}
1063
1064	BUG_ON(!list_empty(&cfqq->fifo));
1065	return dispatched;
1066}
1067
1068/*
1069 * Drain our current requests. Used for barriers and when switching
1070 * io schedulers on-the-fly.
1071 */
1072static int cfq_forced_dispatch(struct cfq_data *cfqd)
1073{
1074	struct cfq_queue *cfqq;
1075	int dispatched = 0;
1076
1077	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1078		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1079
1080	cfq_slice_expired(cfqd, 0);
1081
1082	BUG_ON(cfqd->busy_queues);
1083
1084	cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1085	return dispatched;
1086}
1087
1088/*
1089 * Dispatch a request from cfqq, moving them to the request queue
1090 * dispatch list.
1091 */
1092static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1093{
1094	struct request *rq;
1095
1096	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1097
1098	/*
1099	 * follow expired path, else get first next available
1100	 */
1101	rq = cfq_check_fifo(cfqq);
1102	if (!rq)
1103		rq = cfqq->next_rq;
1104
1105	/*
1106	 * insert request into driver dispatch list
1107	 */
1108	cfq_dispatch_insert(cfqd->queue, rq);
1109
1110	if (!cfqd->active_cic) {
1111		struct cfq_io_context *cic = RQ_CIC(rq);
1112
1113		atomic_inc(&cic->ioc->refcount);
1114		cfqd->active_cic = cic;
1115	}
1116}
1117
1118/*
1119 * Find the cfqq that we need to service and move a request from that to the
1120 * dispatch list
1121 */
1122static int cfq_dispatch_requests(struct request_queue *q, int force)
1123{
1124	struct cfq_data *cfqd = q->elevator->elevator_data;
1125	struct cfq_queue *cfqq;
1126	unsigned int max_dispatch;
1127
1128	if (!cfqd->busy_queues)
1129		return 0;
1130
1131	if (unlikely(force))
1132		return cfq_forced_dispatch(cfqd);
1133
1134	cfqq = cfq_select_queue(cfqd);
1135	if (!cfqq)
1136		return 0;
1137
1138	/*
1139	 * If this is an async queue and we have sync IO in flight, let it wait
1140	 */
1141	if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1142		return 0;
1143
1144	max_dispatch = cfqd->cfq_quantum;
1145	if (cfq_class_idle(cfqq))
1146		max_dispatch = 1;
1147
1148	/*
1149	 * Does this cfqq already have too much IO in flight?
1150	 */
1151	if (cfqq->dispatched >= max_dispatch) {
1152		/*
1153		 * idle queue must always only have a single IO in flight
1154		 */
1155		if (cfq_class_idle(cfqq))
1156			return 0;
1157
1158		/*
1159		 * We have other queues, don't allow more IO from this one
1160		 */
1161		if (cfqd->busy_queues > 1)
1162			return 0;
1163
1164		/*
1165		 * we are the only queue, allow up to 4 times of 'quantum'
1166		 */
1167		if (cfqq->dispatched >= 4 * max_dispatch)
1168			return 0;
1169	}
1170
1171	/*
1172	 * Dispatch a request from this cfqq
1173	 */
1174	cfq_dispatch_request(cfqd, cfqq);
1175	cfqq->slice_dispatch++;
1176	cfq_clear_cfqq_must_dispatch(cfqq);
1177
1178	/*
1179	 * expire an async queue immediately if it has used up its slice. idle
1180	 * queue always expire after 1 dispatch round.
1181	 */
1182	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1183	    cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1184	    cfq_class_idle(cfqq))) {
1185		cfqq->slice_end = jiffies + 1;
1186		cfq_slice_expired(cfqd, 0);
1187	}
1188
1189	cfq_log(cfqd, "dispatched a request");
1190	return 1;
1191}
1192
1193/*
1194 * task holds one reference to the queue, dropped when task exits. each rq
1195 * in-flight on this queue also holds a reference, dropped when rq is freed.
1196 *
1197 * queue lock must be held here.
1198 */
1199static void cfq_put_queue(struct cfq_queue *cfqq)
1200{
1201	struct cfq_data *cfqd = cfqq->cfqd;
1202
1203	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1204
1205	if (!atomic_dec_and_test(&cfqq->ref))
1206		return;
1207
1208	cfq_log_cfqq(cfqd, cfqq, "put_queue");
1209	BUG_ON(rb_first(&cfqq->sort_list));
1210	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1211	BUG_ON(cfq_cfqq_on_rr(cfqq));
1212
1213	if (unlikely(cfqd->active_queue == cfqq)) {
1214		__cfq_slice_expired(cfqd, cfqq, 0);
1215		cfq_schedule_dispatch(cfqd);
1216	}
1217
1218	kmem_cache_free(cfq_pool, cfqq);
1219}
1220
1221/*
1222 * Must always be called with the rcu_read_lock() held
1223 */
1224static void
1225__call_for_each_cic(struct io_context *ioc,
1226		    void (*func)(struct io_context *, struct cfq_io_context *))
1227{
1228	struct cfq_io_context *cic;
1229	struct hlist_node *n;
1230
1231	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1232		func(ioc, cic);
1233}
1234
1235/*
1236 * Call func for each cic attached to this ioc.
1237 */
1238static void
1239call_for_each_cic(struct io_context *ioc,
1240		  void (*func)(struct io_context *, struct cfq_io_context *))
1241{
1242	rcu_read_lock();
1243	__call_for_each_cic(ioc, func);
1244	rcu_read_unlock();
1245}
1246
1247static void cfq_cic_free_rcu(struct rcu_head *head)
1248{
1249	struct cfq_io_context *cic;
1250
1251	cic = container_of(head, struct cfq_io_context, rcu_head);
1252
1253	kmem_cache_free(cfq_ioc_pool, cic);
1254	elv_ioc_count_dec(ioc_count);
1255
1256	if (ioc_gone) {
1257		/*
1258		 * CFQ scheduler is exiting, grab exit lock and check
1259		 * the pending io context count. If it hits zero,
1260		 * complete ioc_gone and set it back to NULL
1261		 */
1262		spin_lock(&ioc_gone_lock);
1263		if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1264			complete(ioc_gone);
1265			ioc_gone = NULL;
1266		}
1267		spin_unlock(&ioc_gone_lock);
1268	}
1269}
1270
1271static void cfq_cic_free(struct cfq_io_context *cic)
1272{
1273	call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1274}
1275
1276static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1277{
1278	unsigned long flags;
1279
1280	BUG_ON(!cic->dead_key);
1281
1282	spin_lock_irqsave(&ioc->lock, flags);
1283	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1284	hlist_del_rcu(&cic->cic_list);
1285	spin_unlock_irqrestore(&ioc->lock, flags);
1286
1287	cfq_cic_free(cic);
1288}
1289
1290/*
1291 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1292 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1293 * and ->trim() which is called with the task lock held
1294 */
1295static void cfq_free_io_context(struct io_context *ioc)
1296{
1297	/*
1298	 * ioc->refcount is zero here, or we are called from elv_unregister(),
1299	 * so no more cic's are allowed to be linked into this ioc.  So it
1300	 * should be ok to iterate over the known list, we will see all cic's
1301	 * since no new ones are added.
1302	 */
1303	__call_for_each_cic(ioc, cic_free_func);
1304}
1305
1306static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1307{
1308	if (unlikely(cfqq == cfqd->active_queue)) {
1309		__cfq_slice_expired(cfqd, cfqq, 0);
1310		cfq_schedule_dispatch(cfqd);
1311	}
1312
1313	cfq_put_queue(cfqq);
1314}
1315
1316static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1317					 struct cfq_io_context *cic)
1318{
1319	struct io_context *ioc = cic->ioc;
1320
1321	list_del_init(&cic->queue_list);
1322
1323	/*
1324	 * Make sure key == NULL is seen for dead queues
1325	 */
1326	smp_wmb();
1327	cic->dead_key = (unsigned long) cic->key;
1328	cic->key = NULL;
1329
1330	if (ioc->ioc_data == cic)
1331		rcu_assign_pointer(ioc->ioc_data, NULL);
1332
1333	if (cic->cfqq[BLK_RW_ASYNC]) {
1334		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1335		cic->cfqq[BLK_RW_ASYNC] = NULL;
1336	}
1337
1338	if (cic->cfqq[BLK_RW_SYNC]) {
1339		cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1340		cic->cfqq[BLK_RW_SYNC] = NULL;
1341	}
1342}
1343
1344static void cfq_exit_single_io_context(struct io_context *ioc,
1345				       struct cfq_io_context *cic)
1346{
1347	struct cfq_data *cfqd = cic->key;
1348
1349	if (cfqd) {
1350		struct request_queue *q = cfqd->queue;
1351		unsigned long flags;
1352
1353		spin_lock_irqsave(q->queue_lock, flags);
1354
1355		/*
1356		 * Ensure we get a fresh copy of the ->key to prevent
1357		 * race between exiting task and queue
1358		 */
1359		smp_read_barrier_depends();
1360		if (cic->key)
1361			__cfq_exit_single_io_context(cfqd, cic);
1362
1363		spin_unlock_irqrestore(q->queue_lock, flags);
1364	}
1365}
1366
1367/*
1368 * The process that ioc belongs to has exited, we need to clean up
1369 * and put the internal structures we have that belongs to that process.
1370 */
1371static void cfq_exit_io_context(struct io_context *ioc)
1372{
1373	call_for_each_cic(ioc, cfq_exit_single_io_context);
1374}
1375
1376static struct cfq_io_context *
1377cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1378{
1379	struct cfq_io_context *cic;
1380
1381	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1382							cfqd->queue->node);
1383	if (cic) {
1384		cic->last_end_request = jiffies;
1385		INIT_LIST_HEAD(&cic->queue_list);
1386		INIT_HLIST_NODE(&cic->cic_list);
1387		cic->dtor = cfq_free_io_context;
1388		cic->exit = cfq_exit_io_context;
1389		elv_ioc_count_inc(ioc_count);
1390	}
1391
1392	return cic;
1393}
1394
1395static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1396{
1397	struct task_struct *tsk = current;
1398	int ioprio_class;
1399
1400	if (!cfq_cfqq_prio_changed(cfqq))
1401		return;
1402
1403	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1404	switch (ioprio_class) {
1405	default:
1406		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1407	case IOPRIO_CLASS_NONE:
1408		/*
1409		 * no prio set, inherit CPU scheduling settings
1410		 */
1411		cfqq->ioprio = task_nice_ioprio(tsk);
1412		cfqq->ioprio_class = task_nice_ioclass(tsk);
1413		break;
1414	case IOPRIO_CLASS_RT:
1415		cfqq->ioprio = task_ioprio(ioc);
1416		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1417		break;
1418	case IOPRIO_CLASS_BE:
1419		cfqq->ioprio = task_ioprio(ioc);
1420		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1421		break;
1422	case IOPRIO_CLASS_IDLE:
1423		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1424		cfqq->ioprio = 7;
1425		cfq_clear_cfqq_idle_window(cfqq);
1426		break;
1427	}
1428
1429	/*
1430	 * keep track of original prio settings in case we have to temporarily
1431	 * elevate the priority of this queue
1432	 */
1433	cfqq->org_ioprio = cfqq->ioprio;
1434	cfqq->org_ioprio_class = cfqq->ioprio_class;
1435	cfq_clear_cfqq_prio_changed(cfqq);
1436}
1437
1438static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1439{
1440	struct cfq_data *cfqd = cic->key;
1441	struct cfq_queue *cfqq;
1442	unsigned long flags;
1443
1444	if (unlikely(!cfqd))
1445		return;
1446
1447	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1448
1449	cfqq = cic->cfqq[BLK_RW_ASYNC];
1450	if (cfqq) {
1451		struct cfq_queue *new_cfqq;
1452		new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1453						GFP_ATOMIC);
1454		if (new_cfqq) {
1455			cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1456			cfq_put_queue(cfqq);
1457		}
1458	}
1459
1460	cfqq = cic->cfqq[BLK_RW_SYNC];
1461	if (cfqq)
1462		cfq_mark_cfqq_prio_changed(cfqq);
1463
1464	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1465}
1466
1467static void cfq_ioc_set_ioprio(struct io_context *ioc)
1468{
1469	call_for_each_cic(ioc, changed_ioprio);
1470	ioc->ioprio_changed = 0;
1471}
1472
1473static struct cfq_queue *
1474cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1475		     struct io_context *ioc, gfp_t gfp_mask)
1476{
1477	struct cfq_queue *cfqq, *new_cfqq = NULL;
1478	struct cfq_io_context *cic;
1479
1480retry:
1481	cic = cfq_cic_lookup(cfqd, ioc);
1482	/* cic always exists here */
1483	cfqq = cic_to_cfqq(cic, is_sync);
1484
1485	if (!cfqq) {
1486		if (new_cfqq) {
1487			cfqq = new_cfqq;
1488			new_cfqq = NULL;
1489		} else if (gfp_mask & __GFP_WAIT) {
1490			/*
1491			 * Inform the allocator of the fact that we will
1492			 * just repeat this allocation if it fails, to allow
1493			 * the allocator to do whatever it needs to attempt to
1494			 * free memory.
1495			 */
1496			spin_unlock_irq(cfqd->queue->queue_lock);
1497			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1498					gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1499					cfqd->queue->node);
1500			spin_lock_irq(cfqd->queue->queue_lock);
1501			goto retry;
1502		} else {
1503			cfqq = kmem_cache_alloc_node(cfq_pool,
1504					gfp_mask | __GFP_ZERO,
1505					cfqd->queue->node);
1506			if (!cfqq)
1507				goto out;
1508		}
1509
1510		RB_CLEAR_NODE(&cfqq->rb_node);
1511		INIT_LIST_HEAD(&cfqq->fifo);
1512
1513		atomic_set(&cfqq->ref, 0);
1514		cfqq->cfqd = cfqd;
1515
1516		cfq_mark_cfqq_prio_changed(cfqq);
1517
1518		cfq_init_prio_data(cfqq, ioc);
1519
1520		if (is_sync) {
1521			if (!cfq_class_idle(cfqq))
1522				cfq_mark_cfqq_idle_window(cfqq);
1523			cfq_mark_cfqq_sync(cfqq);
1524		}
1525		cfqq->pid = current->pid;
1526		cfq_log_cfqq(cfqd, cfqq, "alloced");
1527	}
1528
1529	if (new_cfqq)
1530		kmem_cache_free(cfq_pool, new_cfqq);
1531
1532out:
1533	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1534	return cfqq;
1535}
1536
1537static struct cfq_queue **
1538cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1539{
1540	switch (ioprio_class) {
1541	case IOPRIO_CLASS_RT:
1542		return &cfqd->async_cfqq[0][ioprio];
1543	case IOPRIO_CLASS_BE:
1544		return &cfqd->async_cfqq[1][ioprio];
1545	case IOPRIO_CLASS_IDLE:
1546		return &cfqd->async_idle_cfqq;
1547	default:
1548		BUG();
1549	}
1550}
1551
1552static struct cfq_queue *
1553cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1554	      gfp_t gfp_mask)
1555{
1556	const int ioprio = task_ioprio(ioc);
1557	const int ioprio_class = task_ioprio_class(ioc);
1558	struct cfq_queue **async_cfqq = NULL;
1559	struct cfq_queue *cfqq = NULL;
1560
1561	if (!is_sync) {
1562		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1563		cfqq = *async_cfqq;
1564	}
1565
1566	if (!cfqq) {
1567		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1568		if (!cfqq)
1569			return NULL;
1570	}
1571
1572	/*
1573	 * pin the queue now that it's allocated, scheduler exit will prune it
1574	 */
1575	if (!is_sync && !(*async_cfqq)) {
1576		atomic_inc(&cfqq->ref);
1577		*async_cfqq = cfqq;
1578	}
1579
1580	atomic_inc(&cfqq->ref);
1581	return cfqq;
1582}
1583
1584/*
1585 * We drop cfq io contexts lazily, so we may find a dead one.
1586 */
1587static void
1588cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1589		  struct cfq_io_context *cic)
1590{
1591	unsigned long flags;
1592
1593	WARN_ON(!list_empty(&cic->queue_list));
1594
1595	spin_lock_irqsave(&ioc->lock, flags);
1596
1597	BUG_ON(ioc->ioc_data == cic);
1598
1599	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1600	hlist_del_rcu(&cic->cic_list);
1601	spin_unlock_irqrestore(&ioc->lock, flags);
1602
1603	cfq_cic_free(cic);
1604}
1605
1606static struct cfq_io_context *
1607cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1608{
1609	struct cfq_io_context *cic;
1610	unsigned long flags;
1611	void *k;
1612
1613	if (unlikely(!ioc))
1614		return NULL;
1615
1616	rcu_read_lock();
1617
1618	/*
1619	 * we maintain a last-hit cache, to avoid browsing over the tree
1620	 */
1621	cic = rcu_dereference(ioc->ioc_data);
1622	if (cic && cic->key == cfqd) {
1623		rcu_read_unlock();
1624		return cic;
1625	}
1626
1627	do {
1628		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1629		rcu_read_unlock();
1630		if (!cic)
1631			break;
1632		/* ->key must be copied to avoid race with cfq_exit_queue() */
1633		k = cic->key;
1634		if (unlikely(!k)) {
1635			cfq_drop_dead_cic(cfqd, ioc, cic);
1636			rcu_read_lock();
1637			continue;
1638		}
1639
1640		spin_lock_irqsave(&ioc->lock, flags);
1641		rcu_assign_pointer(ioc->ioc_data, cic);
1642		spin_unlock_irqrestore(&ioc->lock, flags);
1643		break;
1644	} while (1);
1645
1646	return cic;
1647}
1648
1649/*
1650 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1651 * the process specific cfq io context when entered from the block layer.
1652 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1653 */
1654static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1655			struct cfq_io_context *cic, gfp_t gfp_mask)
1656{
1657	unsigned long flags;
1658	int ret;
1659
1660	ret = radix_tree_preload(gfp_mask);
1661	if (!ret) {
1662		cic->ioc = ioc;
1663		cic->key = cfqd;
1664
1665		spin_lock_irqsave(&ioc->lock, flags);
1666		ret = radix_tree_insert(&ioc->radix_root,
1667						(unsigned long) cfqd, cic);
1668		if (!ret)
1669			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1670		spin_unlock_irqrestore(&ioc->lock, flags);
1671
1672		radix_tree_preload_end();
1673
1674		if (!ret) {
1675			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1676			list_add(&cic->queue_list, &cfqd->cic_list);
1677			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1678		}
1679	}
1680
1681	if (ret)
1682		printk(KERN_ERR "cfq: cic link failed!\n");
1683
1684	return ret;
1685}
1686
1687/*
1688 * Setup general io context and cfq io context. There can be several cfq
1689 * io contexts per general io context, if this process is doing io to more
1690 * than one device managed by cfq.
1691 */
1692static struct cfq_io_context *
1693cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1694{
1695	struct io_context *ioc = NULL;
1696	struct cfq_io_context *cic;
1697
1698	might_sleep_if(gfp_mask & __GFP_WAIT);
1699
1700	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1701	if (!ioc)
1702		return NULL;
1703
1704	cic = cfq_cic_lookup(cfqd, ioc);
1705	if (cic)
1706		goto out;
1707
1708	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1709	if (cic == NULL)
1710		goto err;
1711
1712	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1713		goto err_free;
1714
1715out:
1716	smp_read_barrier_depends();
1717	if (unlikely(ioc->ioprio_changed))
1718		cfq_ioc_set_ioprio(ioc);
1719
1720	return cic;
1721err_free:
1722	cfq_cic_free(cic);
1723err:
1724	put_io_context(ioc);
1725	return NULL;
1726}
1727
1728static void
1729cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1730{
1731	unsigned long elapsed = jiffies - cic->last_end_request;
1732	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1733
1734	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1735	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1736	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1737}
1738
1739static void
1740cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1741		       struct request *rq)
1742{
1743	sector_t sdist;
1744	u64 total;
1745
1746	if (cic->last_request_pos < rq->sector)
1747		sdist = rq->sector - cic->last_request_pos;
1748	else
1749		sdist = cic->last_request_pos - rq->sector;
1750
1751	/*
1752	 * Don't allow the seek distance to get too large from the
1753	 * odd fragment, pagein, etc
1754	 */
1755	if (cic->seek_samples <= 60) /* second&third seek */
1756		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1757	else
1758		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1759
1760	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1761	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1762	total = cic->seek_total + (cic->seek_samples/2);
1763	do_div(total, cic->seek_samples);
1764	cic->seek_mean = (sector_t)total;
1765}
1766
1767/*
1768 * Disable idle window if the process thinks too long or seeks so much that
1769 * it doesn't matter
1770 */
1771static void
1772cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1773		       struct cfq_io_context *cic)
1774{
1775	int old_idle, enable_idle;
1776
1777	/*
1778	 * Don't idle for async or idle io prio class
1779	 */
1780	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1781		return;
1782
1783	enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1784
1785	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1786	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1787		enable_idle = 0;
1788	else if (sample_valid(cic->ttime_samples)) {
1789		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1790			enable_idle = 0;
1791		else
1792			enable_idle = 1;
1793	}
1794
1795	if (old_idle != enable_idle) {
1796		cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1797		if (enable_idle)
1798			cfq_mark_cfqq_idle_window(cfqq);
1799		else
1800			cfq_clear_cfqq_idle_window(cfqq);
1801	}
1802}
1803
1804/*
1805 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1806 * no or if we aren't sure, a 1 will cause a preempt.
1807 */
1808static int
1809cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1810		   struct request *rq)
1811{
1812	struct cfq_queue *cfqq;
1813
1814	cfqq = cfqd->active_queue;
1815	if (!cfqq)
1816		return 0;
1817
1818	if (cfq_slice_used(cfqq))
1819		return 1;
1820
1821	if (cfq_class_idle(new_cfqq))
1822		return 0;
1823
1824	if (cfq_class_idle(cfqq))
1825		return 1;
1826
1827	/*
1828	 * if the new request is sync, but the currently running queue is
1829	 * not, let the sync request have priority.
1830	 */
1831	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1832		return 1;
1833
1834	/*
1835	 * So both queues are sync. Let the new request get disk time if
1836	 * it's a metadata request and the current queue is doing regular IO.
1837	 */
1838	if (rq_is_meta(rq) && !cfqq->meta_pending)
1839		return 1;
1840
1841	/*
1842	 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1843	 */
1844	if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
1845		return 1;
1846
1847	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1848		return 0;
1849
1850	/*
1851	 * if this request is as-good as one we would expect from the
1852	 * current cfqq, let it preempt
1853	 */
1854	if (cfq_rq_close(cfqd, rq))
1855		return 1;
1856
1857	return 0;
1858}
1859
1860/*
1861 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1862 * let it have half of its nominal slice.
1863 */
1864static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1865{
1866	cfq_log_cfqq(cfqd, cfqq, "preempt");
1867	cfq_slice_expired(cfqd, 1);
1868
1869	/*
1870	 * Put the new queue at the front of the of the current list,
1871	 * so we know that it will be selected next.
1872	 */
1873	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1874
1875	cfq_service_tree_add(cfqd, cfqq, 1);
1876
1877	cfqq->slice_end = 0;
1878	cfq_mark_cfqq_slice_new(cfqq);
1879}
1880
1881/*
1882 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1883 * something we should do about it
1884 */
1885static void
1886cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1887		struct request *rq)
1888{
1889	struct cfq_io_context *cic = RQ_CIC(rq);
1890
1891	cfqd->rq_queued++;
1892	if (rq_is_meta(rq))
1893		cfqq->meta_pending++;
1894
1895	cfq_update_io_thinktime(cfqd, cic);
1896	cfq_update_io_seektime(cfqd, cic, rq);
1897	cfq_update_idle_window(cfqd, cfqq, cic);
1898
1899	cic->last_request_pos = rq->sector + rq->nr_sectors;
1900
1901	if (cfqq == cfqd->active_queue) {
1902		/*
1903		 * Remember that we saw a request from this process, but
1904		 * don't start queuing just yet. Otherwise we risk seeing lots
1905		 * of tiny requests, because we disrupt the normal plugging
1906		 * and merging.
1907		 */
1908		if (cfq_cfqq_wait_request(cfqq))
1909			cfq_mark_cfqq_must_dispatch(cfqq);
1910	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1911		/*
1912		 * not the active queue - expire current slice if it is
1913		 * idle and has expired it's mean thinktime or this new queue
1914		 * has some old slice time left and is of higher priority or
1915		 * this new queue is RT and the current one is BE
1916		 */
1917		cfq_preempt_queue(cfqd, cfqq);
1918		blk_start_queueing(cfqd->queue);
1919	}
1920}
1921
1922static void cfq_insert_request(struct request_queue *q, struct request *rq)
1923{
1924	struct cfq_data *cfqd = q->elevator->elevator_data;
1925	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1926
1927	cfq_log_cfqq(cfqd, cfqq, "insert_request");
1928	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1929
1930	cfq_add_rq_rb(rq);
1931
1932	list_add_tail(&rq->queuelist, &cfqq->fifo);
1933
1934	cfq_rq_enqueued(cfqd, cfqq, rq);
1935}
1936
1937/*
1938 * Update hw_tag based on peak queue depth over 50 samples under
1939 * sufficient load.
1940 */
1941static void cfq_update_hw_tag(struct cfq_data *cfqd)
1942{
1943	if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1944		cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1945
1946	if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1947	    cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1948		return;
1949
1950	if (cfqd->hw_tag_samples++ < 50)
1951		return;
1952
1953	if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1954		cfqd->hw_tag = 1;
1955	else
1956		cfqd->hw_tag = 0;
1957
1958	cfqd->hw_tag_samples = 0;
1959	cfqd->rq_in_driver_peak = 0;
1960}
1961
1962static void cfq_completed_request(struct request_queue *q, struct request *rq)
1963{
1964	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1965	struct cfq_data *cfqd = cfqq->cfqd;
1966	const int sync = rq_is_sync(rq);
1967	unsigned long now;
1968
1969	now = jiffies;
1970	cfq_log_cfqq(cfqd, cfqq, "complete");
1971
1972	cfq_update_hw_tag(cfqd);
1973
1974	WARN_ON(!cfqd->rq_in_driver);
1975	WARN_ON(!cfqq->dispatched);
1976	cfqd->rq_in_driver--;
1977	cfqq->dispatched--;
1978
1979	if (cfq_cfqq_sync(cfqq))
1980		cfqd->sync_flight--;
1981
1982	if (!cfq_class_idle(cfqq))
1983		cfqd->last_end_request = now;
1984
1985	if (sync)
1986		RQ_CIC(rq)->last_end_request = now;
1987
1988	/*
1989	 * If this is the active queue, check if it needs to be expired,
1990	 * or if we want to idle in case it has no pending requests.
1991	 */
1992	if (cfqd->active_queue == cfqq) {
1993		if (cfq_cfqq_slice_new(cfqq)) {
1994			cfq_set_prio_slice(cfqd, cfqq);
1995			cfq_clear_cfqq_slice_new(cfqq);
1996		}
1997		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1998			cfq_slice_expired(cfqd, 1);
1999		else if (sync && !rq_noidle(rq) &&
2000			 RB_EMPTY_ROOT(&cfqq->sort_list)) {
2001			cfq_arm_slice_timer(cfqd);
2002		}
2003	}
2004
2005	if (!cfqd->rq_in_driver)
2006		cfq_schedule_dispatch(cfqd);
2007}
2008
2009/*
2010 * we temporarily boost lower priority queues if they are holding fs exclusive
2011 * resources. they are boosted to normal prio (CLASS_BE/4)
2012 */
2013static void cfq_prio_boost(struct cfq_queue *cfqq)
2014{
2015	if (has_fs_excl()) {
2016		/*
2017		 * boost idle prio on transactions that would lock out other
2018		 * users of the filesystem
2019		 */
2020		if (cfq_class_idle(cfqq))
2021			cfqq->ioprio_class = IOPRIO_CLASS_BE;
2022		if (cfqq->ioprio > IOPRIO_NORM)
2023			cfqq->ioprio = IOPRIO_NORM;
2024	} else {
2025		/*
2026		 * check if we need to unboost the queue
2027		 */
2028		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2029			cfqq->ioprio_class = cfqq->org_ioprio_class;
2030		if (cfqq->ioprio != cfqq->org_ioprio)
2031			cfqq->ioprio = cfqq->org_ioprio;
2032	}
2033}
2034
2035static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2036{
2037	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2038	    !cfq_cfqq_must_alloc_slice(cfqq)) {
2039		cfq_mark_cfqq_must_alloc_slice(cfqq);
2040		return ELV_MQUEUE_MUST;
2041	}
2042
2043	return ELV_MQUEUE_MAY;
2044}
2045
2046static int cfq_may_queue(struct request_queue *q, int rw)
2047{
2048	struct cfq_data *cfqd = q->elevator->elevator_data;
2049	struct task_struct *tsk = current;
2050	struct cfq_io_context *cic;
2051	struct cfq_queue *cfqq;
2052
2053	/*
2054	 * don't force setup of a queue from here, as a call to may_queue
2055	 * does not necessarily imply that a request actually will be queued.
2056	 * so just lookup a possibly existing queue, or return 'may queue'
2057	 * if that fails
2058	 */
2059	cic = cfq_cic_lookup(cfqd, tsk->io_context);
2060	if (!cic)
2061		return ELV_MQUEUE_MAY;
2062
2063	cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2064	if (cfqq) {
2065		cfq_init_prio_data(cfqq, cic->ioc);
2066		cfq_prio_boost(cfqq);
2067
2068		return __cfq_may_queue(cfqq);
2069	}
2070
2071	return ELV_MQUEUE_MAY;
2072}
2073
2074/*
2075 * queue lock held here
2076 */
2077static void cfq_put_request(struct request *rq)
2078{
2079	struct cfq_queue *cfqq = RQ_CFQQ(rq);
2080
2081	if (cfqq) {
2082		const int rw = rq_data_dir(rq);
2083
2084		BUG_ON(!cfqq->allocated[rw]);
2085		cfqq->allocated[rw]--;
2086
2087		put_io_context(RQ_CIC(rq)->ioc);
2088
2089		rq->elevator_private = NULL;
2090		rq->elevator_private2 = NULL;
2091
2092		cfq_put_queue(cfqq);
2093	}
2094}
2095
2096/*
2097 * Allocate cfq data structures associated with this request.
2098 */
2099static int
2100cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2101{
2102	struct cfq_data *cfqd = q->elevator->elevator_data;
2103	struct cfq_io_context *cic;
2104	const int rw = rq_data_dir(rq);
2105	const int is_sync = rq_is_sync(rq);
2106	struct cfq_queue *cfqq;
2107	unsigned long flags;
2108
2109	might_sleep_if(gfp_mask & __GFP_WAIT);
2110
2111	cic = cfq_get_io_context(cfqd, gfp_mask);
2112
2113	spin_lock_irqsave(q->queue_lock, flags);
2114
2115	if (!cic)
2116		goto queue_fail;
2117
2118	cfqq = cic_to_cfqq(cic, is_sync);
2119	if (!cfqq) {
2120		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2121
2122		if (!cfqq)
2123			goto queue_fail;
2124
2125		cic_set_cfqq(cic, cfqq, is_sync);
2126	}
2127
2128	cfqq->allocated[rw]++;
2129	cfq_clear_cfqq_must_alloc(cfqq);
2130	atomic_inc(&cfqq->ref);
2131
2132	spin_unlock_irqrestore(q->queue_lock, flags);
2133
2134	rq->elevator_private = cic;
2135	rq->elevator_private2 = cfqq;
2136	return 0;
2137
2138queue_fail:
2139	if (cic)
2140		put_io_context(cic->ioc);
2141
2142	cfq_schedule_dispatch(cfqd);
2143	spin_unlock_irqrestore(q->queue_lock, flags);
2144	cfq_log(cfqd, "set_request fail");
2145	return 1;
2146}
2147
2148static void cfq_kick_queue(struct work_struct *work)
2149{
2150	struct cfq_data *cfqd =
2151		container_of(work, struct cfq_data, unplug_work);
2152	struct request_queue *q = cfqd->queue;
2153	unsigned long flags;
2154
2155	spin_lock_irqsave(q->queue_lock, flags);
2156	blk_start_queueing(q);
2157	spin_unlock_irqrestore(q->queue_lock, flags);
2158}
2159
2160/*
2161 * Timer running if the active_queue is currently idling inside its time slice
2162 */
2163static void cfq_idle_slice_timer(unsigned long data)
2164{
2165	struct cfq_data *cfqd = (struct cfq_data *) data;
2166	struct cfq_queue *cfqq;
2167	unsigned long flags;
2168	int timed_out = 1;
2169
2170	cfq_log(cfqd, "idle timer fired");
2171
2172	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2173
2174	cfqq = cfqd->active_queue;
2175	if (cfqq) {
2176		timed_out = 0;
2177
2178		/*
2179		 * We saw a request before the queue expired, let it through
2180		 */
2181		if (cfq_cfqq_must_dispatch(cfqq))
2182			goto out_kick;
2183
2184		/*
2185		 * expired
2186		 */
2187		if (cfq_slice_used(cfqq))
2188			goto expire;
2189
2190		/*
2191		 * only expire and reinvoke request handler, if there are
2192		 * other queues with pending requests
2193		 */
2194		if (!cfqd->busy_queues)
2195			goto out_cont;
2196
2197		/*
2198		 * not expired and it has a request pending, let it dispatch
2199		 */
2200		if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2201			goto out_kick;
2202	}
2203expire:
2204	cfq_slice_expired(cfqd, timed_out);
2205out_kick:
2206	cfq_schedule_dispatch(cfqd);
2207out_cont:
2208	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2209}
2210
2211static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2212{
2213	del_timer_sync(&cfqd->idle_slice_timer);
2214	cancel_work_sync(&cfqd->unplug_work);
2215}
2216
2217static void cfq_put_async_queues(struct cfq_data *cfqd)
2218{
2219	int i;
2220
2221	for (i = 0; i < IOPRIO_BE_NR; i++) {
2222		if (cfqd->async_cfqq[0][i])
2223			cfq_put_queue(cfqd->async_cfqq[0][i]);
2224		if (cfqd->async_cfqq[1][i])
2225			cfq_put_queue(cfqd->async_cfqq[1][i]);
2226	}
2227
2228	if (cfqd->async_idle_cfqq)
2229		cfq_put_queue(cfqd->async_idle_cfqq);
2230}
2231
2232static void cfq_exit_queue(struct elevator_queue *e)
2233{
2234	struct cfq_data *cfqd = e->elevator_data;
2235	struct request_queue *q = cfqd->queue;
2236
2237	cfq_shutdown_timer_wq(cfqd);
2238
2239	spin_lock_irq(q->queue_lock);
2240
2241	if (cfqd->active_queue)
2242		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2243
2244	while (!list_empty(&cfqd->cic_list)) {
2245		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2246							struct cfq_io_context,
2247							queue_list);
2248
2249		__cfq_exit_single_io_context(cfqd, cic);
2250	}
2251
2252	cfq_put_async_queues(cfqd);
2253
2254	spin_unlock_irq(q->queue_lock);
2255
2256	cfq_shutdown_timer_wq(cfqd);
2257
2258	kfree(cfqd);
2259}
2260
2261static void *cfq_init_queue(struct request_queue *q)
2262{
2263	struct cfq_data *cfqd;
2264
2265	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2266	if (!cfqd)
2267		return NULL;
2268
2269	cfqd->service_tree = CFQ_RB_ROOT;
2270	INIT_LIST_HEAD(&cfqd->cic_list);
2271
2272	cfqd->queue = q;
2273
2274	init_timer(&cfqd->idle_slice_timer);
2275	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2276	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2277
2278	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2279
2280	cfqd->last_end_request = jiffies;
2281	cfqd->cfq_quantum = cfq_quantum;
2282	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2283	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2284	cfqd->cfq_back_max = cfq_back_max;
2285	cfqd->cfq_back_penalty = cfq_back_penalty;
2286	cfqd->cfq_slice[0] = cfq_slice_async;
2287	cfqd->cfq_slice[1] = cfq_slice_sync;
2288	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2289	cfqd->cfq_slice_idle = cfq_slice_idle;
2290	cfqd->hw_tag = 1;
2291
2292	return cfqd;
2293}
2294
2295static void cfq_slab_kill(void)
2296{
2297	/*
2298	 * Caller already ensured that pending RCU callbacks are completed,
2299	 * so we should have no busy allocations at this point.
2300	 */
2301	if (cfq_pool)
2302		kmem_cache_destroy(cfq_pool);
2303	if (cfq_ioc_pool)
2304		kmem_cache_destroy(cfq_ioc_pool);
2305}
2306
2307static int __init cfq_slab_setup(void)
2308{
2309	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2310	if (!cfq_pool)
2311		goto fail;
2312
2313	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2314	if (!cfq_ioc_pool)
2315		goto fail;
2316
2317	return 0;
2318fail:
2319	cfq_slab_kill();
2320	return -ENOMEM;
2321}
2322
2323/*
2324 * sysfs parts below -->
2325 */
2326static ssize_t
2327cfq_var_show(unsigned int var, char *page)
2328{
2329	return sprintf(page, "%d\n", var);
2330}
2331
2332static ssize_t
2333cfq_var_store(unsigned int *var, const char *page, size_t count)
2334{
2335	char *p = (char *) page;
2336
2337	*var = simple_strtoul(p, &p, 10);
2338	return count;
2339}
2340
2341#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2342static ssize_t __FUNC(struct elevator_queue *e, char *page)		\
2343{									\
2344	struct cfq_data *cfqd = e->elevator_data;			\
2345	unsigned int __data = __VAR;					\
2346	if (__CONV)							\
2347		__data = jiffies_to_msecs(__data);			\
2348	return cfq_var_show(__data, (page));				\
2349}
2350SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2351SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2352SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2353SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2354SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2355SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2356SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2357SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2358SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2359#undef SHOW_FUNCTION
2360
2361#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2362static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)	\
2363{									\
2364	struct cfq_data *cfqd = e->elevator_data;			\
2365	unsigned int __data;						\
2366	int ret = cfq_var_store(&__data, (page), count);		\
2367	if (__data < (MIN))						\
2368		__data = (MIN);						\
2369	else if (__data > (MAX))					\
2370		__data = (MAX);						\
2371	if (__CONV)							\
2372		*(__PTR) = msecs_to_jiffies(__data);			\
2373	else								\
2374		*(__PTR) = __data;					\
2375	return ret;							\
2376}
2377STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2378STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2379		UINT_MAX, 1);
2380STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2381		UINT_MAX, 1);
2382STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2383STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2384		UINT_MAX, 0);
2385STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2386STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2387STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2388STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2389		UINT_MAX, 0);
2390#undef STORE_FUNCTION
2391
2392#define CFQ_ATTR(name) \
2393	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2394
2395static struct elv_fs_entry cfq_attrs[] = {
2396	CFQ_ATTR(quantum),
2397	CFQ_ATTR(fifo_expire_sync),
2398	CFQ_ATTR(fifo_expire_async),
2399	CFQ_ATTR(back_seek_max),
2400	CFQ_ATTR(back_seek_penalty),
2401	CFQ_ATTR(slice_sync),
2402	CFQ_ATTR(slice_async),
2403	CFQ_ATTR(slice_async_rq),
2404	CFQ_ATTR(slice_idle),
2405	__ATTR_NULL
2406};
2407
2408static struct elevator_type iosched_cfq = {
2409	.ops = {
2410		.elevator_merge_fn = 		cfq_merge,
2411		.elevator_merged_fn =		cfq_merged_request,
2412		.elevator_merge_req_fn =	cfq_merged_requests,
2413		.elevator_allow_merge_fn =	cfq_allow_merge,
2414		.elevator_dispatch_fn =		cfq_dispatch_requests,
2415		.elevator_add_req_fn =		cfq_insert_request,
2416		.elevator_activate_req_fn =	cfq_activate_request,
2417		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2418		.elevator_queue_empty_fn =	cfq_queue_empty,
2419		.elevator_completed_req_fn =	cfq_completed_request,
2420		.elevator_former_req_fn =	elv_rb_former_request,
2421		.elevator_latter_req_fn =	elv_rb_latter_request,
2422		.elevator_set_req_fn =		cfq_set_request,
2423		.elevator_put_req_fn =		cfq_put_request,
2424		.elevator_may_queue_fn =	cfq_may_queue,
2425		.elevator_init_fn =		cfq_init_queue,
2426		.elevator_exit_fn =		cfq_exit_queue,
2427		.trim =				cfq_free_io_context,
2428	},
2429	.elevator_attrs =	cfq_attrs,
2430	.elevator_name =	"cfq",
2431	.elevator_owner =	THIS_MODULE,
2432};
2433
2434static int __init cfq_init(void)
2435{
2436	/*
2437	 * could be 0 on HZ < 1000 setups
2438	 */
2439	if (!cfq_slice_async)
2440		cfq_slice_async = 1;
2441	if (!cfq_slice_idle)
2442		cfq_slice_idle = 1;
2443
2444	if (cfq_slab_setup())
2445		return -ENOMEM;
2446
2447	elv_register(&iosched_cfq);
2448
2449	return 0;
2450}
2451
2452static void __exit cfq_exit(void)
2453{
2454	DECLARE_COMPLETION_ONSTACK(all_gone);
2455	elv_unregister(&iosched_cfq);
2456	ioc_gone = &all_gone;
2457	/* ioc_gone's update must be visible before reading ioc_count */
2458	smp_wmb();
2459
2460	/*
2461	 * this also protects us from entering cfq_slab_kill() with
2462	 * pending RCU callbacks
2463	 */
2464	if (elv_ioc_count_read(ioc_count))
2465		wait_for_completion(&all_gone);
2466	cfq_slab_kill();
2467}
2468
2469module_init(cfq_init);
2470module_exit(cfq_exit);
2471
2472MODULE_AUTHOR("Jens Axboe");
2473MODULE_LICENSE("GPL");
2474MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2475