cfq-iosched.c revision ffc4e7595734cf768fa60cea8a4d545dfef8231a
1/*
2 *  CFQ, or complete fairness queueing, disk scheduler.
3 *
4 *  Based on ideas from a previously unfinished io
5 *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
7 *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9#include <linux/module.h>
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
12#include <linux/rbtree.h>
13#include <linux/ioprio.h>
14
15/*
16 * tunables
17 */
18/* max queue in one round of service */
19static const int cfq_quantum = 4;
20static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21/* maximum backwards seek, in KiB */
22static const int cfq_back_max = 16 * 1024;
23/* penalty of a backwards seek */
24static const int cfq_back_penalty = 2;
25static const int cfq_slice_sync = HZ / 10;
26static int cfq_slice_async = HZ / 25;
27static const int cfq_slice_async_rq = 2;
28static int cfq_slice_idle = HZ / 125;
29
30/*
31 * offset from end of service tree
32 */
33#define CFQ_IDLE_DELAY		(HZ / 5)
34
35/*
36 * below this threshold, we consider thinktime immediate
37 */
38#define CFQ_MIN_TT		(2)
39
40#define CFQ_SLICE_SCALE		(5)
41
42#define RQ_CIC(rq)		\
43	((struct cfq_io_context *) (rq)->elevator_private)
44#define RQ_CFQQ(rq)		((rq)->elevator_private2)
45
46static struct kmem_cache *cfq_pool;
47static struct kmem_cache *cfq_ioc_pool;
48
49static DEFINE_PER_CPU(unsigned long, ioc_count);
50static struct completion *ioc_gone;
51
52#define CFQ_PRIO_LISTS		IOPRIO_BE_NR
53#define cfq_class_idle(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
54#define cfq_class_rt(cfqq)	((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
55
56#define ASYNC			(0)
57#define SYNC			(1)
58
59#define sample_valid(samples)	((samples) > 80)
60
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68	struct rb_root rb;
69	struct rb_node *left;
70};
71#define CFQ_RB_ROOT	(struct cfq_rb_root) { RB_ROOT, NULL, }
72
73/*
74 * Per block device queue structure
75 */
76struct cfq_data {
77	struct request_queue *queue;
78
79	/*
80	 * rr list of queues with requests and the count of them
81	 */
82	struct cfq_rb_root service_tree;
83	unsigned int busy_queues;
84
85	int rq_in_driver;
86	int sync_flight;
87	int hw_tag;
88
89	/*
90	 * idle window management
91	 */
92	struct timer_list idle_slice_timer;
93	struct work_struct unplug_work;
94
95	struct cfq_queue *active_queue;
96	struct cfq_io_context *active_cic;
97
98	/*
99	 * async queue for each priority case
100	 */
101	struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
102	struct cfq_queue *async_idle_cfqq;
103
104	sector_t last_position;
105	unsigned long last_end_request;
106
107	/*
108	 * tunables, see top of file
109	 */
110	unsigned int cfq_quantum;
111	unsigned int cfq_fifo_expire[2];
112	unsigned int cfq_back_penalty;
113	unsigned int cfq_back_max;
114	unsigned int cfq_slice[2];
115	unsigned int cfq_slice_async_rq;
116	unsigned int cfq_slice_idle;
117
118	struct list_head cic_list;
119};
120
121/*
122 * Per process-grouping structure
123 */
124struct cfq_queue {
125	/* reference count */
126	atomic_t ref;
127	/* parent cfq_data */
128	struct cfq_data *cfqd;
129	/* service_tree member */
130	struct rb_node rb_node;
131	/* service_tree key */
132	unsigned long rb_key;
133	/* sorted list of pending requests */
134	struct rb_root sort_list;
135	/* if fifo isn't expired, next request to serve */
136	struct request *next_rq;
137	/* requests queued in sort_list */
138	int queued[2];
139	/* currently allocated requests */
140	int allocated[2];
141	/* pending metadata requests */
142	int meta_pending;
143	/* fifo list of requests in sort_list */
144	struct list_head fifo;
145
146	unsigned long slice_end;
147	long slice_resid;
148
149	/* number of requests that are on the dispatch list or inside driver */
150	int dispatched;
151
152	/* io prio of this group */
153	unsigned short ioprio, org_ioprio;
154	unsigned short ioprio_class, org_ioprio_class;
155
156	/* various state flags, see below */
157	unsigned int flags;
158};
159
160enum cfqq_state_flags {
161	CFQ_CFQQ_FLAG_on_rr = 0,	/* on round-robin busy list */
162	CFQ_CFQQ_FLAG_wait_request,	/* waiting for a request */
163	CFQ_CFQQ_FLAG_must_alloc,	/* must be allowed rq alloc */
164	CFQ_CFQQ_FLAG_must_alloc_slice,	/* per-slice must_alloc flag */
165	CFQ_CFQQ_FLAG_must_dispatch,	/* must dispatch, even if expired */
166	CFQ_CFQQ_FLAG_fifo_expire,	/* FIFO checked in this slice */
167	CFQ_CFQQ_FLAG_idle_window,	/* slice idling enabled */
168	CFQ_CFQQ_FLAG_prio_changed,	/* task priority has changed */
169	CFQ_CFQQ_FLAG_queue_new,	/* queue never been serviced */
170	CFQ_CFQQ_FLAG_slice_new,	/* no requests dispatched in slice */
171	CFQ_CFQQ_FLAG_sync,		/* synchronous queue */
172};
173
174#define CFQ_CFQQ_FNS(name)						\
175static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)		\
176{									\
177	(cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);			\
178}									\
179static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)	\
180{									\
181	(cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);			\
182}									\
183static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)		\
184{									\
185	return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;	\
186}
187
188CFQ_CFQQ_FNS(on_rr);
189CFQ_CFQQ_FNS(wait_request);
190CFQ_CFQQ_FNS(must_alloc);
191CFQ_CFQQ_FNS(must_alloc_slice);
192CFQ_CFQQ_FNS(must_dispatch);
193CFQ_CFQQ_FNS(fifo_expire);
194CFQ_CFQQ_FNS(idle_window);
195CFQ_CFQQ_FNS(prio_changed);
196CFQ_CFQQ_FNS(queue_new);
197CFQ_CFQQ_FNS(slice_new);
198CFQ_CFQQ_FNS(sync);
199#undef CFQ_CFQQ_FNS
200
201static void cfq_dispatch_insert(struct request_queue *, struct request *);
202static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
203				       struct io_context *, gfp_t);
204static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
205						struct io_context *);
206
207static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
208					    int is_sync)
209{
210	return cic->cfqq[!!is_sync];
211}
212
213static inline void cic_set_cfqq(struct cfq_io_context *cic,
214				struct cfq_queue *cfqq, int is_sync)
215{
216	cic->cfqq[!!is_sync] = cfqq;
217}
218
219/*
220 * We regard a request as SYNC, if it's either a read or has the SYNC bit
221 * set (in which case it could also be direct WRITE).
222 */
223static inline int cfq_bio_sync(struct bio *bio)
224{
225	if (bio_data_dir(bio) == READ || bio_sync(bio))
226		return 1;
227
228	return 0;
229}
230
231/*
232 * scheduler run of queue, if there are requests pending and no one in the
233 * driver that will restart queueing
234 */
235static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
236{
237	if (cfqd->busy_queues)
238		kblockd_schedule_work(&cfqd->unplug_work);
239}
240
241static int cfq_queue_empty(struct request_queue *q)
242{
243	struct cfq_data *cfqd = q->elevator->elevator_data;
244
245	return !cfqd->busy_queues;
246}
247
248/*
249 * Scale schedule slice based on io priority. Use the sync time slice only
250 * if a queue is marked sync and has sync io queued. A sync queue with async
251 * io only, should not get full sync slice length.
252 */
253static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
254				 unsigned short prio)
255{
256	const int base_slice = cfqd->cfq_slice[sync];
257
258	WARN_ON(prio >= IOPRIO_BE_NR);
259
260	return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
261}
262
263static inline int
264cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
265{
266	return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
267}
268
269static inline void
270cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
271{
272	cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
273}
274
275/*
276 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
277 * isn't valid until the first request from the dispatch is activated
278 * and the slice time set.
279 */
280static inline int cfq_slice_used(struct cfq_queue *cfqq)
281{
282	if (cfq_cfqq_slice_new(cfqq))
283		return 0;
284	if (time_before(jiffies, cfqq->slice_end))
285		return 0;
286
287	return 1;
288}
289
290/*
291 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
292 * We choose the request that is closest to the head right now. Distance
293 * behind the head is penalized and only allowed to a certain extent.
294 */
295static struct request *
296cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
297{
298	sector_t last, s1, s2, d1 = 0, d2 = 0;
299	unsigned long back_max;
300#define CFQ_RQ1_WRAP	0x01 /* request 1 wraps */
301#define CFQ_RQ2_WRAP	0x02 /* request 2 wraps */
302	unsigned wrap = 0; /* bit mask: requests behind the disk head? */
303
304	if (rq1 == NULL || rq1 == rq2)
305		return rq2;
306	if (rq2 == NULL)
307		return rq1;
308
309	if (rq_is_sync(rq1) && !rq_is_sync(rq2))
310		return rq1;
311	else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
312		return rq2;
313	if (rq_is_meta(rq1) && !rq_is_meta(rq2))
314		return rq1;
315	else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
316		return rq2;
317
318	s1 = rq1->sector;
319	s2 = rq2->sector;
320
321	last = cfqd->last_position;
322
323	/*
324	 * by definition, 1KiB is 2 sectors
325	 */
326	back_max = cfqd->cfq_back_max * 2;
327
328	/*
329	 * Strict one way elevator _except_ in the case where we allow
330	 * short backward seeks which are biased as twice the cost of a
331	 * similar forward seek.
332	 */
333	if (s1 >= last)
334		d1 = s1 - last;
335	else if (s1 + back_max >= last)
336		d1 = (last - s1) * cfqd->cfq_back_penalty;
337	else
338		wrap |= CFQ_RQ1_WRAP;
339
340	if (s2 >= last)
341		d2 = s2 - last;
342	else if (s2 + back_max >= last)
343		d2 = (last - s2) * cfqd->cfq_back_penalty;
344	else
345		wrap |= CFQ_RQ2_WRAP;
346
347	/* Found required data */
348
349	/*
350	 * By doing switch() on the bit mask "wrap" we avoid having to
351	 * check two variables for all permutations: --> faster!
352	 */
353	switch (wrap) {
354	case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
355		if (d1 < d2)
356			return rq1;
357		else if (d2 < d1)
358			return rq2;
359		else {
360			if (s1 >= s2)
361				return rq1;
362			else
363				return rq2;
364		}
365
366	case CFQ_RQ2_WRAP:
367		return rq1;
368	case CFQ_RQ1_WRAP:
369		return rq2;
370	case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
371	default:
372		/*
373		 * Since both rqs are wrapped,
374		 * start with the one that's further behind head
375		 * (--> only *one* back seek required),
376		 * since back seek takes more time than forward.
377		 */
378		if (s1 <= s2)
379			return rq1;
380		else
381			return rq2;
382	}
383}
384
385/*
386 * The below is leftmost cache rbtree addon
387 */
388static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
389{
390	if (!root->left)
391		root->left = rb_first(&root->rb);
392
393	if (root->left)
394		return rb_entry(root->left, struct cfq_queue, rb_node);
395
396	return NULL;
397}
398
399static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
400{
401	if (root->left == n)
402		root->left = NULL;
403
404	rb_erase(n, &root->rb);
405	RB_CLEAR_NODE(n);
406}
407
408/*
409 * would be nice to take fifo expire time into account as well
410 */
411static struct request *
412cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
413		  struct request *last)
414{
415	struct rb_node *rbnext = rb_next(&last->rb_node);
416	struct rb_node *rbprev = rb_prev(&last->rb_node);
417	struct request *next = NULL, *prev = NULL;
418
419	BUG_ON(RB_EMPTY_NODE(&last->rb_node));
420
421	if (rbprev)
422		prev = rb_entry_rq(rbprev);
423
424	if (rbnext)
425		next = rb_entry_rq(rbnext);
426	else {
427		rbnext = rb_first(&cfqq->sort_list);
428		if (rbnext && rbnext != &last->rb_node)
429			next = rb_entry_rq(rbnext);
430	}
431
432	return cfq_choose_req(cfqd, next, prev);
433}
434
435static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
436				      struct cfq_queue *cfqq)
437{
438	/*
439	 * just an approximation, should be ok.
440	 */
441	return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
442		       cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
443}
444
445/*
446 * The cfqd->service_tree holds all pending cfq_queue's that have
447 * requests waiting to be processed. It is sorted in the order that
448 * we will service the queues.
449 */
450static void cfq_service_tree_add(struct cfq_data *cfqd,
451				    struct cfq_queue *cfqq, int add_front)
452{
453	struct rb_node **p, *parent;
454	struct cfq_queue *__cfqq;
455	unsigned long rb_key;
456	int left;
457
458	if (cfq_class_idle(cfqq)) {
459		rb_key = CFQ_IDLE_DELAY;
460		parent = rb_last(&cfqd->service_tree.rb);
461		if (parent && parent != &cfqq->rb_node) {
462			__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
463			rb_key += __cfqq->rb_key;
464		} else
465			rb_key += jiffies;
466	} else if (!add_front) {
467		rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
468		rb_key += cfqq->slice_resid;
469		cfqq->slice_resid = 0;
470	} else
471		rb_key = 0;
472
473	if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
474		/*
475		 * same position, nothing more to do
476		 */
477		if (rb_key == cfqq->rb_key)
478			return;
479
480		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
481	}
482
483	left = 1;
484	parent = NULL;
485	p = &cfqd->service_tree.rb.rb_node;
486	while (*p) {
487		struct rb_node **n;
488
489		parent = *p;
490		__cfqq = rb_entry(parent, struct cfq_queue, rb_node);
491
492		/*
493		 * sort RT queues first, we always want to give
494		 * preference to them. IDLE queues goes to the back.
495		 * after that, sort on the next service time.
496		 */
497		if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
498			n = &(*p)->rb_left;
499		else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
500			n = &(*p)->rb_right;
501		else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
502			n = &(*p)->rb_left;
503		else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
504			n = &(*p)->rb_right;
505		else if (rb_key < __cfqq->rb_key)
506			n = &(*p)->rb_left;
507		else
508			n = &(*p)->rb_right;
509
510		if (n == &(*p)->rb_right)
511			left = 0;
512
513		p = n;
514	}
515
516	if (left)
517		cfqd->service_tree.left = &cfqq->rb_node;
518
519	cfqq->rb_key = rb_key;
520	rb_link_node(&cfqq->rb_node, parent, p);
521	rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
522}
523
524/*
525 * Update cfqq's position in the service tree.
526 */
527static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
528{
529	/*
530	 * Resorting requires the cfqq to be on the RR list already.
531	 */
532	if (cfq_cfqq_on_rr(cfqq))
533		cfq_service_tree_add(cfqd, cfqq, 0);
534}
535
536/*
537 * add to busy list of queues for service, trying to be fair in ordering
538 * the pending list according to last request service
539 */
540static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
541{
542	BUG_ON(cfq_cfqq_on_rr(cfqq));
543	cfq_mark_cfqq_on_rr(cfqq);
544	cfqd->busy_queues++;
545
546	cfq_resort_rr_list(cfqd, cfqq);
547}
548
549/*
550 * Called when the cfqq no longer has requests pending, remove it from
551 * the service tree.
552 */
553static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
554{
555	BUG_ON(!cfq_cfqq_on_rr(cfqq));
556	cfq_clear_cfqq_on_rr(cfqq);
557
558	if (!RB_EMPTY_NODE(&cfqq->rb_node))
559		cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
560
561	BUG_ON(!cfqd->busy_queues);
562	cfqd->busy_queues--;
563}
564
565/*
566 * rb tree support functions
567 */
568static void cfq_del_rq_rb(struct request *rq)
569{
570	struct cfq_queue *cfqq = RQ_CFQQ(rq);
571	struct cfq_data *cfqd = cfqq->cfqd;
572	const int sync = rq_is_sync(rq);
573
574	BUG_ON(!cfqq->queued[sync]);
575	cfqq->queued[sync]--;
576
577	elv_rb_del(&cfqq->sort_list, rq);
578
579	if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
580		cfq_del_cfqq_rr(cfqd, cfqq);
581}
582
583static void cfq_add_rq_rb(struct request *rq)
584{
585	struct cfq_queue *cfqq = RQ_CFQQ(rq);
586	struct cfq_data *cfqd = cfqq->cfqd;
587	struct request *__alias;
588
589	cfqq->queued[rq_is_sync(rq)]++;
590
591	/*
592	 * looks a little odd, but the first insert might return an alias.
593	 * if that happens, put the alias on the dispatch list
594	 */
595	while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
596		cfq_dispatch_insert(cfqd->queue, __alias);
597
598	if (!cfq_cfqq_on_rr(cfqq))
599		cfq_add_cfqq_rr(cfqd, cfqq);
600
601	/*
602	 * check if this request is a better next-serve candidate
603	 */
604	cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
605	BUG_ON(!cfqq->next_rq);
606}
607
608static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
609{
610	elv_rb_del(&cfqq->sort_list, rq);
611	cfqq->queued[rq_is_sync(rq)]--;
612	cfq_add_rq_rb(rq);
613}
614
615static struct request *
616cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
617{
618	struct task_struct *tsk = current;
619	struct cfq_io_context *cic;
620	struct cfq_queue *cfqq;
621
622	cic = cfq_cic_lookup(cfqd, tsk->io_context);
623	if (!cic)
624		return NULL;
625
626	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
627	if (cfqq) {
628		sector_t sector = bio->bi_sector + bio_sectors(bio);
629
630		return elv_rb_find(&cfqq->sort_list, sector);
631	}
632
633	return NULL;
634}
635
636static void cfq_activate_request(struct request_queue *q, struct request *rq)
637{
638	struct cfq_data *cfqd = q->elevator->elevator_data;
639
640	cfqd->rq_in_driver++;
641
642	/*
643	 * If the depth is larger 1, it really could be queueing. But lets
644	 * make the mark a little higher - idling could still be good for
645	 * low queueing, and a low queueing number could also just indicate
646	 * a SCSI mid layer like behaviour where limit+1 is often seen.
647	 */
648	if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
649		cfqd->hw_tag = 1;
650
651	cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
652}
653
654static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
655{
656	struct cfq_data *cfqd = q->elevator->elevator_data;
657
658	WARN_ON(!cfqd->rq_in_driver);
659	cfqd->rq_in_driver--;
660}
661
662static void cfq_remove_request(struct request *rq)
663{
664	struct cfq_queue *cfqq = RQ_CFQQ(rq);
665
666	if (cfqq->next_rq == rq)
667		cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
668
669	list_del_init(&rq->queuelist);
670	cfq_del_rq_rb(rq);
671
672	if (rq_is_meta(rq)) {
673		WARN_ON(!cfqq->meta_pending);
674		cfqq->meta_pending--;
675	}
676}
677
678static int cfq_merge(struct request_queue *q, struct request **req,
679		     struct bio *bio)
680{
681	struct cfq_data *cfqd = q->elevator->elevator_data;
682	struct request *__rq;
683
684	__rq = cfq_find_rq_fmerge(cfqd, bio);
685	if (__rq && elv_rq_merge_ok(__rq, bio)) {
686		*req = __rq;
687		return ELEVATOR_FRONT_MERGE;
688	}
689
690	return ELEVATOR_NO_MERGE;
691}
692
693static void cfq_merged_request(struct request_queue *q, struct request *req,
694			       int type)
695{
696	if (type == ELEVATOR_FRONT_MERGE) {
697		struct cfq_queue *cfqq = RQ_CFQQ(req);
698
699		cfq_reposition_rq_rb(cfqq, req);
700	}
701}
702
703static void
704cfq_merged_requests(struct request_queue *q, struct request *rq,
705		    struct request *next)
706{
707	/*
708	 * reposition in fifo if next is older than rq
709	 */
710	if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
711	    time_before(next->start_time, rq->start_time))
712		list_move(&rq->queuelist, &next->queuelist);
713
714	cfq_remove_request(next);
715}
716
717static int cfq_allow_merge(struct request_queue *q, struct request *rq,
718			   struct bio *bio)
719{
720	struct cfq_data *cfqd = q->elevator->elevator_data;
721	struct cfq_io_context *cic;
722	struct cfq_queue *cfqq;
723
724	/*
725	 * Disallow merge of a sync bio into an async request.
726	 */
727	if (cfq_bio_sync(bio) && !rq_is_sync(rq))
728		return 0;
729
730	/*
731	 * Lookup the cfqq that this bio will be queued with. Allow
732	 * merge only if rq is queued there.
733	 */
734	cic = cfq_cic_lookup(cfqd, current->io_context);
735	if (!cic)
736		return 0;
737
738	cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
739	if (cfqq == RQ_CFQQ(rq))
740		return 1;
741
742	return 0;
743}
744
745static void __cfq_set_active_queue(struct cfq_data *cfqd,
746				   struct cfq_queue *cfqq)
747{
748	if (cfqq) {
749		cfqq->slice_end = 0;
750		cfq_clear_cfqq_must_alloc_slice(cfqq);
751		cfq_clear_cfqq_fifo_expire(cfqq);
752		cfq_mark_cfqq_slice_new(cfqq);
753		cfq_clear_cfqq_queue_new(cfqq);
754	}
755
756	cfqd->active_queue = cfqq;
757}
758
759/*
760 * current cfqq expired its slice (or was too idle), select new one
761 */
762static void
763__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
764		    int timed_out)
765{
766	if (cfq_cfqq_wait_request(cfqq))
767		del_timer(&cfqd->idle_slice_timer);
768
769	cfq_clear_cfqq_must_dispatch(cfqq);
770	cfq_clear_cfqq_wait_request(cfqq);
771
772	/*
773	 * store what was left of this slice, if the queue idled/timed out
774	 */
775	if (timed_out && !cfq_cfqq_slice_new(cfqq))
776		cfqq->slice_resid = cfqq->slice_end - jiffies;
777
778	cfq_resort_rr_list(cfqd, cfqq);
779
780	if (cfqq == cfqd->active_queue)
781		cfqd->active_queue = NULL;
782
783	if (cfqd->active_cic) {
784		put_io_context(cfqd->active_cic->ioc);
785		cfqd->active_cic = NULL;
786	}
787}
788
789static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
790{
791	struct cfq_queue *cfqq = cfqd->active_queue;
792
793	if (cfqq)
794		__cfq_slice_expired(cfqd, cfqq, timed_out);
795}
796
797/*
798 * Get next queue for service. Unless we have a queue preemption,
799 * we'll simply select the first cfqq in the service tree.
800 */
801static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
802{
803	if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
804		return NULL;
805
806	return cfq_rb_first(&cfqd->service_tree);
807}
808
809/*
810 * Get and set a new active queue for service.
811 */
812static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
813{
814	struct cfq_queue *cfqq;
815
816	cfqq = cfq_get_next_queue(cfqd);
817	__cfq_set_active_queue(cfqd, cfqq);
818	return cfqq;
819}
820
821static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
822					  struct request *rq)
823{
824	if (rq->sector >= cfqd->last_position)
825		return rq->sector - cfqd->last_position;
826	else
827		return cfqd->last_position - rq->sector;
828}
829
830static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
831{
832	struct cfq_io_context *cic = cfqd->active_cic;
833
834	if (!sample_valid(cic->seek_samples))
835		return 0;
836
837	return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
838}
839
840static int cfq_close_cooperator(struct cfq_data *cfq_data,
841				struct cfq_queue *cfqq)
842{
843	/*
844	 * We should notice if some of the queues are cooperating, eg
845	 * working closely on the same area of the disk. In that case,
846	 * we can group them together and don't waste time idling.
847	 */
848	return 0;
849}
850
851#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
852
853static void cfq_arm_slice_timer(struct cfq_data *cfqd)
854{
855	struct cfq_queue *cfqq = cfqd->active_queue;
856	struct cfq_io_context *cic;
857	unsigned long sl;
858
859	WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
860	WARN_ON(cfq_cfqq_slice_new(cfqq));
861
862	/*
863	 * idle is disabled, either manually or by past process history
864	 */
865	if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
866		return;
867
868	/*
869	 * task has exited, don't wait
870	 */
871	cic = cfqd->active_cic;
872	if (!cic || !atomic_read(&cic->ioc->nr_tasks))
873		return;
874
875	/*
876	 * See if this prio level has a good candidate
877	 */
878	if (cfq_close_cooperator(cfqd, cfqq) &&
879	    (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
880		return;
881
882	cfq_mark_cfqq_must_dispatch(cfqq);
883	cfq_mark_cfqq_wait_request(cfqq);
884
885	/*
886	 * we don't want to idle for seeks, but we do want to allow
887	 * fair distribution of slice time for a process doing back-to-back
888	 * seeks. so allow a little bit of time for him to submit a new rq
889	 */
890	sl = cfqd->cfq_slice_idle;
891	if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
892		sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
893
894	mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
895}
896
897/*
898 * Move request from internal lists to the request queue dispatch list.
899 */
900static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
901{
902	struct cfq_data *cfqd = q->elevator->elevator_data;
903	struct cfq_queue *cfqq = RQ_CFQQ(rq);
904
905	cfq_remove_request(rq);
906	cfqq->dispatched++;
907	elv_dispatch_sort(q, rq);
908
909	if (cfq_cfqq_sync(cfqq))
910		cfqd->sync_flight++;
911}
912
913/*
914 * return expired entry, or NULL to just start from scratch in rbtree
915 */
916static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
917{
918	struct cfq_data *cfqd = cfqq->cfqd;
919	struct request *rq;
920	int fifo;
921
922	if (cfq_cfqq_fifo_expire(cfqq))
923		return NULL;
924
925	cfq_mark_cfqq_fifo_expire(cfqq);
926
927	if (list_empty(&cfqq->fifo))
928		return NULL;
929
930	fifo = cfq_cfqq_sync(cfqq);
931	rq = rq_entry_fifo(cfqq->fifo.next);
932
933	if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
934		return NULL;
935
936	return rq;
937}
938
939static inline int
940cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
941{
942	const int base_rq = cfqd->cfq_slice_async_rq;
943
944	WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
945
946	return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
947}
948
949/*
950 * Select a queue for service. If we have a current active queue,
951 * check whether to continue servicing it, or retrieve and set a new one.
952 */
953static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
954{
955	struct cfq_queue *cfqq;
956
957	cfqq = cfqd->active_queue;
958	if (!cfqq)
959		goto new_queue;
960
961	/*
962	 * The active queue has run out of time, expire it and select new.
963	 */
964	if (cfq_slice_used(cfqq))
965		goto expire;
966
967	/*
968	 * The active queue has requests and isn't expired, allow it to
969	 * dispatch.
970	 */
971	if (!RB_EMPTY_ROOT(&cfqq->sort_list))
972		goto keep_queue;
973
974	/*
975	 * No requests pending. If the active queue still has requests in
976	 * flight or is idling for a new request, allow either of these
977	 * conditions to happen (or time out) before selecting a new queue.
978	 */
979	if (timer_pending(&cfqd->idle_slice_timer) ||
980	    (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
981		cfqq = NULL;
982		goto keep_queue;
983	}
984
985expire:
986	cfq_slice_expired(cfqd, 0);
987new_queue:
988	cfqq = cfq_set_active_queue(cfqd);
989keep_queue:
990	return cfqq;
991}
992
993/*
994 * Dispatch some requests from cfqq, moving them to the request queue
995 * dispatch list.
996 */
997static int
998__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
999			int max_dispatch)
1000{
1001	int dispatched = 0;
1002
1003	BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1004
1005	do {
1006		struct request *rq;
1007
1008		/*
1009		 * follow expired path, else get first next available
1010		 */
1011		rq = cfq_check_fifo(cfqq);
1012		if (rq == NULL)
1013			rq = cfqq->next_rq;
1014
1015		/*
1016		 * finally, insert request into driver dispatch list
1017		 */
1018		cfq_dispatch_insert(cfqd->queue, rq);
1019
1020		dispatched++;
1021
1022		if (!cfqd->active_cic) {
1023			atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1024			cfqd->active_cic = RQ_CIC(rq);
1025		}
1026
1027		if (RB_EMPTY_ROOT(&cfqq->sort_list))
1028			break;
1029
1030	} while (dispatched < max_dispatch);
1031
1032	/*
1033	 * expire an async queue immediately if it has used up its slice. idle
1034	 * queue always expire after 1 dispatch round.
1035	 */
1036	if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1037	    dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1038	    cfq_class_idle(cfqq))) {
1039		cfqq->slice_end = jiffies + 1;
1040		cfq_slice_expired(cfqd, 0);
1041	}
1042
1043	return dispatched;
1044}
1045
1046static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1047{
1048	int dispatched = 0;
1049
1050	while (cfqq->next_rq) {
1051		cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1052		dispatched++;
1053	}
1054
1055	BUG_ON(!list_empty(&cfqq->fifo));
1056	return dispatched;
1057}
1058
1059/*
1060 * Drain our current requests. Used for barriers and when switching
1061 * io schedulers on-the-fly.
1062 */
1063static int cfq_forced_dispatch(struct cfq_data *cfqd)
1064{
1065	struct cfq_queue *cfqq;
1066	int dispatched = 0;
1067
1068	while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1069		dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1070
1071	cfq_slice_expired(cfqd, 0);
1072
1073	BUG_ON(cfqd->busy_queues);
1074
1075	return dispatched;
1076}
1077
1078static int cfq_dispatch_requests(struct request_queue *q, int force)
1079{
1080	struct cfq_data *cfqd = q->elevator->elevator_data;
1081	struct cfq_queue *cfqq;
1082	int dispatched;
1083
1084	if (!cfqd->busy_queues)
1085		return 0;
1086
1087	if (unlikely(force))
1088		return cfq_forced_dispatch(cfqd);
1089
1090	dispatched = 0;
1091	while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1092		int max_dispatch;
1093
1094		max_dispatch = cfqd->cfq_quantum;
1095		if (cfq_class_idle(cfqq))
1096			max_dispatch = 1;
1097
1098		if (cfqq->dispatched >= max_dispatch) {
1099			if (cfqd->busy_queues > 1)
1100				break;
1101			if (cfqq->dispatched >= 4 * max_dispatch)
1102				break;
1103		}
1104
1105		if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1106			break;
1107
1108		cfq_clear_cfqq_must_dispatch(cfqq);
1109		cfq_clear_cfqq_wait_request(cfqq);
1110		del_timer(&cfqd->idle_slice_timer);
1111
1112		dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1113	}
1114
1115	return dispatched;
1116}
1117
1118/*
1119 * task holds one reference to the queue, dropped when task exits. each rq
1120 * in-flight on this queue also holds a reference, dropped when rq is freed.
1121 *
1122 * queue lock must be held here.
1123 */
1124static void cfq_put_queue(struct cfq_queue *cfqq)
1125{
1126	struct cfq_data *cfqd = cfqq->cfqd;
1127
1128	BUG_ON(atomic_read(&cfqq->ref) <= 0);
1129
1130	if (!atomic_dec_and_test(&cfqq->ref))
1131		return;
1132
1133	BUG_ON(rb_first(&cfqq->sort_list));
1134	BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1135	BUG_ON(cfq_cfqq_on_rr(cfqq));
1136
1137	if (unlikely(cfqd->active_queue == cfqq)) {
1138		__cfq_slice_expired(cfqd, cfqq, 0);
1139		cfq_schedule_dispatch(cfqd);
1140	}
1141
1142	kmem_cache_free(cfq_pool, cfqq);
1143}
1144
1145/*
1146 * Call func for each cic attached to this ioc. Returns number of cic's seen.
1147 */
1148static unsigned int
1149call_for_each_cic(struct io_context *ioc,
1150		  void (*func)(struct io_context *, struct cfq_io_context *))
1151{
1152	struct cfq_io_context *cic;
1153	struct hlist_node *n;
1154	int called = 0;
1155
1156	rcu_read_lock();
1157	hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list) {
1158		func(ioc, cic);
1159		called++;
1160	}
1161	rcu_read_unlock();
1162
1163	return called;
1164}
1165
1166static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1167{
1168	unsigned long flags;
1169
1170	BUG_ON(!cic->dead_key);
1171
1172	spin_lock_irqsave(&ioc->lock, flags);
1173	radix_tree_delete(&ioc->radix_root, cic->dead_key);
1174	hlist_del_rcu(&cic->cic_list);
1175	spin_unlock_irqrestore(&ioc->lock, flags);
1176
1177	kmem_cache_free(cfq_ioc_pool, cic);
1178}
1179
1180static void cfq_free_io_context(struct io_context *ioc)
1181{
1182	int freed;
1183
1184	/*
1185	 * ioc->refcount is zero here, so no more cic's are allowed to be
1186	 * linked into this ioc. So it should be ok to iterate over the known
1187	 * list, we will see all cic's since no new ones are added.
1188	 */
1189	freed = call_for_each_cic(ioc, cic_free_func);
1190
1191	elv_ioc_count_mod(ioc_count, -freed);
1192
1193	if (ioc_gone && !elv_ioc_count_read(ioc_count))
1194		complete(ioc_gone);
1195}
1196
1197static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1198{
1199	if (unlikely(cfqq == cfqd->active_queue)) {
1200		__cfq_slice_expired(cfqd, cfqq, 0);
1201		cfq_schedule_dispatch(cfqd);
1202	}
1203
1204	cfq_put_queue(cfqq);
1205}
1206
1207static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1208					 struct cfq_io_context *cic)
1209{
1210	list_del_init(&cic->queue_list);
1211
1212	/*
1213	 * Make sure key == NULL is seen for dead queues
1214	 */
1215	smp_wmb();
1216	cic->dead_key = (unsigned long) cic->key;
1217	cic->key = NULL;
1218
1219	if (cic->cfqq[ASYNC]) {
1220		cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1221		cic->cfqq[ASYNC] = NULL;
1222	}
1223
1224	if (cic->cfqq[SYNC]) {
1225		cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1226		cic->cfqq[SYNC] = NULL;
1227	}
1228}
1229
1230static void cfq_exit_single_io_context(struct io_context *ioc,
1231				       struct cfq_io_context *cic)
1232{
1233	struct cfq_data *cfqd = cic->key;
1234
1235	if (cfqd) {
1236		struct request_queue *q = cfqd->queue;
1237		unsigned long flags;
1238
1239		spin_lock_irqsave(q->queue_lock, flags);
1240		__cfq_exit_single_io_context(cfqd, cic);
1241		spin_unlock_irqrestore(q->queue_lock, flags);
1242	}
1243}
1244
1245/*
1246 * The process that ioc belongs to has exited, we need to clean up
1247 * and put the internal structures we have that belongs to that process.
1248 */
1249static void cfq_exit_io_context(struct io_context *ioc)
1250{
1251	rcu_assign_pointer(ioc->ioc_data, NULL);
1252	call_for_each_cic(ioc, cfq_exit_single_io_context);
1253}
1254
1255static struct cfq_io_context *
1256cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1257{
1258	struct cfq_io_context *cic;
1259
1260	cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1261							cfqd->queue->node);
1262	if (cic) {
1263		cic->last_end_request = jiffies;
1264		INIT_LIST_HEAD(&cic->queue_list);
1265		INIT_HLIST_NODE(&cic->cic_list);
1266		cic->dtor = cfq_free_io_context;
1267		cic->exit = cfq_exit_io_context;
1268		elv_ioc_count_inc(ioc_count);
1269	}
1270
1271	return cic;
1272}
1273
1274static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1275{
1276	struct task_struct *tsk = current;
1277	int ioprio_class;
1278
1279	if (!cfq_cfqq_prio_changed(cfqq))
1280		return;
1281
1282	ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1283	switch (ioprio_class) {
1284	default:
1285		printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1286	case IOPRIO_CLASS_NONE:
1287		/*
1288		 * no prio set, place us in the middle of the BE classes
1289		 */
1290		cfqq->ioprio = task_nice_ioprio(tsk);
1291		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1292		break;
1293	case IOPRIO_CLASS_RT:
1294		cfqq->ioprio = task_ioprio(ioc);
1295		cfqq->ioprio_class = IOPRIO_CLASS_RT;
1296		break;
1297	case IOPRIO_CLASS_BE:
1298		cfqq->ioprio = task_ioprio(ioc);
1299		cfqq->ioprio_class = IOPRIO_CLASS_BE;
1300		break;
1301	case IOPRIO_CLASS_IDLE:
1302		cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1303		cfqq->ioprio = 7;
1304		cfq_clear_cfqq_idle_window(cfqq);
1305		break;
1306	}
1307
1308	/*
1309	 * keep track of original prio settings in case we have to temporarily
1310	 * elevate the priority of this queue
1311	 */
1312	cfqq->org_ioprio = cfqq->ioprio;
1313	cfqq->org_ioprio_class = cfqq->ioprio_class;
1314	cfq_clear_cfqq_prio_changed(cfqq);
1315}
1316
1317static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1318{
1319	struct cfq_data *cfqd = cic->key;
1320	struct cfq_queue *cfqq;
1321	unsigned long flags;
1322
1323	if (unlikely(!cfqd))
1324		return;
1325
1326	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1327
1328	cfqq = cic->cfqq[ASYNC];
1329	if (cfqq) {
1330		struct cfq_queue *new_cfqq;
1331		new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1332		if (new_cfqq) {
1333			cic->cfqq[ASYNC] = new_cfqq;
1334			cfq_put_queue(cfqq);
1335		}
1336	}
1337
1338	cfqq = cic->cfqq[SYNC];
1339	if (cfqq)
1340		cfq_mark_cfqq_prio_changed(cfqq);
1341
1342	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1343}
1344
1345static void cfq_ioc_set_ioprio(struct io_context *ioc)
1346{
1347	call_for_each_cic(ioc, changed_ioprio);
1348	ioc->ioprio_changed = 0;
1349}
1350
1351static struct cfq_queue *
1352cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1353		     struct io_context *ioc, gfp_t gfp_mask)
1354{
1355	struct cfq_queue *cfqq, *new_cfqq = NULL;
1356	struct cfq_io_context *cic;
1357
1358retry:
1359	cic = cfq_cic_lookup(cfqd, ioc);
1360	/* cic always exists here */
1361	cfqq = cic_to_cfqq(cic, is_sync);
1362
1363	if (!cfqq) {
1364		if (new_cfqq) {
1365			cfqq = new_cfqq;
1366			new_cfqq = NULL;
1367		} else if (gfp_mask & __GFP_WAIT) {
1368			/*
1369			 * Inform the allocator of the fact that we will
1370			 * just repeat this allocation if it fails, to allow
1371			 * the allocator to do whatever it needs to attempt to
1372			 * free memory.
1373			 */
1374			spin_unlock_irq(cfqd->queue->queue_lock);
1375			new_cfqq = kmem_cache_alloc_node(cfq_pool,
1376					gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1377					cfqd->queue->node);
1378			spin_lock_irq(cfqd->queue->queue_lock);
1379			goto retry;
1380		} else {
1381			cfqq = kmem_cache_alloc_node(cfq_pool,
1382					gfp_mask | __GFP_ZERO,
1383					cfqd->queue->node);
1384			if (!cfqq)
1385				goto out;
1386		}
1387
1388		RB_CLEAR_NODE(&cfqq->rb_node);
1389		INIT_LIST_HEAD(&cfqq->fifo);
1390
1391		atomic_set(&cfqq->ref, 0);
1392		cfqq->cfqd = cfqd;
1393
1394		cfq_mark_cfqq_prio_changed(cfqq);
1395		cfq_mark_cfqq_queue_new(cfqq);
1396
1397		cfq_init_prio_data(cfqq, ioc);
1398
1399		if (is_sync) {
1400			if (!cfq_class_idle(cfqq))
1401				cfq_mark_cfqq_idle_window(cfqq);
1402			cfq_mark_cfqq_sync(cfqq);
1403		}
1404	}
1405
1406	if (new_cfqq)
1407		kmem_cache_free(cfq_pool, new_cfqq);
1408
1409out:
1410	WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1411	return cfqq;
1412}
1413
1414static struct cfq_queue **
1415cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1416{
1417	switch (ioprio_class) {
1418	case IOPRIO_CLASS_RT:
1419		return &cfqd->async_cfqq[0][ioprio];
1420	case IOPRIO_CLASS_BE:
1421		return &cfqd->async_cfqq[1][ioprio];
1422	case IOPRIO_CLASS_IDLE:
1423		return &cfqd->async_idle_cfqq;
1424	default:
1425		BUG();
1426	}
1427}
1428
1429static struct cfq_queue *
1430cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1431	      gfp_t gfp_mask)
1432{
1433	const int ioprio = task_ioprio(ioc);
1434	const int ioprio_class = task_ioprio_class(ioc);
1435	struct cfq_queue **async_cfqq = NULL;
1436	struct cfq_queue *cfqq = NULL;
1437
1438	if (!is_sync) {
1439		async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1440		cfqq = *async_cfqq;
1441	}
1442
1443	if (!cfqq) {
1444		cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1445		if (!cfqq)
1446			return NULL;
1447	}
1448
1449	/*
1450	 * pin the queue now that it's allocated, scheduler exit will prune it
1451	 */
1452	if (!is_sync && !(*async_cfqq)) {
1453		atomic_inc(&cfqq->ref);
1454		*async_cfqq = cfqq;
1455	}
1456
1457	atomic_inc(&cfqq->ref);
1458	return cfqq;
1459}
1460
1461static void cfq_cic_free(struct cfq_io_context *cic)
1462{
1463	kmem_cache_free(cfq_ioc_pool, cic);
1464	elv_ioc_count_dec(ioc_count);
1465
1466	if (ioc_gone && !elv_ioc_count_read(ioc_count))
1467		complete(ioc_gone);
1468}
1469
1470/*
1471 * We drop cfq io contexts lazily, so we may find a dead one.
1472 */
1473static void
1474cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1475		  struct cfq_io_context *cic)
1476{
1477	unsigned long flags;
1478
1479	WARN_ON(!list_empty(&cic->queue_list));
1480
1481	spin_lock_irqsave(&ioc->lock, flags);
1482
1483	if (ioc->ioc_data == cic)
1484		rcu_assign_pointer(ioc->ioc_data, NULL);
1485
1486	radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1487	hlist_del_rcu(&cic->cic_list);
1488	spin_unlock_irqrestore(&ioc->lock, flags);
1489
1490	cfq_cic_free(cic);
1491}
1492
1493static struct cfq_io_context *
1494cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1495{
1496	struct cfq_io_context *cic;
1497	void *k;
1498
1499	if (unlikely(!ioc))
1500		return NULL;
1501
1502	/*
1503	 * we maintain a last-hit cache, to avoid browsing over the tree
1504	 */
1505	cic = rcu_dereference(ioc->ioc_data);
1506	if (cic && cic->key == cfqd)
1507		return cic;
1508
1509	do {
1510		rcu_read_lock();
1511		cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1512		rcu_read_unlock();
1513		if (!cic)
1514			break;
1515		/* ->key must be copied to avoid race with cfq_exit_queue() */
1516		k = cic->key;
1517		if (unlikely(!k)) {
1518			cfq_drop_dead_cic(cfqd, ioc, cic);
1519			continue;
1520		}
1521
1522		rcu_assign_pointer(ioc->ioc_data, cic);
1523		break;
1524	} while (1);
1525
1526	return cic;
1527}
1528
1529/*
1530 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1531 * the process specific cfq io context when entered from the block layer.
1532 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1533 */
1534static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1535			struct cfq_io_context *cic, gfp_t gfp_mask)
1536{
1537	unsigned long flags;
1538	int ret;
1539
1540	ret = radix_tree_preload(gfp_mask);
1541	if (!ret) {
1542		cic->ioc = ioc;
1543		cic->key = cfqd;
1544
1545		spin_lock_irqsave(&ioc->lock, flags);
1546		ret = radix_tree_insert(&ioc->radix_root,
1547						(unsigned long) cfqd, cic);
1548		if (!ret)
1549			hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1550		spin_unlock_irqrestore(&ioc->lock, flags);
1551
1552		radix_tree_preload_end();
1553
1554		if (!ret) {
1555			spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1556			list_add(&cic->queue_list, &cfqd->cic_list);
1557			spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1558		}
1559	}
1560
1561	if (ret)
1562		printk(KERN_ERR "cfq: cic link failed!\n");
1563
1564	return ret;
1565}
1566
1567/*
1568 * Setup general io context and cfq io context. There can be several cfq
1569 * io contexts per general io context, if this process is doing io to more
1570 * than one device managed by cfq.
1571 */
1572static struct cfq_io_context *
1573cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1574{
1575	struct io_context *ioc = NULL;
1576	struct cfq_io_context *cic;
1577
1578	might_sleep_if(gfp_mask & __GFP_WAIT);
1579
1580	ioc = get_io_context(gfp_mask, cfqd->queue->node);
1581	if (!ioc)
1582		return NULL;
1583
1584	cic = cfq_cic_lookup(cfqd, ioc);
1585	if (cic)
1586		goto out;
1587
1588	cic = cfq_alloc_io_context(cfqd, gfp_mask);
1589	if (cic == NULL)
1590		goto err;
1591
1592	if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1593		goto err_free;
1594
1595out:
1596	smp_read_barrier_depends();
1597	if (unlikely(ioc->ioprio_changed))
1598		cfq_ioc_set_ioprio(ioc);
1599
1600	return cic;
1601err_free:
1602	cfq_cic_free(cic);
1603err:
1604	put_io_context(ioc);
1605	return NULL;
1606}
1607
1608static void
1609cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1610{
1611	unsigned long elapsed = jiffies - cic->last_end_request;
1612	unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1613
1614	cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1615	cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1616	cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1617}
1618
1619static void
1620cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1621		       struct request *rq)
1622{
1623	sector_t sdist;
1624	u64 total;
1625
1626	if (cic->last_request_pos < rq->sector)
1627		sdist = rq->sector - cic->last_request_pos;
1628	else
1629		sdist = cic->last_request_pos - rq->sector;
1630
1631	/*
1632	 * Don't allow the seek distance to get too large from the
1633	 * odd fragment, pagein, etc
1634	 */
1635	if (cic->seek_samples <= 60) /* second&third seek */
1636		sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1637	else
1638		sdist = min(sdist, (cic->seek_mean * 4)	+ 2*1024*64);
1639
1640	cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1641	cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1642	total = cic->seek_total + (cic->seek_samples/2);
1643	do_div(total, cic->seek_samples);
1644	cic->seek_mean = (sector_t)total;
1645}
1646
1647/*
1648 * Disable idle window if the process thinks too long or seeks so much that
1649 * it doesn't matter
1650 */
1651static void
1652cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1653		       struct cfq_io_context *cic)
1654{
1655	int enable_idle;
1656
1657	/*
1658	 * Don't idle for async or idle io prio class
1659	 */
1660	if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1661		return;
1662
1663	enable_idle = cfq_cfqq_idle_window(cfqq);
1664
1665	if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1666	    (cfqd->hw_tag && CIC_SEEKY(cic)))
1667		enable_idle = 0;
1668	else if (sample_valid(cic->ttime_samples)) {
1669		if (cic->ttime_mean > cfqd->cfq_slice_idle)
1670			enable_idle = 0;
1671		else
1672			enable_idle = 1;
1673	}
1674
1675	if (enable_idle)
1676		cfq_mark_cfqq_idle_window(cfqq);
1677	else
1678		cfq_clear_cfqq_idle_window(cfqq);
1679}
1680
1681/*
1682 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1683 * no or if we aren't sure, a 1 will cause a preempt.
1684 */
1685static int
1686cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1687		   struct request *rq)
1688{
1689	struct cfq_queue *cfqq;
1690
1691	cfqq = cfqd->active_queue;
1692	if (!cfqq)
1693		return 0;
1694
1695	if (cfq_slice_used(cfqq))
1696		return 1;
1697
1698	if (cfq_class_idle(new_cfqq))
1699		return 0;
1700
1701	if (cfq_class_idle(cfqq))
1702		return 1;
1703
1704	/*
1705	 * if the new request is sync, but the currently running queue is
1706	 * not, let the sync request have priority.
1707	 */
1708	if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1709		return 1;
1710
1711	/*
1712	 * So both queues are sync. Let the new request get disk time if
1713	 * it's a metadata request and the current queue is doing regular IO.
1714	 */
1715	if (rq_is_meta(rq) && !cfqq->meta_pending)
1716		return 1;
1717
1718	if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1719		return 0;
1720
1721	/*
1722	 * if this request is as-good as one we would expect from the
1723	 * current cfqq, let it preempt
1724	 */
1725	if (cfq_rq_close(cfqd, rq))
1726		return 1;
1727
1728	return 0;
1729}
1730
1731/*
1732 * cfqq preempts the active queue. if we allowed preempt with no slice left,
1733 * let it have half of its nominal slice.
1734 */
1735static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1736{
1737	cfq_slice_expired(cfqd, 1);
1738
1739	/*
1740	 * Put the new queue at the front of the of the current list,
1741	 * so we know that it will be selected next.
1742	 */
1743	BUG_ON(!cfq_cfqq_on_rr(cfqq));
1744
1745	cfq_service_tree_add(cfqd, cfqq, 1);
1746
1747	cfqq->slice_end = 0;
1748	cfq_mark_cfqq_slice_new(cfqq);
1749}
1750
1751/*
1752 * Called when a new fs request (rq) is added (to cfqq). Check if there's
1753 * something we should do about it
1754 */
1755static void
1756cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1757		struct request *rq)
1758{
1759	struct cfq_io_context *cic = RQ_CIC(rq);
1760
1761	if (rq_is_meta(rq))
1762		cfqq->meta_pending++;
1763
1764	cfq_update_io_thinktime(cfqd, cic);
1765	cfq_update_io_seektime(cfqd, cic, rq);
1766	cfq_update_idle_window(cfqd, cfqq, cic);
1767
1768	cic->last_request_pos = rq->sector + rq->nr_sectors;
1769
1770	if (cfqq == cfqd->active_queue) {
1771		/*
1772		 * if we are waiting for a request for this queue, let it rip
1773		 * immediately and flag that we must not expire this queue
1774		 * just now
1775		 */
1776		if (cfq_cfqq_wait_request(cfqq)) {
1777			cfq_mark_cfqq_must_dispatch(cfqq);
1778			del_timer(&cfqd->idle_slice_timer);
1779			blk_start_queueing(cfqd->queue);
1780		}
1781	} else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1782		/*
1783		 * not the active queue - expire current slice if it is
1784		 * idle and has expired it's mean thinktime or this new queue
1785		 * has some old slice time left and is of higher priority
1786		 */
1787		cfq_preempt_queue(cfqd, cfqq);
1788		cfq_mark_cfqq_must_dispatch(cfqq);
1789		blk_start_queueing(cfqd->queue);
1790	}
1791}
1792
1793static void cfq_insert_request(struct request_queue *q, struct request *rq)
1794{
1795	struct cfq_data *cfqd = q->elevator->elevator_data;
1796	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1797
1798	cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1799
1800	cfq_add_rq_rb(rq);
1801
1802	list_add_tail(&rq->queuelist, &cfqq->fifo);
1803
1804	cfq_rq_enqueued(cfqd, cfqq, rq);
1805}
1806
1807static void cfq_completed_request(struct request_queue *q, struct request *rq)
1808{
1809	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1810	struct cfq_data *cfqd = cfqq->cfqd;
1811	const int sync = rq_is_sync(rq);
1812	unsigned long now;
1813
1814	now = jiffies;
1815
1816	WARN_ON(!cfqd->rq_in_driver);
1817	WARN_ON(!cfqq->dispatched);
1818	cfqd->rq_in_driver--;
1819	cfqq->dispatched--;
1820
1821	if (cfq_cfqq_sync(cfqq))
1822		cfqd->sync_flight--;
1823
1824	if (!cfq_class_idle(cfqq))
1825		cfqd->last_end_request = now;
1826
1827	if (sync)
1828		RQ_CIC(rq)->last_end_request = now;
1829
1830	/*
1831	 * If this is the active queue, check if it needs to be expired,
1832	 * or if we want to idle in case it has no pending requests.
1833	 */
1834	if (cfqd->active_queue == cfqq) {
1835		if (cfq_cfqq_slice_new(cfqq)) {
1836			cfq_set_prio_slice(cfqd, cfqq);
1837			cfq_clear_cfqq_slice_new(cfqq);
1838		}
1839		if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1840			cfq_slice_expired(cfqd, 1);
1841		else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1842			cfq_arm_slice_timer(cfqd);
1843	}
1844
1845	if (!cfqd->rq_in_driver)
1846		cfq_schedule_dispatch(cfqd);
1847}
1848
1849/*
1850 * we temporarily boost lower priority queues if they are holding fs exclusive
1851 * resources. they are boosted to normal prio (CLASS_BE/4)
1852 */
1853static void cfq_prio_boost(struct cfq_queue *cfqq)
1854{
1855	if (has_fs_excl()) {
1856		/*
1857		 * boost idle prio on transactions that would lock out other
1858		 * users of the filesystem
1859		 */
1860		if (cfq_class_idle(cfqq))
1861			cfqq->ioprio_class = IOPRIO_CLASS_BE;
1862		if (cfqq->ioprio > IOPRIO_NORM)
1863			cfqq->ioprio = IOPRIO_NORM;
1864	} else {
1865		/*
1866		 * check if we need to unboost the queue
1867		 */
1868		if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1869			cfqq->ioprio_class = cfqq->org_ioprio_class;
1870		if (cfqq->ioprio != cfqq->org_ioprio)
1871			cfqq->ioprio = cfqq->org_ioprio;
1872	}
1873}
1874
1875static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1876{
1877	if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1878	    !cfq_cfqq_must_alloc_slice(cfqq)) {
1879		cfq_mark_cfqq_must_alloc_slice(cfqq);
1880		return ELV_MQUEUE_MUST;
1881	}
1882
1883	return ELV_MQUEUE_MAY;
1884}
1885
1886static int cfq_may_queue(struct request_queue *q, int rw)
1887{
1888	struct cfq_data *cfqd = q->elevator->elevator_data;
1889	struct task_struct *tsk = current;
1890	struct cfq_io_context *cic;
1891	struct cfq_queue *cfqq;
1892
1893	/*
1894	 * don't force setup of a queue from here, as a call to may_queue
1895	 * does not necessarily imply that a request actually will be queued.
1896	 * so just lookup a possibly existing queue, or return 'may queue'
1897	 * if that fails
1898	 */
1899	cic = cfq_cic_lookup(cfqd, tsk->io_context);
1900	if (!cic)
1901		return ELV_MQUEUE_MAY;
1902
1903	cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1904	if (cfqq) {
1905		cfq_init_prio_data(cfqq, cic->ioc);
1906		cfq_prio_boost(cfqq);
1907
1908		return __cfq_may_queue(cfqq);
1909	}
1910
1911	return ELV_MQUEUE_MAY;
1912}
1913
1914/*
1915 * queue lock held here
1916 */
1917static void cfq_put_request(struct request *rq)
1918{
1919	struct cfq_queue *cfqq = RQ_CFQQ(rq);
1920
1921	if (cfqq) {
1922		const int rw = rq_data_dir(rq);
1923
1924		BUG_ON(!cfqq->allocated[rw]);
1925		cfqq->allocated[rw]--;
1926
1927		put_io_context(RQ_CIC(rq)->ioc);
1928
1929		rq->elevator_private = NULL;
1930		rq->elevator_private2 = NULL;
1931
1932		cfq_put_queue(cfqq);
1933	}
1934}
1935
1936/*
1937 * Allocate cfq data structures associated with this request.
1938 */
1939static int
1940cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1941{
1942	struct cfq_data *cfqd = q->elevator->elevator_data;
1943	struct cfq_io_context *cic;
1944	const int rw = rq_data_dir(rq);
1945	const int is_sync = rq_is_sync(rq);
1946	struct cfq_queue *cfqq;
1947	unsigned long flags;
1948
1949	might_sleep_if(gfp_mask & __GFP_WAIT);
1950
1951	cic = cfq_get_io_context(cfqd, gfp_mask);
1952
1953	spin_lock_irqsave(q->queue_lock, flags);
1954
1955	if (!cic)
1956		goto queue_fail;
1957
1958	cfqq = cic_to_cfqq(cic, is_sync);
1959	if (!cfqq) {
1960		cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
1961
1962		if (!cfqq)
1963			goto queue_fail;
1964
1965		cic_set_cfqq(cic, cfqq, is_sync);
1966	}
1967
1968	cfqq->allocated[rw]++;
1969	cfq_clear_cfqq_must_alloc(cfqq);
1970	atomic_inc(&cfqq->ref);
1971
1972	spin_unlock_irqrestore(q->queue_lock, flags);
1973
1974	rq->elevator_private = cic;
1975	rq->elevator_private2 = cfqq;
1976	return 0;
1977
1978queue_fail:
1979	if (cic)
1980		put_io_context(cic->ioc);
1981
1982	cfq_schedule_dispatch(cfqd);
1983	spin_unlock_irqrestore(q->queue_lock, flags);
1984	return 1;
1985}
1986
1987static void cfq_kick_queue(struct work_struct *work)
1988{
1989	struct cfq_data *cfqd =
1990		container_of(work, struct cfq_data, unplug_work);
1991	struct request_queue *q = cfqd->queue;
1992	unsigned long flags;
1993
1994	spin_lock_irqsave(q->queue_lock, flags);
1995	blk_start_queueing(q);
1996	spin_unlock_irqrestore(q->queue_lock, flags);
1997}
1998
1999/*
2000 * Timer running if the active_queue is currently idling inside its time slice
2001 */
2002static void cfq_idle_slice_timer(unsigned long data)
2003{
2004	struct cfq_data *cfqd = (struct cfq_data *) data;
2005	struct cfq_queue *cfqq;
2006	unsigned long flags;
2007	int timed_out = 1;
2008
2009	spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2010
2011	cfqq = cfqd->active_queue;
2012	if (cfqq) {
2013		timed_out = 0;
2014
2015		/*
2016		 * expired
2017		 */
2018		if (cfq_slice_used(cfqq))
2019			goto expire;
2020
2021		/*
2022		 * only expire and reinvoke request handler, if there are
2023		 * other queues with pending requests
2024		 */
2025		if (!cfqd->busy_queues)
2026			goto out_cont;
2027
2028		/*
2029		 * not expired and it has a request pending, let it dispatch
2030		 */
2031		if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2032			cfq_mark_cfqq_must_dispatch(cfqq);
2033			goto out_kick;
2034		}
2035	}
2036expire:
2037	cfq_slice_expired(cfqd, timed_out);
2038out_kick:
2039	cfq_schedule_dispatch(cfqd);
2040out_cont:
2041	spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2042}
2043
2044static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2045{
2046	del_timer_sync(&cfqd->idle_slice_timer);
2047	kblockd_flush_work(&cfqd->unplug_work);
2048}
2049
2050static void cfq_put_async_queues(struct cfq_data *cfqd)
2051{
2052	int i;
2053
2054	for (i = 0; i < IOPRIO_BE_NR; i++) {
2055		if (cfqd->async_cfqq[0][i])
2056			cfq_put_queue(cfqd->async_cfqq[0][i]);
2057		if (cfqd->async_cfqq[1][i])
2058			cfq_put_queue(cfqd->async_cfqq[1][i]);
2059	}
2060
2061	if (cfqd->async_idle_cfqq)
2062		cfq_put_queue(cfqd->async_idle_cfqq);
2063}
2064
2065static void cfq_exit_queue(elevator_t *e)
2066{
2067	struct cfq_data *cfqd = e->elevator_data;
2068	struct request_queue *q = cfqd->queue;
2069
2070	cfq_shutdown_timer_wq(cfqd);
2071
2072	spin_lock_irq(q->queue_lock);
2073
2074	if (cfqd->active_queue)
2075		__cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2076
2077	while (!list_empty(&cfqd->cic_list)) {
2078		struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2079							struct cfq_io_context,
2080							queue_list);
2081
2082		__cfq_exit_single_io_context(cfqd, cic);
2083	}
2084
2085	cfq_put_async_queues(cfqd);
2086
2087	spin_unlock_irq(q->queue_lock);
2088
2089	cfq_shutdown_timer_wq(cfqd);
2090
2091	kfree(cfqd);
2092}
2093
2094static void *cfq_init_queue(struct request_queue *q)
2095{
2096	struct cfq_data *cfqd;
2097
2098	cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2099	if (!cfqd)
2100		return NULL;
2101
2102	cfqd->service_tree = CFQ_RB_ROOT;
2103	INIT_LIST_HEAD(&cfqd->cic_list);
2104
2105	cfqd->queue = q;
2106
2107	init_timer(&cfqd->idle_slice_timer);
2108	cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2109	cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2110
2111	INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2112
2113	cfqd->last_end_request = jiffies;
2114	cfqd->cfq_quantum = cfq_quantum;
2115	cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2116	cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2117	cfqd->cfq_back_max = cfq_back_max;
2118	cfqd->cfq_back_penalty = cfq_back_penalty;
2119	cfqd->cfq_slice[0] = cfq_slice_async;
2120	cfqd->cfq_slice[1] = cfq_slice_sync;
2121	cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2122	cfqd->cfq_slice_idle = cfq_slice_idle;
2123
2124	return cfqd;
2125}
2126
2127static void cfq_slab_kill(void)
2128{
2129	if (cfq_pool)
2130		kmem_cache_destroy(cfq_pool);
2131	if (cfq_ioc_pool)
2132		kmem_cache_destroy(cfq_ioc_pool);
2133}
2134
2135static int __init cfq_slab_setup(void)
2136{
2137	cfq_pool = KMEM_CACHE(cfq_queue, 0);
2138	if (!cfq_pool)
2139		goto fail;
2140
2141	cfq_ioc_pool = KMEM_CACHE(cfq_io_context, SLAB_DESTROY_BY_RCU);
2142	if (!cfq_ioc_pool)
2143		goto fail;
2144
2145	return 0;
2146fail:
2147	cfq_slab_kill();
2148	return -ENOMEM;
2149}
2150
2151/*
2152 * sysfs parts below -->
2153 */
2154static ssize_t
2155cfq_var_show(unsigned int var, char *page)
2156{
2157	return sprintf(page, "%d\n", var);
2158}
2159
2160static ssize_t
2161cfq_var_store(unsigned int *var, const char *page, size_t count)
2162{
2163	char *p = (char *) page;
2164
2165	*var = simple_strtoul(p, &p, 10);
2166	return count;
2167}
2168
2169#define SHOW_FUNCTION(__FUNC, __VAR, __CONV)				\
2170static ssize_t __FUNC(elevator_t *e, char *page)			\
2171{									\
2172	struct cfq_data *cfqd = e->elevator_data;			\
2173	unsigned int __data = __VAR;					\
2174	if (__CONV)							\
2175		__data = jiffies_to_msecs(__data);			\
2176	return cfq_var_show(__data, (page));				\
2177}
2178SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2179SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2180SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2181SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2182SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2183SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2184SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2185SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2186SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2187#undef SHOW_FUNCTION
2188
2189#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)			\
2190static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)	\
2191{									\
2192	struct cfq_data *cfqd = e->elevator_data;			\
2193	unsigned int __data;						\
2194	int ret = cfq_var_store(&__data, (page), count);		\
2195	if (__data < (MIN))						\
2196		__data = (MIN);						\
2197	else if (__data > (MAX))					\
2198		__data = (MAX);						\
2199	if (__CONV)							\
2200		*(__PTR) = msecs_to_jiffies(__data);			\
2201	else								\
2202		*(__PTR) = __data;					\
2203	return ret;							\
2204}
2205STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2206STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2207		UINT_MAX, 1);
2208STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2209		UINT_MAX, 1);
2210STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2211STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2212		UINT_MAX, 0);
2213STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2214STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2215STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2216STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2217		UINT_MAX, 0);
2218#undef STORE_FUNCTION
2219
2220#define CFQ_ATTR(name) \
2221	__ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2222
2223static struct elv_fs_entry cfq_attrs[] = {
2224	CFQ_ATTR(quantum),
2225	CFQ_ATTR(fifo_expire_sync),
2226	CFQ_ATTR(fifo_expire_async),
2227	CFQ_ATTR(back_seek_max),
2228	CFQ_ATTR(back_seek_penalty),
2229	CFQ_ATTR(slice_sync),
2230	CFQ_ATTR(slice_async),
2231	CFQ_ATTR(slice_async_rq),
2232	CFQ_ATTR(slice_idle),
2233	__ATTR_NULL
2234};
2235
2236static struct elevator_type iosched_cfq = {
2237	.ops = {
2238		.elevator_merge_fn = 		cfq_merge,
2239		.elevator_merged_fn =		cfq_merged_request,
2240		.elevator_merge_req_fn =	cfq_merged_requests,
2241		.elevator_allow_merge_fn =	cfq_allow_merge,
2242		.elevator_dispatch_fn =		cfq_dispatch_requests,
2243		.elevator_add_req_fn =		cfq_insert_request,
2244		.elevator_activate_req_fn =	cfq_activate_request,
2245		.elevator_deactivate_req_fn =	cfq_deactivate_request,
2246		.elevator_queue_empty_fn =	cfq_queue_empty,
2247		.elevator_completed_req_fn =	cfq_completed_request,
2248		.elevator_former_req_fn =	elv_rb_former_request,
2249		.elevator_latter_req_fn =	elv_rb_latter_request,
2250		.elevator_set_req_fn =		cfq_set_request,
2251		.elevator_put_req_fn =		cfq_put_request,
2252		.elevator_may_queue_fn =	cfq_may_queue,
2253		.elevator_init_fn =		cfq_init_queue,
2254		.elevator_exit_fn =		cfq_exit_queue,
2255		.trim =				cfq_free_io_context,
2256	},
2257	.elevator_attrs =	cfq_attrs,
2258	.elevator_name =	"cfq",
2259	.elevator_owner =	THIS_MODULE,
2260};
2261
2262static int __init cfq_init(void)
2263{
2264	/*
2265	 * could be 0 on HZ < 1000 setups
2266	 */
2267	if (!cfq_slice_async)
2268		cfq_slice_async = 1;
2269	if (!cfq_slice_idle)
2270		cfq_slice_idle = 1;
2271
2272	if (cfq_slab_setup())
2273		return -ENOMEM;
2274
2275	elv_register(&iosched_cfq);
2276
2277	return 0;
2278}
2279
2280static void __exit cfq_exit(void)
2281{
2282	DECLARE_COMPLETION_ONSTACK(all_gone);
2283	elv_unregister(&iosched_cfq);
2284	ioc_gone = &all_gone;
2285	/* ioc_gone's update must be visible before reading ioc_count */
2286	smp_wmb();
2287	if (elv_ioc_count_read(ioc_count))
2288		wait_for_completion(ioc_gone);
2289	synchronize_rcu();
2290	cfq_slab_kill();
2291}
2292
2293module_init(cfq_init);
2294module_exit(cfq_exit);
2295
2296MODULE_AUTHOR("Jens Axboe");
2297MODULE_LICENSE("GPL");
2298MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
2299