sata_dwc_460ex.c revision 99c8ea3e57e7b5551ffd9cd401c4bf302b5664e3
1/*
2 * drivers/ata/sata_dwc_460ex.c
3 *
4 * Synopsys DesignWare Cores (DWC) SATA host driver
5 *
6 * Author: Mark Miesfeld <mmiesfeld@amcc.com>
7 *
8 * Ported from 2.6.19.2 to 2.6.25/26 by Stefan Roese <sr@denx.de>
9 * Copyright 2008 DENX Software Engineering
10 *
11 * Based on versions provided by AMCC and Synopsys which are:
12 *          Copyright 2006 Applied Micro Circuits Corporation
13 *          COPYRIGHT (C) 2005  SYNOPSYS, INC.  ALL RIGHTS RESERVED
14 *
15 * This program is free software; you can redistribute  it and/or modify it
16 * under  the terms of  the GNU General  Public License as published by the
17 * Free Software Foundation;  either version 2 of the  License, or (at your
18 * option) any later version.
19 */
20
21#ifdef CONFIG_SATA_DWC_DEBUG
22#define DEBUG
23#endif
24
25#ifdef CONFIG_SATA_DWC_VDEBUG
26#define VERBOSE_DEBUG
27#define DEBUG_NCQ
28#endif
29
30#include <linux/kernel.h>
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/device.h>
34#include <linux/of_platform.h>
35#include <linux/platform_device.h>
36#include <linux/libata.h>
37#include <linux/slab.h>
38#include "libata.h"
39
40#include <scsi/scsi_host.h>
41#include <scsi/scsi_cmnd.h>
42
43/* These two are defined in "libata.h" */
44#undef	DRV_NAME
45#undef	DRV_VERSION
46#define DRV_NAME        "sata-dwc"
47#define DRV_VERSION     "1.3"
48
49/* SATA DMA driver Globals */
50#define DMA_NUM_CHANS		1
51#define DMA_NUM_CHAN_REGS	8
52
53/* SATA DMA Register definitions */
54#define AHB_DMA_BRST_DFLT	64	/* 16 data items burst length*/
55
56struct dmareg {
57	u32 low;		/* Low bits 0-31 */
58	u32 high;		/* High bits 32-63 */
59};
60
61/* DMA Per Channel registers */
62struct dma_chan_regs {
63	struct dmareg sar;	/* Source Address */
64	struct dmareg dar;	/* Destination address */
65	struct dmareg llp;	/* Linked List Pointer */
66	struct dmareg ctl;	/* Control */
67	struct dmareg sstat;	/* Source Status not implemented in core */
68	struct dmareg dstat;	/* Destination Status not implemented in core*/
69	struct dmareg sstatar;	/* Source Status Address not impl in core */
70	struct dmareg dstatar;	/* Destination Status Address not implemente */
71	struct dmareg cfg;	/* Config */
72	struct dmareg sgr;	/* Source Gather */
73	struct dmareg dsr;	/* Destination Scatter */
74};
75
76/* Generic Interrupt Registers */
77struct dma_interrupt_regs {
78	struct dmareg tfr;	/* Transfer Interrupt */
79	struct dmareg block;	/* Block Interrupt */
80	struct dmareg srctran;	/* Source Transfer Interrupt */
81	struct dmareg dsttran;	/* Dest Transfer Interrupt */
82	struct dmareg error;	/* Error */
83};
84
85struct ahb_dma_regs {
86	struct dma_chan_regs	chan_regs[DMA_NUM_CHAN_REGS];
87	struct dma_interrupt_regs interrupt_raw;	/* Raw Interrupt */
88	struct dma_interrupt_regs interrupt_status;	/* Interrupt Status */
89	struct dma_interrupt_regs interrupt_mask;	/* Interrupt Mask */
90	struct dma_interrupt_regs interrupt_clear;	/* Interrupt Clear */
91	struct dmareg		statusInt;	/* Interrupt combined*/
92	struct dmareg		rq_srcreg;	/* Src Trans Req */
93	struct dmareg		rq_dstreg;	/* Dst Trans Req */
94	struct dmareg		rq_sgl_srcreg;	/* Sngl Src Trans Req*/
95	struct dmareg		rq_sgl_dstreg;	/* Sngl Dst Trans Req*/
96	struct dmareg		rq_lst_srcreg;	/* Last Src Trans Req*/
97	struct dmareg		rq_lst_dstreg;	/* Last Dst Trans Req*/
98	struct dmareg		dma_cfg;		/* DMA Config */
99	struct dmareg		dma_chan_en;		/* DMA Channel Enable*/
100	struct dmareg		dma_id;			/* DMA ID */
101	struct dmareg		dma_test;		/* DMA Test */
102	struct dmareg		res1;			/* reserved */
103	struct dmareg		res2;			/* reserved */
104	/*
105	 * DMA Comp Params
106	 * Param 6 = dma_param[0], Param 5 = dma_param[1],
107	 * Param 4 = dma_param[2] ...
108	 */
109	struct dmareg		dma_params[6];
110};
111
112/* Data structure for linked list item */
113struct lli {
114	u32		sar;		/* Source Address */
115	u32		dar;		/* Destination address */
116	u32		llp;		/* Linked List Pointer */
117	struct dmareg	ctl;		/* Control */
118	struct dmareg	dstat;		/* Destination Status */
119};
120
121enum {
122	SATA_DWC_DMAC_LLI_SZ =	(sizeof(struct lli)),
123	SATA_DWC_DMAC_LLI_NUM =	256,
124	SATA_DWC_DMAC_LLI_TBL_SZ = (SATA_DWC_DMAC_LLI_SZ * \
125					SATA_DWC_DMAC_LLI_NUM),
126	SATA_DWC_DMAC_TWIDTH_BYTES = 4,
127	SATA_DWC_DMAC_CTRL_TSIZE_MAX = (0x00000800 * \
128						SATA_DWC_DMAC_TWIDTH_BYTES),
129};
130
131/* DMA Register Operation Bits */
132enum {
133	DMA_EN	=		0x00000001, /* Enable AHB DMA */
134	DMA_CTL_LLP_SRCEN =	0x10000000, /* Blk chain enable Src */
135	DMA_CTL_LLP_DSTEN =	0x08000000, /* Blk chain enable Dst */
136};
137
138#define	DMA_CTL_BLK_TS(size)	((size) & 0x000000FFF)	/* Blk Transfer size */
139#define DMA_CHANNEL(ch)		(0x00000001 << (ch))	/* Select channel */
140	/* Enable channel */
141#define	DMA_ENABLE_CHAN(ch)	((0x00000001 << (ch)) |			\
142				 ((0x000000001 << (ch)) << 8))
143	/* Disable channel */
144#define	DMA_DISABLE_CHAN(ch)	(0x00000000 | ((0x000000001 << (ch)) << 8))
145	/* Transfer Type & Flow Controller */
146#define	DMA_CTL_TTFC(type)	(((type) & 0x7) << 20)
147#define	DMA_CTL_SMS(num)	(((num) & 0x3) << 25) /* Src Master Select */
148#define	DMA_CTL_DMS(num)	(((num) & 0x3) << 23)/* Dst Master Select */
149	/* Src Burst Transaction Length */
150#define DMA_CTL_SRC_MSIZE(size) (((size) & 0x7) << 14)
151	/* Dst Burst Transaction Length */
152#define	DMA_CTL_DST_MSIZE(size) (((size) & 0x7) << 11)
153	/* Source Transfer Width */
154#define	DMA_CTL_SRC_TRWID(size) (((size) & 0x7) << 4)
155	/* Destination Transfer Width */
156#define	DMA_CTL_DST_TRWID(size) (((size) & 0x7) << 1)
157
158/* Assign HW handshaking interface (x) to destination / source peripheral */
159#define	DMA_CFG_HW_HS_DEST(int_num) (((int_num) & 0xF) << 11)
160#define	DMA_CFG_HW_HS_SRC(int_num) (((int_num) & 0xF) << 7)
161#define	DMA_LLP_LMS(addr, master) (((addr) & 0xfffffffc) | (master))
162
163/*
164 * This define is used to set block chaining disabled in the control low
165 * register.  It is already in little endian format so it can be &'d dirctly.
166 * It is essentially: cpu_to_le32(~(DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN))
167 */
168enum {
169	DMA_CTL_LLP_DISABLE_LE32 = 0xffffffe7,
170	DMA_CTL_TTFC_P2M_DMAC =	0x00000002, /* Per to mem, DMAC cntr */
171	DMA_CTL_TTFC_M2P_PER =	0x00000003, /* Mem to per, peripheral cntr */
172	DMA_CTL_SINC_INC =	0x00000000, /* Source Address Increment */
173	DMA_CTL_SINC_DEC =	0x00000200,
174	DMA_CTL_SINC_NOCHANGE =	0x00000400,
175	DMA_CTL_DINC_INC =	0x00000000, /* Destination Address Increment */
176	DMA_CTL_DINC_DEC =	0x00000080,
177	DMA_CTL_DINC_NOCHANGE =	0x00000100,
178	DMA_CTL_INT_EN =	0x00000001, /* Interrupt Enable */
179
180/* Channel Configuration Register high bits */
181	DMA_CFG_FCMOD_REQ =	0x00000001, /* Flow Control - request based */
182	DMA_CFG_PROTCTL	=	(0x00000003 << 2),/* Protection Control */
183
184/* Channel Configuration Register low bits */
185	DMA_CFG_RELD_DST =	0x80000000, /* Reload Dest / Src Addr */
186	DMA_CFG_RELD_SRC =	0x40000000,
187	DMA_CFG_HS_SELSRC =	0x00000800, /* Software handshake Src/ Dest */
188	DMA_CFG_HS_SELDST =	0x00000400,
189	DMA_CFG_FIFOEMPTY =     (0x00000001 << 9), /* FIFO Empty bit */
190
191/* Channel Linked List Pointer Register */
192	DMA_LLP_AHBMASTER1 =	0,	/* List Master Select */
193	DMA_LLP_AHBMASTER2 =	1,
194
195	SATA_DWC_MAX_PORTS = 1,
196
197	SATA_DWC_SCR_OFFSET = 0x24,
198	SATA_DWC_REG_OFFSET = 0x64,
199};
200
201/* DWC SATA Registers */
202struct sata_dwc_regs {
203	u32 fptagr;		/* 1st party DMA tag */
204	u32 fpbor;		/* 1st party DMA buffer offset */
205	u32 fptcr;		/* 1st party DMA Xfr count */
206	u32 dmacr;		/* DMA Control */
207	u32 dbtsr;		/* DMA Burst Transac size */
208	u32 intpr;		/* Interrupt Pending */
209	u32 intmr;		/* Interrupt Mask */
210	u32 errmr;		/* Error Mask */
211	u32 llcr;		/* Link Layer Control */
212	u32 phycr;		/* PHY Control */
213	u32 physr;		/* PHY Status */
214	u32 rxbistpd;		/* Recvd BIST pattern def register */
215	u32 rxbistpd1;		/* Recvd BIST data dword1 */
216	u32 rxbistpd2;		/* Recvd BIST pattern data dword2 */
217	u32 txbistpd;		/* Trans BIST pattern def register */
218	u32 txbistpd1;		/* Trans BIST data dword1 */
219	u32 txbistpd2;		/* Trans BIST data dword2 */
220	u32 bistcr;		/* BIST Control Register */
221	u32 bistfctr;		/* BIST FIS Count Register */
222	u32 bistsr;		/* BIST Status Register */
223	u32 bistdecr;		/* BIST Dword Error count register */
224	u32 res[15];		/* Reserved locations */
225	u32 testr;		/* Test Register */
226	u32 versionr;		/* Version Register */
227	u32 idr;		/* ID Register */
228	u32 unimpl[192];	/* Unimplemented */
229	u32 dmadr[256];	/* FIFO Locations in DMA Mode */
230};
231
232enum {
233	SCR_SCONTROL_DET_ENABLE	=	0x00000001,
234	SCR_SSTATUS_DET_PRESENT	=	0x00000001,
235	SCR_SERROR_DIAG_X	=	0x04000000,
236/* DWC SATA Register Operations */
237	SATA_DWC_TXFIFO_DEPTH	=	0x01FF,
238	SATA_DWC_RXFIFO_DEPTH	=	0x01FF,
239	SATA_DWC_DMACR_TMOD_TXCHEN =	0x00000004,
240	SATA_DWC_DMACR_TXCHEN	= (0x00000001 | SATA_DWC_DMACR_TMOD_TXCHEN),
241	SATA_DWC_DMACR_RXCHEN	= (0x00000002 | SATA_DWC_DMACR_TMOD_TXCHEN),
242	SATA_DWC_DMACR_TXRXCH_CLEAR =	SATA_DWC_DMACR_TMOD_TXCHEN,
243	SATA_DWC_INTPR_DMAT	=	0x00000001,
244	SATA_DWC_INTPR_NEWFP	=	0x00000002,
245	SATA_DWC_INTPR_PMABRT	=	0x00000004,
246	SATA_DWC_INTPR_ERR	=	0x00000008,
247	SATA_DWC_INTPR_NEWBIST	=	0x00000010,
248	SATA_DWC_INTPR_IPF	=	0x10000000,
249	SATA_DWC_INTMR_DMATM	=	0x00000001,
250	SATA_DWC_INTMR_NEWFPM	=	0x00000002,
251	SATA_DWC_INTMR_PMABRTM	=	0x00000004,
252	SATA_DWC_INTMR_ERRM	=	0x00000008,
253	SATA_DWC_INTMR_NEWBISTM	=	0x00000010,
254	SATA_DWC_LLCR_SCRAMEN	=	0x00000001,
255	SATA_DWC_LLCR_DESCRAMEN	=	0x00000002,
256	SATA_DWC_LLCR_RPDEN	=	0x00000004,
257/* This is all error bits, zero's are reserved fields. */
258	SATA_DWC_SERROR_ERR_BITS =	0x0FFF0F03
259};
260
261#define SATA_DWC_SCR0_SPD_GET(v)	(((v) >> 4) & 0x0000000F)
262#define SATA_DWC_DMACR_TX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_TXCHEN) |\
263						 SATA_DWC_DMACR_TMOD_TXCHEN)
264#define SATA_DWC_DMACR_RX_CLEAR(v)	(((v) & ~SATA_DWC_DMACR_RXCHEN) |\
265						 SATA_DWC_DMACR_TMOD_TXCHEN)
266#define SATA_DWC_DBTSR_MWR(size)	(((size)/4) & SATA_DWC_TXFIFO_DEPTH)
267#define SATA_DWC_DBTSR_MRD(size)	((((size)/4) & SATA_DWC_RXFIFO_DEPTH)\
268						 << 16)
269struct sata_dwc_device {
270	struct device		*dev;		/* generic device struct */
271	struct ata_probe_ent	*pe;		/* ptr to probe-ent */
272	struct ata_host		*host;
273	u8			*reg_base;
274	struct sata_dwc_regs	*sata_dwc_regs;	/* DW Synopsys SATA specific */
275	int			irq_dma;
276};
277
278#define SATA_DWC_QCMD_MAX	32
279
280struct sata_dwc_device_port {
281	struct sata_dwc_device	*hsdev;
282	int			cmd_issued[SATA_DWC_QCMD_MAX];
283	struct lli		*llit[SATA_DWC_QCMD_MAX];  /* DMA LLI table */
284	dma_addr_t		llit_dma[SATA_DWC_QCMD_MAX];
285	u32			dma_chan[SATA_DWC_QCMD_MAX];
286	int			dma_pending[SATA_DWC_QCMD_MAX];
287};
288
289/*
290 * Commonly used DWC SATA driver Macros
291 */
292#define HSDEV_FROM_HOST(host)  ((struct sata_dwc_device *)\
293					(host)->private_data)
294#define HSDEV_FROM_AP(ap)  ((struct sata_dwc_device *)\
295					(ap)->host->private_data)
296#define HSDEVP_FROM_AP(ap)   ((struct sata_dwc_device_port *)\
297					(ap)->private_data)
298#define HSDEV_FROM_QC(qc)	((struct sata_dwc_device *)\
299					(qc)->ap->host->private_data)
300#define HSDEV_FROM_HSDEVP(p)	((struct sata_dwc_device *)\
301						(hsdevp)->hsdev)
302
303enum {
304	SATA_DWC_CMD_ISSUED_NOT		= 0,
305	SATA_DWC_CMD_ISSUED_PEND	= 1,
306	SATA_DWC_CMD_ISSUED_EXEC	= 2,
307	SATA_DWC_CMD_ISSUED_NODATA	= 3,
308
309	SATA_DWC_DMA_PENDING_NONE	= 0,
310	SATA_DWC_DMA_PENDING_TX		= 1,
311	SATA_DWC_DMA_PENDING_RX		= 2,
312};
313
314struct sata_dwc_host_priv {
315	void	__iomem	 *scr_addr_sstatus;
316	u32	sata_dwc_sactive_issued ;
317	u32	sata_dwc_sactive_queued ;
318	u32	dma_interrupt_count;
319	struct	ahb_dma_regs	*sata_dma_regs;
320	struct	device	*dwc_dev;
321};
322struct sata_dwc_host_priv host_pvt;
323/*
324 * Prototypes
325 */
326static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag);
327static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
328				u32 check_status);
329static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status);
330static void sata_dwc_port_stop(struct ata_port *ap);
331static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag);
332static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq);
333static void dma_dwc_exit(struct sata_dwc_device *hsdev);
334static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
335			      struct lli *lli, dma_addr_t dma_lli,
336			      void __iomem *addr, int dir);
337static void dma_dwc_xfer_start(int dma_ch);
338
339static const char *get_prot_descript(u8 protocol)
340{
341	switch ((enum ata_tf_protocols)protocol) {
342	case ATA_PROT_NODATA:
343		return "ATA no data";
344	case ATA_PROT_PIO:
345		return "ATA PIO";
346	case ATA_PROT_DMA:
347		return "ATA DMA";
348	case ATA_PROT_NCQ:
349		return "ATA NCQ";
350	case ATAPI_PROT_NODATA:
351		return "ATAPI no data";
352	case ATAPI_PROT_PIO:
353		return "ATAPI PIO";
354	case ATAPI_PROT_DMA:
355		return "ATAPI DMA";
356	default:
357		return "unknown";
358	}
359}
360
361static const char *get_dma_dir_descript(int dma_dir)
362{
363	switch ((enum dma_data_direction)dma_dir) {
364	case DMA_BIDIRECTIONAL:
365		return "bidirectional";
366	case DMA_TO_DEVICE:
367		return "to device";
368	case DMA_FROM_DEVICE:
369		return "from device";
370	default:
371		return "none";
372	}
373}
374
375static void sata_dwc_tf_dump(struct ata_taskfile *tf)
376{
377	dev_vdbg(host_pvt.dwc_dev, "taskfile cmd: 0x%02x protocol: %s flags:"
378		"0x%lx device: %x\n", tf->command,
379		get_prot_descript(tf->protocol), tf->flags, tf->device);
380	dev_vdbg(host_pvt.dwc_dev, "feature: 0x%02x nsect: 0x%x lbal: 0x%x "
381		"lbam: 0x%x lbah: 0x%x\n", tf->feature, tf->nsect, tf->lbal,
382		 tf->lbam, tf->lbah);
383	dev_vdbg(host_pvt.dwc_dev, "hob_feature: 0x%02x hob_nsect: 0x%x "
384		"hob_lbal: 0x%x hob_lbam: 0x%x hob_lbah: 0x%x\n",
385		tf->hob_feature, tf->hob_nsect, tf->hob_lbal, tf->hob_lbam,
386		tf->hob_lbah);
387}
388
389/*
390 * Function: get_burst_length_encode
391 * arguments: datalength: length in bytes of data
392 * returns value to be programmed in register corresponding to data length
393 * This value is effectively the log(base 2) of the length
394 */
395static  int get_burst_length_encode(int datalength)
396{
397	int items = datalength >> 2;	/* div by 4 to get lword count */
398
399	if (items >= 64)
400		return 5;
401
402	if (items >= 32)
403		return 4;
404
405	if (items >= 16)
406		return 3;
407
408	if (items >= 8)
409		return 2;
410
411	if (items >= 4)
412		return 1;
413
414	return 0;
415}
416
417static  void clear_chan_interrupts(int c)
418{
419	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.tfr.low),
420		 DMA_CHANNEL(c));
421	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.block.low),
422		 DMA_CHANNEL(c));
423	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.srctran.low),
424		 DMA_CHANNEL(c));
425	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.dsttran.low),
426		 DMA_CHANNEL(c));
427	out_le32(&(host_pvt.sata_dma_regs->interrupt_clear.error.low),
428		 DMA_CHANNEL(c));
429}
430
431/*
432 * Function: dma_request_channel
433 * arguments: None
434 * returns channel number if available else -1
435 * This function assigns the next available DMA channel from the list to the
436 * requester
437 */
438static int dma_request_channel(void)
439{
440	int i;
441
442	for (i = 0; i < DMA_NUM_CHANS; i++) {
443		if (!(in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) &\
444			DMA_CHANNEL(i)))
445			return i;
446	}
447	dev_err(host_pvt.dwc_dev, "%s NO channel chan_en: 0x%08x\n", __func__,
448		in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)));
449	return -1;
450}
451
452/*
453 * Function: dma_dwc_interrupt
454 * arguments: irq, dev_id, pt_regs
455 * returns channel number if available else -1
456 * Interrupt Handler for DW AHB SATA DMA
457 */
458static irqreturn_t dma_dwc_interrupt(int irq, void *hsdev_instance)
459{
460	int chan;
461	u32 tfr_reg, err_reg;
462	unsigned long flags;
463	struct sata_dwc_device *hsdev =
464		(struct sata_dwc_device *)hsdev_instance;
465	struct ata_host *host = (struct ata_host *)hsdev->host;
466	struct ata_port *ap;
467	struct sata_dwc_device_port *hsdevp;
468	u8 tag = 0;
469	unsigned int port = 0;
470
471	spin_lock_irqsave(&host->lock, flags);
472	ap = host->ports[port];
473	hsdevp = HSDEVP_FROM_AP(ap);
474	tag = ap->link.active_tag;
475
476	tfr_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.tfr\
477			.low));
478	err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error\
479			.low));
480
481	dev_dbg(ap->dev, "eot=0x%08x err=0x%08x pending=%d active port=%d\n",
482		tfr_reg, err_reg, hsdevp->dma_pending[tag], port);
483
484	for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
485		/* Check for end-of-transfer interrupt. */
486		if (tfr_reg & DMA_CHANNEL(chan)) {
487			/*
488			 * Each DMA command produces 2 interrupts.  Only
489			 * complete the command after both interrupts have been
490			 * seen. (See sata_dwc_isr())
491			 */
492			host_pvt.dma_interrupt_count++;
493			sata_dwc_clear_dmacr(hsdevp, tag);
494
495			if (hsdevp->dma_pending[tag] ==
496			    SATA_DWC_DMA_PENDING_NONE) {
497				dev_err(ap->dev, "DMA not pending eot=0x%08x "
498					"err=0x%08x tag=0x%02x pending=%d\n",
499					tfr_reg, err_reg, tag,
500					hsdevp->dma_pending[tag]);
501			}
502
503			if ((host_pvt.dma_interrupt_count % 2) == 0)
504				sata_dwc_dma_xfer_complete(ap, 1);
505
506			/* Clear the interrupt */
507			out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
508				.tfr.low),
509				 DMA_CHANNEL(chan));
510		}
511
512		/* Check for error interrupt. */
513		if (err_reg & DMA_CHANNEL(chan)) {
514			/* TODO Need error handler ! */
515			dev_err(ap->dev, "error interrupt err_reg=0x%08x\n",
516				err_reg);
517
518			/* Clear the interrupt. */
519			out_le32(&(host_pvt.sata_dma_regs->interrupt_clear\
520				.error.low),
521				 DMA_CHANNEL(chan));
522		}
523	}
524	spin_unlock_irqrestore(&host->lock, flags);
525	return IRQ_HANDLED;
526}
527
528/*
529 * Function: dma_request_interrupts
530 * arguments: hsdev
531 * returns status
532 * This function registers ISR for a particular DMA channel interrupt
533 */
534static int dma_request_interrupts(struct sata_dwc_device *hsdev, int irq)
535{
536	int retval = 0;
537	int chan;
538
539	for (chan = 0; chan < DMA_NUM_CHANS; chan++) {
540		/* Unmask error interrupt */
541		out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.error.low,
542			 DMA_ENABLE_CHAN(chan));
543
544		/* Unmask end-of-transfer interrupt */
545		out_le32(&(host_pvt.sata_dma_regs)->interrupt_mask.tfr.low,
546			 DMA_ENABLE_CHAN(chan));
547	}
548
549	retval = request_irq(irq, dma_dwc_interrupt, 0, "SATA DMA", hsdev);
550	if (retval) {
551		dev_err(host_pvt.dwc_dev, "%s: could not get IRQ %d\n",
552		__func__, irq);
553		return -ENODEV;
554	}
555
556	/* Mark this interrupt as requested */
557	hsdev->irq_dma = irq;
558	return 0;
559}
560
561/*
562 * Function: map_sg_to_lli
563 * The Synopsis driver has a comment proposing that better performance
564 * is possible by only enabling interrupts on the last item in the linked list.
565 * However, it seems that could be a problem if an error happened on one of the
566 * first items.  The transfer would halt, but no error interrupt would occur.
567 * Currently this function sets interrupts enabled for each linked list item:
568 * DMA_CTL_INT_EN.
569 */
570static int map_sg_to_lli(struct scatterlist *sg, int num_elems,
571			struct lli *lli, dma_addr_t dma_lli,
572			void __iomem *dmadr_addr, int dir)
573{
574	int i, idx = 0;
575	int fis_len = 0;
576	dma_addr_t next_llp;
577	int bl;
578
579	dev_dbg(host_pvt.dwc_dev, "%s: sg=%p nelem=%d lli=%p dma_lli=0x%08x"
580		" dmadr=0x%08x\n", __func__, sg, num_elems, lli, (u32)dma_lli,
581		(u32)dmadr_addr);
582
583	bl = get_burst_length_encode(AHB_DMA_BRST_DFLT);
584
585	for (i = 0; i < num_elems; i++, sg++) {
586		u32 addr, offset;
587		u32 sg_len, len;
588
589		addr = (u32) sg_dma_address(sg);
590		sg_len = sg_dma_len(sg);
591
592		dev_dbg(host_pvt.dwc_dev, "%s: elem=%d sg_addr=0x%x sg_len"
593			"=%d\n", __func__, i, addr, sg_len);
594
595		while (sg_len) {
596			if (idx >= SATA_DWC_DMAC_LLI_NUM) {
597				/* The LLI table is not large enough. */
598				dev_err(host_pvt.dwc_dev, "LLI table overrun "
599				"(idx=%d)\n", idx);
600				break;
601			}
602			len = (sg_len > SATA_DWC_DMAC_CTRL_TSIZE_MAX) ?
603				SATA_DWC_DMAC_CTRL_TSIZE_MAX : sg_len;
604
605			offset = addr & 0xffff;
606			if ((offset + sg_len) > 0x10000)
607				len = 0x10000 - offset;
608
609			/*
610			 * Make sure a LLI block is not created that will span
611			 * 8K max FIS boundary.  If the block spans such a FIS
612			 * boundary, there is a chance that a DMA burst will
613			 * cross that boundary -- this results in an error in
614			 * the host controller.
615			 */
616			if (fis_len + len > 8192) {
617				dev_dbg(host_pvt.dwc_dev, "SPLITTING: fis_len="
618					"%d(0x%x) len=%d(0x%x)\n", fis_len,
619					 fis_len, len, len);
620				len = 8192 - fis_len;
621				fis_len = 0;
622			} else {
623				fis_len += len;
624			}
625			if (fis_len == 8192)
626				fis_len = 0;
627
628			/*
629			 * Set DMA addresses and lower half of control register
630			 * based on direction.
631			 */
632			if (dir == DMA_FROM_DEVICE) {
633				lli[idx].dar = cpu_to_le32(addr);
634				lli[idx].sar = cpu_to_le32((u32)dmadr_addr);
635
636				lli[idx].ctl.low = cpu_to_le32(
637					DMA_CTL_TTFC(DMA_CTL_TTFC_P2M_DMAC) |
638					DMA_CTL_SMS(0) |
639					DMA_CTL_DMS(1) |
640					DMA_CTL_SRC_MSIZE(bl) |
641					DMA_CTL_DST_MSIZE(bl) |
642					DMA_CTL_SINC_NOCHANGE |
643					DMA_CTL_SRC_TRWID(2) |
644					DMA_CTL_DST_TRWID(2) |
645					DMA_CTL_INT_EN |
646					DMA_CTL_LLP_SRCEN |
647					DMA_CTL_LLP_DSTEN);
648			} else {	/* DMA_TO_DEVICE */
649				lli[idx].sar = cpu_to_le32(addr);
650				lli[idx].dar = cpu_to_le32((u32)dmadr_addr);
651
652				lli[idx].ctl.low = cpu_to_le32(
653					DMA_CTL_TTFC(DMA_CTL_TTFC_M2P_PER) |
654					DMA_CTL_SMS(1) |
655					DMA_CTL_DMS(0) |
656					DMA_CTL_SRC_MSIZE(bl) |
657					DMA_CTL_DST_MSIZE(bl) |
658					DMA_CTL_DINC_NOCHANGE |
659					DMA_CTL_SRC_TRWID(2) |
660					DMA_CTL_DST_TRWID(2) |
661					DMA_CTL_INT_EN |
662					DMA_CTL_LLP_SRCEN |
663					DMA_CTL_LLP_DSTEN);
664			}
665
666			dev_dbg(host_pvt.dwc_dev, "%s setting ctl.high len: "
667				"0x%08x val: 0x%08x\n", __func__,
668				len, DMA_CTL_BLK_TS(len / 4));
669
670			/* Program the LLI CTL high register */
671			lli[idx].ctl.high = cpu_to_le32(DMA_CTL_BLK_TS\
672						(len / 4));
673
674			/* Program the next pointer.  The next pointer must be
675			 * the physical address, not the virtual address.
676			 */
677			next_llp = (dma_lli + ((idx + 1) * sizeof(struct \
678							lli)));
679
680			/* The last 2 bits encode the list master select. */
681			next_llp = DMA_LLP_LMS(next_llp, DMA_LLP_AHBMASTER2);
682
683			lli[idx].llp = cpu_to_le32(next_llp);
684			idx++;
685			sg_len -= len;
686			addr += len;
687		}
688	}
689
690	/*
691	 * The last next ptr has to be zero and the last control low register
692	 * has to have LLP_SRC_EN and LLP_DST_EN (linked list pointer source
693	 * and destination enable) set back to 0 (disabled.) This is what tells
694	 * the core that this is the last item in the linked list.
695	 */
696	if (idx) {
697		lli[idx-1].llp = 0x00000000;
698		lli[idx-1].ctl.low &= DMA_CTL_LLP_DISABLE_LE32;
699
700		/* Flush cache to memory */
701		dma_cache_sync(NULL, lli, (sizeof(struct lli) * idx),
702			       DMA_BIDIRECTIONAL);
703	}
704
705	return idx;
706}
707
708/*
709 * Function: dma_dwc_xfer_start
710 * arguments: Channel number
711 * Return : None
712 * Enables the DMA channel
713 */
714static void dma_dwc_xfer_start(int dma_ch)
715{
716	/* Enable the DMA channel */
717	out_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low),
718		 in_le32(&(host_pvt.sata_dma_regs->dma_chan_en.low)) |
719		 DMA_ENABLE_CHAN(dma_ch));
720}
721
722static int dma_dwc_xfer_setup(struct scatterlist *sg, int num_elems,
723			      struct lli *lli, dma_addr_t dma_lli,
724			      void __iomem *addr, int dir)
725{
726	int dma_ch;
727	int num_lli;
728	/* Acquire DMA channel */
729	dma_ch = dma_request_channel();
730	if (dma_ch == -1) {
731		dev_err(host_pvt.dwc_dev, "%s: dma channel unavailable\n",
732			 __func__);
733		return -EAGAIN;
734	}
735
736	/* Convert SG list to linked list of items (LLIs) for AHB DMA */
737	num_lli = map_sg_to_lli(sg, num_elems, lli, dma_lli, addr, dir);
738
739	dev_dbg(host_pvt.dwc_dev, "%s sg: 0x%p, count: %d lli: %p dma_lli:"
740		" 0x%0xlx addr: %p lli count: %d\n", __func__, sg, num_elems,
741		 lli, (u32)dma_lli, addr, num_lli);
742
743	clear_chan_interrupts(dma_ch);
744
745	/* Program the CFG register. */
746	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.high),
747		 DMA_CFG_PROTCTL | DMA_CFG_FCMOD_REQ);
748	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].cfg.low), 0);
749
750	/* Program the address of the linked list */
751	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].llp.low),
752		 DMA_LLP_LMS(dma_lli, DMA_LLP_AHBMASTER2));
753
754	/* Program the CTL register with src enable / dst enable */
755	out_le32(&(host_pvt.sata_dma_regs->chan_regs[dma_ch].ctl.low),
756		 DMA_CTL_LLP_SRCEN | DMA_CTL_LLP_DSTEN);
757	return dma_ch;
758}
759
760/*
761 * Function: dma_dwc_exit
762 * arguments: None
763 * returns status
764 * This function exits the SATA DMA driver
765 */
766static void dma_dwc_exit(struct sata_dwc_device *hsdev)
767{
768	dev_dbg(host_pvt.dwc_dev, "%s:\n", __func__);
769	if (host_pvt.sata_dma_regs) {
770		iounmap(host_pvt.sata_dma_regs);
771		host_pvt.sata_dma_regs = NULL;
772	}
773
774	if (hsdev->irq_dma) {
775		free_irq(hsdev->irq_dma, hsdev);
776		hsdev->irq_dma = 0;
777	}
778}
779
780/*
781 * Function: dma_dwc_init
782 * arguments: hsdev
783 * returns status
784 * This function initializes the SATA DMA driver
785 */
786static int dma_dwc_init(struct sata_dwc_device *hsdev, int irq)
787{
788	int err;
789
790	err = dma_request_interrupts(hsdev, irq);
791	if (err) {
792		dev_err(host_pvt.dwc_dev, "%s: dma_request_interrupts returns"
793			" %d\n", __func__, err);
794		goto error_out;
795	}
796
797	/* Enabe DMA */
798	out_le32(&(host_pvt.sata_dma_regs->dma_cfg.low), DMA_EN);
799
800	dev_notice(host_pvt.dwc_dev, "DMA initialized\n");
801	dev_dbg(host_pvt.dwc_dev, "SATA DMA registers=0x%p\n", host_pvt.\
802		sata_dma_regs);
803
804	return 0;
805
806error_out:
807	dma_dwc_exit(hsdev);
808
809	return err;
810}
811
812static int sata_dwc_scr_read(struct ata_link *link, unsigned int scr, u32 *val)
813{
814	if (scr > SCR_NOTIFICATION) {
815		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
816			__func__, scr);
817		return -EINVAL;
818	}
819
820	*val = in_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4));
821	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
822		__func__, link->ap->print_id, scr, *val);
823
824	return 0;
825}
826
827static int sata_dwc_scr_write(struct ata_link *link, unsigned int scr, u32 val)
828{
829	dev_dbg(link->ap->dev, "%s: id=%d reg=%d val=val=0x%08x\n",
830		__func__, link->ap->print_id, scr, val);
831	if (scr > SCR_NOTIFICATION) {
832		dev_err(link->ap->dev, "%s: Incorrect SCR offset 0x%02x\n",
833			 __func__, scr);
834		return -EINVAL;
835	}
836	out_le32((void *)link->ap->ioaddr.scr_addr + (scr * 4), val);
837
838	return 0;
839}
840
841static u32 core_scr_read(unsigned int scr)
842{
843	return in_le32((void __iomem *)(host_pvt.scr_addr_sstatus) +\
844			(scr * 4));
845}
846
847static void core_scr_write(unsigned int scr, u32 val)
848{
849	out_le32((void __iomem *)(host_pvt.scr_addr_sstatus) + (scr * 4),
850		val);
851}
852
853static void clear_serror(void)
854{
855	u32 val;
856	val = core_scr_read(SCR_ERROR);
857	core_scr_write(SCR_ERROR, val);
858
859}
860
861static void clear_interrupt_bit(struct sata_dwc_device *hsdev, u32 bit)
862{
863	out_le32(&hsdev->sata_dwc_regs->intpr,
864		 in_le32(&hsdev->sata_dwc_regs->intpr));
865}
866
867static u32 qcmd_tag_to_mask(u8 tag)
868{
869	return 0x00000001 << (tag & 0x1f);
870}
871
872/* See ahci.c */
873static void sata_dwc_error_intr(struct ata_port *ap,
874				struct sata_dwc_device *hsdev, uint intpr)
875{
876	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
877	struct ata_eh_info *ehi = &ap->link.eh_info;
878	unsigned int err_mask = 0, action = 0;
879	struct ata_queued_cmd *qc;
880	u32 serror;
881	u8 status, tag;
882	u32 err_reg;
883
884	ata_ehi_clear_desc(ehi);
885
886	serror = core_scr_read(SCR_ERROR);
887	status = ap->ops->sff_check_status(ap);
888
889	err_reg = in_le32(&(host_pvt.sata_dma_regs->interrupt_status.error.\
890			low));
891	tag = ap->link.active_tag;
892
893	dev_err(ap->dev, "%s SCR_ERROR=0x%08x intpr=0x%08x status=0x%08x "
894		"dma_intp=%d pending=%d issued=%d dma_err_status=0x%08x\n",
895		__func__, serror, intpr, status, host_pvt.dma_interrupt_count,
896		hsdevp->dma_pending[tag], hsdevp->cmd_issued[tag], err_reg);
897
898	/* Clear error register and interrupt bit */
899	clear_serror();
900	clear_interrupt_bit(hsdev, SATA_DWC_INTPR_ERR);
901
902	/* This is the only error happening now.  TODO check for exact error */
903
904	err_mask |= AC_ERR_HOST_BUS;
905	action |= ATA_EH_RESET;
906
907	/* Pass this on to EH */
908	ehi->serror |= serror;
909	ehi->action |= action;
910
911	qc = ata_qc_from_tag(ap, tag);
912	if (qc)
913		qc->err_mask |= err_mask;
914	else
915		ehi->err_mask |= err_mask;
916
917	ata_port_abort(ap);
918}
919
920/*
921 * Function : sata_dwc_isr
922 * arguments : irq, void *dev_instance, struct pt_regs *regs
923 * Return value : irqreturn_t - status of IRQ
924 * This Interrupt handler called via port ops registered function.
925 * .irq_handler = sata_dwc_isr
926 */
927static irqreturn_t sata_dwc_isr(int irq, void *dev_instance)
928{
929	struct ata_host *host = (struct ata_host *)dev_instance;
930	struct sata_dwc_device *hsdev = HSDEV_FROM_HOST(host);
931	struct ata_port *ap;
932	struct ata_queued_cmd *qc;
933	unsigned long flags;
934	u8 status, tag;
935	int handled, num_processed, port = 0;
936	uint intpr, sactive, sactive2, tag_mask;
937	struct sata_dwc_device_port *hsdevp;
938	host_pvt.sata_dwc_sactive_issued = 0;
939
940	spin_lock_irqsave(&host->lock, flags);
941
942	/* Read the interrupt register */
943	intpr = in_le32(&hsdev->sata_dwc_regs->intpr);
944
945	ap = host->ports[port];
946	hsdevp = HSDEVP_FROM_AP(ap);
947
948	dev_dbg(ap->dev, "%s intpr=0x%08x active_tag=%d\n", __func__, intpr,
949		ap->link.active_tag);
950
951	/* Check for error interrupt */
952	if (intpr & SATA_DWC_INTPR_ERR) {
953		sata_dwc_error_intr(ap, hsdev, intpr);
954		handled = 1;
955		goto DONE;
956	}
957
958	/* Check for DMA SETUP FIS (FP DMA) interrupt */
959	if (intpr & SATA_DWC_INTPR_NEWFP) {
960		clear_interrupt_bit(hsdev, SATA_DWC_INTPR_NEWFP);
961
962		tag = (u8)(in_le32(&hsdev->sata_dwc_regs->fptagr));
963		dev_dbg(ap->dev, "%s: NEWFP tag=%d\n", __func__, tag);
964		if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_PEND)
965			dev_warn(ap->dev, "CMD tag=%d not pending?\n", tag);
966
967		host_pvt.sata_dwc_sactive_issued |= qcmd_tag_to_mask(tag);
968
969		qc = ata_qc_from_tag(ap, tag);
970		/*
971		 * Start FP DMA for NCQ command.  At this point the tag is the
972		 * active tag.  It is the tag that matches the command about to
973		 * be completed.
974		 */
975		qc->ap->link.active_tag = tag;
976		sata_dwc_bmdma_start_by_tag(qc, tag);
977
978		handled = 1;
979		goto DONE;
980	}
981	sactive = core_scr_read(SCR_ACTIVE);
982	tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
983
984	/* If no sactive issued and tag_mask is zero then this is not NCQ */
985	if (host_pvt.sata_dwc_sactive_issued == 0 && tag_mask == 0) {
986		if (ap->link.active_tag == ATA_TAG_POISON)
987			tag = 0;
988		else
989			tag = ap->link.active_tag;
990		qc = ata_qc_from_tag(ap, tag);
991
992		/* DEV interrupt w/ no active qc? */
993		if (unlikely(!qc || (qc->tf.flags & ATA_TFLAG_POLLING))) {
994			dev_err(ap->dev, "%s interrupt with no active qc "
995				"qc=%p\n", __func__, qc);
996			ap->ops->sff_check_status(ap);
997			handled = 1;
998			goto DONE;
999		}
1000		status = ap->ops->sff_check_status(ap);
1001
1002		qc->ap->link.active_tag = tag;
1003		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1004
1005		if (status & ATA_ERR) {
1006			dev_dbg(ap->dev, "interrupt ATA_ERR (0x%x)\n", status);
1007			sata_dwc_qc_complete(ap, qc, 1);
1008			handled = 1;
1009			goto DONE;
1010		}
1011
1012		dev_dbg(ap->dev, "%s non-NCQ cmd interrupt, protocol: %s\n",
1013			__func__, get_prot_descript(qc->tf.protocol));
1014DRVSTILLBUSY:
1015		if (ata_is_dma(qc->tf.protocol)) {
1016			/*
1017			 * Each DMA transaction produces 2 interrupts. The DMAC
1018			 * transfer complete interrupt and the SATA controller
1019			 * operation done interrupt. The command should be
1020			 * completed only after both interrupts are seen.
1021			 */
1022			host_pvt.dma_interrupt_count++;
1023			if (hsdevp->dma_pending[tag] == \
1024					SATA_DWC_DMA_PENDING_NONE) {
1025				dev_err(ap->dev, "%s: DMA not pending "
1026					"intpr=0x%08x status=0x%08x pending"
1027					"=%d\n", __func__, intpr, status,
1028					hsdevp->dma_pending[tag]);
1029			}
1030
1031			if ((host_pvt.dma_interrupt_count % 2) == 0)
1032				sata_dwc_dma_xfer_complete(ap, 1);
1033		} else if (ata_is_pio(qc->tf.protocol)) {
1034			ata_sff_hsm_move(ap, qc, status, 0);
1035			handled = 1;
1036			goto DONE;
1037		} else {
1038			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1039				goto DRVSTILLBUSY;
1040		}
1041
1042		handled = 1;
1043		goto DONE;
1044	}
1045
1046	/*
1047	 * This is a NCQ command. At this point we need to figure out for which
1048	 * tags we have gotten a completion interrupt.  One interrupt may serve
1049	 * as completion for more than one operation when commands are queued
1050	 * (NCQ).  We need to process each completed command.
1051	 */
1052
1053	 /* process completed commands */
1054	sactive = core_scr_read(SCR_ACTIVE);
1055	tag_mask = (host_pvt.sata_dwc_sactive_issued | sactive) ^ sactive;
1056
1057	if (sactive != 0 || (host_pvt.sata_dwc_sactive_issued) > 1 || \
1058							tag_mask > 1) {
1059		dev_dbg(ap->dev, "%s NCQ:sactive=0x%08x  sactive_issued=0x%08x"
1060			"tag_mask=0x%08x\n", __func__, sactive,
1061			host_pvt.sata_dwc_sactive_issued, tag_mask);
1062	}
1063
1064	if ((tag_mask | (host_pvt.sata_dwc_sactive_issued)) != \
1065					(host_pvt.sata_dwc_sactive_issued)) {
1066		dev_warn(ap->dev, "Bad tag mask?  sactive=0x%08x "
1067			 "(host_pvt.sata_dwc_sactive_issued)=0x%08x  tag_mask"
1068			 "=0x%08x\n", sactive, host_pvt.sata_dwc_sactive_issued,
1069			  tag_mask);
1070	}
1071
1072	/* read just to clear ... not bad if currently still busy */
1073	status = ap->ops->sff_check_status(ap);
1074	dev_dbg(ap->dev, "%s ATA status register=0x%x\n", __func__, status);
1075
1076	tag = 0;
1077	num_processed = 0;
1078	while (tag_mask) {
1079		num_processed++;
1080		while (!(tag_mask & 0x00000001)) {
1081			tag++;
1082			tag_mask <<= 1;
1083		}
1084
1085		tag_mask &= (~0x00000001);
1086		qc = ata_qc_from_tag(ap, tag);
1087
1088		/* To be picked up by completion functions */
1089		qc->ap->link.active_tag = tag;
1090		hsdevp->cmd_issued[tag] = SATA_DWC_CMD_ISSUED_NOT;
1091
1092		/* Let libata/scsi layers handle error */
1093		if (status & ATA_ERR) {
1094			dev_dbg(ap->dev, "%s ATA_ERR (0x%x)\n", __func__,
1095				status);
1096			sata_dwc_qc_complete(ap, qc, 1);
1097			handled = 1;
1098			goto DONE;
1099		}
1100
1101		/* Process completed command */
1102		dev_dbg(ap->dev, "%s NCQ command, protocol: %s\n", __func__,
1103			get_prot_descript(qc->tf.protocol));
1104		if (ata_is_dma(qc->tf.protocol)) {
1105			host_pvt.dma_interrupt_count++;
1106			if (hsdevp->dma_pending[tag] == \
1107					SATA_DWC_DMA_PENDING_NONE)
1108				dev_warn(ap->dev, "%s: DMA not pending?\n",
1109					__func__);
1110			if ((host_pvt.dma_interrupt_count % 2) == 0)
1111				sata_dwc_dma_xfer_complete(ap, 1);
1112		} else {
1113			if (unlikely(sata_dwc_qc_complete(ap, qc, 1)))
1114				goto STILLBUSY;
1115		}
1116		continue;
1117
1118STILLBUSY:
1119		ap->stats.idle_irq++;
1120		dev_warn(ap->dev, "STILL BUSY IRQ ata%d: irq trap\n",
1121			ap->print_id);
1122	} /* while tag_mask */
1123
1124	/*
1125	 * Check to see if any commands completed while we were processing our
1126	 * initial set of completed commands (read status clears interrupts,
1127	 * so we might miss a completed command interrupt if one came in while
1128	 * we were processing --we read status as part of processing a completed
1129	 * command).
1130	 */
1131	sactive2 = core_scr_read(SCR_ACTIVE);
1132	if (sactive2 != sactive) {
1133		dev_dbg(ap->dev, "More completed - sactive=0x%x sactive2"
1134			"=0x%x\n", sactive, sactive2);
1135	}
1136	handled = 1;
1137
1138DONE:
1139	spin_unlock_irqrestore(&host->lock, flags);
1140	return IRQ_RETVAL(handled);
1141}
1142
1143static void sata_dwc_clear_dmacr(struct sata_dwc_device_port *hsdevp, u8 tag)
1144{
1145	struct sata_dwc_device *hsdev = HSDEV_FROM_HSDEVP(hsdevp);
1146
1147	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX) {
1148		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1149			 SATA_DWC_DMACR_RX_CLEAR(
1150				 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1151	} else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX) {
1152		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1153			 SATA_DWC_DMACR_TX_CLEAR(
1154				 in_le32(&(hsdev->sata_dwc_regs->dmacr))));
1155	} else {
1156		/*
1157		 * This should not happen, it indicates the driver is out of
1158		 * sync.  If it does happen, clear dmacr anyway.
1159		 */
1160		dev_err(host_pvt.dwc_dev, "%s DMA protocol RX and"
1161			"TX DMA not pending tag=0x%02x pending=%d"
1162			" dmacr: 0x%08x\n", __func__, tag,
1163			hsdevp->dma_pending[tag],
1164			in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1165		out_le32(&(hsdev->sata_dwc_regs->dmacr),
1166			SATA_DWC_DMACR_TXRXCH_CLEAR);
1167	}
1168}
1169
1170static void sata_dwc_dma_xfer_complete(struct ata_port *ap, u32 check_status)
1171{
1172	struct ata_queued_cmd *qc;
1173	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1174	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1175	u8 tag = 0;
1176
1177	tag = ap->link.active_tag;
1178	qc = ata_qc_from_tag(ap, tag);
1179	if (!qc) {
1180		dev_err(ap->dev, "failed to get qc");
1181		return;
1182	}
1183
1184#ifdef DEBUG_NCQ
1185	if (tag > 0) {
1186		dev_info(ap->dev, "%s tag=%u cmd=0x%02x dma dir=%s proto=%s "
1187			 "dmacr=0x%08x\n", __func__, qc->tag, qc->tf.command,
1188			 get_dma_dir_descript(qc->dma_dir),
1189			 get_prot_descript(qc->tf.protocol),
1190			 in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1191	}
1192#endif
1193
1194	if (ata_is_dma(qc->tf.protocol)) {
1195		if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_NONE) {
1196			dev_err(ap->dev, "%s DMA protocol RX and TX DMA not "
1197				"pending dmacr: 0x%08x\n", __func__,
1198				in_le32(&(hsdev->sata_dwc_regs->dmacr)));
1199		}
1200
1201		hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_NONE;
1202		sata_dwc_qc_complete(ap, qc, check_status);
1203		ap->link.active_tag = ATA_TAG_POISON;
1204	} else {
1205		sata_dwc_qc_complete(ap, qc, check_status);
1206	}
1207}
1208
1209static int sata_dwc_qc_complete(struct ata_port *ap, struct ata_queued_cmd *qc,
1210				u32 check_status)
1211{
1212	u8 status = 0;
1213	u32 mask = 0x0;
1214	u8 tag = qc->tag;
1215	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1216	host_pvt.sata_dwc_sactive_queued = 0;
1217	dev_dbg(ap->dev, "%s checkstatus? %x\n", __func__, check_status);
1218
1219	if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_TX)
1220		dev_err(ap->dev, "TX DMA PENDING\n");
1221	else if (hsdevp->dma_pending[tag] == SATA_DWC_DMA_PENDING_RX)
1222		dev_err(ap->dev, "RX DMA PENDING\n");
1223	dev_dbg(ap->dev, "QC complete cmd=0x%02x status=0x%02x ata%u:"
1224		" protocol=%d\n", qc->tf.command, status, ap->print_id,
1225		 qc->tf.protocol);
1226
1227	/* clear active bit */
1228	mask = (~(qcmd_tag_to_mask(tag)));
1229	host_pvt.sata_dwc_sactive_queued = (host_pvt.sata_dwc_sactive_queued) \
1230						& mask;
1231	host_pvt.sata_dwc_sactive_issued = (host_pvt.sata_dwc_sactive_issued) \
1232						& mask;
1233	ata_qc_complete(qc);
1234	return 0;
1235}
1236
1237static void sata_dwc_enable_interrupts(struct sata_dwc_device *hsdev)
1238{
1239	/* Enable selective interrupts by setting the interrupt maskregister*/
1240	out_le32(&hsdev->sata_dwc_regs->intmr,
1241		 SATA_DWC_INTMR_ERRM |
1242		 SATA_DWC_INTMR_NEWFPM |
1243		 SATA_DWC_INTMR_PMABRTM |
1244		 SATA_DWC_INTMR_DMATM);
1245	/*
1246	 * Unmask the error bits that should trigger an error interrupt by
1247	 * setting the error mask register.
1248	 */
1249	out_le32(&hsdev->sata_dwc_regs->errmr, SATA_DWC_SERROR_ERR_BITS);
1250
1251	dev_dbg(host_pvt.dwc_dev, "%s: INTMR = 0x%08x, ERRMR = 0x%08x\n",
1252		 __func__, in_le32(&hsdev->sata_dwc_regs->intmr),
1253		in_le32(&hsdev->sata_dwc_regs->errmr));
1254}
1255
1256static void sata_dwc_setup_port(struct ata_ioports *port, unsigned long base)
1257{
1258	port->cmd_addr = (void *)base + 0x00;
1259	port->data_addr = (void *)base + 0x00;
1260
1261	port->error_addr = (void *)base + 0x04;
1262	port->feature_addr = (void *)base + 0x04;
1263
1264	port->nsect_addr = (void *)base + 0x08;
1265
1266	port->lbal_addr = (void *)base + 0x0c;
1267	port->lbam_addr = (void *)base + 0x10;
1268	port->lbah_addr = (void *)base + 0x14;
1269
1270	port->device_addr = (void *)base + 0x18;
1271	port->command_addr = (void *)base + 0x1c;
1272	port->status_addr = (void *)base + 0x1c;
1273
1274	port->altstatus_addr = (void *)base + 0x20;
1275	port->ctl_addr = (void *)base + 0x20;
1276}
1277
1278/*
1279 * Function : sata_dwc_port_start
1280 * arguments : struct ata_ioports *port
1281 * Return value : returns 0 if success, error code otherwise
1282 * This function allocates the scatter gather LLI table for AHB DMA
1283 */
1284static int sata_dwc_port_start(struct ata_port *ap)
1285{
1286	int err = 0;
1287	struct sata_dwc_device *hsdev;
1288	struct sata_dwc_device_port *hsdevp = NULL;
1289	struct device *pdev;
1290	int i;
1291
1292	hsdev = HSDEV_FROM_AP(ap);
1293
1294	dev_dbg(ap->dev, "%s: port_no=%d\n", __func__, ap->port_no);
1295
1296	hsdev->host = ap->host;
1297	pdev = ap->host->dev;
1298	if (!pdev) {
1299		dev_err(ap->dev, "%s: no ap->host->dev\n", __func__);
1300		err = -ENODEV;
1301		goto CLEANUP;
1302	}
1303
1304	/* Allocate Port Struct */
1305	hsdevp = kzalloc(sizeof(*hsdevp), GFP_KERNEL);
1306	if (!hsdevp) {
1307		dev_err(ap->dev, "%s: kmalloc failed for hsdevp\n", __func__);
1308		err = -ENOMEM;
1309		goto CLEANUP;
1310	}
1311	hsdevp->hsdev = hsdev;
1312
1313	for (i = 0; i < SATA_DWC_QCMD_MAX; i++)
1314		hsdevp->cmd_issued[i] = SATA_DWC_CMD_ISSUED_NOT;
1315
1316	ap->bmdma_prd = 0;	/* set these so libata doesn't use them */
1317	ap->bmdma_prd_dma = 0;
1318
1319	/*
1320	 * DMA - Assign scatter gather LLI table. We can't use the libata
1321	 * version since it's PRD is IDE PCI specific.
1322	 */
1323	for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1324		hsdevp->llit[i] = dma_alloc_coherent(pdev,
1325						     SATA_DWC_DMAC_LLI_TBL_SZ,
1326						     &(hsdevp->llit_dma[i]),
1327						     GFP_ATOMIC);
1328		if (!hsdevp->llit[i]) {
1329			dev_err(ap->dev, "%s: dma_alloc_coherent failed\n",
1330				 __func__);
1331			err = -ENOMEM;
1332			goto CLEANUP_ALLOC;
1333		}
1334	}
1335
1336	if (ap->port_no == 0)  {
1337		dev_dbg(ap->dev, "%s: clearing TXCHEN, RXCHEN in DMAC\n",
1338			__func__);
1339		out_le32(&hsdev->sata_dwc_regs->dmacr,
1340			 SATA_DWC_DMACR_TXRXCH_CLEAR);
1341
1342		dev_dbg(ap->dev, "%s: setting burst size in DBTSR\n",
1343			 __func__);
1344		out_le32(&hsdev->sata_dwc_regs->dbtsr,
1345			 (SATA_DWC_DBTSR_MWR(AHB_DMA_BRST_DFLT) |
1346			  SATA_DWC_DBTSR_MRD(AHB_DMA_BRST_DFLT)));
1347	}
1348
1349	/* Clear any error bits before libata starts issuing commands */
1350	clear_serror();
1351	ap->private_data = hsdevp;
1352	dev_dbg(ap->dev, "%s: done\n", __func__);
1353	return 0;
1354
1355CLEANUP_ALLOC:
1356	kfree(hsdevp);
1357CLEANUP:
1358	dev_dbg(ap->dev, "%s: fail. ap->id = %d\n", __func__, ap->print_id);
1359	return err;
1360}
1361
1362static void sata_dwc_port_stop(struct ata_port *ap)
1363{
1364	int i;
1365	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1366	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1367
1368	dev_dbg(ap->dev, "%s: ap->id = %d\n", __func__, ap->print_id);
1369
1370	if (hsdevp && hsdev) {
1371		/* deallocate LLI table */
1372		for (i = 0; i < SATA_DWC_QCMD_MAX; i++) {
1373			dma_free_coherent(ap->host->dev,
1374					  SATA_DWC_DMAC_LLI_TBL_SZ,
1375					 hsdevp->llit[i], hsdevp->llit_dma[i]);
1376		}
1377
1378		kfree(hsdevp);
1379	}
1380	ap->private_data = NULL;
1381}
1382
1383/*
1384 * Function : sata_dwc_exec_command_by_tag
1385 * arguments : ata_port *ap, ata_taskfile *tf, u8 tag, u32 cmd_issued
1386 * Return value : None
1387 * This function keeps track of individual command tag ids and calls
1388 * ata_exec_command in libata
1389 */
1390static void sata_dwc_exec_command_by_tag(struct ata_port *ap,
1391					 struct ata_taskfile *tf,
1392					 u8 tag, u32 cmd_issued)
1393{
1394	unsigned long flags;
1395	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1396
1397	dev_dbg(ap->dev, "%s cmd(0x%02x): %s tag=%d\n", __func__, tf->command,
1398		ata_get_cmd_descript(tf->command), tag);
1399
1400	spin_lock_irqsave(&ap->host->lock, flags);
1401	hsdevp->cmd_issued[tag] = cmd_issued;
1402	spin_unlock_irqrestore(&ap->host->lock, flags);
1403	/*
1404	 * Clear SError before executing a new command.
1405	 * sata_dwc_scr_write and read can not be used here. Clearing the PM
1406	 * managed SError register for the disk needs to be done before the
1407	 * task file is loaded.
1408	 */
1409	clear_serror();
1410	ata_sff_exec_command(ap, tf);
1411}
1412
1413static void sata_dwc_bmdma_setup_by_tag(struct ata_queued_cmd *qc, u8 tag)
1414{
1415	sata_dwc_exec_command_by_tag(qc->ap, &qc->tf, tag,
1416				     SATA_DWC_CMD_ISSUED_PEND);
1417}
1418
1419static void sata_dwc_bmdma_setup(struct ata_queued_cmd *qc)
1420{
1421	u8 tag = qc->tag;
1422
1423	if (ata_is_ncq(qc->tf.protocol)) {
1424		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1425			__func__, qc->ap->link.sactive, tag);
1426	} else {
1427		tag = 0;
1428	}
1429	sata_dwc_bmdma_setup_by_tag(qc, tag);
1430}
1431
1432static void sata_dwc_bmdma_start_by_tag(struct ata_queued_cmd *qc, u8 tag)
1433{
1434	int start_dma;
1435	u32 reg, dma_chan;
1436	struct sata_dwc_device *hsdev = HSDEV_FROM_QC(qc);
1437	struct ata_port *ap = qc->ap;
1438	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1439	int dir = qc->dma_dir;
1440	dma_chan = hsdevp->dma_chan[tag];
1441
1442	if (hsdevp->cmd_issued[tag] != SATA_DWC_CMD_ISSUED_NOT) {
1443		start_dma = 1;
1444		if (dir == DMA_TO_DEVICE)
1445			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_TX;
1446		else
1447			hsdevp->dma_pending[tag] = SATA_DWC_DMA_PENDING_RX;
1448	} else {
1449		dev_err(ap->dev, "%s: Command not pending cmd_issued=%d "
1450			"(tag=%d) DMA NOT started\n", __func__,
1451			hsdevp->cmd_issued[tag], tag);
1452		start_dma = 0;
1453	}
1454
1455	dev_dbg(ap->dev, "%s qc=%p tag: %x cmd: 0x%02x dma_dir: %s "
1456		"start_dma? %x\n", __func__, qc, tag, qc->tf.command,
1457		get_dma_dir_descript(qc->dma_dir), start_dma);
1458	sata_dwc_tf_dump(&(qc->tf));
1459
1460	if (start_dma) {
1461		reg = core_scr_read(SCR_ERROR);
1462		if (reg & SATA_DWC_SERROR_ERR_BITS) {
1463			dev_err(ap->dev, "%s: ****** SError=0x%08x ******\n",
1464				__func__, reg);
1465		}
1466
1467		if (dir == DMA_TO_DEVICE)
1468			out_le32(&hsdev->sata_dwc_regs->dmacr,
1469				SATA_DWC_DMACR_TXCHEN);
1470		else
1471			out_le32(&hsdev->sata_dwc_regs->dmacr,
1472				SATA_DWC_DMACR_RXCHEN);
1473
1474		/* Enable AHB DMA transfer on the specified channel */
1475		dma_dwc_xfer_start(dma_chan);
1476	}
1477}
1478
1479static void sata_dwc_bmdma_start(struct ata_queued_cmd *qc)
1480{
1481	u8 tag = qc->tag;
1482
1483	if (ata_is_ncq(qc->tf.protocol)) {
1484		dev_dbg(qc->ap->dev, "%s: ap->link.sactive=0x%08x tag=%d\n",
1485			__func__, qc->ap->link.sactive, tag);
1486	} else {
1487		tag = 0;
1488	}
1489	dev_dbg(qc->ap->dev, "%s\n", __func__);
1490	sata_dwc_bmdma_start_by_tag(qc, tag);
1491}
1492
1493/*
1494 * Function : sata_dwc_qc_prep_by_tag
1495 * arguments : ata_queued_cmd *qc, u8 tag
1496 * Return value : None
1497 * qc_prep for a particular queued command based on tag
1498 */
1499static void sata_dwc_qc_prep_by_tag(struct ata_queued_cmd *qc, u8 tag)
1500{
1501	struct scatterlist *sg = qc->sg;
1502	struct ata_port *ap = qc->ap;
1503	int dma_chan;
1504	struct sata_dwc_device *hsdev = HSDEV_FROM_AP(ap);
1505	struct sata_dwc_device_port *hsdevp = HSDEVP_FROM_AP(ap);
1506
1507	dev_dbg(ap->dev, "%s: port=%d dma dir=%s n_elem=%d\n",
1508		__func__, ap->port_no, get_dma_dir_descript(qc->dma_dir),
1509		 qc->n_elem);
1510
1511	dma_chan = dma_dwc_xfer_setup(sg, qc->n_elem, hsdevp->llit[tag],
1512				      hsdevp->llit_dma[tag],
1513				      (void *__iomem)(&hsdev->sata_dwc_regs->\
1514				      dmadr), qc->dma_dir);
1515	if (dma_chan < 0) {
1516		dev_err(ap->dev, "%s: dma_dwc_xfer_setup returns err %d\n",
1517			__func__, dma_chan);
1518		return;
1519	}
1520	hsdevp->dma_chan[tag] = dma_chan;
1521}
1522
1523static unsigned int sata_dwc_qc_issue(struct ata_queued_cmd *qc)
1524{
1525	u32 sactive;
1526	u8 tag = qc->tag;
1527	struct ata_port *ap = qc->ap;
1528
1529#ifdef DEBUG_NCQ
1530	if (qc->tag > 0 || ap->link.sactive > 1)
1531		dev_info(ap->dev, "%s ap id=%d cmd(0x%02x)=%s qc tag=%d "
1532			 "prot=%s ap active_tag=0x%08x ap sactive=0x%08x\n",
1533			 __func__, ap->print_id, qc->tf.command,
1534			 ata_get_cmd_descript(qc->tf.command),
1535			 qc->tag, get_prot_descript(qc->tf.protocol),
1536			 ap->link.active_tag, ap->link.sactive);
1537#endif
1538
1539	if (!ata_is_ncq(qc->tf.protocol))
1540		tag = 0;
1541	sata_dwc_qc_prep_by_tag(qc, tag);
1542
1543	if (ata_is_ncq(qc->tf.protocol)) {
1544		sactive = core_scr_read(SCR_ACTIVE);
1545		sactive |= (0x00000001 << tag);
1546		core_scr_write(SCR_ACTIVE, sactive);
1547
1548		dev_dbg(qc->ap->dev, "%s: tag=%d ap->link.sactive = 0x%08x "
1549			"sactive=0x%08x\n", __func__, tag, qc->ap->link.sactive,
1550			sactive);
1551
1552		ap->ops->sff_tf_load(ap, &qc->tf);
1553		sata_dwc_exec_command_by_tag(ap, &qc->tf, qc->tag,
1554					     SATA_DWC_CMD_ISSUED_PEND);
1555	} else {
1556		ata_sff_qc_issue(qc);
1557	}
1558	return 0;
1559}
1560
1561/*
1562 * Function : sata_dwc_qc_prep
1563 * arguments : ata_queued_cmd *qc
1564 * Return value : None
1565 * qc_prep for a particular queued command
1566 */
1567
1568static void sata_dwc_qc_prep(struct ata_queued_cmd *qc)
1569{
1570	if ((qc->dma_dir == DMA_NONE) || (qc->tf.protocol == ATA_PROT_PIO))
1571		return;
1572
1573#ifdef DEBUG_NCQ
1574	if (qc->tag > 0)
1575		dev_info(qc->ap->dev, "%s: qc->tag=%d ap->active_tag=0x%08x\n",
1576			 __func__, qc->tag, qc->ap->link.active_tag);
1577
1578	return ;
1579#endif
1580}
1581
1582static void sata_dwc_error_handler(struct ata_port *ap)
1583{
1584	ap->link.flags |= ATA_LFLAG_NO_HRST;
1585	ata_sff_error_handler(ap);
1586}
1587
1588/*
1589 * scsi mid-layer and libata interface structures
1590 */
1591static struct scsi_host_template sata_dwc_sht = {
1592	ATA_NCQ_SHT(DRV_NAME),
1593	/*
1594	 * test-only: Currently this driver doesn't handle NCQ
1595	 * correctly. We enable NCQ but set the queue depth to a
1596	 * max of 1. This will get fixed in in a future release.
1597	 */
1598	.sg_tablesize		= LIBATA_MAX_PRD,
1599	.can_queue		= ATA_DEF_QUEUE,	/* ATA_MAX_QUEUE */
1600	.dma_boundary		= ATA_DMA_BOUNDARY,
1601};
1602
1603static struct ata_port_operations sata_dwc_ops = {
1604	.inherits		= &ata_sff_port_ops,
1605
1606	.error_handler		= sata_dwc_error_handler,
1607
1608	.qc_prep		= sata_dwc_qc_prep,
1609	.qc_issue		= sata_dwc_qc_issue,
1610
1611	.scr_read		= sata_dwc_scr_read,
1612	.scr_write		= sata_dwc_scr_write,
1613
1614	.port_start		= sata_dwc_port_start,
1615	.port_stop		= sata_dwc_port_stop,
1616
1617	.bmdma_setup		= sata_dwc_bmdma_setup,
1618	.bmdma_start		= sata_dwc_bmdma_start,
1619};
1620
1621static const struct ata_port_info sata_dwc_port_info[] = {
1622	{
1623		.flags		= ATA_FLAG_SATA | ATA_FLAG_NCQ,
1624		.pio_mask	= ATA_PIO4,
1625		.udma_mask	= ATA_UDMA6,
1626		.port_ops	= &sata_dwc_ops,
1627	},
1628};
1629
1630static int sata_dwc_probe(struct platform_device *ofdev)
1631{
1632	struct sata_dwc_device *hsdev;
1633	u32 idr, versionr;
1634	char *ver = (char *)&versionr;
1635	u8 *base = NULL;
1636	int err = 0;
1637	int irq, rc;
1638	struct ata_host *host;
1639	struct ata_port_info pi = sata_dwc_port_info[0];
1640	const struct ata_port_info *ppi[] = { &pi, NULL };
1641
1642	/* Allocate DWC SATA device */
1643	hsdev = kzalloc(sizeof(*hsdev), GFP_KERNEL);
1644	if (hsdev == NULL) {
1645		dev_err(&ofdev->dev, "kmalloc failed for hsdev\n");
1646		err = -ENOMEM;
1647		goto error;
1648	}
1649
1650	/* Ioremap SATA registers */
1651	base = of_iomap(ofdev->dev.of_node, 0);
1652	if (!base) {
1653		dev_err(&ofdev->dev, "ioremap failed for SATA register"
1654			" address\n");
1655		err = -ENODEV;
1656		goto error_kmalloc;
1657	}
1658	hsdev->reg_base = base;
1659	dev_dbg(&ofdev->dev, "ioremap done for SATA register address\n");
1660
1661	/* Synopsys DWC SATA specific Registers */
1662	hsdev->sata_dwc_regs = (void *__iomem)(base + SATA_DWC_REG_OFFSET);
1663
1664	/* Allocate and fill host */
1665	host = ata_host_alloc_pinfo(&ofdev->dev, ppi, SATA_DWC_MAX_PORTS);
1666	if (!host) {
1667		dev_err(&ofdev->dev, "ata_host_alloc_pinfo failed\n");
1668		err = -ENOMEM;
1669		goto error_iomap;
1670	}
1671
1672	host->private_data = hsdev;
1673
1674	/* Setup port */
1675	host->ports[0]->ioaddr.cmd_addr = base;
1676	host->ports[0]->ioaddr.scr_addr = base + SATA_DWC_SCR_OFFSET;
1677	host_pvt.scr_addr_sstatus = base + SATA_DWC_SCR_OFFSET;
1678	sata_dwc_setup_port(&host->ports[0]->ioaddr, (unsigned long)base);
1679
1680	/* Read the ID and Version Registers */
1681	idr = in_le32(&hsdev->sata_dwc_regs->idr);
1682	versionr = in_le32(&hsdev->sata_dwc_regs->versionr);
1683	dev_notice(&ofdev->dev, "id %d, controller version %c.%c%c\n",
1684		   idr, ver[0], ver[1], ver[2]);
1685
1686	/* Get SATA DMA interrupt number */
1687	irq = irq_of_parse_and_map(ofdev->dev.of_node, 1);
1688	if (irq == NO_IRQ) {
1689		dev_err(&ofdev->dev, "no SATA DMA irq\n");
1690		err = -ENODEV;
1691		goto error_out;
1692	}
1693
1694	/* Get physical SATA DMA register base address */
1695	host_pvt.sata_dma_regs = of_iomap(ofdev->dev.of_node, 1);
1696	if (!(host_pvt.sata_dma_regs)) {
1697		dev_err(&ofdev->dev, "ioremap failed for AHBDMA register"
1698			" address\n");
1699		err = -ENODEV;
1700		goto error_out;
1701	}
1702
1703	/* Save dev for later use in dev_xxx() routines */
1704	host_pvt.dwc_dev = &ofdev->dev;
1705
1706	/* Initialize AHB DMAC */
1707	dma_dwc_init(hsdev, irq);
1708
1709	/* Enable SATA Interrupts */
1710	sata_dwc_enable_interrupts(hsdev);
1711
1712	/* Get SATA interrupt number */
1713	irq = irq_of_parse_and_map(ofdev->dev.of_node, 0);
1714	if (irq == NO_IRQ) {
1715		dev_err(&ofdev->dev, "no SATA DMA irq\n");
1716		err = -ENODEV;
1717		goto error_out;
1718	}
1719
1720	/*
1721	 * Now, register with libATA core, this will also initiate the
1722	 * device discovery process, invoking our port_start() handler &
1723	 * error_handler() to execute a dummy Softreset EH session
1724	 */
1725	rc = ata_host_activate(host, irq, sata_dwc_isr, 0, &sata_dwc_sht);
1726
1727	if (rc != 0)
1728		dev_err(&ofdev->dev, "failed to activate host");
1729
1730	dev_set_drvdata(&ofdev->dev, host);
1731	return 0;
1732
1733error_out:
1734	/* Free SATA DMA resources */
1735	dma_dwc_exit(hsdev);
1736
1737error_iomap:
1738	iounmap(base);
1739error_kmalloc:
1740	kfree(hsdev);
1741error:
1742	return err;
1743}
1744
1745static int sata_dwc_remove(struct platform_device *ofdev)
1746{
1747	struct device *dev = &ofdev->dev;
1748	struct ata_host *host = dev_get_drvdata(dev);
1749	struct sata_dwc_device *hsdev = host->private_data;
1750
1751	ata_host_detach(host);
1752	dev_set_drvdata(dev, NULL);
1753
1754	/* Free SATA DMA resources */
1755	dma_dwc_exit(hsdev);
1756
1757	iounmap(hsdev->reg_base);
1758	kfree(hsdev);
1759	kfree(host);
1760	dev_dbg(&ofdev->dev, "done\n");
1761	return 0;
1762}
1763
1764static const struct of_device_id sata_dwc_match[] = {
1765	{ .compatible = "amcc,sata-460ex", },
1766	{}
1767};
1768MODULE_DEVICE_TABLE(of, sata_dwc_match);
1769
1770static struct platform_driver sata_dwc_driver = {
1771	.driver = {
1772		.name = DRV_NAME,
1773		.owner = THIS_MODULE,
1774		.of_match_table = sata_dwc_match,
1775	},
1776	.probe = sata_dwc_probe,
1777	.remove = sata_dwc_remove,
1778};
1779
1780module_platform_driver(sata_dwc_driver);
1781
1782MODULE_LICENSE("GPL");
1783MODULE_AUTHOR("Mark Miesfeld <mmiesfeld@amcc.com>");
1784MODULE_DESCRIPTION("DesignWare Cores SATA controller low lever driver");
1785MODULE_VERSION(DRV_VERSION);
1786