nvme-core.c revision 388f037f4e7f0a24bac6b1a24f144f5d939f58cf
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kernel.h>
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/pci.h>
34#include <linux/sched.h>
35#include <linux/slab.h>
36#include <linux/types.h>
37#include <linux/version.h>
38
39#define NVME_Q_DEPTH 1024
40#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
41#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
42#define NVME_MINORS 64
43
44static int nvme_major;
45module_param(nvme_major, int, 0);
46
47/*
48 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
49 */
50struct nvme_dev {
51	struct nvme_queue **queues;
52	u32 __iomem *dbs;
53	struct pci_dev *pci_dev;
54	int instance;
55	int queue_count;
56	u32 ctrl_config;
57	struct msix_entry *entry;
58	struct nvme_bar __iomem *bar;
59	struct list_head namespaces;
60	char serial[20];
61	char model[40];
62	char firmware_rev[8];
63};
64
65/*
66 * An NVM Express namespace is equivalent to a SCSI LUN
67 */
68struct nvme_ns {
69	struct list_head list;
70
71	struct nvme_dev *dev;
72	struct request_queue *queue;
73	struct gendisk *disk;
74
75	int ns_id;
76	int lba_shift;
77};
78
79/*
80 * An NVM Express queue.  Each device has at least two (one for admin
81 * commands and one for I/O commands).
82 */
83struct nvme_queue {
84	struct device *q_dmadev;
85	spinlock_t q_lock;
86	struct nvme_command *sq_cmds;
87	volatile struct nvme_completion *cqes;
88	dma_addr_t sq_dma_addr;
89	dma_addr_t cq_dma_addr;
90	wait_queue_head_t sq_full;
91	struct bio_list sq_cong;
92	u32 __iomem *q_db;
93	u16 q_depth;
94	u16 cq_vector;
95	u16 sq_head;
96	u16 sq_tail;
97	u16 cq_head;
98	u16 cq_phase;
99	unsigned long cmdid_data[];
100};
101
102/*
103 * Check we didin't inadvertently grow the command struct
104 */
105static inline void _nvme_check_size(void)
106{
107	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
108	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
109	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
110	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
111	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
112	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
113	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
114	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
115	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
116}
117
118/**
119 * alloc_cmdid - Allocate a Command ID
120 * @param nvmeq The queue that will be used for this command
121 * @param ctx A pointer that will be passed to the handler
122 * @param handler The ID of the handler to call
123 *
124 * Allocate a Command ID for a queue.  The data passed in will
125 * be passed to the completion handler.  This is implemented by using
126 * the bottom two bits of the ctx pointer to store the handler ID.
127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128 * We can change this if it becomes a problem.
129 */
130static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler)
131{
132	int depth = nvmeq->q_depth;
133	unsigned long data = (unsigned long)ctx | handler;
134	int cmdid;
135
136	BUG_ON((unsigned long)ctx & 3);
137
138	do {
139		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
140		if (cmdid >= depth)
141			return -EBUSY;
142	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
143
144	nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(depth)] = data;
145	return cmdid;
146}
147
148static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
149								int handler)
150{
151	int cmdid;
152	wait_event_killable(nvmeq->sq_full,
153			(cmdid = alloc_cmdid(nvmeq, ctx, handler)) >= 0);
154	return (cmdid < 0) ? -EINTR : cmdid;
155}
156
157/* If you need more than four handlers, you'll need to change how
158 * alloc_cmdid and nvme_process_cq work
159 */
160enum {
161	sync_completion_id = 0,
162	bio_completion_id,
163};
164
165static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
166{
167	unsigned long data;
168
169	data = nvmeq->cmdid_data[cmdid + BITS_TO_LONGS(nvmeq->q_depth)];
170	clear_bit(cmdid, nvmeq->cmdid_data);
171	wake_up(&nvmeq->sq_full);
172	return data;
173}
174
175static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
176{
177	int qid, cpu = get_cpu();
178	if (cpu < ns->dev->queue_count)
179		qid = cpu + 1;
180	else
181		qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
182	return ns->dev->queues[qid];
183}
184
185static void put_nvmeq(struct nvme_queue *nvmeq)
186{
187	put_cpu();
188}
189
190/**
191 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
192 * @nvmeq: The queue to use
193 * @cmd: The command to send
194 *
195 * Safe to use from interrupt context
196 */
197static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
198{
199	unsigned long flags;
200	u16 tail;
201	/* XXX: Need to check tail isn't going to overrun head */
202	spin_lock_irqsave(&nvmeq->q_lock, flags);
203	tail = nvmeq->sq_tail;
204	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
205	writel(tail, nvmeq->q_db);
206	if (++tail == nvmeq->q_depth)
207		tail = 0;
208	nvmeq->sq_tail = tail;
209	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
210
211	return 0;
212}
213
214struct nvme_req_info {
215	struct bio *bio;
216	int nents;
217	struct scatterlist sg[0];
218};
219
220/* XXX: use a mempool */
221static struct nvme_req_info *alloc_info(unsigned nseg, gfp_t gfp)
222{
223	return kmalloc(sizeof(struct nvme_req_info) +
224			sizeof(struct scatterlist) * nseg, gfp);
225}
226
227static void free_info(struct nvme_req_info *info)
228{
229	kfree(info);
230}
231
232static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
233						struct nvme_completion *cqe)
234{
235	struct nvme_req_info *info = ctx;
236	struct bio *bio = info->bio;
237	u16 status = le16_to_cpup(&cqe->status) >> 1;
238
239	dma_unmap_sg(nvmeq->q_dmadev, info->sg, info->nents,
240			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
241	free_info(info);
242	bio_endio(bio, status ? -EIO : 0);
243}
244
245/* length is in bytes */
246static void nvme_setup_prps(struct nvme_common_command *cmd,
247					struct scatterlist *sg, int length)
248{
249	int dma_len = sg_dma_len(sg);
250	u64 dma_addr = sg_dma_address(sg);
251	int offset = offset_in_page(dma_addr);
252
253	cmd->prp1 = cpu_to_le64(dma_addr);
254	length -= (PAGE_SIZE - offset);
255	if (length <= 0)
256		return;
257
258	dma_len -= (PAGE_SIZE - offset);
259	if (dma_len) {
260		dma_addr += (PAGE_SIZE - offset);
261	} else {
262		sg = sg_next(sg);
263		dma_addr = sg_dma_address(sg);
264		dma_len = sg_dma_len(sg);
265	}
266
267	if (length <= PAGE_SIZE) {
268		cmd->prp2 = cpu_to_le64(dma_addr);
269		return;
270	}
271
272	/* XXX: support PRP lists */
273}
274
275static int nvme_map_bio(struct device *dev, struct nvme_req_info *info,
276		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
277{
278	struct bio_vec *bvec;
279	struct scatterlist *sg = info->sg;
280	int i, nsegs;
281
282	sg_init_table(sg, psegs);
283	bio_for_each_segment(bvec, bio, i) {
284		sg_set_page(sg, bvec->bv_page, bvec->bv_len, bvec->bv_offset);
285		/* XXX: handle non-mergable here */
286		nsegs++;
287	}
288	info->nents = nsegs;
289
290	return dma_map_sg(dev, info->sg, info->nents, dma_dir);
291}
292
293static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
294								struct bio *bio)
295{
296	struct nvme_command *cmnd;
297	struct nvme_req_info *info;
298	enum dma_data_direction dma_dir;
299	int cmdid;
300	u16 control;
301	u32 dsmgmt;
302	unsigned long flags;
303	int psegs = bio_phys_segments(ns->queue, bio);
304
305	info = alloc_info(psegs, GFP_NOIO);
306	if (!info)
307		goto congestion;
308	info->bio = bio;
309
310	cmdid = alloc_cmdid(nvmeq, info, bio_completion_id);
311	if (unlikely(cmdid < 0))
312		goto free_info;
313
314	control = 0;
315	if (bio->bi_rw & REQ_FUA)
316		control |= NVME_RW_FUA;
317	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
318		control |= NVME_RW_LR;
319
320	dsmgmt = 0;
321	if (bio->bi_rw & REQ_RAHEAD)
322		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
323
324	spin_lock_irqsave(&nvmeq->q_lock, flags);
325	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
326
327	memset(cmnd, 0, sizeof(*cmnd));
328	if (bio_data_dir(bio)) {
329		cmnd->rw.opcode = nvme_cmd_write;
330		dma_dir = DMA_TO_DEVICE;
331	} else {
332		cmnd->rw.opcode = nvme_cmd_read;
333		dma_dir = DMA_FROM_DEVICE;
334	}
335
336	nvme_map_bio(nvmeq->q_dmadev, info, bio, dma_dir, psegs);
337
338	cmnd->rw.flags = 1;
339	cmnd->rw.command_id = cmdid;
340	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
341	nvme_setup_prps(&cmnd->common, info->sg, bio->bi_size);
342	cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
343	cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
344	cmnd->rw.control = cpu_to_le16(control);
345	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
346
347	writel(nvmeq->sq_tail, nvmeq->q_db);
348	if (++nvmeq->sq_tail == nvmeq->q_depth)
349		nvmeq->sq_tail = 0;
350
351	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
352
353	return 0;
354
355 free_info:
356	free_info(info);
357 congestion:
358	return -EBUSY;
359}
360
361/*
362 * NB: return value of non-zero would mean that we were a stacking driver.
363 * make_request must always succeed.
364 */
365static int nvme_make_request(struct request_queue *q, struct bio *bio)
366{
367	struct nvme_ns *ns = q->queuedata;
368	struct nvme_queue *nvmeq = get_nvmeq(ns);
369
370	if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
371		blk_set_queue_congested(q, rw_is_sync(bio->bi_rw));
372		bio_list_add(&nvmeq->sq_cong, bio);
373	}
374	put_nvmeq(nvmeq);
375
376	return 0;
377}
378
379struct sync_cmd_info {
380	struct task_struct *task;
381	u32 result;
382	int status;
383};
384
385static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
386						struct nvme_completion *cqe)
387{
388	struct sync_cmd_info *cmdinfo = ctx;
389	cmdinfo->result = le32_to_cpup(&cqe->result);
390	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
391	wake_up_process(cmdinfo->task);
392}
393
394typedef void (*completion_fn)(struct nvme_queue *, void *,
395						struct nvme_completion *);
396
397static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
398{
399	u16 head, phase;
400
401	static const completion_fn completions[4] = {
402		[sync_completion_id] = sync_completion,
403		[bio_completion_id]  = bio_completion,
404	};
405
406	head = nvmeq->cq_head;
407	phase = nvmeq->cq_phase;
408
409	for (;;) {
410		unsigned long data;
411		void *ptr;
412		unsigned char handler;
413		struct nvme_completion cqe = nvmeq->cqes[head];
414		if ((le16_to_cpu(cqe.status) & 1) != phase)
415			break;
416		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
417		if (++head == nvmeq->q_depth) {
418			head = 0;
419			phase = !phase;
420		}
421
422		data = free_cmdid(nvmeq, cqe.command_id);
423		handler = data & 3;
424		ptr = (void *)(data & ~3UL);
425		completions[handler](nvmeq, ptr, &cqe);
426	}
427
428	/* If the controller ignores the cq head doorbell and continuously
429	 * writes to the queue, it is theoretically possible to wrap around
430	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
431	 * requires that 0.1% of your interrupts are handled, so this isn't
432	 * a big problem.
433	 */
434	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
435		return IRQ_NONE;
436
437	writel(head, nvmeq->q_db + 1);
438	nvmeq->cq_head = head;
439	nvmeq->cq_phase = phase;
440
441	return IRQ_HANDLED;
442}
443
444static irqreturn_t nvme_irq(int irq, void *data)
445{
446	return nvme_process_cq(data);
447}
448
449/*
450 * Returns 0 on success.  If the result is negative, it's a Linux error code;
451 * if the result is positive, it's an NVM Express status code
452 */
453static int nvme_submit_sync_cmd(struct nvme_queue *q, struct nvme_command *cmd,
454								u32 *result)
455{
456	int cmdid;
457	struct sync_cmd_info cmdinfo;
458
459	cmdinfo.task = current;
460	cmdinfo.status = -EINTR;
461
462	cmdid = alloc_cmdid_killable(q, &cmdinfo, sync_completion_id);
463	if (cmdid < 0)
464		return cmdid;
465	cmd->common.command_id = cmdid;
466
467	set_current_state(TASK_UNINTERRUPTIBLE);
468	nvme_submit_cmd(q, cmd);
469	schedule();
470
471	if (result)
472		*result = cmdinfo.result;
473
474	return cmdinfo.status;
475}
476
477static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
478								u32 *result)
479{
480	return nvme_submit_sync_cmd(dev->queues[0], cmd, result);
481}
482
483static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
484{
485	int status;
486	struct nvme_command c;
487
488	memset(&c, 0, sizeof(c));
489	c.delete_queue.opcode = opcode;
490	c.delete_queue.qid = cpu_to_le16(id);
491
492	status = nvme_submit_admin_cmd(dev, &c, NULL);
493	if (status)
494		return -EIO;
495	return 0;
496}
497
498static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
499						struct nvme_queue *nvmeq)
500{
501	int status;
502	struct nvme_command c;
503	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
504
505	memset(&c, 0, sizeof(c));
506	c.create_cq.opcode = nvme_admin_create_cq;
507	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
508	c.create_cq.cqid = cpu_to_le16(qid);
509	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
510	c.create_cq.cq_flags = cpu_to_le16(flags);
511	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
512
513	status = nvme_submit_admin_cmd(dev, &c, NULL);
514	if (status)
515		return -EIO;
516	return 0;
517}
518
519static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
520						struct nvme_queue *nvmeq)
521{
522	int status;
523	struct nvme_command c;
524	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
525
526	memset(&c, 0, sizeof(c));
527	c.create_sq.opcode = nvme_admin_create_sq;
528	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
529	c.create_sq.sqid = cpu_to_le16(qid);
530	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
531	c.create_sq.sq_flags = cpu_to_le16(flags);
532	c.create_sq.cqid = cpu_to_le16(qid);
533
534	status = nvme_submit_admin_cmd(dev, &c, NULL);
535	if (status)
536		return -EIO;
537	return 0;
538}
539
540static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
541{
542	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
543}
544
545static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
546{
547	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
548}
549
550static void nvme_free_queue(struct nvme_dev *dev, int qid)
551{
552	struct nvme_queue *nvmeq = dev->queues[qid];
553
554	free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
555
556	/* Don't tell the adapter to delete the admin queue */
557	if (qid) {
558		adapter_delete_sq(dev, qid);
559		adapter_delete_cq(dev, qid);
560	}
561
562	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
563				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
564	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
565					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
566	kfree(nvmeq);
567}
568
569static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
570							int depth, int vector)
571{
572	struct device *dmadev = &dev->pci_dev->dev;
573	unsigned extra = (depth + BITS_TO_LONGS(depth)) * sizeof(long);
574	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
575	if (!nvmeq)
576		return NULL;
577
578	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
579					&nvmeq->cq_dma_addr, GFP_KERNEL);
580	if (!nvmeq->cqes)
581		goto free_nvmeq;
582	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
583
584	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
585					&nvmeq->sq_dma_addr, GFP_KERNEL);
586	if (!nvmeq->sq_cmds)
587		goto free_cqdma;
588
589	nvmeq->q_dmadev = dmadev;
590	spin_lock_init(&nvmeq->q_lock);
591	nvmeq->cq_head = 0;
592	nvmeq->cq_phase = 1;
593	init_waitqueue_head(&nvmeq->sq_full);
594	bio_list_init(&nvmeq->sq_cong);
595	nvmeq->q_db = &dev->dbs[qid * 2];
596	nvmeq->q_depth = depth;
597	nvmeq->cq_vector = vector;
598
599	return nvmeq;
600
601 free_cqdma:
602	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
603							nvmeq->cq_dma_addr);
604 free_nvmeq:
605	kfree(nvmeq);
606	return NULL;
607}
608
609static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
610							const char *name)
611{
612	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
613				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
614}
615
616static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
617					int qid, int cq_size, int vector)
618{
619	int result;
620	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
621
622	if (!nvmeq)
623		return NULL;
624
625	result = adapter_alloc_cq(dev, qid, nvmeq);
626	if (result < 0)
627		goto free_nvmeq;
628
629	result = adapter_alloc_sq(dev, qid, nvmeq);
630	if (result < 0)
631		goto release_cq;
632
633	result = queue_request_irq(dev, nvmeq, "nvme");
634	if (result < 0)
635		goto release_sq;
636
637	return nvmeq;
638
639 release_sq:
640	adapter_delete_sq(dev, qid);
641 release_cq:
642	adapter_delete_cq(dev, qid);
643 free_nvmeq:
644	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
645				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
646	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
647					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
648	kfree(nvmeq);
649	return NULL;
650}
651
652static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
653{
654	int result;
655	u32 aqa;
656	struct nvme_queue *nvmeq;
657
658	dev->dbs = ((void __iomem *)dev->bar) + 4096;
659
660	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
661	if (!nvmeq)
662		return -ENOMEM;
663
664	aqa = nvmeq->q_depth - 1;
665	aqa |= aqa << 16;
666
667	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
668	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
669	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
670
671	writel(0, &dev->bar->cc);
672	writel(aqa, &dev->bar->aqa);
673	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
674	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
675	writel(dev->ctrl_config, &dev->bar->cc);
676
677	while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
678		msleep(100);
679		if (fatal_signal_pending(current))
680			return -EINTR;
681	}
682
683	result = queue_request_irq(dev, nvmeq, "nvme admin");
684	dev->queues[0] = nvmeq;
685	return result;
686}
687
688static int nvme_map_user_pages(struct nvme_dev *dev, int write,
689				unsigned long addr, unsigned length,
690				struct scatterlist **sgp)
691{
692	int i, err, count, nents, offset;
693	struct scatterlist *sg;
694	struct page **pages;
695
696	if (addr & 3)
697		return -EINVAL;
698	if (!length)
699		return -EINVAL;
700
701	offset = offset_in_page(addr);
702	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
703	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
704
705	err = get_user_pages_fast(addr, count, 1, pages);
706	if (err < count) {
707		count = err;
708		err = -EFAULT;
709		goto put_pages;
710	}
711
712	sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
713	sg_init_table(sg, count);
714	sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
715	length -= (PAGE_SIZE - offset);
716	for (i = 1; i < count; i++) {
717		sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
718		length -= PAGE_SIZE;
719	}
720
721	err = -ENOMEM;
722	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
723				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
724	if (!nents)
725		goto put_pages;
726
727	kfree(pages);
728	*sgp = sg;
729	return nents;
730
731 put_pages:
732	for (i = 0; i < count; i++)
733		put_page(pages[i]);
734	kfree(pages);
735	return err;
736}
737
738static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
739				unsigned long addr, int length,
740				struct scatterlist *sg, int nents)
741{
742	int i, count;
743
744	count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
745	dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
746
747	for (i = 0; i < count; i++)
748		put_page(sg_page(&sg[i]));
749}
750
751static int nvme_submit_user_admin_command(struct nvme_dev *dev,
752					unsigned long addr, unsigned length,
753					struct nvme_command *cmd)
754{
755	int err, nents;
756	struct scatterlist *sg;
757
758	nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
759	if (nents < 0)
760		return nents;
761	nvme_setup_prps(&cmd->common, sg, length);
762	err = nvme_submit_admin_cmd(dev, cmd, NULL);
763	nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
764	return err ? -EIO : 0;
765}
766
767static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
768{
769	struct nvme_command c;
770
771	memset(&c, 0, sizeof(c));
772	c.identify.opcode = nvme_admin_identify;
773	c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
774	c.identify.cns = cpu_to_le32(cns);
775
776	return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
777}
778
779static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
780{
781	struct nvme_command c;
782
783	memset(&c, 0, sizeof(c));
784	c.features.opcode = nvme_admin_get_features;
785	c.features.nsid = cpu_to_le32(ns->ns_id);
786	c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
787
788	return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
789}
790
791static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
792{
793	struct nvme_dev *dev = ns->dev;
794	struct nvme_queue *nvmeq;
795	struct nvme_user_io io;
796	struct nvme_command c;
797	unsigned length;
798	u32 result;
799	int nents, status;
800	struct scatterlist *sg;
801
802	if (copy_from_user(&io, uio, sizeof(io)))
803		return -EFAULT;
804	length = io.nblocks << io.block_shift;
805	nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
806	if (nents < 0)
807		return nents;
808
809	memset(&c, 0, sizeof(c));
810	c.rw.opcode = io.opcode;
811	c.rw.flags = io.flags;
812	c.rw.nsid = cpu_to_le32(io.nsid);
813	c.rw.slba = cpu_to_le64(io.slba);
814	c.rw.length = cpu_to_le16(io.nblocks - 1);
815	c.rw.control = cpu_to_le16(io.control);
816	c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
817	c.rw.reftag = cpu_to_le32(io.reftag);	/* XXX: endian? */
818	c.rw.apptag = cpu_to_le16(io.apptag);
819	c.rw.appmask = cpu_to_le16(io.appmask);
820	/* XXX: metadata */
821	nvme_setup_prps(&c.common, sg, length);
822
823	nvmeq = get_nvmeq(ns);
824	status = nvme_submit_sync_cmd(nvmeq, &c, &result);
825	put_nvmeq(nvmeq);
826
827	nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
828	put_user(result, &uio->result);
829	return status;
830}
831
832static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
833							unsigned long arg)
834{
835	struct nvme_ns *ns = bdev->bd_disk->private_data;
836
837	switch (cmd) {
838	case NVME_IOCTL_IDENTIFY_NS:
839		return nvme_identify(ns, arg, 0);
840	case NVME_IOCTL_IDENTIFY_CTRL:
841		return nvme_identify(ns, arg, 1);
842	case NVME_IOCTL_GET_RANGE_TYPE:
843		return nvme_get_range_type(ns, arg);
844	case NVME_IOCTL_SUBMIT_IO:
845		return nvme_submit_io(ns, (void __user *)arg);
846	default:
847		return -ENOTTY;
848	}
849}
850
851static const struct block_device_operations nvme_fops = {
852	.owner		= THIS_MODULE,
853	.ioctl		= nvme_ioctl,
854};
855
856static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
857			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
858{
859	struct nvme_ns *ns;
860	struct gendisk *disk;
861	int lbaf;
862
863	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
864		return NULL;
865
866	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
867	if (!ns)
868		return NULL;
869	ns->queue = blk_alloc_queue(GFP_KERNEL);
870	if (!ns->queue)
871		goto out_free_ns;
872	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
873				QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
874	blk_queue_make_request(ns->queue, nvme_make_request);
875	ns->dev = dev;
876	ns->queue->queuedata = ns;
877
878	disk = alloc_disk(NVME_MINORS);
879	if (!disk)
880		goto out_free_queue;
881	ns->ns_id = index;
882	ns->disk = disk;
883	lbaf = id->flbas & 0xf;
884	ns->lba_shift = id->lbaf[lbaf].ds;
885
886	disk->major = nvme_major;
887	disk->minors = NVME_MINORS;
888	disk->first_minor = NVME_MINORS * index;
889	disk->fops = &nvme_fops;
890	disk->private_data = ns;
891	disk->queue = ns->queue;
892	disk->driverfs_dev = &dev->pci_dev->dev;
893	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
894	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
895
896	return ns;
897
898 out_free_queue:
899	blk_cleanup_queue(ns->queue);
900 out_free_ns:
901	kfree(ns);
902	return NULL;
903}
904
905static void nvme_ns_free(struct nvme_ns *ns)
906{
907	put_disk(ns->disk);
908	blk_cleanup_queue(ns->queue);
909	kfree(ns);
910}
911
912static int set_queue_count(struct nvme_dev *dev, int count)
913{
914	int status;
915	u32 result;
916	struct nvme_command c;
917	u32 q_count = (count - 1) | ((count - 1) << 16);
918
919	memset(&c, 0, sizeof(c));
920	c.features.opcode = nvme_admin_get_features;
921	c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
922	c.features.dword11 = cpu_to_le32(q_count);
923
924	status = nvme_submit_admin_cmd(dev, &c, &result);
925	if (status)
926		return -EIO;
927	return min(result & 0xffff, result >> 16) + 1;
928}
929
930static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
931{
932	int result, cpu, i, nr_queues;
933
934	nr_queues = num_online_cpus();
935	result = set_queue_count(dev, nr_queues);
936	if (result < 0)
937		return result;
938	if (result < nr_queues)
939		nr_queues = result;
940
941	/* Deregister the admin queue's interrupt */
942	free_irq(dev->entry[0].vector, dev->queues[0]);
943
944	for (i = 0; i < nr_queues; i++)
945		dev->entry[i].entry = i;
946	for (;;) {
947		result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
948		if (result == 0) {
949			break;
950		} else if (result > 0) {
951			nr_queues = result;
952			continue;
953		} else {
954			nr_queues = 1;
955			break;
956		}
957	}
958
959	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
960	/* XXX: handle failure here */
961
962	cpu = cpumask_first(cpu_online_mask);
963	for (i = 0; i < nr_queues; i++) {
964		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
965		cpu = cpumask_next(cpu, cpu_online_mask);
966	}
967
968	for (i = 0; i < nr_queues; i++) {
969		dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
970							NVME_Q_DEPTH, i);
971		if (!dev->queues[i + 1])
972			return -ENOMEM;
973		dev->queue_count++;
974	}
975
976	return 0;
977}
978
979static void nvme_free_queues(struct nvme_dev *dev)
980{
981	int i;
982
983	for (i = dev->queue_count - 1; i >= 0; i--)
984		nvme_free_queue(dev, i);
985}
986
987static int __devinit nvme_dev_add(struct nvme_dev *dev)
988{
989	int res, nn, i;
990	struct nvme_ns *ns, *next;
991	struct nvme_id_ctrl *ctrl;
992	void *id;
993	dma_addr_t dma_addr;
994	struct nvme_command cid, crt;
995
996	res = nvme_setup_io_queues(dev);
997	if (res)
998		return res;
999
1000	/* XXX: Switch to a SG list once prp2 works */
1001	id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1002								GFP_KERNEL);
1003
1004	memset(&cid, 0, sizeof(cid));
1005	cid.identify.opcode = nvme_admin_identify;
1006	cid.identify.nsid = 0;
1007	cid.identify.prp1 = cpu_to_le64(dma_addr);
1008	cid.identify.cns = cpu_to_le32(1);
1009
1010	res = nvme_submit_admin_cmd(dev, &cid, NULL);
1011	if (res) {
1012		res = -EIO;
1013		goto out_free;
1014	}
1015
1016	ctrl = id;
1017	nn = le32_to_cpup(&ctrl->nn);
1018	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1019	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1020	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1021
1022	cid.identify.cns = 0;
1023	memset(&crt, 0, sizeof(crt));
1024	crt.features.opcode = nvme_admin_get_features;
1025	crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1026	crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1027
1028	for (i = 0; i < nn; i++) {
1029		cid.identify.nsid = cpu_to_le32(i);
1030		res = nvme_submit_admin_cmd(dev, &cid, NULL);
1031		if (res)
1032			continue;
1033
1034		if (((struct nvme_id_ns *)id)->ncap == 0)
1035			continue;
1036
1037		crt.features.nsid = cpu_to_le32(i);
1038		res = nvme_submit_admin_cmd(dev, &crt, NULL);
1039		if (res)
1040			continue;
1041
1042		ns = nvme_alloc_ns(dev, i, id, id + 4096);
1043		if (ns)
1044			list_add_tail(&ns->list, &dev->namespaces);
1045	}
1046	list_for_each_entry(ns, &dev->namespaces, list)
1047		add_disk(ns->disk);
1048
1049	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1050	return 0;
1051
1052 out_free:
1053	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1054		list_del(&ns->list);
1055		nvme_ns_free(ns);
1056	}
1057
1058	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1059	return res;
1060}
1061
1062static int nvme_dev_remove(struct nvme_dev *dev)
1063{
1064	struct nvme_ns *ns, *next;
1065
1066	/* TODO: wait all I/O finished or cancel them */
1067
1068	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1069		list_del(&ns->list);
1070		del_gendisk(ns->disk);
1071		nvme_ns_free(ns);
1072	}
1073
1074	nvme_free_queues(dev);
1075
1076	return 0;
1077}
1078
1079/* XXX: Use an ida or something to let remove / add work correctly */
1080static void nvme_set_instance(struct nvme_dev *dev)
1081{
1082	static int instance;
1083	dev->instance = instance++;
1084}
1085
1086static void nvme_release_instance(struct nvme_dev *dev)
1087{
1088}
1089
1090static int __devinit nvme_probe(struct pci_dev *pdev,
1091						const struct pci_device_id *id)
1092{
1093	int bars, result = -ENOMEM;
1094	struct nvme_dev *dev;
1095
1096	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1097	if (!dev)
1098		return -ENOMEM;
1099	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1100								GFP_KERNEL);
1101	if (!dev->entry)
1102		goto free;
1103	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1104								GFP_KERNEL);
1105	if (!dev->queues)
1106		goto free;
1107
1108	if (pci_enable_device_mem(pdev))
1109		goto free;
1110	pci_set_master(pdev);
1111	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1112	if (pci_request_selected_regions(pdev, bars, "nvme"))
1113		goto disable;
1114
1115	INIT_LIST_HEAD(&dev->namespaces);
1116	dev->pci_dev = pdev;
1117	pci_set_drvdata(pdev, dev);
1118	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1119	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1120	nvme_set_instance(dev);
1121	dev->entry[0].vector = pdev->irq;
1122
1123	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1124	if (!dev->bar) {
1125		result = -ENOMEM;
1126		goto disable_msix;
1127	}
1128
1129	result = nvme_configure_admin_queue(dev);
1130	if (result)
1131		goto unmap;
1132	dev->queue_count++;
1133
1134	result = nvme_dev_add(dev);
1135	if (result)
1136		goto delete;
1137	return 0;
1138
1139 delete:
1140	nvme_free_queues(dev);
1141 unmap:
1142	iounmap(dev->bar);
1143 disable_msix:
1144	pci_disable_msix(pdev);
1145	nvme_release_instance(dev);
1146 disable:
1147	pci_disable_device(pdev);
1148	pci_release_regions(pdev);
1149 free:
1150	kfree(dev->queues);
1151	kfree(dev->entry);
1152	kfree(dev);
1153	return result;
1154}
1155
1156static void __devexit nvme_remove(struct pci_dev *pdev)
1157{
1158	struct nvme_dev *dev = pci_get_drvdata(pdev);
1159	nvme_dev_remove(dev);
1160	pci_disable_msix(pdev);
1161	iounmap(dev->bar);
1162	nvme_release_instance(dev);
1163	pci_disable_device(pdev);
1164	pci_release_regions(pdev);
1165	kfree(dev->queues);
1166	kfree(dev->entry);
1167	kfree(dev);
1168}
1169
1170/* These functions are yet to be implemented */
1171#define nvme_error_detected NULL
1172#define nvme_dump_registers NULL
1173#define nvme_link_reset NULL
1174#define nvme_slot_reset NULL
1175#define nvme_error_resume NULL
1176#define nvme_suspend NULL
1177#define nvme_resume NULL
1178
1179static struct pci_error_handlers nvme_err_handler = {
1180	.error_detected	= nvme_error_detected,
1181	.mmio_enabled	= nvme_dump_registers,
1182	.link_reset	= nvme_link_reset,
1183	.slot_reset	= nvme_slot_reset,
1184	.resume		= nvme_error_resume,
1185};
1186
1187/* Move to pci_ids.h later */
1188#define PCI_CLASS_STORAGE_EXPRESS	0x010802
1189
1190static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1191	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1192	{ 0, }
1193};
1194MODULE_DEVICE_TABLE(pci, nvme_id_table);
1195
1196static struct pci_driver nvme_driver = {
1197	.name		= "nvme",
1198	.id_table	= nvme_id_table,
1199	.probe		= nvme_probe,
1200	.remove		= __devexit_p(nvme_remove),
1201	.suspend	= nvme_suspend,
1202	.resume		= nvme_resume,
1203	.err_handler	= &nvme_err_handler,
1204};
1205
1206static int __init nvme_init(void)
1207{
1208	int result;
1209
1210	nvme_major = register_blkdev(nvme_major, "nvme");
1211	if (nvme_major <= 0)
1212		return -EBUSY;
1213
1214	result = pci_register_driver(&nvme_driver);
1215	if (!result)
1216		return 0;
1217
1218	unregister_blkdev(nvme_major, "nvme");
1219	return result;
1220}
1221
1222static void __exit nvme_exit(void)
1223{
1224	pci_unregister_driver(&nvme_driver);
1225	unregister_blkdev(nvme_major, "nvme");
1226}
1227
1228MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1229MODULE_LICENSE("GPL");
1230MODULE_VERSION("0.1");
1231module_init(nvme_init);
1232module_exit(nvme_exit);
1233