nvme-core.c revision 6198221fa0df0298513b35796f63f242ea97134e
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <scsi/sg.h>
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
49#define ADMIN_TIMEOUT	(60 * HZ)
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
61/*
62 * An NVM Express queue.  Each device has at least two (one for admin
63 * commands and one for I/O commands).
64 */
65struct nvme_queue {
66	struct device *q_dmadev;
67	struct nvme_dev *dev;
68	spinlock_t q_lock;
69	struct nvme_command *sq_cmds;
70	volatile struct nvme_completion *cqes;
71	dma_addr_t sq_dma_addr;
72	dma_addr_t cq_dma_addr;
73	wait_queue_head_t sq_full;
74	wait_queue_t sq_cong_wait;
75	struct bio_list sq_cong;
76	u32 __iomem *q_db;
77	u16 q_depth;
78	u16 cq_vector;
79	u16 sq_head;
80	u16 sq_tail;
81	u16 cq_head;
82	u16 cq_phase;
83	unsigned long cmdid_data[];
84};
85
86/*
87 * Check we didin't inadvertently grow the command struct
88 */
89static inline void _nvme_check_size(void)
90{
91	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
96	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
97	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
101	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
102}
103
104typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
105						struct nvme_completion *);
106
107struct nvme_cmd_info {
108	nvme_completion_fn fn;
109	void *ctx;
110	unsigned long timeout;
111};
112
113static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114{
115	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116}
117
118/**
119 * alloc_cmdid() - Allocate a Command ID
120 * @nvmeq: The queue that will be used for this command
121 * @ctx: A pointer that will be passed to the handler
122 * @handler: The function to call on completion
123 *
124 * Allocate a Command ID for a queue.  The data passed in will
125 * be passed to the completion handler.  This is implemented by using
126 * the bottom two bits of the ctx pointer to store the handler ID.
127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128 * We can change this if it becomes a problem.
129 *
130 * May be called with local interrupts disabled and the q_lock held,
131 * or with interrupts enabled and no locks held.
132 */
133static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134				nvme_completion_fn handler, unsigned timeout)
135{
136	int depth = nvmeq->q_depth - 1;
137	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
138	int cmdid;
139
140	do {
141		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142		if (cmdid >= depth)
143			return -EBUSY;
144	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
146	info[cmdid].fn = handler;
147	info[cmdid].ctx = ctx;
148	info[cmdid].timeout = jiffies + timeout;
149	return cmdid;
150}
151
152static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153				nvme_completion_fn handler, unsigned timeout)
154{
155	int cmdid;
156	wait_event_killable(nvmeq->sq_full,
157		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
158	return (cmdid < 0) ? -EINTR : cmdid;
159}
160
161/* Special values must be less than 0x1000 */
162#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
163#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
164#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
165#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
166#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
167
168static void special_completion(struct nvme_dev *dev, void *ctx,
169						struct nvme_completion *cqe)
170{
171	if (ctx == CMD_CTX_CANCELLED)
172		return;
173	if (ctx == CMD_CTX_FLUSH)
174		return;
175	if (ctx == CMD_CTX_COMPLETED) {
176		dev_warn(&dev->pci_dev->dev,
177				"completed id %d twice on queue %d\n",
178				cqe->command_id, le16_to_cpup(&cqe->sq_id));
179		return;
180	}
181	if (ctx == CMD_CTX_INVALID) {
182		dev_warn(&dev->pci_dev->dev,
183				"invalid id %d completed on queue %d\n",
184				cqe->command_id, le16_to_cpup(&cqe->sq_id));
185		return;
186	}
187
188	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
189}
190
191/*
192 * Called with local interrupts disabled and the q_lock held.  May not sleep.
193 */
194static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195						nvme_completion_fn *fn)
196{
197	void *ctx;
198	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
199
200	if (cmdid >= nvmeq->q_depth) {
201		*fn = special_completion;
202		return CMD_CTX_INVALID;
203	}
204	if (fn)
205		*fn = info[cmdid].fn;
206	ctx = info[cmdid].ctx;
207	info[cmdid].fn = special_completion;
208	info[cmdid].ctx = CMD_CTX_COMPLETED;
209	clear_bit(cmdid, nvmeq->cmdid_data);
210	wake_up(&nvmeq->sq_full);
211	return ctx;
212}
213
214static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215						nvme_completion_fn *fn)
216{
217	void *ctx;
218	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219	if (fn)
220		*fn = info[cmdid].fn;
221	ctx = info[cmdid].ctx;
222	info[cmdid].fn = special_completion;
223	info[cmdid].ctx = CMD_CTX_CANCELLED;
224	return ctx;
225}
226
227struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228{
229	return dev->queues[get_cpu() + 1];
230}
231
232void put_nvmeq(struct nvme_queue *nvmeq)
233{
234	put_cpu();
235}
236
237/**
238 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239 * @nvmeq: The queue to use
240 * @cmd: The command to send
241 *
242 * Safe to use from interrupt context
243 */
244static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245{
246	unsigned long flags;
247	u16 tail;
248	spin_lock_irqsave(&nvmeq->q_lock, flags);
249	tail = nvmeq->sq_tail;
250	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251	if (++tail == nvmeq->q_depth)
252		tail = 0;
253	writel(tail, nvmeq->q_db);
254	nvmeq->sq_tail = tail;
255	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257	return 0;
258}
259
260static __le64 **iod_list(struct nvme_iod *iod)
261{
262	return ((void *)iod) + iod->offset;
263}
264
265/*
266 * Will slightly overestimate the number of pages needed.  This is OK
267 * as it only leads to a small amount of wasted memory for the lifetime of
268 * the I/O.
269 */
270static int nvme_npages(unsigned size)
271{
272	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274}
275
276static struct nvme_iod *
277nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
278{
279	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280				sizeof(__le64 *) * nvme_npages(nbytes) +
281				sizeof(struct scatterlist) * nseg, gfp);
282
283	if (iod) {
284		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285		iod->npages = -1;
286		iod->length = nbytes;
287		iod->nents = 0;
288		iod->start_time = jiffies;
289	}
290
291	return iod;
292}
293
294void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
295{
296	const int last_prp = PAGE_SIZE / 8 - 1;
297	int i;
298	__le64 **list = iod_list(iod);
299	dma_addr_t prp_dma = iod->first_dma;
300
301	if (iod->npages == 0)
302		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
303	for (i = 0; i < iod->npages; i++) {
304		__le64 *prp_list = list[i];
305		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
306		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
307		prp_dma = next_prp_dma;
308	}
309	kfree(iod);
310}
311
312static void nvme_start_io_acct(struct bio *bio)
313{
314	struct gendisk *disk = bio->bi_bdev->bd_disk;
315	const int rw = bio_data_dir(bio);
316	int cpu = part_stat_lock();
317	part_round_stats(cpu, &disk->part0);
318	part_stat_inc(cpu, &disk->part0, ios[rw]);
319	part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
320	part_inc_in_flight(&disk->part0, rw);
321	part_stat_unlock();
322}
323
324static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
325{
326	struct gendisk *disk = bio->bi_bdev->bd_disk;
327	const int rw = bio_data_dir(bio);
328	unsigned long duration = jiffies - start_time;
329	int cpu = part_stat_lock();
330	part_stat_add(cpu, &disk->part0, ticks[rw], duration);
331	part_round_stats(cpu, &disk->part0);
332	part_dec_in_flight(&disk->part0, rw);
333	part_stat_unlock();
334}
335
336static void bio_completion(struct nvme_dev *dev, void *ctx,
337						struct nvme_completion *cqe)
338{
339	struct nvme_iod *iod = ctx;
340	struct bio *bio = iod->private;
341	u16 status = le16_to_cpup(&cqe->status) >> 1;
342
343	if (iod->nents)
344		dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
345			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
346
347	nvme_end_io_acct(bio, iod->start_time);
348	nvme_free_iod(dev, iod);
349	if (status)
350		bio_endio(bio, -EIO);
351	else
352		bio_endio(bio, 0);
353}
354
355/* length is in bytes.  gfp flags indicates whether we may sleep. */
356int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
357			struct nvme_iod *iod, int total_len, gfp_t gfp)
358{
359	struct dma_pool *pool;
360	int length = total_len;
361	struct scatterlist *sg = iod->sg;
362	int dma_len = sg_dma_len(sg);
363	u64 dma_addr = sg_dma_address(sg);
364	int offset = offset_in_page(dma_addr);
365	__le64 *prp_list;
366	__le64 **list = iod_list(iod);
367	dma_addr_t prp_dma;
368	int nprps, i;
369
370	cmd->prp1 = cpu_to_le64(dma_addr);
371	length -= (PAGE_SIZE - offset);
372	if (length <= 0)
373		return total_len;
374
375	dma_len -= (PAGE_SIZE - offset);
376	if (dma_len) {
377		dma_addr += (PAGE_SIZE - offset);
378	} else {
379		sg = sg_next(sg);
380		dma_addr = sg_dma_address(sg);
381		dma_len = sg_dma_len(sg);
382	}
383
384	if (length <= PAGE_SIZE) {
385		cmd->prp2 = cpu_to_le64(dma_addr);
386		return total_len;
387	}
388
389	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
390	if (nprps <= (256 / 8)) {
391		pool = dev->prp_small_pool;
392		iod->npages = 0;
393	} else {
394		pool = dev->prp_page_pool;
395		iod->npages = 1;
396	}
397
398	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
399	if (!prp_list) {
400		cmd->prp2 = cpu_to_le64(dma_addr);
401		iod->npages = -1;
402		return (total_len - length) + PAGE_SIZE;
403	}
404	list[0] = prp_list;
405	iod->first_dma = prp_dma;
406	cmd->prp2 = cpu_to_le64(prp_dma);
407	i = 0;
408	for (;;) {
409		if (i == PAGE_SIZE / 8) {
410			__le64 *old_prp_list = prp_list;
411			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
412			if (!prp_list)
413				return total_len - length;
414			list[iod->npages++] = prp_list;
415			prp_list[0] = old_prp_list[i - 1];
416			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
417			i = 1;
418		}
419		prp_list[i++] = cpu_to_le64(dma_addr);
420		dma_len -= PAGE_SIZE;
421		dma_addr += PAGE_SIZE;
422		length -= PAGE_SIZE;
423		if (length <= 0)
424			break;
425		if (dma_len > 0)
426			continue;
427		BUG_ON(dma_len < 0);
428		sg = sg_next(sg);
429		dma_addr = sg_dma_address(sg);
430		dma_len = sg_dma_len(sg);
431	}
432
433	return total_len;
434}
435
436struct nvme_bio_pair {
437	struct bio b1, b2, *parent;
438	struct bio_vec *bv1, *bv2;
439	int err;
440	atomic_t cnt;
441};
442
443static void nvme_bio_pair_endio(struct bio *bio, int err)
444{
445	struct nvme_bio_pair *bp = bio->bi_private;
446
447	if (err)
448		bp->err = err;
449
450	if (atomic_dec_and_test(&bp->cnt)) {
451		bio_endio(bp->parent, bp->err);
452		if (bp->bv1)
453			kfree(bp->bv1);
454		if (bp->bv2)
455			kfree(bp->bv2);
456		kfree(bp);
457	}
458}
459
460static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
461							int len, int offset)
462{
463	struct nvme_bio_pair *bp;
464
465	BUG_ON(len > bio->bi_size);
466	BUG_ON(idx > bio->bi_vcnt);
467
468	bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
469	if (!bp)
470		return NULL;
471	bp->err = 0;
472
473	bp->b1 = *bio;
474	bp->b2 = *bio;
475
476	bp->b1.bi_size = len;
477	bp->b2.bi_size -= len;
478	bp->b1.bi_vcnt = idx;
479	bp->b2.bi_idx = idx;
480	bp->b2.bi_sector += len >> 9;
481
482	if (offset) {
483		bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
484								GFP_ATOMIC);
485		if (!bp->bv1)
486			goto split_fail_1;
487
488		bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
489								GFP_ATOMIC);
490		if (!bp->bv2)
491			goto split_fail_2;
492
493		memcpy(bp->bv1, bio->bi_io_vec,
494			bio->bi_max_vecs * sizeof(struct bio_vec));
495		memcpy(bp->bv2, bio->bi_io_vec,
496			bio->bi_max_vecs * sizeof(struct bio_vec));
497
498		bp->b1.bi_io_vec = bp->bv1;
499		bp->b2.bi_io_vec = bp->bv2;
500		bp->b2.bi_io_vec[idx].bv_offset += offset;
501		bp->b2.bi_io_vec[idx].bv_len -= offset;
502		bp->b1.bi_io_vec[idx].bv_len = offset;
503		bp->b1.bi_vcnt++;
504	} else
505		bp->bv1 = bp->bv2 = NULL;
506
507	bp->b1.bi_private = bp;
508	bp->b2.bi_private = bp;
509
510	bp->b1.bi_end_io = nvme_bio_pair_endio;
511	bp->b2.bi_end_io = nvme_bio_pair_endio;
512
513	bp->parent = bio;
514	atomic_set(&bp->cnt, 2);
515
516	return bp;
517
518 split_fail_2:
519	kfree(bp->bv1);
520 split_fail_1:
521	kfree(bp);
522	return NULL;
523}
524
525static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
526						int idx, int len, int offset)
527{
528	struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
529	if (!bp)
530		return -ENOMEM;
531
532	if (bio_list_empty(&nvmeq->sq_cong))
533		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
534	bio_list_add(&nvmeq->sq_cong, &bp->b1);
535	bio_list_add(&nvmeq->sq_cong, &bp->b2);
536
537	return 0;
538}
539
540/* NVMe scatterlists require no holes in the virtual address */
541#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
542			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543
544static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
545		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546{
547	struct bio_vec *bvec, *bvprv = NULL;
548	struct scatterlist *sg = NULL;
549	int i, length = 0, nsegs = 0, split_len = bio->bi_size;
550
551	if (nvmeq->dev->stripe_size)
552		split_len = nvmeq->dev->stripe_size -
553			((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
554
555	sg_init_table(iod->sg, psegs);
556	bio_for_each_segment(bvec, bio, i) {
557		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
558			sg->length += bvec->bv_len;
559		} else {
560			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
561				return nvme_split_and_submit(bio, nvmeq, i,
562								length, 0);
563
564			sg = sg ? sg + 1 : iod->sg;
565			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
566							bvec->bv_offset);
567			nsegs++;
568		}
569
570		if (split_len - length < bvec->bv_len)
571			return nvme_split_and_submit(bio, nvmeq, i, split_len,
572							split_len - length);
573		length += bvec->bv_len;
574		bvprv = bvec;
575	}
576	iod->nents = nsegs;
577	sg_mark_end(sg);
578	if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
579		return -ENOMEM;
580
581	BUG_ON(length != bio->bi_size);
582	return length;
583}
584
585/*
586 * We reuse the small pool to allocate the 16-byte range here as it is not
587 * worth having a special pool for these or additional cases to handle freeing
588 * the iod.
589 */
590static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
591		struct bio *bio, struct nvme_iod *iod, int cmdid)
592{
593	struct nvme_dsm_range *range;
594	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
595
596	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
597							&iod->first_dma);
598	if (!range)
599		return -ENOMEM;
600
601	iod_list(iod)[0] = (__le64 *)range;
602	iod->npages = 0;
603
604	range->cattr = cpu_to_le32(0);
605	range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
606	range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
607
608	memset(cmnd, 0, sizeof(*cmnd));
609	cmnd->dsm.opcode = nvme_cmd_dsm;
610	cmnd->dsm.command_id = cmdid;
611	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613	cmnd->dsm.nr = 0;
614	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615
616	if (++nvmeq->sq_tail == nvmeq->q_depth)
617		nvmeq->sq_tail = 0;
618	writel(nvmeq->sq_tail, nvmeq->q_db);
619
620	return 0;
621}
622
623static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
624								int cmdid)
625{
626	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
627
628	memset(cmnd, 0, sizeof(*cmnd));
629	cmnd->common.opcode = nvme_cmd_flush;
630	cmnd->common.command_id = cmdid;
631	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
632
633	if (++nvmeq->sq_tail == nvmeq->q_depth)
634		nvmeq->sq_tail = 0;
635	writel(nvmeq->sq_tail, nvmeq->q_db);
636
637	return 0;
638}
639
640int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
641{
642	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
643					special_completion, NVME_IO_TIMEOUT);
644	if (unlikely(cmdid < 0))
645		return cmdid;
646
647	return nvme_submit_flush(nvmeq, ns, cmdid);
648}
649
650/*
651 * Called with local interrupts disabled and the q_lock held.  May not sleep.
652 */
653static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
654								struct bio *bio)
655{
656	struct nvme_command *cmnd;
657	struct nvme_iod *iod;
658	enum dma_data_direction dma_dir;
659	int cmdid, length, result;
660	u16 control;
661	u32 dsmgmt;
662	int psegs = bio_phys_segments(ns->queue, bio);
663
664	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
665		result = nvme_submit_flush_data(nvmeq, ns);
666		if (result)
667			return result;
668	}
669
670	result = -ENOMEM;
671	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
672	if (!iod)
673		goto nomem;
674	iod->private = bio;
675
676	result = -EBUSY;
677	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
678	if (unlikely(cmdid < 0))
679		goto free_iod;
680
681	if (bio->bi_rw & REQ_DISCARD) {
682		result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
683		if (result)
684			goto free_cmdid;
685		return result;
686	}
687	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
688		return nvme_submit_flush(nvmeq, ns, cmdid);
689
690	control = 0;
691	if (bio->bi_rw & REQ_FUA)
692		control |= NVME_RW_FUA;
693	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
694		control |= NVME_RW_LR;
695
696	dsmgmt = 0;
697	if (bio->bi_rw & REQ_RAHEAD)
698		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
700	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
701
702	memset(cmnd, 0, sizeof(*cmnd));
703	if (bio_data_dir(bio)) {
704		cmnd->rw.opcode = nvme_cmd_write;
705		dma_dir = DMA_TO_DEVICE;
706	} else {
707		cmnd->rw.opcode = nvme_cmd_read;
708		dma_dir = DMA_FROM_DEVICE;
709	}
710
711	result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
712	if (result <= 0)
713		goto free_cmdid;
714	length = result;
715
716	cmnd->rw.command_id = cmdid;
717	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
718	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
719								GFP_ATOMIC);
720	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
721	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
722	cmnd->rw.control = cpu_to_le16(control);
723	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
724
725	nvme_start_io_acct(bio);
726	if (++nvmeq->sq_tail == nvmeq->q_depth)
727		nvmeq->sq_tail = 0;
728	writel(nvmeq->sq_tail, nvmeq->q_db);
729
730	return 0;
731
732 free_cmdid:
733	free_cmdid(nvmeq, cmdid, NULL);
734 free_iod:
735	nvme_free_iod(nvmeq->dev, iod);
736 nomem:
737	return result;
738}
739
740static void nvme_make_request(struct request_queue *q, struct bio *bio)
741{
742	struct nvme_ns *ns = q->queuedata;
743	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
744	int result = -EBUSY;
745
746	spin_lock_irq(&nvmeq->q_lock);
747	if (bio_list_empty(&nvmeq->sq_cong))
748		result = nvme_submit_bio_queue(nvmeq, ns, bio);
749	if (unlikely(result)) {
750		if (bio_list_empty(&nvmeq->sq_cong))
751			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
752		bio_list_add(&nvmeq->sq_cong, bio);
753	}
754
755	spin_unlock_irq(&nvmeq->q_lock);
756	put_nvmeq(nvmeq);
757}
758
759static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
760{
761	u16 head, phase;
762
763	head = nvmeq->cq_head;
764	phase = nvmeq->cq_phase;
765
766	for (;;) {
767		void *ctx;
768		nvme_completion_fn fn;
769		struct nvme_completion cqe = nvmeq->cqes[head];
770		if ((le16_to_cpu(cqe.status) & 1) != phase)
771			break;
772		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
773		if (++head == nvmeq->q_depth) {
774			head = 0;
775			phase = !phase;
776		}
777
778		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
779		fn(nvmeq->dev, ctx, &cqe);
780	}
781
782	/* If the controller ignores the cq head doorbell and continuously
783	 * writes to the queue, it is theoretically possible to wrap around
784	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
785	 * requires that 0.1% of your interrupts are handled, so this isn't
786	 * a big problem.
787	 */
788	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
789		return IRQ_NONE;
790
791	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
792	nvmeq->cq_head = head;
793	nvmeq->cq_phase = phase;
794
795	return IRQ_HANDLED;
796}
797
798static irqreturn_t nvme_irq(int irq, void *data)
799{
800	irqreturn_t result;
801	struct nvme_queue *nvmeq = data;
802	spin_lock(&nvmeq->q_lock);
803	result = nvme_process_cq(nvmeq);
804	spin_unlock(&nvmeq->q_lock);
805	return result;
806}
807
808static irqreturn_t nvme_irq_check(int irq, void *data)
809{
810	struct nvme_queue *nvmeq = data;
811	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
812	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
813		return IRQ_NONE;
814	return IRQ_WAKE_THREAD;
815}
816
817static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
818{
819	spin_lock_irq(&nvmeq->q_lock);
820	cancel_cmdid(nvmeq, cmdid, NULL);
821	spin_unlock_irq(&nvmeq->q_lock);
822}
823
824struct sync_cmd_info {
825	struct task_struct *task;
826	u32 result;
827	int status;
828};
829
830static void sync_completion(struct nvme_dev *dev, void *ctx,
831						struct nvme_completion *cqe)
832{
833	struct sync_cmd_info *cmdinfo = ctx;
834	cmdinfo->result = le32_to_cpup(&cqe->result);
835	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
836	wake_up_process(cmdinfo->task);
837}
838
839/*
840 * Returns 0 on success.  If the result is negative, it's a Linux error code;
841 * if the result is positive, it's an NVM Express status code
842 */
843int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
844						u32 *result, unsigned timeout)
845{
846	int cmdid;
847	struct sync_cmd_info cmdinfo;
848
849	cmdinfo.task = current;
850	cmdinfo.status = -EINTR;
851
852	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
853								timeout);
854	if (cmdid < 0)
855		return cmdid;
856	cmd->common.command_id = cmdid;
857
858	set_current_state(TASK_KILLABLE);
859	nvme_submit_cmd(nvmeq, cmd);
860	schedule_timeout(timeout);
861
862	if (cmdinfo.status == -EINTR) {
863		nvme_abort_command(nvmeq, cmdid);
864		return -EINTR;
865	}
866
867	if (result)
868		*result = cmdinfo.result;
869
870	return cmdinfo.status;
871}
872
873int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
874								u32 *result)
875{
876	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
877}
878
879static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
880{
881	int status;
882	struct nvme_command c;
883
884	memset(&c, 0, sizeof(c));
885	c.delete_queue.opcode = opcode;
886	c.delete_queue.qid = cpu_to_le16(id);
887
888	status = nvme_submit_admin_cmd(dev, &c, NULL);
889	if (status)
890		return -EIO;
891	return 0;
892}
893
894static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
895						struct nvme_queue *nvmeq)
896{
897	int status;
898	struct nvme_command c;
899	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
900
901	memset(&c, 0, sizeof(c));
902	c.create_cq.opcode = nvme_admin_create_cq;
903	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
904	c.create_cq.cqid = cpu_to_le16(qid);
905	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
906	c.create_cq.cq_flags = cpu_to_le16(flags);
907	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
908
909	status = nvme_submit_admin_cmd(dev, &c, NULL);
910	if (status)
911		return -EIO;
912	return 0;
913}
914
915static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
916						struct nvme_queue *nvmeq)
917{
918	int status;
919	struct nvme_command c;
920	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
921
922	memset(&c, 0, sizeof(c));
923	c.create_sq.opcode = nvme_admin_create_sq;
924	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
925	c.create_sq.sqid = cpu_to_le16(qid);
926	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
927	c.create_sq.sq_flags = cpu_to_le16(flags);
928	c.create_sq.cqid = cpu_to_le16(qid);
929
930	status = nvme_submit_admin_cmd(dev, &c, NULL);
931	if (status)
932		return -EIO;
933	return 0;
934}
935
936static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
937{
938	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
939}
940
941static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
942{
943	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
944}
945
946int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
947							dma_addr_t dma_addr)
948{
949	struct nvme_command c;
950
951	memset(&c, 0, sizeof(c));
952	c.identify.opcode = nvme_admin_identify;
953	c.identify.nsid = cpu_to_le32(nsid);
954	c.identify.prp1 = cpu_to_le64(dma_addr);
955	c.identify.cns = cpu_to_le32(cns);
956
957	return nvme_submit_admin_cmd(dev, &c, NULL);
958}
959
960int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
961					dma_addr_t dma_addr, u32 *result)
962{
963	struct nvme_command c;
964
965	memset(&c, 0, sizeof(c));
966	c.features.opcode = nvme_admin_get_features;
967	c.features.nsid = cpu_to_le32(nsid);
968	c.features.prp1 = cpu_to_le64(dma_addr);
969	c.features.fid = cpu_to_le32(fid);
970
971	return nvme_submit_admin_cmd(dev, &c, result);
972}
973
974int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
975					dma_addr_t dma_addr, u32 *result)
976{
977	struct nvme_command c;
978
979	memset(&c, 0, sizeof(c));
980	c.features.opcode = nvme_admin_set_features;
981	c.features.prp1 = cpu_to_le64(dma_addr);
982	c.features.fid = cpu_to_le32(fid);
983	c.features.dword11 = cpu_to_le32(dword11);
984
985	return nvme_submit_admin_cmd(dev, &c, result);
986}
987
988/**
989 * nvme_cancel_ios - Cancel outstanding I/Os
990 * @queue: The queue to cancel I/Os on
991 * @timeout: True to only cancel I/Os which have timed out
992 */
993static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
994{
995	int depth = nvmeq->q_depth - 1;
996	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
997	unsigned long now = jiffies;
998	int cmdid;
999
1000	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1001		void *ctx;
1002		nvme_completion_fn fn;
1003		static struct nvme_completion cqe = {
1004			.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1005		};
1006
1007		if (timeout && !time_after(now, info[cmdid].timeout))
1008			continue;
1009		if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1010			continue;
1011		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1012		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1013		fn(nvmeq->dev, ctx, &cqe);
1014	}
1015}
1016
1017static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1018{
1019	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1020				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1021	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1022					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1023	kfree(nvmeq);
1024}
1025
1026static void nvme_free_queue(struct nvme_dev *dev, int qid)
1027{
1028	struct nvme_queue *nvmeq = dev->queues[qid];
1029	int vector = dev->entry[nvmeq->cq_vector].vector;
1030
1031	spin_lock_irq(&nvmeq->q_lock);
1032	nvme_cancel_ios(nvmeq, false);
1033	while (bio_list_peek(&nvmeq->sq_cong)) {
1034		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1035		bio_endio(bio, -EIO);
1036	}
1037	spin_unlock_irq(&nvmeq->q_lock);
1038
1039	irq_set_affinity_hint(vector, NULL);
1040	free_irq(vector, nvmeq);
1041
1042	/* Don't tell the adapter to delete the admin queue */
1043	if (qid) {
1044		adapter_delete_sq(dev, qid);
1045		adapter_delete_cq(dev, qid);
1046	}
1047
1048	nvme_free_queue_mem(nvmeq);
1049}
1050
1051static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1052							int depth, int vector)
1053{
1054	struct device *dmadev = &dev->pci_dev->dev;
1055	unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1056						sizeof(struct nvme_cmd_info));
1057	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1058	if (!nvmeq)
1059		return NULL;
1060
1061	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1062					&nvmeq->cq_dma_addr, GFP_KERNEL);
1063	if (!nvmeq->cqes)
1064		goto free_nvmeq;
1065	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1066
1067	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1068					&nvmeq->sq_dma_addr, GFP_KERNEL);
1069	if (!nvmeq->sq_cmds)
1070		goto free_cqdma;
1071
1072	nvmeq->q_dmadev = dmadev;
1073	nvmeq->dev = dev;
1074	spin_lock_init(&nvmeq->q_lock);
1075	nvmeq->cq_head = 0;
1076	nvmeq->cq_phase = 1;
1077	init_waitqueue_head(&nvmeq->sq_full);
1078	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1079	bio_list_init(&nvmeq->sq_cong);
1080	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1081	nvmeq->q_depth = depth;
1082	nvmeq->cq_vector = vector;
1083
1084	return nvmeq;
1085
1086 free_cqdma:
1087	dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1088							nvmeq->cq_dma_addr);
1089 free_nvmeq:
1090	kfree(nvmeq);
1091	return NULL;
1092}
1093
1094static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1095							const char *name)
1096{
1097	if (use_threaded_interrupts)
1098		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1099					nvme_irq_check, nvme_irq,
1100					IRQF_DISABLED | IRQF_SHARED,
1101					name, nvmeq);
1102	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1103				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1104}
1105
1106static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1107					    int cq_size, int vector)
1108{
1109	int result;
1110	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1111
1112	if (!nvmeq)
1113		return ERR_PTR(-ENOMEM);
1114
1115	result = adapter_alloc_cq(dev, qid, nvmeq);
1116	if (result < 0)
1117		goto free_nvmeq;
1118
1119	result = adapter_alloc_sq(dev, qid, nvmeq);
1120	if (result < 0)
1121		goto release_cq;
1122
1123	result = queue_request_irq(dev, nvmeq, "nvme");
1124	if (result < 0)
1125		goto release_sq;
1126
1127	return nvmeq;
1128
1129 release_sq:
1130	adapter_delete_sq(dev, qid);
1131 release_cq:
1132	adapter_delete_cq(dev, qid);
1133 free_nvmeq:
1134	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1135				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1136	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1137					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1138	kfree(nvmeq);
1139	return ERR_PTR(result);
1140}
1141
1142static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1143{
1144	unsigned long timeout;
1145	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1146
1147	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1148
1149	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1150		msleep(100);
1151		if (fatal_signal_pending(current))
1152			return -EINTR;
1153		if (time_after(jiffies, timeout)) {
1154			dev_err(&dev->pci_dev->dev,
1155				"Device not ready; aborting initialisation\n");
1156			return -ENODEV;
1157		}
1158	}
1159
1160	return 0;
1161}
1162
1163/*
1164 * If the device has been passed off to us in an enabled state, just clear
1165 * the enabled bit.  The spec says we should set the 'shutdown notification
1166 * bits', but doing so may cause the device to complete commands to the
1167 * admin queue ... and we don't know what memory that might be pointing at!
1168 */
1169static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1170{
1171	u32 cc = readl(&dev->bar->cc);
1172
1173	if (cc & NVME_CC_ENABLE)
1174		writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1175	return nvme_wait_ready(dev, cap, false);
1176}
1177
1178static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1179{
1180	return nvme_wait_ready(dev, cap, true);
1181}
1182
1183static int nvme_configure_admin_queue(struct nvme_dev *dev)
1184{
1185	int result;
1186	u32 aqa;
1187	u64 cap = readq(&dev->bar->cap);
1188	struct nvme_queue *nvmeq;
1189
1190	dev->dbs = ((void __iomem *)dev->bar) + 4096;
1191	dev->db_stride = NVME_CAP_STRIDE(cap);
1192
1193	result = nvme_disable_ctrl(dev, cap);
1194	if (result < 0)
1195		return result;
1196
1197	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1198	if (!nvmeq)
1199		return -ENOMEM;
1200
1201	aqa = nvmeq->q_depth - 1;
1202	aqa |= aqa << 16;
1203
1204	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1205	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1206	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1207	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1208
1209	writel(aqa, &dev->bar->aqa);
1210	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1211	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1212	writel(dev->ctrl_config, &dev->bar->cc);
1213
1214	result = nvme_enable_ctrl(dev, cap);
1215	if (result)
1216		goto free_q;
1217
1218	result = queue_request_irq(dev, nvmeq, "nvme admin");
1219	if (result)
1220		goto free_q;
1221
1222	dev->queues[0] = nvmeq;
1223	return result;
1224
1225 free_q:
1226	nvme_free_queue_mem(nvmeq);
1227	return result;
1228}
1229
1230struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1231				unsigned long addr, unsigned length)
1232{
1233	int i, err, count, nents, offset;
1234	struct scatterlist *sg;
1235	struct page **pages;
1236	struct nvme_iod *iod;
1237
1238	if (addr & 3)
1239		return ERR_PTR(-EINVAL);
1240	if (!length || length > INT_MAX - PAGE_SIZE)
1241		return ERR_PTR(-EINVAL);
1242
1243	offset = offset_in_page(addr);
1244	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1245	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1246	if (!pages)
1247		return ERR_PTR(-ENOMEM);
1248
1249	err = get_user_pages_fast(addr, count, 1, pages);
1250	if (err < count) {
1251		count = err;
1252		err = -EFAULT;
1253		goto put_pages;
1254	}
1255
1256	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1257	sg = iod->sg;
1258	sg_init_table(sg, count);
1259	for (i = 0; i < count; i++) {
1260		sg_set_page(&sg[i], pages[i],
1261			    min_t(unsigned, length, PAGE_SIZE - offset),
1262			    offset);
1263		length -= (PAGE_SIZE - offset);
1264		offset = 0;
1265	}
1266	sg_mark_end(&sg[i - 1]);
1267	iod->nents = count;
1268
1269	err = -ENOMEM;
1270	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1271				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1272	if (!nents)
1273		goto free_iod;
1274
1275	kfree(pages);
1276	return iod;
1277
1278 free_iod:
1279	kfree(iod);
1280 put_pages:
1281	for (i = 0; i < count; i++)
1282		put_page(pages[i]);
1283	kfree(pages);
1284	return ERR_PTR(err);
1285}
1286
1287void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1288			struct nvme_iod *iod)
1289{
1290	int i;
1291
1292	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1293				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1294
1295	for (i = 0; i < iod->nents; i++)
1296		put_page(sg_page(&iod->sg[i]));
1297}
1298
1299static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1300{
1301	struct nvme_dev *dev = ns->dev;
1302	struct nvme_queue *nvmeq;
1303	struct nvme_user_io io;
1304	struct nvme_command c;
1305	unsigned length, meta_len;
1306	int status, i;
1307	struct nvme_iod *iod, *meta_iod = NULL;
1308	dma_addr_t meta_dma_addr;
1309	void *meta, *uninitialized_var(meta_mem);
1310
1311	if (copy_from_user(&io, uio, sizeof(io)))
1312		return -EFAULT;
1313	length = (io.nblocks + 1) << ns->lba_shift;
1314	meta_len = (io.nblocks + 1) * ns->ms;
1315
1316	if (meta_len && ((io.metadata & 3) || !io.metadata))
1317		return -EINVAL;
1318
1319	switch (io.opcode) {
1320	case nvme_cmd_write:
1321	case nvme_cmd_read:
1322	case nvme_cmd_compare:
1323		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1324		break;
1325	default:
1326		return -EINVAL;
1327	}
1328
1329	if (IS_ERR(iod))
1330		return PTR_ERR(iod);
1331
1332	memset(&c, 0, sizeof(c));
1333	c.rw.opcode = io.opcode;
1334	c.rw.flags = io.flags;
1335	c.rw.nsid = cpu_to_le32(ns->ns_id);
1336	c.rw.slba = cpu_to_le64(io.slba);
1337	c.rw.length = cpu_to_le16(io.nblocks);
1338	c.rw.control = cpu_to_le16(io.control);
1339	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1340	c.rw.reftag = cpu_to_le32(io.reftag);
1341	c.rw.apptag = cpu_to_le16(io.apptag);
1342	c.rw.appmask = cpu_to_le16(io.appmask);
1343
1344	if (meta_len) {
1345		meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1346		if (IS_ERR(meta_iod)) {
1347			status = PTR_ERR(meta_iod);
1348			meta_iod = NULL;
1349			goto unmap;
1350		}
1351
1352		meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1353						&meta_dma_addr, GFP_KERNEL);
1354		if (!meta_mem) {
1355			status = -ENOMEM;
1356			goto unmap;
1357		}
1358
1359		if (io.opcode & 1) {
1360			int meta_offset = 0;
1361
1362			for (i = 0; i < meta_iod->nents; i++) {
1363				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1364						meta_iod->sg[i].offset;
1365				memcpy(meta_mem + meta_offset, meta,
1366						meta_iod->sg[i].length);
1367				kunmap_atomic(meta);
1368				meta_offset += meta_iod->sg[i].length;
1369			}
1370		}
1371
1372		c.rw.metadata = cpu_to_le64(meta_dma_addr);
1373	}
1374
1375	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1376
1377	nvmeq = get_nvmeq(dev);
1378	/*
1379	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1380	 * disabled.  We may be preempted at any point, and be rescheduled
1381	 * to a different CPU.  That will cause cacheline bouncing, but no
1382	 * additional races since q_lock already protects against other CPUs.
1383	 */
1384	put_nvmeq(nvmeq);
1385	if (length != (io.nblocks + 1) << ns->lba_shift)
1386		status = -ENOMEM;
1387	else
1388		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1389
1390	if (meta_len) {
1391		if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1392			int meta_offset = 0;
1393
1394			for (i = 0; i < meta_iod->nents; i++) {
1395				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1396						meta_iod->sg[i].offset;
1397				memcpy(meta, meta_mem + meta_offset,
1398						meta_iod->sg[i].length);
1399				kunmap_atomic(meta);
1400				meta_offset += meta_iod->sg[i].length;
1401			}
1402		}
1403
1404		dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1405								meta_dma_addr);
1406	}
1407
1408 unmap:
1409	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1410	nvme_free_iod(dev, iod);
1411
1412	if (meta_iod) {
1413		nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1414		nvme_free_iod(dev, meta_iod);
1415	}
1416
1417	return status;
1418}
1419
1420static int nvme_user_admin_cmd(struct nvme_dev *dev,
1421					struct nvme_admin_cmd __user *ucmd)
1422{
1423	struct nvme_admin_cmd cmd;
1424	struct nvme_command c;
1425	int status, length;
1426	struct nvme_iod *uninitialized_var(iod);
1427	unsigned timeout;
1428
1429	if (!capable(CAP_SYS_ADMIN))
1430		return -EACCES;
1431	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1432		return -EFAULT;
1433
1434	memset(&c, 0, sizeof(c));
1435	c.common.opcode = cmd.opcode;
1436	c.common.flags = cmd.flags;
1437	c.common.nsid = cpu_to_le32(cmd.nsid);
1438	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1439	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1440	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1441	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1442	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1443	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1444	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1445	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1446
1447	length = cmd.data_len;
1448	if (cmd.data_len) {
1449		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1450								length);
1451		if (IS_ERR(iod))
1452			return PTR_ERR(iod);
1453		length = nvme_setup_prps(dev, &c.common, iod, length,
1454								GFP_KERNEL);
1455	}
1456
1457	timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1458								ADMIN_TIMEOUT;
1459	if (length != cmd.data_len)
1460		status = -ENOMEM;
1461	else
1462		status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1463								timeout);
1464
1465	if (cmd.data_len) {
1466		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1467		nvme_free_iod(dev, iod);
1468	}
1469
1470	if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1471							sizeof(cmd.result)))
1472		status = -EFAULT;
1473
1474	return status;
1475}
1476
1477static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1478							unsigned long arg)
1479{
1480	struct nvme_ns *ns = bdev->bd_disk->private_data;
1481
1482	switch (cmd) {
1483	case NVME_IOCTL_ID:
1484		return ns->ns_id;
1485	case NVME_IOCTL_ADMIN_CMD:
1486		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1487	case NVME_IOCTL_SUBMIT_IO:
1488		return nvme_submit_io(ns, (void __user *)arg);
1489	case SG_GET_VERSION_NUM:
1490		return nvme_sg_get_version_num((void __user *)arg);
1491	case SG_IO:
1492		return nvme_sg_io(ns, (void __user *)arg);
1493	default:
1494		return -ENOTTY;
1495	}
1496}
1497
1498static const struct block_device_operations nvme_fops = {
1499	.owner		= THIS_MODULE,
1500	.ioctl		= nvme_ioctl,
1501	.compat_ioctl	= nvme_ioctl,
1502};
1503
1504static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1505{
1506	while (bio_list_peek(&nvmeq->sq_cong)) {
1507		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1508		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1509
1510		if (bio_list_empty(&nvmeq->sq_cong))
1511			remove_wait_queue(&nvmeq->sq_full,
1512							&nvmeq->sq_cong_wait);
1513		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1514			if (bio_list_empty(&nvmeq->sq_cong))
1515				add_wait_queue(&nvmeq->sq_full,
1516							&nvmeq->sq_cong_wait);
1517			bio_list_add_head(&nvmeq->sq_cong, bio);
1518			break;
1519		}
1520	}
1521}
1522
1523static int nvme_kthread(void *data)
1524{
1525	struct nvme_dev *dev;
1526
1527	while (!kthread_should_stop()) {
1528		set_current_state(TASK_INTERRUPTIBLE);
1529		spin_lock(&dev_list_lock);
1530		list_for_each_entry(dev, &dev_list, node) {
1531			int i;
1532			for (i = 0; i < dev->queue_count; i++) {
1533				struct nvme_queue *nvmeq = dev->queues[i];
1534				if (!nvmeq)
1535					continue;
1536				spin_lock_irq(&nvmeq->q_lock);
1537				if (nvme_process_cq(nvmeq))
1538					printk("process_cq did something\n");
1539				nvme_cancel_ios(nvmeq, true);
1540				nvme_resubmit_bios(nvmeq);
1541				spin_unlock_irq(&nvmeq->q_lock);
1542			}
1543		}
1544		spin_unlock(&dev_list_lock);
1545		schedule_timeout(round_jiffies_relative(HZ));
1546	}
1547	return 0;
1548}
1549
1550static DEFINE_IDA(nvme_index_ida);
1551
1552static int nvme_get_ns_idx(void)
1553{
1554	int index, error;
1555
1556	do {
1557		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1558			return -1;
1559
1560		spin_lock(&dev_list_lock);
1561		error = ida_get_new(&nvme_index_ida, &index);
1562		spin_unlock(&dev_list_lock);
1563	} while (error == -EAGAIN);
1564
1565	if (error)
1566		index = -1;
1567	return index;
1568}
1569
1570static void nvme_put_ns_idx(int index)
1571{
1572	spin_lock(&dev_list_lock);
1573	ida_remove(&nvme_index_ida, index);
1574	spin_unlock(&dev_list_lock);
1575}
1576
1577static void nvme_config_discard(struct nvme_ns *ns)
1578{
1579	u32 logical_block_size = queue_logical_block_size(ns->queue);
1580	ns->queue->limits.discard_zeroes_data = 0;
1581	ns->queue->limits.discard_alignment = logical_block_size;
1582	ns->queue->limits.discard_granularity = logical_block_size;
1583	ns->queue->limits.max_discard_sectors = 0xffffffff;
1584	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1585}
1586
1587static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1588			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1589{
1590	struct nvme_ns *ns;
1591	struct gendisk *disk;
1592	int lbaf;
1593
1594	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1595		return NULL;
1596
1597	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1598	if (!ns)
1599		return NULL;
1600	ns->queue = blk_alloc_queue(GFP_KERNEL);
1601	if (!ns->queue)
1602		goto out_free_ns;
1603	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1604	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1605	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1606	blk_queue_make_request(ns->queue, nvme_make_request);
1607	ns->dev = dev;
1608	ns->queue->queuedata = ns;
1609
1610	disk = alloc_disk(NVME_MINORS);
1611	if (!disk)
1612		goto out_free_queue;
1613	ns->ns_id = nsid;
1614	ns->disk = disk;
1615	lbaf = id->flbas & 0xf;
1616	ns->lba_shift = id->lbaf[lbaf].ds;
1617	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1618	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1619	if (dev->max_hw_sectors)
1620		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1621
1622	disk->major = nvme_major;
1623	disk->minors = NVME_MINORS;
1624	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1625	disk->fops = &nvme_fops;
1626	disk->private_data = ns;
1627	disk->queue = ns->queue;
1628	disk->driverfs_dev = &dev->pci_dev->dev;
1629	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1630	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1631
1632	if (dev->oncs & NVME_CTRL_ONCS_DSM)
1633		nvme_config_discard(ns);
1634
1635	return ns;
1636
1637 out_free_queue:
1638	blk_cleanup_queue(ns->queue);
1639 out_free_ns:
1640	kfree(ns);
1641	return NULL;
1642}
1643
1644static void nvme_ns_free(struct nvme_ns *ns)
1645{
1646	int index = ns->disk->first_minor / NVME_MINORS;
1647	put_disk(ns->disk);
1648	nvme_put_ns_idx(index);
1649	blk_cleanup_queue(ns->queue);
1650	kfree(ns);
1651}
1652
1653static int set_queue_count(struct nvme_dev *dev, int count)
1654{
1655	int status;
1656	u32 result;
1657	u32 q_count = (count - 1) | ((count - 1) << 16);
1658
1659	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1660								&result);
1661	if (status)
1662		return -EIO;
1663	return min(result & 0xffff, result >> 16) + 1;
1664}
1665
1666static int nvme_setup_io_queues(struct nvme_dev *dev)
1667{
1668	struct pci_dev *pdev = dev->pci_dev;
1669	int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
1670
1671	nr_io_queues = num_online_cpus();
1672	result = set_queue_count(dev, nr_io_queues);
1673	if (result < 0)
1674		return result;
1675	if (result < nr_io_queues)
1676		nr_io_queues = result;
1677
1678	/* Deregister the admin queue's interrupt */
1679	free_irq(dev->entry[0].vector, dev->queues[0]);
1680
1681	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1682	if (db_bar_size > 8192) {
1683		iounmap(dev->bar);
1684		dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1685		dev->dbs = ((void __iomem *)dev->bar) + 4096;
1686		dev->queues[0]->q_db = dev->dbs;
1687	}
1688
1689	vecs = nr_io_queues;
1690	for (i = 0; i < vecs; i++)
1691		dev->entry[i].entry = i;
1692	for (;;) {
1693		result = pci_enable_msix(pdev, dev->entry, vecs);
1694		if (result <= 0)
1695			break;
1696		vecs = result;
1697	}
1698
1699	if (result < 0) {
1700		vecs = nr_io_queues;
1701		if (vecs > 32)
1702			vecs = 32;
1703		for (;;) {
1704			result = pci_enable_msi_block(pdev, vecs);
1705			if (result == 0) {
1706				for (i = 0; i < vecs; i++)
1707					dev->entry[i].vector = i + pdev->irq;
1708				break;
1709			} else if (result < 0) {
1710				vecs = 1;
1711				break;
1712			}
1713			vecs = result;
1714		}
1715	}
1716
1717	/*
1718	 * Should investigate if there's a performance win from allocating
1719	 * more queues than interrupt vectors; it might allow the submission
1720	 * path to scale better, even if the receive path is limited by the
1721	 * number of interrupts.
1722	 */
1723	nr_io_queues = vecs;
1724
1725	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1726	/* XXX: handle failure here */
1727
1728	cpu = cpumask_first(cpu_online_mask);
1729	for (i = 0; i < nr_io_queues; i++) {
1730		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1731		cpu = cpumask_next(cpu, cpu_online_mask);
1732	}
1733
1734	q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1735								NVME_Q_DEPTH);
1736	for (i = 0; i < nr_io_queues; i++) {
1737		dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1738		if (IS_ERR(dev->queues[i + 1]))
1739			return PTR_ERR(dev->queues[i + 1]);
1740		dev->queue_count++;
1741	}
1742
1743	for (; i < num_possible_cpus(); i++) {
1744		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1745		dev->queues[i + 1] = dev->queues[target + 1];
1746	}
1747
1748	return 0;
1749}
1750
1751static void nvme_free_queues(struct nvme_dev *dev)
1752{
1753	int i;
1754
1755	for (i = dev->queue_count - 1; i >= 0; i--)
1756		nvme_free_queue(dev, i);
1757}
1758
1759/*
1760 * Return: error value if an error occurred setting up the queues or calling
1761 * Identify Device.  0 if these succeeded, even if adding some of the
1762 * namespaces failed.  At the moment, these failures are silent.  TBD which
1763 * failures should be reported.
1764 */
1765static int nvme_dev_add(struct nvme_dev *dev)
1766{
1767	int res, nn, i;
1768	struct nvme_ns *ns;
1769	struct nvme_id_ctrl *ctrl;
1770	struct nvme_id_ns *id_ns;
1771	void *mem;
1772	dma_addr_t dma_addr;
1773	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1774
1775	res = nvme_setup_io_queues(dev);
1776	if (res)
1777		return res;
1778
1779	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1780								GFP_KERNEL);
1781	if (!mem)
1782		return -ENOMEM;
1783
1784	res = nvme_identify(dev, 0, 1, dma_addr);
1785	if (res) {
1786		res = -EIO;
1787		goto out;
1788	}
1789
1790	ctrl = mem;
1791	nn = le32_to_cpup(&ctrl->nn);
1792	dev->oncs = le16_to_cpup(&ctrl->oncs);
1793	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1794	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1795	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1796	if (ctrl->mdts)
1797		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1798	if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1799			(dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1800		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1801
1802	id_ns = mem;
1803	for (i = 1; i <= nn; i++) {
1804		res = nvme_identify(dev, i, 0, dma_addr);
1805		if (res)
1806			continue;
1807
1808		if (id_ns->ncap == 0)
1809			continue;
1810
1811		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1812							dma_addr + 4096, NULL);
1813		if (res)
1814			memset(mem + 4096, 0, 4096);
1815
1816		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1817		if (ns)
1818			list_add_tail(&ns->list, &dev->namespaces);
1819	}
1820	list_for_each_entry(ns, &dev->namespaces, list)
1821		add_disk(ns->disk);
1822	res = 0;
1823
1824 out:
1825	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1826	return res;
1827}
1828
1829static int nvme_dev_remove(struct nvme_dev *dev)
1830{
1831	struct nvme_ns *ns, *next;
1832
1833	spin_lock(&dev_list_lock);
1834	list_del(&dev->node);
1835	spin_unlock(&dev_list_lock);
1836
1837	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1838		list_del(&ns->list);
1839		del_gendisk(ns->disk);
1840		nvme_ns_free(ns);
1841	}
1842
1843	nvme_free_queues(dev);
1844
1845	return 0;
1846}
1847
1848static int nvme_setup_prp_pools(struct nvme_dev *dev)
1849{
1850	struct device *dmadev = &dev->pci_dev->dev;
1851	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1852						PAGE_SIZE, PAGE_SIZE, 0);
1853	if (!dev->prp_page_pool)
1854		return -ENOMEM;
1855
1856	/* Optimisation for I/Os between 4k and 128k */
1857	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1858						256, 256, 0);
1859	if (!dev->prp_small_pool) {
1860		dma_pool_destroy(dev->prp_page_pool);
1861		return -ENOMEM;
1862	}
1863	return 0;
1864}
1865
1866static void nvme_release_prp_pools(struct nvme_dev *dev)
1867{
1868	dma_pool_destroy(dev->prp_page_pool);
1869	dma_pool_destroy(dev->prp_small_pool);
1870}
1871
1872static DEFINE_IDA(nvme_instance_ida);
1873
1874static int nvme_set_instance(struct nvme_dev *dev)
1875{
1876	int instance, error;
1877
1878	do {
1879		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1880			return -ENODEV;
1881
1882		spin_lock(&dev_list_lock);
1883		error = ida_get_new(&nvme_instance_ida, &instance);
1884		spin_unlock(&dev_list_lock);
1885	} while (error == -EAGAIN);
1886
1887	if (error)
1888		return -ENODEV;
1889
1890	dev->instance = instance;
1891	return 0;
1892}
1893
1894static void nvme_release_instance(struct nvme_dev *dev)
1895{
1896	spin_lock(&dev_list_lock);
1897	ida_remove(&nvme_instance_ida, dev->instance);
1898	spin_unlock(&dev_list_lock);
1899}
1900
1901static void nvme_free_dev(struct kref *kref)
1902{
1903	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1904	nvme_dev_remove(dev);
1905	if (dev->pci_dev->msi_enabled)
1906		pci_disable_msi(dev->pci_dev);
1907	else if (dev->pci_dev->msix_enabled)
1908		pci_disable_msix(dev->pci_dev);
1909	iounmap(dev->bar);
1910	nvme_release_instance(dev);
1911	nvme_release_prp_pools(dev);
1912	pci_disable_device(dev->pci_dev);
1913	pci_release_regions(dev->pci_dev);
1914	kfree(dev->queues);
1915	kfree(dev->entry);
1916	kfree(dev);
1917}
1918
1919static int nvme_dev_open(struct inode *inode, struct file *f)
1920{
1921	struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1922								miscdev);
1923	kref_get(&dev->kref);
1924	f->private_data = dev;
1925	return 0;
1926}
1927
1928static int nvme_dev_release(struct inode *inode, struct file *f)
1929{
1930	struct nvme_dev *dev = f->private_data;
1931	kref_put(&dev->kref, nvme_free_dev);
1932	return 0;
1933}
1934
1935static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1936{
1937	struct nvme_dev *dev = f->private_data;
1938	switch (cmd) {
1939	case NVME_IOCTL_ADMIN_CMD:
1940		return nvme_user_admin_cmd(dev, (void __user *)arg);
1941	default:
1942		return -ENOTTY;
1943	}
1944}
1945
1946static const struct file_operations nvme_dev_fops = {
1947	.owner		= THIS_MODULE,
1948	.open		= nvme_dev_open,
1949	.release	= nvme_dev_release,
1950	.unlocked_ioctl	= nvme_dev_ioctl,
1951	.compat_ioctl	= nvme_dev_ioctl,
1952};
1953
1954static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1955{
1956	int bars, result = -ENOMEM;
1957	struct nvme_dev *dev;
1958
1959	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1960	if (!dev)
1961		return -ENOMEM;
1962	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1963								GFP_KERNEL);
1964	if (!dev->entry)
1965		goto free;
1966	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1967								GFP_KERNEL);
1968	if (!dev->queues)
1969		goto free;
1970
1971	if (pci_enable_device_mem(pdev))
1972		goto free;
1973	pci_set_master(pdev);
1974	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1975	if (pci_request_selected_regions(pdev, bars, "nvme"))
1976		goto disable;
1977
1978	INIT_LIST_HEAD(&dev->namespaces);
1979	dev->pci_dev = pdev;
1980	pci_set_drvdata(pdev, dev);
1981
1982	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1983		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1984	else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1985		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1986	else
1987		goto disable;
1988
1989	result = nvme_set_instance(dev);
1990	if (result)
1991		goto disable;
1992
1993	dev->entry[0].vector = pdev->irq;
1994
1995	result = nvme_setup_prp_pools(dev);
1996	if (result)
1997		goto disable_msix;
1998
1999	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2000	if (!dev->bar) {
2001		result = -ENOMEM;
2002		goto disable_msix;
2003	}
2004
2005	result = nvme_configure_admin_queue(dev);
2006	if (result)
2007		goto unmap;
2008	dev->queue_count++;
2009
2010	spin_lock(&dev_list_lock);
2011	list_add(&dev->node, &dev_list);
2012	spin_unlock(&dev_list_lock);
2013
2014	result = nvme_dev_add(dev);
2015	if (result)
2016		goto delete;
2017
2018	scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2019	dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2020	dev->miscdev.parent = &pdev->dev;
2021	dev->miscdev.name = dev->name;
2022	dev->miscdev.fops = &nvme_dev_fops;
2023	result = misc_register(&dev->miscdev);
2024	if (result)
2025		goto remove;
2026
2027	kref_init(&dev->kref);
2028	return 0;
2029
2030 remove:
2031	nvme_dev_remove(dev);
2032 delete:
2033	spin_lock(&dev_list_lock);
2034	list_del(&dev->node);
2035	spin_unlock(&dev_list_lock);
2036
2037	nvme_free_queues(dev);
2038 unmap:
2039	iounmap(dev->bar);
2040 disable_msix:
2041	if (dev->pci_dev->msi_enabled)
2042		pci_disable_msi(dev->pci_dev);
2043	else if (dev->pci_dev->msix_enabled)
2044		pci_disable_msix(dev->pci_dev);
2045	nvme_release_instance(dev);
2046	nvme_release_prp_pools(dev);
2047 disable:
2048	pci_disable_device(pdev);
2049	pci_release_regions(pdev);
2050 free:
2051	kfree(dev->queues);
2052	kfree(dev->entry);
2053	kfree(dev);
2054	return result;
2055}
2056
2057static void nvme_remove(struct pci_dev *pdev)
2058{
2059	struct nvme_dev *dev = pci_get_drvdata(pdev);
2060	misc_deregister(&dev->miscdev);
2061	kref_put(&dev->kref, nvme_free_dev);
2062}
2063
2064/* These functions are yet to be implemented */
2065#define nvme_error_detected NULL
2066#define nvme_dump_registers NULL
2067#define nvme_link_reset NULL
2068#define nvme_slot_reset NULL
2069#define nvme_error_resume NULL
2070#define nvme_suspend NULL
2071#define nvme_resume NULL
2072
2073static const struct pci_error_handlers nvme_err_handler = {
2074	.error_detected	= nvme_error_detected,
2075	.mmio_enabled	= nvme_dump_registers,
2076	.link_reset	= nvme_link_reset,
2077	.slot_reset	= nvme_slot_reset,
2078	.resume		= nvme_error_resume,
2079};
2080
2081/* Move to pci_ids.h later */
2082#define PCI_CLASS_STORAGE_EXPRESS	0x010802
2083
2084static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2085	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2086	{ 0, }
2087};
2088MODULE_DEVICE_TABLE(pci, nvme_id_table);
2089
2090static struct pci_driver nvme_driver = {
2091	.name		= "nvme",
2092	.id_table	= nvme_id_table,
2093	.probe		= nvme_probe,
2094	.remove		= nvme_remove,
2095	.suspend	= nvme_suspend,
2096	.resume		= nvme_resume,
2097	.err_handler	= &nvme_err_handler,
2098};
2099
2100static int __init nvme_init(void)
2101{
2102	int result;
2103
2104	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2105	if (IS_ERR(nvme_thread))
2106		return PTR_ERR(nvme_thread);
2107
2108	result = register_blkdev(nvme_major, "nvme");
2109	if (result < 0)
2110		goto kill_kthread;
2111	else if (result > 0)
2112		nvme_major = result;
2113
2114	result = pci_register_driver(&nvme_driver);
2115	if (result)
2116		goto unregister_blkdev;
2117	return 0;
2118
2119 unregister_blkdev:
2120	unregister_blkdev(nvme_major, "nvme");
2121 kill_kthread:
2122	kthread_stop(nvme_thread);
2123	return result;
2124}
2125
2126static void __exit nvme_exit(void)
2127{
2128	pci_unregister_driver(&nvme_driver);
2129	unregister_blkdev(nvme_major, "nvme");
2130	kthread_stop(nvme_thread);
2131}
2132
2133MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2134MODULE_LICENSE("GPL");
2135MODULE_VERSION("0.8");
2136module_init(nvme_init);
2137module_exit(nvme_exit);
2138