nvme-core.c revision 7d8224574cbd2326a6be00f319f5f7597abec3f6
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <scsi/sg.h>
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
49#define ADMIN_TIMEOUT	(60 * HZ)
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
61/*
62 * An NVM Express queue.  Each device has at least two (one for admin
63 * commands and one for I/O commands).
64 */
65struct nvme_queue {
66	struct device *q_dmadev;
67	struct nvme_dev *dev;
68	spinlock_t q_lock;
69	struct nvme_command *sq_cmds;
70	volatile struct nvme_completion *cqes;
71	dma_addr_t sq_dma_addr;
72	dma_addr_t cq_dma_addr;
73	wait_queue_head_t sq_full;
74	wait_queue_t sq_cong_wait;
75	struct bio_list sq_cong;
76	u32 __iomem *q_db;
77	u16 q_depth;
78	u16 cq_vector;
79	u16 sq_head;
80	u16 sq_tail;
81	u16 cq_head;
82	u8 cq_phase;
83	u8 cqe_seen;
84	unsigned long cmdid_data[];
85};
86
87/*
88 * Check we didin't inadvertently grow the command struct
89 */
90static inline void _nvme_check_size(void)
91{
92	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
93	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
94	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
95	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
96	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
97	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
98	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
99	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
100	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
101	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
102	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
103}
104
105typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
106						struct nvme_completion *);
107
108struct nvme_cmd_info {
109	nvme_completion_fn fn;
110	void *ctx;
111	unsigned long timeout;
112};
113
114static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
115{
116	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
117}
118
119/**
120 * alloc_cmdid() - Allocate a Command ID
121 * @nvmeq: The queue that will be used for this command
122 * @ctx: A pointer that will be passed to the handler
123 * @handler: The function to call on completion
124 *
125 * Allocate a Command ID for a queue.  The data passed in will
126 * be passed to the completion handler.  This is implemented by using
127 * the bottom two bits of the ctx pointer to store the handler ID.
128 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
129 * We can change this if it becomes a problem.
130 *
131 * May be called with local interrupts disabled and the q_lock held,
132 * or with interrupts enabled and no locks held.
133 */
134static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
135				nvme_completion_fn handler, unsigned timeout)
136{
137	int depth = nvmeq->q_depth - 1;
138	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
139	int cmdid;
140
141	do {
142		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
143		if (cmdid >= depth)
144			return -EBUSY;
145	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
146
147	info[cmdid].fn = handler;
148	info[cmdid].ctx = ctx;
149	info[cmdid].timeout = jiffies + timeout;
150	return cmdid;
151}
152
153static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
154				nvme_completion_fn handler, unsigned timeout)
155{
156	int cmdid;
157	wait_event_killable(nvmeq->sq_full,
158		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
159	return (cmdid < 0) ? -EINTR : cmdid;
160}
161
162/* Special values must be less than 0x1000 */
163#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
164#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
165#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
166#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
167#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
168
169static void special_completion(struct nvme_dev *dev, void *ctx,
170						struct nvme_completion *cqe)
171{
172	if (ctx == CMD_CTX_CANCELLED)
173		return;
174	if (ctx == CMD_CTX_FLUSH)
175		return;
176	if (ctx == CMD_CTX_COMPLETED) {
177		dev_warn(&dev->pci_dev->dev,
178				"completed id %d twice on queue %d\n",
179				cqe->command_id, le16_to_cpup(&cqe->sq_id));
180		return;
181	}
182	if (ctx == CMD_CTX_INVALID) {
183		dev_warn(&dev->pci_dev->dev,
184				"invalid id %d completed on queue %d\n",
185				cqe->command_id, le16_to_cpup(&cqe->sq_id));
186		return;
187	}
188
189	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
190}
191
192/*
193 * Called with local interrupts disabled and the q_lock held.  May not sleep.
194 */
195static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
196						nvme_completion_fn *fn)
197{
198	void *ctx;
199	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
200
201	if (cmdid >= nvmeq->q_depth) {
202		*fn = special_completion;
203		return CMD_CTX_INVALID;
204	}
205	if (fn)
206		*fn = info[cmdid].fn;
207	ctx = info[cmdid].ctx;
208	info[cmdid].fn = special_completion;
209	info[cmdid].ctx = CMD_CTX_COMPLETED;
210	clear_bit(cmdid, nvmeq->cmdid_data);
211	wake_up(&nvmeq->sq_full);
212	return ctx;
213}
214
215static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
216						nvme_completion_fn *fn)
217{
218	void *ctx;
219	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
220	if (fn)
221		*fn = info[cmdid].fn;
222	ctx = info[cmdid].ctx;
223	info[cmdid].fn = special_completion;
224	info[cmdid].ctx = CMD_CTX_CANCELLED;
225	return ctx;
226}
227
228struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
229{
230	return dev->queues[get_cpu() + 1];
231}
232
233void put_nvmeq(struct nvme_queue *nvmeq)
234{
235	put_cpu();
236}
237
238/**
239 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
240 * @nvmeq: The queue to use
241 * @cmd: The command to send
242 *
243 * Safe to use from interrupt context
244 */
245static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
246{
247	unsigned long flags;
248	u16 tail;
249	spin_lock_irqsave(&nvmeq->q_lock, flags);
250	tail = nvmeq->sq_tail;
251	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
252	if (++tail == nvmeq->q_depth)
253		tail = 0;
254	writel(tail, nvmeq->q_db);
255	nvmeq->sq_tail = tail;
256	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
257
258	return 0;
259}
260
261static __le64 **iod_list(struct nvme_iod *iod)
262{
263	return ((void *)iod) + iod->offset;
264}
265
266/*
267 * Will slightly overestimate the number of pages needed.  This is OK
268 * as it only leads to a small amount of wasted memory for the lifetime of
269 * the I/O.
270 */
271static int nvme_npages(unsigned size)
272{
273	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
274	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
275}
276
277static struct nvme_iod *
278nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
279{
280	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
281				sizeof(__le64 *) * nvme_npages(nbytes) +
282				sizeof(struct scatterlist) * nseg, gfp);
283
284	if (iod) {
285		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
286		iod->npages = -1;
287		iod->length = nbytes;
288		iod->nents = 0;
289		iod->start_time = jiffies;
290	}
291
292	return iod;
293}
294
295void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
296{
297	const int last_prp = PAGE_SIZE / 8 - 1;
298	int i;
299	__le64 **list = iod_list(iod);
300	dma_addr_t prp_dma = iod->first_dma;
301
302	if (iod->npages == 0)
303		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
304	for (i = 0; i < iod->npages; i++) {
305		__le64 *prp_list = list[i];
306		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
307		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
308		prp_dma = next_prp_dma;
309	}
310	kfree(iod);
311}
312
313static void nvme_start_io_acct(struct bio *bio)
314{
315	struct gendisk *disk = bio->bi_bdev->bd_disk;
316	const int rw = bio_data_dir(bio);
317	int cpu = part_stat_lock();
318	part_round_stats(cpu, &disk->part0);
319	part_stat_inc(cpu, &disk->part0, ios[rw]);
320	part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
321	part_inc_in_flight(&disk->part0, rw);
322	part_stat_unlock();
323}
324
325static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
326{
327	struct gendisk *disk = bio->bi_bdev->bd_disk;
328	const int rw = bio_data_dir(bio);
329	unsigned long duration = jiffies - start_time;
330	int cpu = part_stat_lock();
331	part_stat_add(cpu, &disk->part0, ticks[rw], duration);
332	part_round_stats(cpu, &disk->part0);
333	part_dec_in_flight(&disk->part0, rw);
334	part_stat_unlock();
335}
336
337static void bio_completion(struct nvme_dev *dev, void *ctx,
338						struct nvme_completion *cqe)
339{
340	struct nvme_iod *iod = ctx;
341	struct bio *bio = iod->private;
342	u16 status = le16_to_cpup(&cqe->status) >> 1;
343
344	if (iod->nents)
345		dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
346			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
347
348	nvme_end_io_acct(bio, iod->start_time);
349	nvme_free_iod(dev, iod);
350	if (status)
351		bio_endio(bio, -EIO);
352	else
353		bio_endio(bio, 0);
354}
355
356/* length is in bytes.  gfp flags indicates whether we may sleep. */
357int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
358			struct nvme_iod *iod, int total_len, gfp_t gfp)
359{
360	struct dma_pool *pool;
361	int length = total_len;
362	struct scatterlist *sg = iod->sg;
363	int dma_len = sg_dma_len(sg);
364	u64 dma_addr = sg_dma_address(sg);
365	int offset = offset_in_page(dma_addr);
366	__le64 *prp_list;
367	__le64 **list = iod_list(iod);
368	dma_addr_t prp_dma;
369	int nprps, i;
370
371	cmd->prp1 = cpu_to_le64(dma_addr);
372	length -= (PAGE_SIZE - offset);
373	if (length <= 0)
374		return total_len;
375
376	dma_len -= (PAGE_SIZE - offset);
377	if (dma_len) {
378		dma_addr += (PAGE_SIZE - offset);
379	} else {
380		sg = sg_next(sg);
381		dma_addr = sg_dma_address(sg);
382		dma_len = sg_dma_len(sg);
383	}
384
385	if (length <= PAGE_SIZE) {
386		cmd->prp2 = cpu_to_le64(dma_addr);
387		return total_len;
388	}
389
390	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
391	if (nprps <= (256 / 8)) {
392		pool = dev->prp_small_pool;
393		iod->npages = 0;
394	} else {
395		pool = dev->prp_page_pool;
396		iod->npages = 1;
397	}
398
399	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
400	if (!prp_list) {
401		cmd->prp2 = cpu_to_le64(dma_addr);
402		iod->npages = -1;
403		return (total_len - length) + PAGE_SIZE;
404	}
405	list[0] = prp_list;
406	iod->first_dma = prp_dma;
407	cmd->prp2 = cpu_to_le64(prp_dma);
408	i = 0;
409	for (;;) {
410		if (i == PAGE_SIZE / 8) {
411			__le64 *old_prp_list = prp_list;
412			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
413			if (!prp_list)
414				return total_len - length;
415			list[iod->npages++] = prp_list;
416			prp_list[0] = old_prp_list[i - 1];
417			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
418			i = 1;
419		}
420		prp_list[i++] = cpu_to_le64(dma_addr);
421		dma_len -= PAGE_SIZE;
422		dma_addr += PAGE_SIZE;
423		length -= PAGE_SIZE;
424		if (length <= 0)
425			break;
426		if (dma_len > 0)
427			continue;
428		BUG_ON(dma_len < 0);
429		sg = sg_next(sg);
430		dma_addr = sg_dma_address(sg);
431		dma_len = sg_dma_len(sg);
432	}
433
434	return total_len;
435}
436
437struct nvme_bio_pair {
438	struct bio b1, b2, *parent;
439	struct bio_vec *bv1, *bv2;
440	int err;
441	atomic_t cnt;
442};
443
444static void nvme_bio_pair_endio(struct bio *bio, int err)
445{
446	struct nvme_bio_pair *bp = bio->bi_private;
447
448	if (err)
449		bp->err = err;
450
451	if (atomic_dec_and_test(&bp->cnt)) {
452		bio_endio(bp->parent, bp->err);
453		if (bp->bv1)
454			kfree(bp->bv1);
455		if (bp->bv2)
456			kfree(bp->bv2);
457		kfree(bp);
458	}
459}
460
461static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
462							int len, int offset)
463{
464	struct nvme_bio_pair *bp;
465
466	BUG_ON(len > bio->bi_size);
467	BUG_ON(idx > bio->bi_vcnt);
468
469	bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
470	if (!bp)
471		return NULL;
472	bp->err = 0;
473
474	bp->b1 = *bio;
475	bp->b2 = *bio;
476
477	bp->b1.bi_size = len;
478	bp->b2.bi_size -= len;
479	bp->b1.bi_vcnt = idx;
480	bp->b2.bi_idx = idx;
481	bp->b2.bi_sector += len >> 9;
482
483	if (offset) {
484		bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
485								GFP_ATOMIC);
486		if (!bp->bv1)
487			goto split_fail_1;
488
489		bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
490								GFP_ATOMIC);
491		if (!bp->bv2)
492			goto split_fail_2;
493
494		memcpy(bp->bv1, bio->bi_io_vec,
495			bio->bi_max_vecs * sizeof(struct bio_vec));
496		memcpy(bp->bv2, bio->bi_io_vec,
497			bio->bi_max_vecs * sizeof(struct bio_vec));
498
499		bp->b1.bi_io_vec = bp->bv1;
500		bp->b2.bi_io_vec = bp->bv2;
501		bp->b2.bi_io_vec[idx].bv_offset += offset;
502		bp->b2.bi_io_vec[idx].bv_len -= offset;
503		bp->b1.bi_io_vec[idx].bv_len = offset;
504		bp->b1.bi_vcnt++;
505	} else
506		bp->bv1 = bp->bv2 = NULL;
507
508	bp->b1.bi_private = bp;
509	bp->b2.bi_private = bp;
510
511	bp->b1.bi_end_io = nvme_bio_pair_endio;
512	bp->b2.bi_end_io = nvme_bio_pair_endio;
513
514	bp->parent = bio;
515	atomic_set(&bp->cnt, 2);
516
517	return bp;
518
519 split_fail_2:
520	kfree(bp->bv1);
521 split_fail_1:
522	kfree(bp);
523	return NULL;
524}
525
526static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
527						int idx, int len, int offset)
528{
529	struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
530	if (!bp)
531		return -ENOMEM;
532
533	if (bio_list_empty(&nvmeq->sq_cong))
534		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
535	bio_list_add(&nvmeq->sq_cong, &bp->b1);
536	bio_list_add(&nvmeq->sq_cong, &bp->b2);
537
538	return 0;
539}
540
541/* NVMe scatterlists require no holes in the virtual address */
542#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
543			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
544
545static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
546		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
547{
548	struct bio_vec *bvec, *bvprv = NULL;
549	struct scatterlist *sg = NULL;
550	int i, length = 0, nsegs = 0, split_len = bio->bi_size;
551
552	if (nvmeq->dev->stripe_size)
553		split_len = nvmeq->dev->stripe_size -
554			((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
555
556	sg_init_table(iod->sg, psegs);
557	bio_for_each_segment(bvec, bio, i) {
558		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
559			sg->length += bvec->bv_len;
560		} else {
561			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
562				return nvme_split_and_submit(bio, nvmeq, i,
563								length, 0);
564
565			sg = sg ? sg + 1 : iod->sg;
566			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
567							bvec->bv_offset);
568			nsegs++;
569		}
570
571		if (split_len - length < bvec->bv_len)
572			return nvme_split_and_submit(bio, nvmeq, i, split_len,
573							split_len - length);
574		length += bvec->bv_len;
575		bvprv = bvec;
576	}
577	iod->nents = nsegs;
578	sg_mark_end(sg);
579	if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
580		return -ENOMEM;
581
582	BUG_ON(length != bio->bi_size);
583	return length;
584}
585
586/*
587 * We reuse the small pool to allocate the 16-byte range here as it is not
588 * worth having a special pool for these or additional cases to handle freeing
589 * the iod.
590 */
591static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
592		struct bio *bio, struct nvme_iod *iod, int cmdid)
593{
594	struct nvme_dsm_range *range;
595	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
596
597	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
598							&iod->first_dma);
599	if (!range)
600		return -ENOMEM;
601
602	iod_list(iod)[0] = (__le64 *)range;
603	iod->npages = 0;
604
605	range->cattr = cpu_to_le32(0);
606	range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
607	range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
608
609	memset(cmnd, 0, sizeof(*cmnd));
610	cmnd->dsm.opcode = nvme_cmd_dsm;
611	cmnd->dsm.command_id = cmdid;
612	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
613	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
614	cmnd->dsm.nr = 0;
615	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
616
617	if (++nvmeq->sq_tail == nvmeq->q_depth)
618		nvmeq->sq_tail = 0;
619	writel(nvmeq->sq_tail, nvmeq->q_db);
620
621	return 0;
622}
623
624static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
625								int cmdid)
626{
627	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
628
629	memset(cmnd, 0, sizeof(*cmnd));
630	cmnd->common.opcode = nvme_cmd_flush;
631	cmnd->common.command_id = cmdid;
632	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
633
634	if (++nvmeq->sq_tail == nvmeq->q_depth)
635		nvmeq->sq_tail = 0;
636	writel(nvmeq->sq_tail, nvmeq->q_db);
637
638	return 0;
639}
640
641int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
642{
643	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
644					special_completion, NVME_IO_TIMEOUT);
645	if (unlikely(cmdid < 0))
646		return cmdid;
647
648	return nvme_submit_flush(nvmeq, ns, cmdid);
649}
650
651/*
652 * Called with local interrupts disabled and the q_lock held.  May not sleep.
653 */
654static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
655								struct bio *bio)
656{
657	struct nvme_command *cmnd;
658	struct nvme_iod *iod;
659	enum dma_data_direction dma_dir;
660	int cmdid, length, result;
661	u16 control;
662	u32 dsmgmt;
663	int psegs = bio_phys_segments(ns->queue, bio);
664
665	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
666		result = nvme_submit_flush_data(nvmeq, ns);
667		if (result)
668			return result;
669	}
670
671	result = -ENOMEM;
672	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
673	if (!iod)
674		goto nomem;
675	iod->private = bio;
676
677	result = -EBUSY;
678	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
679	if (unlikely(cmdid < 0))
680		goto free_iod;
681
682	if (bio->bi_rw & REQ_DISCARD) {
683		result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
684		if (result)
685			goto free_cmdid;
686		return result;
687	}
688	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
689		return nvme_submit_flush(nvmeq, ns, cmdid);
690
691	control = 0;
692	if (bio->bi_rw & REQ_FUA)
693		control |= NVME_RW_FUA;
694	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
695		control |= NVME_RW_LR;
696
697	dsmgmt = 0;
698	if (bio->bi_rw & REQ_RAHEAD)
699		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
700
701	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
702
703	memset(cmnd, 0, sizeof(*cmnd));
704	if (bio_data_dir(bio)) {
705		cmnd->rw.opcode = nvme_cmd_write;
706		dma_dir = DMA_TO_DEVICE;
707	} else {
708		cmnd->rw.opcode = nvme_cmd_read;
709		dma_dir = DMA_FROM_DEVICE;
710	}
711
712	result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
713	if (result <= 0)
714		goto free_cmdid;
715	length = result;
716
717	cmnd->rw.command_id = cmdid;
718	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
719	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
720								GFP_ATOMIC);
721	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
722	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
723	cmnd->rw.control = cpu_to_le16(control);
724	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
725
726	nvme_start_io_acct(bio);
727	if (++nvmeq->sq_tail == nvmeq->q_depth)
728		nvmeq->sq_tail = 0;
729	writel(nvmeq->sq_tail, nvmeq->q_db);
730
731	return 0;
732
733 free_cmdid:
734	free_cmdid(nvmeq, cmdid, NULL);
735 free_iod:
736	nvme_free_iod(nvmeq->dev, iod);
737 nomem:
738	return result;
739}
740
741static int nvme_process_cq(struct nvme_queue *nvmeq)
742{
743	u16 head, phase;
744
745	head = nvmeq->cq_head;
746	phase = nvmeq->cq_phase;
747
748	for (;;) {
749		void *ctx;
750		nvme_completion_fn fn;
751		struct nvme_completion cqe = nvmeq->cqes[head];
752		if ((le16_to_cpu(cqe.status) & 1) != phase)
753			break;
754		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
755		if (++head == nvmeq->q_depth) {
756			head = 0;
757			phase = !phase;
758		}
759
760		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
761		fn(nvmeq->dev, ctx, &cqe);
762	}
763
764	/* If the controller ignores the cq head doorbell and continuously
765	 * writes to the queue, it is theoretically possible to wrap around
766	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
767	 * requires that 0.1% of your interrupts are handled, so this isn't
768	 * a big problem.
769	 */
770	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
771		return 0;
772
773	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
774	nvmeq->cq_head = head;
775	nvmeq->cq_phase = phase;
776
777	nvmeq->cqe_seen = 1;
778	return 1;
779}
780
781static void nvme_make_request(struct request_queue *q, struct bio *bio)
782{
783	struct nvme_ns *ns = q->queuedata;
784	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
785	int result = -EBUSY;
786
787	spin_lock_irq(&nvmeq->q_lock);
788	if (bio_list_empty(&nvmeq->sq_cong))
789		result = nvme_submit_bio_queue(nvmeq, ns, bio);
790	if (unlikely(result)) {
791		if (bio_list_empty(&nvmeq->sq_cong))
792			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
793		bio_list_add(&nvmeq->sq_cong, bio);
794	}
795
796	nvme_process_cq(nvmeq);
797	spin_unlock_irq(&nvmeq->q_lock);
798	put_nvmeq(nvmeq);
799}
800
801static irqreturn_t nvme_irq(int irq, void *data)
802{
803	irqreturn_t result;
804	struct nvme_queue *nvmeq = data;
805	spin_lock(&nvmeq->q_lock);
806	nvme_process_cq(nvmeq);
807	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
808	nvmeq->cqe_seen = 0;
809	spin_unlock(&nvmeq->q_lock);
810	return result;
811}
812
813static irqreturn_t nvme_irq_check(int irq, void *data)
814{
815	struct nvme_queue *nvmeq = data;
816	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
817	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
818		return IRQ_NONE;
819	return IRQ_WAKE_THREAD;
820}
821
822static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
823{
824	spin_lock_irq(&nvmeq->q_lock);
825	cancel_cmdid(nvmeq, cmdid, NULL);
826	spin_unlock_irq(&nvmeq->q_lock);
827}
828
829struct sync_cmd_info {
830	struct task_struct *task;
831	u32 result;
832	int status;
833};
834
835static void sync_completion(struct nvme_dev *dev, void *ctx,
836						struct nvme_completion *cqe)
837{
838	struct sync_cmd_info *cmdinfo = ctx;
839	cmdinfo->result = le32_to_cpup(&cqe->result);
840	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
841	wake_up_process(cmdinfo->task);
842}
843
844/*
845 * Returns 0 on success.  If the result is negative, it's a Linux error code;
846 * if the result is positive, it's an NVM Express status code
847 */
848int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
849						u32 *result, unsigned timeout)
850{
851	int cmdid;
852	struct sync_cmd_info cmdinfo;
853
854	cmdinfo.task = current;
855	cmdinfo.status = -EINTR;
856
857	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
858								timeout);
859	if (cmdid < 0)
860		return cmdid;
861	cmd->common.command_id = cmdid;
862
863	set_current_state(TASK_KILLABLE);
864	nvme_submit_cmd(nvmeq, cmd);
865	schedule_timeout(timeout);
866
867	if (cmdinfo.status == -EINTR) {
868		nvme_abort_command(nvmeq, cmdid);
869		return -EINTR;
870	}
871
872	if (result)
873		*result = cmdinfo.result;
874
875	return cmdinfo.status;
876}
877
878int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
879								u32 *result)
880{
881	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
882}
883
884static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
885{
886	int status;
887	struct nvme_command c;
888
889	memset(&c, 0, sizeof(c));
890	c.delete_queue.opcode = opcode;
891	c.delete_queue.qid = cpu_to_le16(id);
892
893	status = nvme_submit_admin_cmd(dev, &c, NULL);
894	if (status)
895		return -EIO;
896	return 0;
897}
898
899static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
900						struct nvme_queue *nvmeq)
901{
902	int status;
903	struct nvme_command c;
904	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
905
906	memset(&c, 0, sizeof(c));
907	c.create_cq.opcode = nvme_admin_create_cq;
908	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
909	c.create_cq.cqid = cpu_to_le16(qid);
910	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
911	c.create_cq.cq_flags = cpu_to_le16(flags);
912	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
913
914	status = nvme_submit_admin_cmd(dev, &c, NULL);
915	if (status)
916		return -EIO;
917	return 0;
918}
919
920static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
921						struct nvme_queue *nvmeq)
922{
923	int status;
924	struct nvme_command c;
925	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
926
927	memset(&c, 0, sizeof(c));
928	c.create_sq.opcode = nvme_admin_create_sq;
929	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
930	c.create_sq.sqid = cpu_to_le16(qid);
931	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
932	c.create_sq.sq_flags = cpu_to_le16(flags);
933	c.create_sq.cqid = cpu_to_le16(qid);
934
935	status = nvme_submit_admin_cmd(dev, &c, NULL);
936	if (status)
937		return -EIO;
938	return 0;
939}
940
941static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
942{
943	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
944}
945
946static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
947{
948	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
949}
950
951int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
952							dma_addr_t dma_addr)
953{
954	struct nvme_command c;
955
956	memset(&c, 0, sizeof(c));
957	c.identify.opcode = nvme_admin_identify;
958	c.identify.nsid = cpu_to_le32(nsid);
959	c.identify.prp1 = cpu_to_le64(dma_addr);
960	c.identify.cns = cpu_to_le32(cns);
961
962	return nvme_submit_admin_cmd(dev, &c, NULL);
963}
964
965int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
966					dma_addr_t dma_addr, u32 *result)
967{
968	struct nvme_command c;
969
970	memset(&c, 0, sizeof(c));
971	c.features.opcode = nvme_admin_get_features;
972	c.features.nsid = cpu_to_le32(nsid);
973	c.features.prp1 = cpu_to_le64(dma_addr);
974	c.features.fid = cpu_to_le32(fid);
975
976	return nvme_submit_admin_cmd(dev, &c, result);
977}
978
979int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
980					dma_addr_t dma_addr, u32 *result)
981{
982	struct nvme_command c;
983
984	memset(&c, 0, sizeof(c));
985	c.features.opcode = nvme_admin_set_features;
986	c.features.prp1 = cpu_to_le64(dma_addr);
987	c.features.fid = cpu_to_le32(fid);
988	c.features.dword11 = cpu_to_le32(dword11);
989
990	return nvme_submit_admin_cmd(dev, &c, result);
991}
992
993/**
994 * nvme_cancel_ios - Cancel outstanding I/Os
995 * @queue: The queue to cancel I/Os on
996 * @timeout: True to only cancel I/Os which have timed out
997 */
998static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
999{
1000	int depth = nvmeq->q_depth - 1;
1001	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1002	unsigned long now = jiffies;
1003	int cmdid;
1004
1005	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1006		void *ctx;
1007		nvme_completion_fn fn;
1008		static struct nvme_completion cqe = {
1009			.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1010		};
1011
1012		if (timeout && !time_after(now, info[cmdid].timeout))
1013			continue;
1014		if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1015			continue;
1016		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1017		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1018		fn(nvmeq->dev, ctx, &cqe);
1019	}
1020}
1021
1022static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1023{
1024	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1025				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1026	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1027					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1028	kfree(nvmeq);
1029}
1030
1031static void nvme_free_queue(struct nvme_dev *dev, int qid)
1032{
1033	struct nvme_queue *nvmeq = dev->queues[qid];
1034	int vector = dev->entry[nvmeq->cq_vector].vector;
1035
1036	spin_lock_irq(&nvmeq->q_lock);
1037	nvme_cancel_ios(nvmeq, false);
1038	while (bio_list_peek(&nvmeq->sq_cong)) {
1039		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1040		bio_endio(bio, -EIO);
1041	}
1042	spin_unlock_irq(&nvmeq->q_lock);
1043
1044	irq_set_affinity_hint(vector, NULL);
1045	free_irq(vector, nvmeq);
1046
1047	/* Don't tell the adapter to delete the admin queue */
1048	if (qid) {
1049		adapter_delete_sq(dev, qid);
1050		adapter_delete_cq(dev, qid);
1051	}
1052
1053	nvme_free_queue_mem(nvmeq);
1054}
1055
1056static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1057							int depth, int vector)
1058{
1059	struct device *dmadev = &dev->pci_dev->dev;
1060	unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1061						sizeof(struct nvme_cmd_info));
1062	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1063	if (!nvmeq)
1064		return NULL;
1065
1066	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1067					&nvmeq->cq_dma_addr, GFP_KERNEL);
1068	if (!nvmeq->cqes)
1069		goto free_nvmeq;
1070	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1071
1072	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1073					&nvmeq->sq_dma_addr, GFP_KERNEL);
1074	if (!nvmeq->sq_cmds)
1075		goto free_cqdma;
1076
1077	nvmeq->q_dmadev = dmadev;
1078	nvmeq->dev = dev;
1079	spin_lock_init(&nvmeq->q_lock);
1080	nvmeq->cq_head = 0;
1081	nvmeq->cq_phase = 1;
1082	init_waitqueue_head(&nvmeq->sq_full);
1083	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1084	bio_list_init(&nvmeq->sq_cong);
1085	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1086	nvmeq->q_depth = depth;
1087	nvmeq->cq_vector = vector;
1088
1089	return nvmeq;
1090
1091 free_cqdma:
1092	dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1093							nvmeq->cq_dma_addr);
1094 free_nvmeq:
1095	kfree(nvmeq);
1096	return NULL;
1097}
1098
1099static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1100							const char *name)
1101{
1102	if (use_threaded_interrupts)
1103		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1104					nvme_irq_check, nvme_irq,
1105					IRQF_DISABLED | IRQF_SHARED,
1106					name, nvmeq);
1107	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1108				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1109}
1110
1111static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1112					    int cq_size, int vector)
1113{
1114	int result;
1115	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1116
1117	if (!nvmeq)
1118		return ERR_PTR(-ENOMEM);
1119
1120	result = adapter_alloc_cq(dev, qid, nvmeq);
1121	if (result < 0)
1122		goto free_nvmeq;
1123
1124	result = adapter_alloc_sq(dev, qid, nvmeq);
1125	if (result < 0)
1126		goto release_cq;
1127
1128	result = queue_request_irq(dev, nvmeq, "nvme");
1129	if (result < 0)
1130		goto release_sq;
1131
1132	return nvmeq;
1133
1134 release_sq:
1135	adapter_delete_sq(dev, qid);
1136 release_cq:
1137	adapter_delete_cq(dev, qid);
1138 free_nvmeq:
1139	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1140				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1141	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1142					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1143	kfree(nvmeq);
1144	return ERR_PTR(result);
1145}
1146
1147static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1148{
1149	unsigned long timeout;
1150	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1151
1152	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1153
1154	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1155		msleep(100);
1156		if (fatal_signal_pending(current))
1157			return -EINTR;
1158		if (time_after(jiffies, timeout)) {
1159			dev_err(&dev->pci_dev->dev,
1160				"Device not ready; aborting initialisation\n");
1161			return -ENODEV;
1162		}
1163	}
1164
1165	return 0;
1166}
1167
1168/*
1169 * If the device has been passed off to us in an enabled state, just clear
1170 * the enabled bit.  The spec says we should set the 'shutdown notification
1171 * bits', but doing so may cause the device to complete commands to the
1172 * admin queue ... and we don't know what memory that might be pointing at!
1173 */
1174static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1175{
1176	u32 cc = readl(&dev->bar->cc);
1177
1178	if (cc & NVME_CC_ENABLE)
1179		writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1180	return nvme_wait_ready(dev, cap, false);
1181}
1182
1183static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1184{
1185	return nvme_wait_ready(dev, cap, true);
1186}
1187
1188static int nvme_configure_admin_queue(struct nvme_dev *dev)
1189{
1190	int result;
1191	u32 aqa;
1192	u64 cap = readq(&dev->bar->cap);
1193	struct nvme_queue *nvmeq;
1194
1195	dev->dbs = ((void __iomem *)dev->bar) + 4096;
1196	dev->db_stride = NVME_CAP_STRIDE(cap);
1197
1198	result = nvme_disable_ctrl(dev, cap);
1199	if (result < 0)
1200		return result;
1201
1202	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1203	if (!nvmeq)
1204		return -ENOMEM;
1205
1206	aqa = nvmeq->q_depth - 1;
1207	aqa |= aqa << 16;
1208
1209	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1210	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1211	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1212	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1213
1214	writel(aqa, &dev->bar->aqa);
1215	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1216	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1217	writel(dev->ctrl_config, &dev->bar->cc);
1218
1219	result = nvme_enable_ctrl(dev, cap);
1220	if (result)
1221		goto free_q;
1222
1223	result = queue_request_irq(dev, nvmeq, "nvme admin");
1224	if (result)
1225		goto free_q;
1226
1227	dev->queues[0] = nvmeq;
1228	return result;
1229
1230 free_q:
1231	nvme_free_queue_mem(nvmeq);
1232	return result;
1233}
1234
1235struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1236				unsigned long addr, unsigned length)
1237{
1238	int i, err, count, nents, offset;
1239	struct scatterlist *sg;
1240	struct page **pages;
1241	struct nvme_iod *iod;
1242
1243	if (addr & 3)
1244		return ERR_PTR(-EINVAL);
1245	if (!length || length > INT_MAX - PAGE_SIZE)
1246		return ERR_PTR(-EINVAL);
1247
1248	offset = offset_in_page(addr);
1249	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1250	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1251	if (!pages)
1252		return ERR_PTR(-ENOMEM);
1253
1254	err = get_user_pages_fast(addr, count, 1, pages);
1255	if (err < count) {
1256		count = err;
1257		err = -EFAULT;
1258		goto put_pages;
1259	}
1260
1261	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1262	sg = iod->sg;
1263	sg_init_table(sg, count);
1264	for (i = 0; i < count; i++) {
1265		sg_set_page(&sg[i], pages[i],
1266			    min_t(unsigned, length, PAGE_SIZE - offset),
1267			    offset);
1268		length -= (PAGE_SIZE - offset);
1269		offset = 0;
1270	}
1271	sg_mark_end(&sg[i - 1]);
1272	iod->nents = count;
1273
1274	err = -ENOMEM;
1275	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1276				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1277	if (!nents)
1278		goto free_iod;
1279
1280	kfree(pages);
1281	return iod;
1282
1283 free_iod:
1284	kfree(iod);
1285 put_pages:
1286	for (i = 0; i < count; i++)
1287		put_page(pages[i]);
1288	kfree(pages);
1289	return ERR_PTR(err);
1290}
1291
1292void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1293			struct nvme_iod *iod)
1294{
1295	int i;
1296
1297	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1298				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1299
1300	for (i = 0; i < iod->nents; i++)
1301		put_page(sg_page(&iod->sg[i]));
1302}
1303
1304static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1305{
1306	struct nvme_dev *dev = ns->dev;
1307	struct nvme_queue *nvmeq;
1308	struct nvme_user_io io;
1309	struct nvme_command c;
1310	unsigned length, meta_len;
1311	int status, i;
1312	struct nvme_iod *iod, *meta_iod = NULL;
1313	dma_addr_t meta_dma_addr;
1314	void *meta, *uninitialized_var(meta_mem);
1315
1316	if (copy_from_user(&io, uio, sizeof(io)))
1317		return -EFAULT;
1318	length = (io.nblocks + 1) << ns->lba_shift;
1319	meta_len = (io.nblocks + 1) * ns->ms;
1320
1321	if (meta_len && ((io.metadata & 3) || !io.metadata))
1322		return -EINVAL;
1323
1324	switch (io.opcode) {
1325	case nvme_cmd_write:
1326	case nvme_cmd_read:
1327	case nvme_cmd_compare:
1328		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1329		break;
1330	default:
1331		return -EINVAL;
1332	}
1333
1334	if (IS_ERR(iod))
1335		return PTR_ERR(iod);
1336
1337	memset(&c, 0, sizeof(c));
1338	c.rw.opcode = io.opcode;
1339	c.rw.flags = io.flags;
1340	c.rw.nsid = cpu_to_le32(ns->ns_id);
1341	c.rw.slba = cpu_to_le64(io.slba);
1342	c.rw.length = cpu_to_le16(io.nblocks);
1343	c.rw.control = cpu_to_le16(io.control);
1344	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1345	c.rw.reftag = cpu_to_le32(io.reftag);
1346	c.rw.apptag = cpu_to_le16(io.apptag);
1347	c.rw.appmask = cpu_to_le16(io.appmask);
1348
1349	if (meta_len) {
1350		meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1351		if (IS_ERR(meta_iod)) {
1352			status = PTR_ERR(meta_iod);
1353			meta_iod = NULL;
1354			goto unmap;
1355		}
1356
1357		meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1358						&meta_dma_addr, GFP_KERNEL);
1359		if (!meta_mem) {
1360			status = -ENOMEM;
1361			goto unmap;
1362		}
1363
1364		if (io.opcode & 1) {
1365			int meta_offset = 0;
1366
1367			for (i = 0; i < meta_iod->nents; i++) {
1368				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1369						meta_iod->sg[i].offset;
1370				memcpy(meta_mem + meta_offset, meta,
1371						meta_iod->sg[i].length);
1372				kunmap_atomic(meta);
1373				meta_offset += meta_iod->sg[i].length;
1374			}
1375		}
1376
1377		c.rw.metadata = cpu_to_le64(meta_dma_addr);
1378	}
1379
1380	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1381
1382	nvmeq = get_nvmeq(dev);
1383	/*
1384	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1385	 * disabled.  We may be preempted at any point, and be rescheduled
1386	 * to a different CPU.  That will cause cacheline bouncing, but no
1387	 * additional races since q_lock already protects against other CPUs.
1388	 */
1389	put_nvmeq(nvmeq);
1390	if (length != (io.nblocks + 1) << ns->lba_shift)
1391		status = -ENOMEM;
1392	else
1393		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1394
1395	if (meta_len) {
1396		if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1397			int meta_offset = 0;
1398
1399			for (i = 0; i < meta_iod->nents; i++) {
1400				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1401						meta_iod->sg[i].offset;
1402				memcpy(meta, meta_mem + meta_offset,
1403						meta_iod->sg[i].length);
1404				kunmap_atomic(meta);
1405				meta_offset += meta_iod->sg[i].length;
1406			}
1407		}
1408
1409		dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1410								meta_dma_addr);
1411	}
1412
1413 unmap:
1414	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1415	nvme_free_iod(dev, iod);
1416
1417	if (meta_iod) {
1418		nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1419		nvme_free_iod(dev, meta_iod);
1420	}
1421
1422	return status;
1423}
1424
1425static int nvme_user_admin_cmd(struct nvme_dev *dev,
1426					struct nvme_admin_cmd __user *ucmd)
1427{
1428	struct nvme_admin_cmd cmd;
1429	struct nvme_command c;
1430	int status, length;
1431	struct nvme_iod *uninitialized_var(iod);
1432	unsigned timeout;
1433
1434	if (!capable(CAP_SYS_ADMIN))
1435		return -EACCES;
1436	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1437		return -EFAULT;
1438
1439	memset(&c, 0, sizeof(c));
1440	c.common.opcode = cmd.opcode;
1441	c.common.flags = cmd.flags;
1442	c.common.nsid = cpu_to_le32(cmd.nsid);
1443	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1444	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1445	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1446	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1447	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1448	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1449	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1450	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1451
1452	length = cmd.data_len;
1453	if (cmd.data_len) {
1454		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1455								length);
1456		if (IS_ERR(iod))
1457			return PTR_ERR(iod);
1458		length = nvme_setup_prps(dev, &c.common, iod, length,
1459								GFP_KERNEL);
1460	}
1461
1462	timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1463								ADMIN_TIMEOUT;
1464	if (length != cmd.data_len)
1465		status = -ENOMEM;
1466	else
1467		status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1468								timeout);
1469
1470	if (cmd.data_len) {
1471		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1472		nvme_free_iod(dev, iod);
1473	}
1474
1475	if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1476							sizeof(cmd.result)))
1477		status = -EFAULT;
1478
1479	return status;
1480}
1481
1482static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1483							unsigned long arg)
1484{
1485	struct nvme_ns *ns = bdev->bd_disk->private_data;
1486
1487	switch (cmd) {
1488	case NVME_IOCTL_ID:
1489		return ns->ns_id;
1490	case NVME_IOCTL_ADMIN_CMD:
1491		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1492	case NVME_IOCTL_SUBMIT_IO:
1493		return nvme_submit_io(ns, (void __user *)arg);
1494	case SG_GET_VERSION_NUM:
1495		return nvme_sg_get_version_num((void __user *)arg);
1496	case SG_IO:
1497		return nvme_sg_io(ns, (void __user *)arg);
1498	default:
1499		return -ENOTTY;
1500	}
1501}
1502
1503static const struct block_device_operations nvme_fops = {
1504	.owner		= THIS_MODULE,
1505	.ioctl		= nvme_ioctl,
1506	.compat_ioctl	= nvme_ioctl,
1507};
1508
1509static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1510{
1511	while (bio_list_peek(&nvmeq->sq_cong)) {
1512		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1513		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1514
1515		if (bio_list_empty(&nvmeq->sq_cong))
1516			remove_wait_queue(&nvmeq->sq_full,
1517							&nvmeq->sq_cong_wait);
1518		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1519			if (bio_list_empty(&nvmeq->sq_cong))
1520				add_wait_queue(&nvmeq->sq_full,
1521							&nvmeq->sq_cong_wait);
1522			bio_list_add_head(&nvmeq->sq_cong, bio);
1523			break;
1524		}
1525	}
1526}
1527
1528static int nvme_kthread(void *data)
1529{
1530	struct nvme_dev *dev;
1531
1532	while (!kthread_should_stop()) {
1533		set_current_state(TASK_INTERRUPTIBLE);
1534		spin_lock(&dev_list_lock);
1535		list_for_each_entry(dev, &dev_list, node) {
1536			int i;
1537			for (i = 0; i < dev->queue_count; i++) {
1538				struct nvme_queue *nvmeq = dev->queues[i];
1539				if (!nvmeq)
1540					continue;
1541				spin_lock_irq(&nvmeq->q_lock);
1542				nvme_process_cq(nvmeq);
1543				nvme_cancel_ios(nvmeq, true);
1544				nvme_resubmit_bios(nvmeq);
1545				spin_unlock_irq(&nvmeq->q_lock);
1546			}
1547		}
1548		spin_unlock(&dev_list_lock);
1549		schedule_timeout(round_jiffies_relative(HZ));
1550	}
1551	return 0;
1552}
1553
1554static DEFINE_IDA(nvme_index_ida);
1555
1556static int nvme_get_ns_idx(void)
1557{
1558	int index, error;
1559
1560	do {
1561		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1562			return -1;
1563
1564		spin_lock(&dev_list_lock);
1565		error = ida_get_new(&nvme_index_ida, &index);
1566		spin_unlock(&dev_list_lock);
1567	} while (error == -EAGAIN);
1568
1569	if (error)
1570		index = -1;
1571	return index;
1572}
1573
1574static void nvme_put_ns_idx(int index)
1575{
1576	spin_lock(&dev_list_lock);
1577	ida_remove(&nvme_index_ida, index);
1578	spin_unlock(&dev_list_lock);
1579}
1580
1581static void nvme_config_discard(struct nvme_ns *ns)
1582{
1583	u32 logical_block_size = queue_logical_block_size(ns->queue);
1584	ns->queue->limits.discard_zeroes_data = 0;
1585	ns->queue->limits.discard_alignment = logical_block_size;
1586	ns->queue->limits.discard_granularity = logical_block_size;
1587	ns->queue->limits.max_discard_sectors = 0xffffffff;
1588	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1589}
1590
1591static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1592			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1593{
1594	struct nvme_ns *ns;
1595	struct gendisk *disk;
1596	int lbaf;
1597
1598	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1599		return NULL;
1600
1601	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1602	if (!ns)
1603		return NULL;
1604	ns->queue = blk_alloc_queue(GFP_KERNEL);
1605	if (!ns->queue)
1606		goto out_free_ns;
1607	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1608	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1609	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1610	blk_queue_make_request(ns->queue, nvme_make_request);
1611	ns->dev = dev;
1612	ns->queue->queuedata = ns;
1613
1614	disk = alloc_disk(NVME_MINORS);
1615	if (!disk)
1616		goto out_free_queue;
1617	ns->ns_id = nsid;
1618	ns->disk = disk;
1619	lbaf = id->flbas & 0xf;
1620	ns->lba_shift = id->lbaf[lbaf].ds;
1621	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1622	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1623	if (dev->max_hw_sectors)
1624		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1625
1626	disk->major = nvme_major;
1627	disk->minors = NVME_MINORS;
1628	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1629	disk->fops = &nvme_fops;
1630	disk->private_data = ns;
1631	disk->queue = ns->queue;
1632	disk->driverfs_dev = &dev->pci_dev->dev;
1633	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1634	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1635
1636	if (dev->oncs & NVME_CTRL_ONCS_DSM)
1637		nvme_config_discard(ns);
1638
1639	return ns;
1640
1641 out_free_queue:
1642	blk_cleanup_queue(ns->queue);
1643 out_free_ns:
1644	kfree(ns);
1645	return NULL;
1646}
1647
1648static void nvme_ns_free(struct nvme_ns *ns)
1649{
1650	int index = ns->disk->first_minor / NVME_MINORS;
1651	put_disk(ns->disk);
1652	nvme_put_ns_idx(index);
1653	blk_cleanup_queue(ns->queue);
1654	kfree(ns);
1655}
1656
1657static int set_queue_count(struct nvme_dev *dev, int count)
1658{
1659	int status;
1660	u32 result;
1661	u32 q_count = (count - 1) | ((count - 1) << 16);
1662
1663	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1664								&result);
1665	if (status)
1666		return -EIO;
1667	return min(result & 0xffff, result >> 16) + 1;
1668}
1669
1670static int nvme_setup_io_queues(struct nvme_dev *dev)
1671{
1672	struct pci_dev *pdev = dev->pci_dev;
1673	int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
1674
1675	nr_io_queues = num_online_cpus();
1676	result = set_queue_count(dev, nr_io_queues);
1677	if (result < 0)
1678		return result;
1679	if (result < nr_io_queues)
1680		nr_io_queues = result;
1681
1682	/* Deregister the admin queue's interrupt */
1683	free_irq(dev->entry[0].vector, dev->queues[0]);
1684
1685	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1686	if (db_bar_size > 8192) {
1687		iounmap(dev->bar);
1688		dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1689		dev->dbs = ((void __iomem *)dev->bar) + 4096;
1690		dev->queues[0]->q_db = dev->dbs;
1691	}
1692
1693	vecs = nr_io_queues;
1694	for (i = 0; i < vecs; i++)
1695		dev->entry[i].entry = i;
1696	for (;;) {
1697		result = pci_enable_msix(pdev, dev->entry, vecs);
1698		if (result <= 0)
1699			break;
1700		vecs = result;
1701	}
1702
1703	if (result < 0) {
1704		vecs = nr_io_queues;
1705		if (vecs > 32)
1706			vecs = 32;
1707		for (;;) {
1708			result = pci_enable_msi_block(pdev, vecs);
1709			if (result == 0) {
1710				for (i = 0; i < vecs; i++)
1711					dev->entry[i].vector = i + pdev->irq;
1712				break;
1713			} else if (result < 0) {
1714				vecs = 1;
1715				break;
1716			}
1717			vecs = result;
1718		}
1719	}
1720
1721	/*
1722	 * Should investigate if there's a performance win from allocating
1723	 * more queues than interrupt vectors; it might allow the submission
1724	 * path to scale better, even if the receive path is limited by the
1725	 * number of interrupts.
1726	 */
1727	nr_io_queues = vecs;
1728
1729	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1730	/* XXX: handle failure here */
1731
1732	cpu = cpumask_first(cpu_online_mask);
1733	for (i = 0; i < nr_io_queues; i++) {
1734		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1735		cpu = cpumask_next(cpu, cpu_online_mask);
1736	}
1737
1738	q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1739								NVME_Q_DEPTH);
1740	for (i = 0; i < nr_io_queues; i++) {
1741		dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1742		if (IS_ERR(dev->queues[i + 1]))
1743			return PTR_ERR(dev->queues[i + 1]);
1744		dev->queue_count++;
1745	}
1746
1747	for (; i < num_possible_cpus(); i++) {
1748		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1749		dev->queues[i + 1] = dev->queues[target + 1];
1750	}
1751
1752	return 0;
1753}
1754
1755static void nvme_free_queues(struct nvme_dev *dev)
1756{
1757	int i;
1758
1759	for (i = dev->queue_count - 1; i >= 0; i--)
1760		nvme_free_queue(dev, i);
1761}
1762
1763/*
1764 * Return: error value if an error occurred setting up the queues or calling
1765 * Identify Device.  0 if these succeeded, even if adding some of the
1766 * namespaces failed.  At the moment, these failures are silent.  TBD which
1767 * failures should be reported.
1768 */
1769static int nvme_dev_add(struct nvme_dev *dev)
1770{
1771	int res, nn, i;
1772	struct nvme_ns *ns;
1773	struct nvme_id_ctrl *ctrl;
1774	struct nvme_id_ns *id_ns;
1775	void *mem;
1776	dma_addr_t dma_addr;
1777	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1778
1779	res = nvme_setup_io_queues(dev);
1780	if (res)
1781		return res;
1782
1783	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1784								GFP_KERNEL);
1785	if (!mem)
1786		return -ENOMEM;
1787
1788	res = nvme_identify(dev, 0, 1, dma_addr);
1789	if (res) {
1790		res = -EIO;
1791		goto out;
1792	}
1793
1794	ctrl = mem;
1795	nn = le32_to_cpup(&ctrl->nn);
1796	dev->oncs = le16_to_cpup(&ctrl->oncs);
1797	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1798	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1799	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1800	if (ctrl->mdts)
1801		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1802	if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1803			(dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1804		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1805
1806	id_ns = mem;
1807	for (i = 1; i <= nn; i++) {
1808		res = nvme_identify(dev, i, 0, dma_addr);
1809		if (res)
1810			continue;
1811
1812		if (id_ns->ncap == 0)
1813			continue;
1814
1815		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1816							dma_addr + 4096, NULL);
1817		if (res)
1818			memset(mem + 4096, 0, 4096);
1819
1820		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1821		if (ns)
1822			list_add_tail(&ns->list, &dev->namespaces);
1823	}
1824	list_for_each_entry(ns, &dev->namespaces, list)
1825		add_disk(ns->disk);
1826	res = 0;
1827
1828 out:
1829	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1830	return res;
1831}
1832
1833static int nvme_dev_remove(struct nvme_dev *dev)
1834{
1835	struct nvme_ns *ns, *next;
1836
1837	spin_lock(&dev_list_lock);
1838	list_del(&dev->node);
1839	spin_unlock(&dev_list_lock);
1840
1841	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1842		list_del(&ns->list);
1843		del_gendisk(ns->disk);
1844		nvme_ns_free(ns);
1845	}
1846
1847	nvme_free_queues(dev);
1848
1849	return 0;
1850}
1851
1852static int nvme_setup_prp_pools(struct nvme_dev *dev)
1853{
1854	struct device *dmadev = &dev->pci_dev->dev;
1855	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1856						PAGE_SIZE, PAGE_SIZE, 0);
1857	if (!dev->prp_page_pool)
1858		return -ENOMEM;
1859
1860	/* Optimisation for I/Os between 4k and 128k */
1861	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1862						256, 256, 0);
1863	if (!dev->prp_small_pool) {
1864		dma_pool_destroy(dev->prp_page_pool);
1865		return -ENOMEM;
1866	}
1867	return 0;
1868}
1869
1870static void nvme_release_prp_pools(struct nvme_dev *dev)
1871{
1872	dma_pool_destroy(dev->prp_page_pool);
1873	dma_pool_destroy(dev->prp_small_pool);
1874}
1875
1876static DEFINE_IDA(nvme_instance_ida);
1877
1878static int nvme_set_instance(struct nvme_dev *dev)
1879{
1880	int instance, error;
1881
1882	do {
1883		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1884			return -ENODEV;
1885
1886		spin_lock(&dev_list_lock);
1887		error = ida_get_new(&nvme_instance_ida, &instance);
1888		spin_unlock(&dev_list_lock);
1889	} while (error == -EAGAIN);
1890
1891	if (error)
1892		return -ENODEV;
1893
1894	dev->instance = instance;
1895	return 0;
1896}
1897
1898static void nvme_release_instance(struct nvme_dev *dev)
1899{
1900	spin_lock(&dev_list_lock);
1901	ida_remove(&nvme_instance_ida, dev->instance);
1902	spin_unlock(&dev_list_lock);
1903}
1904
1905static void nvme_free_dev(struct kref *kref)
1906{
1907	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1908	nvme_dev_remove(dev);
1909	if (dev->pci_dev->msi_enabled)
1910		pci_disable_msi(dev->pci_dev);
1911	else if (dev->pci_dev->msix_enabled)
1912		pci_disable_msix(dev->pci_dev);
1913	iounmap(dev->bar);
1914	nvme_release_instance(dev);
1915	nvme_release_prp_pools(dev);
1916	pci_disable_device(dev->pci_dev);
1917	pci_release_regions(dev->pci_dev);
1918	kfree(dev->queues);
1919	kfree(dev->entry);
1920	kfree(dev);
1921}
1922
1923static int nvme_dev_open(struct inode *inode, struct file *f)
1924{
1925	struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1926								miscdev);
1927	kref_get(&dev->kref);
1928	f->private_data = dev;
1929	return 0;
1930}
1931
1932static int nvme_dev_release(struct inode *inode, struct file *f)
1933{
1934	struct nvme_dev *dev = f->private_data;
1935	kref_put(&dev->kref, nvme_free_dev);
1936	return 0;
1937}
1938
1939static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1940{
1941	struct nvme_dev *dev = f->private_data;
1942	switch (cmd) {
1943	case NVME_IOCTL_ADMIN_CMD:
1944		return nvme_user_admin_cmd(dev, (void __user *)arg);
1945	default:
1946		return -ENOTTY;
1947	}
1948}
1949
1950static const struct file_operations nvme_dev_fops = {
1951	.owner		= THIS_MODULE,
1952	.open		= nvme_dev_open,
1953	.release	= nvme_dev_release,
1954	.unlocked_ioctl	= nvme_dev_ioctl,
1955	.compat_ioctl	= nvme_dev_ioctl,
1956};
1957
1958static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1959{
1960	int bars, result = -ENOMEM;
1961	struct nvme_dev *dev;
1962
1963	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1964	if (!dev)
1965		return -ENOMEM;
1966	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1967								GFP_KERNEL);
1968	if (!dev->entry)
1969		goto free;
1970	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1971								GFP_KERNEL);
1972	if (!dev->queues)
1973		goto free;
1974
1975	if (pci_enable_device_mem(pdev))
1976		goto free;
1977	pci_set_master(pdev);
1978	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1979	if (pci_request_selected_regions(pdev, bars, "nvme"))
1980		goto disable;
1981
1982	INIT_LIST_HEAD(&dev->namespaces);
1983	dev->pci_dev = pdev;
1984	pci_set_drvdata(pdev, dev);
1985
1986	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1987		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1988	else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1989		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1990	else
1991		goto disable;
1992
1993	result = nvme_set_instance(dev);
1994	if (result)
1995		goto disable;
1996
1997	dev->entry[0].vector = pdev->irq;
1998
1999	result = nvme_setup_prp_pools(dev);
2000	if (result)
2001		goto disable_msix;
2002
2003	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2004	if (!dev->bar) {
2005		result = -ENOMEM;
2006		goto disable_msix;
2007	}
2008
2009	result = nvme_configure_admin_queue(dev);
2010	if (result)
2011		goto unmap;
2012	dev->queue_count++;
2013
2014	spin_lock(&dev_list_lock);
2015	list_add(&dev->node, &dev_list);
2016	spin_unlock(&dev_list_lock);
2017
2018	result = nvme_dev_add(dev);
2019	if (result)
2020		goto delete;
2021
2022	scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2023	dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2024	dev->miscdev.parent = &pdev->dev;
2025	dev->miscdev.name = dev->name;
2026	dev->miscdev.fops = &nvme_dev_fops;
2027	result = misc_register(&dev->miscdev);
2028	if (result)
2029		goto remove;
2030
2031	kref_init(&dev->kref);
2032	return 0;
2033
2034 remove:
2035	nvme_dev_remove(dev);
2036 delete:
2037	spin_lock(&dev_list_lock);
2038	list_del(&dev->node);
2039	spin_unlock(&dev_list_lock);
2040
2041	nvme_free_queues(dev);
2042 unmap:
2043	iounmap(dev->bar);
2044 disable_msix:
2045	if (dev->pci_dev->msi_enabled)
2046		pci_disable_msi(dev->pci_dev);
2047	else if (dev->pci_dev->msix_enabled)
2048		pci_disable_msix(dev->pci_dev);
2049	nvme_release_instance(dev);
2050	nvme_release_prp_pools(dev);
2051 disable:
2052	pci_disable_device(pdev);
2053	pci_release_regions(pdev);
2054 free:
2055	kfree(dev->queues);
2056	kfree(dev->entry);
2057	kfree(dev);
2058	return result;
2059}
2060
2061static void nvme_remove(struct pci_dev *pdev)
2062{
2063	struct nvme_dev *dev = pci_get_drvdata(pdev);
2064	misc_deregister(&dev->miscdev);
2065	kref_put(&dev->kref, nvme_free_dev);
2066}
2067
2068/* These functions are yet to be implemented */
2069#define nvme_error_detected NULL
2070#define nvme_dump_registers NULL
2071#define nvme_link_reset NULL
2072#define nvme_slot_reset NULL
2073#define nvme_error_resume NULL
2074#define nvme_suspend NULL
2075#define nvme_resume NULL
2076
2077static const struct pci_error_handlers nvme_err_handler = {
2078	.error_detected	= nvme_error_detected,
2079	.mmio_enabled	= nvme_dump_registers,
2080	.link_reset	= nvme_link_reset,
2081	.slot_reset	= nvme_slot_reset,
2082	.resume		= nvme_error_resume,
2083};
2084
2085/* Move to pci_ids.h later */
2086#define PCI_CLASS_STORAGE_EXPRESS	0x010802
2087
2088static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2089	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2090	{ 0, }
2091};
2092MODULE_DEVICE_TABLE(pci, nvme_id_table);
2093
2094static struct pci_driver nvme_driver = {
2095	.name		= "nvme",
2096	.id_table	= nvme_id_table,
2097	.probe		= nvme_probe,
2098	.remove		= nvme_remove,
2099	.suspend	= nvme_suspend,
2100	.resume		= nvme_resume,
2101	.err_handler	= &nvme_err_handler,
2102};
2103
2104static int __init nvme_init(void)
2105{
2106	int result;
2107
2108	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2109	if (IS_ERR(nvme_thread))
2110		return PTR_ERR(nvme_thread);
2111
2112	result = register_blkdev(nvme_major, "nvme");
2113	if (result < 0)
2114		goto kill_kthread;
2115	else if (result > 0)
2116		nvme_major = result;
2117
2118	result = pci_register_driver(&nvme_driver);
2119	if (result)
2120		goto unregister_blkdev;
2121	return 0;
2122
2123 unregister_blkdev:
2124	unregister_blkdev(nvme_major, "nvme");
2125 kill_kthread:
2126	kthread_stop(nvme_thread);
2127	return result;
2128}
2129
2130static void __exit nvme_exit(void)
2131{
2132	pci_unregister_driver(&nvme_driver);
2133	unregister_blkdev(nvme_major, "nvme");
2134	kthread_stop(nvme_thread);
2135}
2136
2137MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2138MODULE_LICENSE("GPL");
2139MODULE_VERSION("0.8");
2140module_init(nvme_init);
2141module_exit(nvme_exit);
2142