nvme-core.c revision 9e59d091b0eb04f223ed037348e3d9e36f30e72b
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/ptrace.h>
40#include <linux/sched.h>
41#include <linux/slab.h>
42#include <linux/types.h>
43#include <scsi/sg.h>
44#include <asm-generic/io-64-nonatomic-lo-hi.h>
45
46#define NVME_Q_DEPTH 1024
47#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
48#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
49#define NVME_MINORS 64
50#define ADMIN_TIMEOUT	(60 * HZ)
51
52static int nvme_major;
53module_param(nvme_major, int, 0);
54
55static int use_threaded_interrupts;
56module_param(use_threaded_interrupts, int, 0);
57
58static DEFINE_SPINLOCK(dev_list_lock);
59static LIST_HEAD(dev_list);
60static struct task_struct *nvme_thread;
61
62/*
63 * An NVM Express queue.  Each device has at least two (one for admin
64 * commands and one for I/O commands).
65 */
66struct nvme_queue {
67	struct device *q_dmadev;
68	struct nvme_dev *dev;
69	spinlock_t q_lock;
70	struct nvme_command *sq_cmds;
71	volatile struct nvme_completion *cqes;
72	dma_addr_t sq_dma_addr;
73	dma_addr_t cq_dma_addr;
74	wait_queue_head_t sq_full;
75	wait_queue_t sq_cong_wait;
76	struct bio_list sq_cong;
77	u32 __iomem *q_db;
78	u16 q_depth;
79	u16 cq_vector;
80	u16 sq_head;
81	u16 sq_tail;
82	u16 cq_head;
83	u8 cq_phase;
84	u8 cqe_seen;
85	unsigned long cmdid_data[];
86};
87
88/*
89 * Check we didin't inadvertently grow the command struct
90 */
91static inline void _nvme_check_size(void)
92{
93	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
94	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
95	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
96	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
97	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
98	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
99	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
100	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
101	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
102	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
103	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
104}
105
106typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
107						struct nvme_completion *);
108
109struct nvme_cmd_info {
110	nvme_completion_fn fn;
111	void *ctx;
112	unsigned long timeout;
113};
114
115static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
116{
117	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
118}
119
120/**
121 * alloc_cmdid() - Allocate a Command ID
122 * @nvmeq: The queue that will be used for this command
123 * @ctx: A pointer that will be passed to the handler
124 * @handler: The function to call on completion
125 *
126 * Allocate a Command ID for a queue.  The data passed in will
127 * be passed to the completion handler.  This is implemented by using
128 * the bottom two bits of the ctx pointer to store the handler ID.
129 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
130 * We can change this if it becomes a problem.
131 *
132 * May be called with local interrupts disabled and the q_lock held,
133 * or with interrupts enabled and no locks held.
134 */
135static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
136				nvme_completion_fn handler, unsigned timeout)
137{
138	int depth = nvmeq->q_depth - 1;
139	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
140	int cmdid;
141
142	do {
143		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
144		if (cmdid >= depth)
145			return -EBUSY;
146	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
147
148	info[cmdid].fn = handler;
149	info[cmdid].ctx = ctx;
150	info[cmdid].timeout = jiffies + timeout;
151	return cmdid;
152}
153
154static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
155				nvme_completion_fn handler, unsigned timeout)
156{
157	int cmdid;
158	wait_event_killable(nvmeq->sq_full,
159		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
160	return (cmdid < 0) ? -EINTR : cmdid;
161}
162
163/* Special values must be less than 0x1000 */
164#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
165#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
166#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
167#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
168#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
169
170static void special_completion(struct nvme_dev *dev, void *ctx,
171						struct nvme_completion *cqe)
172{
173	if (ctx == CMD_CTX_CANCELLED)
174		return;
175	if (ctx == CMD_CTX_FLUSH)
176		return;
177	if (ctx == CMD_CTX_COMPLETED) {
178		dev_warn(&dev->pci_dev->dev,
179				"completed id %d twice on queue %d\n",
180				cqe->command_id, le16_to_cpup(&cqe->sq_id));
181		return;
182	}
183	if (ctx == CMD_CTX_INVALID) {
184		dev_warn(&dev->pci_dev->dev,
185				"invalid id %d completed on queue %d\n",
186				cqe->command_id, le16_to_cpup(&cqe->sq_id));
187		return;
188	}
189
190	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
191}
192
193/*
194 * Called with local interrupts disabled and the q_lock held.  May not sleep.
195 */
196static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
197						nvme_completion_fn *fn)
198{
199	void *ctx;
200	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
201
202	if (cmdid >= nvmeq->q_depth) {
203		*fn = special_completion;
204		return CMD_CTX_INVALID;
205	}
206	if (fn)
207		*fn = info[cmdid].fn;
208	ctx = info[cmdid].ctx;
209	info[cmdid].fn = special_completion;
210	info[cmdid].ctx = CMD_CTX_COMPLETED;
211	clear_bit(cmdid, nvmeq->cmdid_data);
212	wake_up(&nvmeq->sq_full);
213	return ctx;
214}
215
216static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
217						nvme_completion_fn *fn)
218{
219	void *ctx;
220	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
221	if (fn)
222		*fn = info[cmdid].fn;
223	ctx = info[cmdid].ctx;
224	info[cmdid].fn = special_completion;
225	info[cmdid].ctx = CMD_CTX_CANCELLED;
226	return ctx;
227}
228
229struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
230{
231	return dev->queues[get_cpu() + 1];
232}
233
234void put_nvmeq(struct nvme_queue *nvmeq)
235{
236	put_cpu();
237}
238
239/**
240 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
241 * @nvmeq: The queue to use
242 * @cmd: The command to send
243 *
244 * Safe to use from interrupt context
245 */
246static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
247{
248	unsigned long flags;
249	u16 tail;
250	spin_lock_irqsave(&nvmeq->q_lock, flags);
251	tail = nvmeq->sq_tail;
252	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
253	if (++tail == nvmeq->q_depth)
254		tail = 0;
255	writel(tail, nvmeq->q_db);
256	nvmeq->sq_tail = tail;
257	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
258
259	return 0;
260}
261
262static __le64 **iod_list(struct nvme_iod *iod)
263{
264	return ((void *)iod) + iod->offset;
265}
266
267/*
268 * Will slightly overestimate the number of pages needed.  This is OK
269 * as it only leads to a small amount of wasted memory for the lifetime of
270 * the I/O.
271 */
272static int nvme_npages(unsigned size)
273{
274	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
275	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
276}
277
278static struct nvme_iod *
279nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
280{
281	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
282				sizeof(__le64 *) * nvme_npages(nbytes) +
283				sizeof(struct scatterlist) * nseg, gfp);
284
285	if (iod) {
286		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
287		iod->npages = -1;
288		iod->length = nbytes;
289		iod->nents = 0;
290		iod->start_time = jiffies;
291	}
292
293	return iod;
294}
295
296void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
297{
298	const int last_prp = PAGE_SIZE / 8 - 1;
299	int i;
300	__le64 **list = iod_list(iod);
301	dma_addr_t prp_dma = iod->first_dma;
302
303	if (iod->npages == 0)
304		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
305	for (i = 0; i < iod->npages; i++) {
306		__le64 *prp_list = list[i];
307		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
308		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
309		prp_dma = next_prp_dma;
310	}
311	kfree(iod);
312}
313
314static void nvme_start_io_acct(struct bio *bio)
315{
316	struct gendisk *disk = bio->bi_bdev->bd_disk;
317	const int rw = bio_data_dir(bio);
318	int cpu = part_stat_lock();
319	part_round_stats(cpu, &disk->part0);
320	part_stat_inc(cpu, &disk->part0, ios[rw]);
321	part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
322	part_inc_in_flight(&disk->part0, rw);
323	part_stat_unlock();
324}
325
326static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
327{
328	struct gendisk *disk = bio->bi_bdev->bd_disk;
329	const int rw = bio_data_dir(bio);
330	unsigned long duration = jiffies - start_time;
331	int cpu = part_stat_lock();
332	part_stat_add(cpu, &disk->part0, ticks[rw], duration);
333	part_round_stats(cpu, &disk->part0);
334	part_dec_in_flight(&disk->part0, rw);
335	part_stat_unlock();
336}
337
338static void bio_completion(struct nvme_dev *dev, void *ctx,
339						struct nvme_completion *cqe)
340{
341	struct nvme_iod *iod = ctx;
342	struct bio *bio = iod->private;
343	u16 status = le16_to_cpup(&cqe->status) >> 1;
344
345	if (iod->nents) {
346		dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
347			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
348		nvme_end_io_acct(bio, iod->start_time);
349	}
350	nvme_free_iod(dev, iod);
351	if (status)
352		bio_endio(bio, -EIO);
353	else
354		bio_endio(bio, 0);
355}
356
357/* length is in bytes.  gfp flags indicates whether we may sleep. */
358int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
359			struct nvme_iod *iod, int total_len, gfp_t gfp)
360{
361	struct dma_pool *pool;
362	int length = total_len;
363	struct scatterlist *sg = iod->sg;
364	int dma_len = sg_dma_len(sg);
365	u64 dma_addr = sg_dma_address(sg);
366	int offset = offset_in_page(dma_addr);
367	__le64 *prp_list;
368	__le64 **list = iod_list(iod);
369	dma_addr_t prp_dma;
370	int nprps, i;
371
372	cmd->prp1 = cpu_to_le64(dma_addr);
373	length -= (PAGE_SIZE - offset);
374	if (length <= 0)
375		return total_len;
376
377	dma_len -= (PAGE_SIZE - offset);
378	if (dma_len) {
379		dma_addr += (PAGE_SIZE - offset);
380	} else {
381		sg = sg_next(sg);
382		dma_addr = sg_dma_address(sg);
383		dma_len = sg_dma_len(sg);
384	}
385
386	if (length <= PAGE_SIZE) {
387		cmd->prp2 = cpu_to_le64(dma_addr);
388		return total_len;
389	}
390
391	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
392	if (nprps <= (256 / 8)) {
393		pool = dev->prp_small_pool;
394		iod->npages = 0;
395	} else {
396		pool = dev->prp_page_pool;
397		iod->npages = 1;
398	}
399
400	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
401	if (!prp_list) {
402		cmd->prp2 = cpu_to_le64(dma_addr);
403		iod->npages = -1;
404		return (total_len - length) + PAGE_SIZE;
405	}
406	list[0] = prp_list;
407	iod->first_dma = prp_dma;
408	cmd->prp2 = cpu_to_le64(prp_dma);
409	i = 0;
410	for (;;) {
411		if (i == PAGE_SIZE / 8) {
412			__le64 *old_prp_list = prp_list;
413			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
414			if (!prp_list)
415				return total_len - length;
416			list[iod->npages++] = prp_list;
417			prp_list[0] = old_prp_list[i - 1];
418			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
419			i = 1;
420		}
421		prp_list[i++] = cpu_to_le64(dma_addr);
422		dma_len -= PAGE_SIZE;
423		dma_addr += PAGE_SIZE;
424		length -= PAGE_SIZE;
425		if (length <= 0)
426			break;
427		if (dma_len > 0)
428			continue;
429		BUG_ON(dma_len < 0);
430		sg = sg_next(sg);
431		dma_addr = sg_dma_address(sg);
432		dma_len = sg_dma_len(sg);
433	}
434
435	return total_len;
436}
437
438struct nvme_bio_pair {
439	struct bio b1, b2, *parent;
440	struct bio_vec *bv1, *bv2;
441	int err;
442	atomic_t cnt;
443};
444
445static void nvme_bio_pair_endio(struct bio *bio, int err)
446{
447	struct nvme_bio_pair *bp = bio->bi_private;
448
449	if (err)
450		bp->err = err;
451
452	if (atomic_dec_and_test(&bp->cnt)) {
453		bio_endio(bp->parent, bp->err);
454		kfree(bp->bv1);
455		kfree(bp->bv2);
456		kfree(bp);
457	}
458}
459
460static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
461							int len, int offset)
462{
463	struct nvme_bio_pair *bp;
464
465	BUG_ON(len > bio->bi_size);
466	BUG_ON(idx > bio->bi_vcnt);
467
468	bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
469	if (!bp)
470		return NULL;
471	bp->err = 0;
472
473	bp->b1 = *bio;
474	bp->b2 = *bio;
475
476	bp->b1.bi_size = len;
477	bp->b2.bi_size -= len;
478	bp->b1.bi_vcnt = idx;
479	bp->b2.bi_idx = idx;
480	bp->b2.bi_sector += len >> 9;
481
482	if (offset) {
483		bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
484								GFP_ATOMIC);
485		if (!bp->bv1)
486			goto split_fail_1;
487
488		bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
489								GFP_ATOMIC);
490		if (!bp->bv2)
491			goto split_fail_2;
492
493		memcpy(bp->bv1, bio->bi_io_vec,
494			bio->bi_max_vecs * sizeof(struct bio_vec));
495		memcpy(bp->bv2, bio->bi_io_vec,
496			bio->bi_max_vecs * sizeof(struct bio_vec));
497
498		bp->b1.bi_io_vec = bp->bv1;
499		bp->b2.bi_io_vec = bp->bv2;
500		bp->b2.bi_io_vec[idx].bv_offset += offset;
501		bp->b2.bi_io_vec[idx].bv_len -= offset;
502		bp->b1.bi_io_vec[idx].bv_len = offset;
503		bp->b1.bi_vcnt++;
504	} else
505		bp->bv1 = bp->bv2 = NULL;
506
507	bp->b1.bi_private = bp;
508	bp->b2.bi_private = bp;
509
510	bp->b1.bi_end_io = nvme_bio_pair_endio;
511	bp->b2.bi_end_io = nvme_bio_pair_endio;
512
513	bp->parent = bio;
514	atomic_set(&bp->cnt, 2);
515
516	return bp;
517
518 split_fail_2:
519	kfree(bp->bv1);
520 split_fail_1:
521	kfree(bp);
522	return NULL;
523}
524
525static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
526						int idx, int len, int offset)
527{
528	struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
529	if (!bp)
530		return -ENOMEM;
531
532	if (bio_list_empty(&nvmeq->sq_cong))
533		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
534	bio_list_add(&nvmeq->sq_cong, &bp->b1);
535	bio_list_add(&nvmeq->sq_cong, &bp->b2);
536
537	return 0;
538}
539
540/* NVMe scatterlists require no holes in the virtual address */
541#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
542			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543
544static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
545		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546{
547	struct bio_vec *bvec, *bvprv = NULL;
548	struct scatterlist *sg = NULL;
549	int i, length = 0, nsegs = 0, split_len = bio->bi_size;
550
551	if (nvmeq->dev->stripe_size)
552		split_len = nvmeq->dev->stripe_size -
553			((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
554
555	sg_init_table(iod->sg, psegs);
556	bio_for_each_segment(bvec, bio, i) {
557		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
558			sg->length += bvec->bv_len;
559		} else {
560			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
561				return nvme_split_and_submit(bio, nvmeq, i,
562								length, 0);
563
564			sg = sg ? sg + 1 : iod->sg;
565			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
566							bvec->bv_offset);
567			nsegs++;
568		}
569
570		if (split_len - length < bvec->bv_len)
571			return nvme_split_and_submit(bio, nvmeq, i, split_len,
572							split_len - length);
573		length += bvec->bv_len;
574		bvprv = bvec;
575	}
576	iod->nents = nsegs;
577	sg_mark_end(sg);
578	if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
579		return -ENOMEM;
580
581	BUG_ON(length != bio->bi_size);
582	return length;
583}
584
585/*
586 * We reuse the small pool to allocate the 16-byte range here as it is not
587 * worth having a special pool for these or additional cases to handle freeing
588 * the iod.
589 */
590static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
591		struct bio *bio, struct nvme_iod *iod, int cmdid)
592{
593	struct nvme_dsm_range *range;
594	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
595
596	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
597							&iod->first_dma);
598	if (!range)
599		return -ENOMEM;
600
601	iod_list(iod)[0] = (__le64 *)range;
602	iod->npages = 0;
603
604	range->cattr = cpu_to_le32(0);
605	range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
606	range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
607
608	memset(cmnd, 0, sizeof(*cmnd));
609	cmnd->dsm.opcode = nvme_cmd_dsm;
610	cmnd->dsm.command_id = cmdid;
611	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613	cmnd->dsm.nr = 0;
614	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615
616	if (++nvmeq->sq_tail == nvmeq->q_depth)
617		nvmeq->sq_tail = 0;
618	writel(nvmeq->sq_tail, nvmeq->q_db);
619
620	return 0;
621}
622
623static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
624								int cmdid)
625{
626	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
627
628	memset(cmnd, 0, sizeof(*cmnd));
629	cmnd->common.opcode = nvme_cmd_flush;
630	cmnd->common.command_id = cmdid;
631	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
632
633	if (++nvmeq->sq_tail == nvmeq->q_depth)
634		nvmeq->sq_tail = 0;
635	writel(nvmeq->sq_tail, nvmeq->q_db);
636
637	return 0;
638}
639
640int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
641{
642	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
643					special_completion, NVME_IO_TIMEOUT);
644	if (unlikely(cmdid < 0))
645		return cmdid;
646
647	return nvme_submit_flush(nvmeq, ns, cmdid);
648}
649
650/*
651 * Called with local interrupts disabled and the q_lock held.  May not sleep.
652 */
653static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
654								struct bio *bio)
655{
656	struct nvme_command *cmnd;
657	struct nvme_iod *iod;
658	enum dma_data_direction dma_dir;
659	int cmdid, length, result;
660	u16 control;
661	u32 dsmgmt;
662	int psegs = bio_phys_segments(ns->queue, bio);
663
664	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
665		result = nvme_submit_flush_data(nvmeq, ns);
666		if (result)
667			return result;
668	}
669
670	result = -ENOMEM;
671	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
672	if (!iod)
673		goto nomem;
674	iod->private = bio;
675
676	result = -EBUSY;
677	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
678	if (unlikely(cmdid < 0))
679		goto free_iod;
680
681	if (bio->bi_rw & REQ_DISCARD) {
682		result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
683		if (result)
684			goto free_cmdid;
685		return result;
686	}
687	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
688		return nvme_submit_flush(nvmeq, ns, cmdid);
689
690	control = 0;
691	if (bio->bi_rw & REQ_FUA)
692		control |= NVME_RW_FUA;
693	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
694		control |= NVME_RW_LR;
695
696	dsmgmt = 0;
697	if (bio->bi_rw & REQ_RAHEAD)
698		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
700	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
701
702	memset(cmnd, 0, sizeof(*cmnd));
703	if (bio_data_dir(bio)) {
704		cmnd->rw.opcode = nvme_cmd_write;
705		dma_dir = DMA_TO_DEVICE;
706	} else {
707		cmnd->rw.opcode = nvme_cmd_read;
708		dma_dir = DMA_FROM_DEVICE;
709	}
710
711	result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
712	if (result <= 0)
713		goto free_cmdid;
714	length = result;
715
716	cmnd->rw.command_id = cmdid;
717	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
718	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
719								GFP_ATOMIC);
720	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
721	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
722	cmnd->rw.control = cpu_to_le16(control);
723	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
724
725	nvme_start_io_acct(bio);
726	if (++nvmeq->sq_tail == nvmeq->q_depth)
727		nvmeq->sq_tail = 0;
728	writel(nvmeq->sq_tail, nvmeq->q_db);
729
730	return 0;
731
732 free_cmdid:
733	free_cmdid(nvmeq, cmdid, NULL);
734 free_iod:
735	nvme_free_iod(nvmeq->dev, iod);
736 nomem:
737	return result;
738}
739
740static int nvme_process_cq(struct nvme_queue *nvmeq)
741{
742	u16 head, phase;
743
744	head = nvmeq->cq_head;
745	phase = nvmeq->cq_phase;
746
747	for (;;) {
748		void *ctx;
749		nvme_completion_fn fn;
750		struct nvme_completion cqe = nvmeq->cqes[head];
751		if ((le16_to_cpu(cqe.status) & 1) != phase)
752			break;
753		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
754		if (++head == nvmeq->q_depth) {
755			head = 0;
756			phase = !phase;
757		}
758
759		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
760		fn(nvmeq->dev, ctx, &cqe);
761	}
762
763	/* If the controller ignores the cq head doorbell and continuously
764	 * writes to the queue, it is theoretically possible to wrap around
765	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
766	 * requires that 0.1% of your interrupts are handled, so this isn't
767	 * a big problem.
768	 */
769	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
770		return 0;
771
772	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
773	nvmeq->cq_head = head;
774	nvmeq->cq_phase = phase;
775
776	nvmeq->cqe_seen = 1;
777	return 1;
778}
779
780static void nvme_make_request(struct request_queue *q, struct bio *bio)
781{
782	struct nvme_ns *ns = q->queuedata;
783	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
784	int result = -EBUSY;
785
786	spin_lock_irq(&nvmeq->q_lock);
787	if (bio_list_empty(&nvmeq->sq_cong))
788		result = nvme_submit_bio_queue(nvmeq, ns, bio);
789	if (unlikely(result)) {
790		if (bio_list_empty(&nvmeq->sq_cong))
791			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
792		bio_list_add(&nvmeq->sq_cong, bio);
793	}
794
795	nvme_process_cq(nvmeq);
796	spin_unlock_irq(&nvmeq->q_lock);
797	put_nvmeq(nvmeq);
798}
799
800static irqreturn_t nvme_irq(int irq, void *data)
801{
802	irqreturn_t result;
803	struct nvme_queue *nvmeq = data;
804	spin_lock(&nvmeq->q_lock);
805	nvme_process_cq(nvmeq);
806	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
807	nvmeq->cqe_seen = 0;
808	spin_unlock(&nvmeq->q_lock);
809	return result;
810}
811
812static irqreturn_t nvme_irq_check(int irq, void *data)
813{
814	struct nvme_queue *nvmeq = data;
815	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
816	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
817		return IRQ_NONE;
818	return IRQ_WAKE_THREAD;
819}
820
821static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
822{
823	spin_lock_irq(&nvmeq->q_lock);
824	cancel_cmdid(nvmeq, cmdid, NULL);
825	spin_unlock_irq(&nvmeq->q_lock);
826}
827
828struct sync_cmd_info {
829	struct task_struct *task;
830	u32 result;
831	int status;
832};
833
834static void sync_completion(struct nvme_dev *dev, void *ctx,
835						struct nvme_completion *cqe)
836{
837	struct sync_cmd_info *cmdinfo = ctx;
838	cmdinfo->result = le32_to_cpup(&cqe->result);
839	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
840	wake_up_process(cmdinfo->task);
841}
842
843/*
844 * Returns 0 on success.  If the result is negative, it's a Linux error code;
845 * if the result is positive, it's an NVM Express status code
846 */
847int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
848						u32 *result, unsigned timeout)
849{
850	int cmdid;
851	struct sync_cmd_info cmdinfo;
852
853	cmdinfo.task = current;
854	cmdinfo.status = -EINTR;
855
856	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
857								timeout);
858	if (cmdid < 0)
859		return cmdid;
860	cmd->common.command_id = cmdid;
861
862	set_current_state(TASK_KILLABLE);
863	nvme_submit_cmd(nvmeq, cmd);
864	schedule_timeout(timeout);
865
866	if (cmdinfo.status == -EINTR) {
867		nvme_abort_command(nvmeq, cmdid);
868		return -EINTR;
869	}
870
871	if (result)
872		*result = cmdinfo.result;
873
874	return cmdinfo.status;
875}
876
877int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
878								u32 *result)
879{
880	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
881}
882
883static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
884{
885	int status;
886	struct nvme_command c;
887
888	memset(&c, 0, sizeof(c));
889	c.delete_queue.opcode = opcode;
890	c.delete_queue.qid = cpu_to_le16(id);
891
892	status = nvme_submit_admin_cmd(dev, &c, NULL);
893	if (status)
894		return -EIO;
895	return 0;
896}
897
898static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
899						struct nvme_queue *nvmeq)
900{
901	int status;
902	struct nvme_command c;
903	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
904
905	memset(&c, 0, sizeof(c));
906	c.create_cq.opcode = nvme_admin_create_cq;
907	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
908	c.create_cq.cqid = cpu_to_le16(qid);
909	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
910	c.create_cq.cq_flags = cpu_to_le16(flags);
911	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
912
913	status = nvme_submit_admin_cmd(dev, &c, NULL);
914	if (status)
915		return -EIO;
916	return 0;
917}
918
919static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
920						struct nvme_queue *nvmeq)
921{
922	int status;
923	struct nvme_command c;
924	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
925
926	memset(&c, 0, sizeof(c));
927	c.create_sq.opcode = nvme_admin_create_sq;
928	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
929	c.create_sq.sqid = cpu_to_le16(qid);
930	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
931	c.create_sq.sq_flags = cpu_to_le16(flags);
932	c.create_sq.cqid = cpu_to_le16(qid);
933
934	status = nvme_submit_admin_cmd(dev, &c, NULL);
935	if (status)
936		return -EIO;
937	return 0;
938}
939
940static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
941{
942	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
943}
944
945static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
946{
947	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
948}
949
950int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
951							dma_addr_t dma_addr)
952{
953	struct nvme_command c;
954
955	memset(&c, 0, sizeof(c));
956	c.identify.opcode = nvme_admin_identify;
957	c.identify.nsid = cpu_to_le32(nsid);
958	c.identify.prp1 = cpu_to_le64(dma_addr);
959	c.identify.cns = cpu_to_le32(cns);
960
961	return nvme_submit_admin_cmd(dev, &c, NULL);
962}
963
964int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
965					dma_addr_t dma_addr, u32 *result)
966{
967	struct nvme_command c;
968
969	memset(&c, 0, sizeof(c));
970	c.features.opcode = nvme_admin_get_features;
971	c.features.nsid = cpu_to_le32(nsid);
972	c.features.prp1 = cpu_to_le64(dma_addr);
973	c.features.fid = cpu_to_le32(fid);
974
975	return nvme_submit_admin_cmd(dev, &c, result);
976}
977
978int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
979					dma_addr_t dma_addr, u32 *result)
980{
981	struct nvme_command c;
982
983	memset(&c, 0, sizeof(c));
984	c.features.opcode = nvme_admin_set_features;
985	c.features.prp1 = cpu_to_le64(dma_addr);
986	c.features.fid = cpu_to_le32(fid);
987	c.features.dword11 = cpu_to_le32(dword11);
988
989	return nvme_submit_admin_cmd(dev, &c, result);
990}
991
992/**
993 * nvme_cancel_ios - Cancel outstanding I/Os
994 * @queue: The queue to cancel I/Os on
995 * @timeout: True to only cancel I/Os which have timed out
996 */
997static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
998{
999	int depth = nvmeq->q_depth - 1;
1000	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1001	unsigned long now = jiffies;
1002	int cmdid;
1003
1004	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1005		void *ctx;
1006		nvme_completion_fn fn;
1007		static struct nvme_completion cqe = {
1008			.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1009		};
1010
1011		if (timeout && !time_after(now, info[cmdid].timeout))
1012			continue;
1013		if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1014			continue;
1015		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1016		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1017		fn(nvmeq->dev, ctx, &cqe);
1018	}
1019}
1020
1021static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1022{
1023	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1024				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1025	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1026					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1027	kfree(nvmeq);
1028}
1029
1030static void nvme_free_queue(struct nvme_dev *dev, int qid)
1031{
1032	struct nvme_queue *nvmeq = dev->queues[qid];
1033	int vector = dev->entry[nvmeq->cq_vector].vector;
1034
1035	spin_lock_irq(&nvmeq->q_lock);
1036	nvme_cancel_ios(nvmeq, false);
1037	while (bio_list_peek(&nvmeq->sq_cong)) {
1038		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1039		bio_endio(bio, -EIO);
1040	}
1041	spin_unlock_irq(&nvmeq->q_lock);
1042
1043	irq_set_affinity_hint(vector, NULL);
1044	free_irq(vector, nvmeq);
1045
1046	/* Don't tell the adapter to delete the admin queue */
1047	if (qid) {
1048		adapter_delete_sq(dev, qid);
1049		adapter_delete_cq(dev, qid);
1050	}
1051
1052	nvme_free_queue_mem(nvmeq);
1053}
1054
1055static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1056							int depth, int vector)
1057{
1058	struct device *dmadev = &dev->pci_dev->dev;
1059	unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1060						sizeof(struct nvme_cmd_info));
1061	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1062	if (!nvmeq)
1063		return NULL;
1064
1065	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1066					&nvmeq->cq_dma_addr, GFP_KERNEL);
1067	if (!nvmeq->cqes)
1068		goto free_nvmeq;
1069	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1070
1071	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1072					&nvmeq->sq_dma_addr, GFP_KERNEL);
1073	if (!nvmeq->sq_cmds)
1074		goto free_cqdma;
1075
1076	nvmeq->q_dmadev = dmadev;
1077	nvmeq->dev = dev;
1078	spin_lock_init(&nvmeq->q_lock);
1079	nvmeq->cq_head = 0;
1080	nvmeq->cq_phase = 1;
1081	init_waitqueue_head(&nvmeq->sq_full);
1082	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1083	bio_list_init(&nvmeq->sq_cong);
1084	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1085	nvmeq->q_depth = depth;
1086	nvmeq->cq_vector = vector;
1087
1088	return nvmeq;
1089
1090 free_cqdma:
1091	dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1092							nvmeq->cq_dma_addr);
1093 free_nvmeq:
1094	kfree(nvmeq);
1095	return NULL;
1096}
1097
1098static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1099							const char *name)
1100{
1101	if (use_threaded_interrupts)
1102		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1103					nvme_irq_check, nvme_irq,
1104					IRQF_DISABLED | IRQF_SHARED,
1105					name, nvmeq);
1106	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1107				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1108}
1109
1110static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1111					    int cq_size, int vector)
1112{
1113	int result;
1114	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1115
1116	if (!nvmeq)
1117		return ERR_PTR(-ENOMEM);
1118
1119	result = adapter_alloc_cq(dev, qid, nvmeq);
1120	if (result < 0)
1121		goto free_nvmeq;
1122
1123	result = adapter_alloc_sq(dev, qid, nvmeq);
1124	if (result < 0)
1125		goto release_cq;
1126
1127	result = queue_request_irq(dev, nvmeq, "nvme");
1128	if (result < 0)
1129		goto release_sq;
1130
1131	return nvmeq;
1132
1133 release_sq:
1134	adapter_delete_sq(dev, qid);
1135 release_cq:
1136	adapter_delete_cq(dev, qid);
1137 free_nvmeq:
1138	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1139				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1140	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1141					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1142	kfree(nvmeq);
1143	return ERR_PTR(result);
1144}
1145
1146static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1147{
1148	unsigned long timeout;
1149	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1150
1151	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1152
1153	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1154		msleep(100);
1155		if (fatal_signal_pending(current))
1156			return -EINTR;
1157		if (time_after(jiffies, timeout)) {
1158			dev_err(&dev->pci_dev->dev,
1159				"Device not ready; aborting initialisation\n");
1160			return -ENODEV;
1161		}
1162	}
1163
1164	return 0;
1165}
1166
1167/*
1168 * If the device has been passed off to us in an enabled state, just clear
1169 * the enabled bit.  The spec says we should set the 'shutdown notification
1170 * bits', but doing so may cause the device to complete commands to the
1171 * admin queue ... and we don't know what memory that might be pointing at!
1172 */
1173static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1174{
1175	u32 cc = readl(&dev->bar->cc);
1176
1177	if (cc & NVME_CC_ENABLE)
1178		writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1179	return nvme_wait_ready(dev, cap, false);
1180}
1181
1182static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1183{
1184	return nvme_wait_ready(dev, cap, true);
1185}
1186
1187static int nvme_configure_admin_queue(struct nvme_dev *dev)
1188{
1189	int result;
1190	u32 aqa;
1191	u64 cap = readq(&dev->bar->cap);
1192	struct nvme_queue *nvmeq;
1193
1194	dev->dbs = ((void __iomem *)dev->bar) + 4096;
1195	dev->db_stride = NVME_CAP_STRIDE(cap);
1196
1197	result = nvme_disable_ctrl(dev, cap);
1198	if (result < 0)
1199		return result;
1200
1201	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1202	if (!nvmeq)
1203		return -ENOMEM;
1204
1205	aqa = nvmeq->q_depth - 1;
1206	aqa |= aqa << 16;
1207
1208	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1209	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1210	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1211	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1212
1213	writel(aqa, &dev->bar->aqa);
1214	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1215	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1216	writel(dev->ctrl_config, &dev->bar->cc);
1217
1218	result = nvme_enable_ctrl(dev, cap);
1219	if (result)
1220		goto free_q;
1221
1222	result = queue_request_irq(dev, nvmeq, "nvme admin");
1223	if (result)
1224		goto free_q;
1225
1226	dev->queues[0] = nvmeq;
1227	return result;
1228
1229 free_q:
1230	nvme_free_queue_mem(nvmeq);
1231	return result;
1232}
1233
1234struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1235				unsigned long addr, unsigned length)
1236{
1237	int i, err, count, nents, offset;
1238	struct scatterlist *sg;
1239	struct page **pages;
1240	struct nvme_iod *iod;
1241
1242	if (addr & 3)
1243		return ERR_PTR(-EINVAL);
1244	if (!length || length > INT_MAX - PAGE_SIZE)
1245		return ERR_PTR(-EINVAL);
1246
1247	offset = offset_in_page(addr);
1248	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1249	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1250	if (!pages)
1251		return ERR_PTR(-ENOMEM);
1252
1253	err = get_user_pages_fast(addr, count, 1, pages);
1254	if (err < count) {
1255		count = err;
1256		err = -EFAULT;
1257		goto put_pages;
1258	}
1259
1260	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1261	sg = iod->sg;
1262	sg_init_table(sg, count);
1263	for (i = 0; i < count; i++) {
1264		sg_set_page(&sg[i], pages[i],
1265			    min_t(unsigned, length, PAGE_SIZE - offset),
1266			    offset);
1267		length -= (PAGE_SIZE - offset);
1268		offset = 0;
1269	}
1270	sg_mark_end(&sg[i - 1]);
1271	iod->nents = count;
1272
1273	err = -ENOMEM;
1274	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1275				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1276	if (!nents)
1277		goto free_iod;
1278
1279	kfree(pages);
1280	return iod;
1281
1282 free_iod:
1283	kfree(iod);
1284 put_pages:
1285	for (i = 0; i < count; i++)
1286		put_page(pages[i]);
1287	kfree(pages);
1288	return ERR_PTR(err);
1289}
1290
1291void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1292			struct nvme_iod *iod)
1293{
1294	int i;
1295
1296	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1297				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1298
1299	for (i = 0; i < iod->nents; i++)
1300		put_page(sg_page(&iod->sg[i]));
1301}
1302
1303static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1304{
1305	struct nvme_dev *dev = ns->dev;
1306	struct nvme_queue *nvmeq;
1307	struct nvme_user_io io;
1308	struct nvme_command c;
1309	unsigned length, meta_len;
1310	int status, i;
1311	struct nvme_iod *iod, *meta_iod = NULL;
1312	dma_addr_t meta_dma_addr;
1313	void *meta, *uninitialized_var(meta_mem);
1314
1315	if (copy_from_user(&io, uio, sizeof(io)))
1316		return -EFAULT;
1317	length = (io.nblocks + 1) << ns->lba_shift;
1318	meta_len = (io.nblocks + 1) * ns->ms;
1319
1320	if (meta_len && ((io.metadata & 3) || !io.metadata))
1321		return -EINVAL;
1322
1323	switch (io.opcode) {
1324	case nvme_cmd_write:
1325	case nvme_cmd_read:
1326	case nvme_cmd_compare:
1327		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1328		break;
1329	default:
1330		return -EINVAL;
1331	}
1332
1333	if (IS_ERR(iod))
1334		return PTR_ERR(iod);
1335
1336	memset(&c, 0, sizeof(c));
1337	c.rw.opcode = io.opcode;
1338	c.rw.flags = io.flags;
1339	c.rw.nsid = cpu_to_le32(ns->ns_id);
1340	c.rw.slba = cpu_to_le64(io.slba);
1341	c.rw.length = cpu_to_le16(io.nblocks);
1342	c.rw.control = cpu_to_le16(io.control);
1343	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1344	c.rw.reftag = cpu_to_le32(io.reftag);
1345	c.rw.apptag = cpu_to_le16(io.apptag);
1346	c.rw.appmask = cpu_to_le16(io.appmask);
1347
1348	if (meta_len) {
1349		meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1350								meta_len);
1351		if (IS_ERR(meta_iod)) {
1352			status = PTR_ERR(meta_iod);
1353			meta_iod = NULL;
1354			goto unmap;
1355		}
1356
1357		meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1358						&meta_dma_addr, GFP_KERNEL);
1359		if (!meta_mem) {
1360			status = -ENOMEM;
1361			goto unmap;
1362		}
1363
1364		if (io.opcode & 1) {
1365			int meta_offset = 0;
1366
1367			for (i = 0; i < meta_iod->nents; i++) {
1368				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1369						meta_iod->sg[i].offset;
1370				memcpy(meta_mem + meta_offset, meta,
1371						meta_iod->sg[i].length);
1372				kunmap_atomic(meta);
1373				meta_offset += meta_iod->sg[i].length;
1374			}
1375		}
1376
1377		c.rw.metadata = cpu_to_le64(meta_dma_addr);
1378	}
1379
1380	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1381
1382	nvmeq = get_nvmeq(dev);
1383	/*
1384	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1385	 * disabled.  We may be preempted at any point, and be rescheduled
1386	 * to a different CPU.  That will cause cacheline bouncing, but no
1387	 * additional races since q_lock already protects against other CPUs.
1388	 */
1389	put_nvmeq(nvmeq);
1390	if (length != (io.nblocks + 1) << ns->lba_shift)
1391		status = -ENOMEM;
1392	else
1393		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1394
1395	if (meta_len) {
1396		if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1397			int meta_offset = 0;
1398
1399			for (i = 0; i < meta_iod->nents; i++) {
1400				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1401						meta_iod->sg[i].offset;
1402				memcpy(meta, meta_mem + meta_offset,
1403						meta_iod->sg[i].length);
1404				kunmap_atomic(meta);
1405				meta_offset += meta_iod->sg[i].length;
1406			}
1407		}
1408
1409		dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1410								meta_dma_addr);
1411	}
1412
1413 unmap:
1414	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1415	nvme_free_iod(dev, iod);
1416
1417	if (meta_iod) {
1418		nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1419		nvme_free_iod(dev, meta_iod);
1420	}
1421
1422	return status;
1423}
1424
1425static int nvme_user_admin_cmd(struct nvme_dev *dev,
1426					struct nvme_admin_cmd __user *ucmd)
1427{
1428	struct nvme_admin_cmd cmd;
1429	struct nvme_command c;
1430	int status, length;
1431	struct nvme_iod *uninitialized_var(iod);
1432	unsigned timeout;
1433
1434	if (!capable(CAP_SYS_ADMIN))
1435		return -EACCES;
1436	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1437		return -EFAULT;
1438
1439	memset(&c, 0, sizeof(c));
1440	c.common.opcode = cmd.opcode;
1441	c.common.flags = cmd.flags;
1442	c.common.nsid = cpu_to_le32(cmd.nsid);
1443	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1444	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1445	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1446	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1447	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1448	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1449	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1450	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1451
1452	length = cmd.data_len;
1453	if (cmd.data_len) {
1454		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1455								length);
1456		if (IS_ERR(iod))
1457			return PTR_ERR(iod);
1458		length = nvme_setup_prps(dev, &c.common, iod, length,
1459								GFP_KERNEL);
1460	}
1461
1462	timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1463								ADMIN_TIMEOUT;
1464	if (length != cmd.data_len)
1465		status = -ENOMEM;
1466	else
1467		status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1468								timeout);
1469
1470	if (cmd.data_len) {
1471		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1472		nvme_free_iod(dev, iod);
1473	}
1474
1475	if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1476							sizeof(cmd.result)))
1477		status = -EFAULT;
1478
1479	return status;
1480}
1481
1482static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1483							unsigned long arg)
1484{
1485	struct nvme_ns *ns = bdev->bd_disk->private_data;
1486
1487	switch (cmd) {
1488	case NVME_IOCTL_ID:
1489		force_successful_syscall_return();
1490		return ns->ns_id;
1491	case NVME_IOCTL_ADMIN_CMD:
1492		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1493	case NVME_IOCTL_SUBMIT_IO:
1494		return nvme_submit_io(ns, (void __user *)arg);
1495	case SG_GET_VERSION_NUM:
1496		return nvme_sg_get_version_num((void __user *)arg);
1497	case SG_IO:
1498		return nvme_sg_io(ns, (void __user *)arg);
1499	default:
1500		return -ENOTTY;
1501	}
1502}
1503
1504static const struct block_device_operations nvme_fops = {
1505	.owner		= THIS_MODULE,
1506	.ioctl		= nvme_ioctl,
1507	.compat_ioctl	= nvme_ioctl,
1508};
1509
1510static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1511{
1512	while (bio_list_peek(&nvmeq->sq_cong)) {
1513		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1514		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1515
1516		if (bio_list_empty(&nvmeq->sq_cong))
1517			remove_wait_queue(&nvmeq->sq_full,
1518							&nvmeq->sq_cong_wait);
1519		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1520			if (bio_list_empty(&nvmeq->sq_cong))
1521				add_wait_queue(&nvmeq->sq_full,
1522							&nvmeq->sq_cong_wait);
1523			bio_list_add_head(&nvmeq->sq_cong, bio);
1524			break;
1525		}
1526	}
1527}
1528
1529static int nvme_kthread(void *data)
1530{
1531	struct nvme_dev *dev;
1532
1533	while (!kthread_should_stop()) {
1534		set_current_state(TASK_INTERRUPTIBLE);
1535		spin_lock(&dev_list_lock);
1536		list_for_each_entry(dev, &dev_list, node) {
1537			int i;
1538			for (i = 0; i < dev->queue_count; i++) {
1539				struct nvme_queue *nvmeq = dev->queues[i];
1540				if (!nvmeq)
1541					continue;
1542				spin_lock_irq(&nvmeq->q_lock);
1543				nvme_process_cq(nvmeq);
1544				nvme_cancel_ios(nvmeq, true);
1545				nvme_resubmit_bios(nvmeq);
1546				spin_unlock_irq(&nvmeq->q_lock);
1547			}
1548		}
1549		spin_unlock(&dev_list_lock);
1550		schedule_timeout(round_jiffies_relative(HZ));
1551	}
1552	return 0;
1553}
1554
1555static DEFINE_IDA(nvme_index_ida);
1556
1557static int nvme_get_ns_idx(void)
1558{
1559	int index, error;
1560
1561	do {
1562		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1563			return -1;
1564
1565		spin_lock(&dev_list_lock);
1566		error = ida_get_new(&nvme_index_ida, &index);
1567		spin_unlock(&dev_list_lock);
1568	} while (error == -EAGAIN);
1569
1570	if (error)
1571		index = -1;
1572	return index;
1573}
1574
1575static void nvme_put_ns_idx(int index)
1576{
1577	spin_lock(&dev_list_lock);
1578	ida_remove(&nvme_index_ida, index);
1579	spin_unlock(&dev_list_lock);
1580}
1581
1582static void nvme_config_discard(struct nvme_ns *ns)
1583{
1584	u32 logical_block_size = queue_logical_block_size(ns->queue);
1585	ns->queue->limits.discard_zeroes_data = 0;
1586	ns->queue->limits.discard_alignment = logical_block_size;
1587	ns->queue->limits.discard_granularity = logical_block_size;
1588	ns->queue->limits.max_discard_sectors = 0xffffffff;
1589	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1590}
1591
1592static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1593			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1594{
1595	struct nvme_ns *ns;
1596	struct gendisk *disk;
1597	int lbaf;
1598
1599	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1600		return NULL;
1601
1602	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1603	if (!ns)
1604		return NULL;
1605	ns->queue = blk_alloc_queue(GFP_KERNEL);
1606	if (!ns->queue)
1607		goto out_free_ns;
1608	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1609	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1610	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1611	blk_queue_make_request(ns->queue, nvme_make_request);
1612	ns->dev = dev;
1613	ns->queue->queuedata = ns;
1614
1615	disk = alloc_disk(NVME_MINORS);
1616	if (!disk)
1617		goto out_free_queue;
1618	ns->ns_id = nsid;
1619	ns->disk = disk;
1620	lbaf = id->flbas & 0xf;
1621	ns->lba_shift = id->lbaf[lbaf].ds;
1622	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1623	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1624	if (dev->max_hw_sectors)
1625		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1626
1627	disk->major = nvme_major;
1628	disk->minors = NVME_MINORS;
1629	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1630	disk->fops = &nvme_fops;
1631	disk->private_data = ns;
1632	disk->queue = ns->queue;
1633	disk->driverfs_dev = &dev->pci_dev->dev;
1634	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1635	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1636
1637	if (dev->oncs & NVME_CTRL_ONCS_DSM)
1638		nvme_config_discard(ns);
1639
1640	return ns;
1641
1642 out_free_queue:
1643	blk_cleanup_queue(ns->queue);
1644 out_free_ns:
1645	kfree(ns);
1646	return NULL;
1647}
1648
1649static void nvme_ns_free(struct nvme_ns *ns)
1650{
1651	int index = ns->disk->first_minor / NVME_MINORS;
1652	put_disk(ns->disk);
1653	nvme_put_ns_idx(index);
1654	blk_cleanup_queue(ns->queue);
1655	kfree(ns);
1656}
1657
1658static int set_queue_count(struct nvme_dev *dev, int count)
1659{
1660	int status;
1661	u32 result;
1662	u32 q_count = (count - 1) | ((count - 1) << 16);
1663
1664	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1665								&result);
1666	if (status)
1667		return status < 0 ? -EIO : -EBUSY;
1668	return min(result & 0xffff, result >> 16) + 1;
1669}
1670
1671static int nvme_setup_io_queues(struct nvme_dev *dev)
1672{
1673	struct pci_dev *pdev = dev->pci_dev;
1674	int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
1675
1676	nr_io_queues = num_online_cpus();
1677	result = set_queue_count(dev, nr_io_queues);
1678	if (result < 0)
1679		return result;
1680	if (result < nr_io_queues)
1681		nr_io_queues = result;
1682
1683	/* Deregister the admin queue's interrupt */
1684	free_irq(dev->entry[0].vector, dev->queues[0]);
1685
1686	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1687	if (db_bar_size > 8192) {
1688		iounmap(dev->bar);
1689		dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1690		dev->dbs = ((void __iomem *)dev->bar) + 4096;
1691		dev->queues[0]->q_db = dev->dbs;
1692	}
1693
1694	vecs = nr_io_queues;
1695	for (i = 0; i < vecs; i++)
1696		dev->entry[i].entry = i;
1697	for (;;) {
1698		result = pci_enable_msix(pdev, dev->entry, vecs);
1699		if (result <= 0)
1700			break;
1701		vecs = result;
1702	}
1703
1704	if (result < 0) {
1705		vecs = nr_io_queues;
1706		if (vecs > 32)
1707			vecs = 32;
1708		for (;;) {
1709			result = pci_enable_msi_block(pdev, vecs);
1710			if (result == 0) {
1711				for (i = 0; i < vecs; i++)
1712					dev->entry[i].vector = i + pdev->irq;
1713				break;
1714			} else if (result < 0) {
1715				vecs = 1;
1716				break;
1717			}
1718			vecs = result;
1719		}
1720	}
1721
1722	/*
1723	 * Should investigate if there's a performance win from allocating
1724	 * more queues than interrupt vectors; it might allow the submission
1725	 * path to scale better, even if the receive path is limited by the
1726	 * number of interrupts.
1727	 */
1728	nr_io_queues = vecs;
1729
1730	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1731	/* XXX: handle failure here */
1732
1733	cpu = cpumask_first(cpu_online_mask);
1734	for (i = 0; i < nr_io_queues; i++) {
1735		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1736		cpu = cpumask_next(cpu, cpu_online_mask);
1737	}
1738
1739	q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1740								NVME_Q_DEPTH);
1741	for (i = 0; i < nr_io_queues; i++) {
1742		dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1743		if (IS_ERR(dev->queues[i + 1]))
1744			return PTR_ERR(dev->queues[i + 1]);
1745		dev->queue_count++;
1746	}
1747
1748	for (; i < num_possible_cpus(); i++) {
1749		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1750		dev->queues[i + 1] = dev->queues[target + 1];
1751	}
1752
1753	return 0;
1754}
1755
1756static void nvme_free_queues(struct nvme_dev *dev)
1757{
1758	int i;
1759
1760	for (i = dev->queue_count - 1; i >= 0; i--)
1761		nvme_free_queue(dev, i);
1762}
1763
1764/*
1765 * Return: error value if an error occurred setting up the queues or calling
1766 * Identify Device.  0 if these succeeded, even if adding some of the
1767 * namespaces failed.  At the moment, these failures are silent.  TBD which
1768 * failures should be reported.
1769 */
1770static int nvme_dev_add(struct nvme_dev *dev)
1771{
1772	int res;
1773	unsigned nn, i;
1774	struct nvme_ns *ns;
1775	struct nvme_id_ctrl *ctrl;
1776	struct nvme_id_ns *id_ns;
1777	void *mem;
1778	dma_addr_t dma_addr;
1779	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1780
1781	res = nvme_setup_io_queues(dev);
1782	if (res)
1783		return res;
1784
1785	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1786								GFP_KERNEL);
1787	if (!mem)
1788		return -ENOMEM;
1789
1790	res = nvme_identify(dev, 0, 1, dma_addr);
1791	if (res) {
1792		res = -EIO;
1793		goto out;
1794	}
1795
1796	ctrl = mem;
1797	nn = le32_to_cpup(&ctrl->nn);
1798	dev->oncs = le16_to_cpup(&ctrl->oncs);
1799	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1800	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1801	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1802	if (ctrl->mdts)
1803		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1804	if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1805			(dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1806		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1807
1808	id_ns = mem;
1809	for (i = 1; i <= nn; i++) {
1810		res = nvme_identify(dev, i, 0, dma_addr);
1811		if (res)
1812			continue;
1813
1814		if (id_ns->ncap == 0)
1815			continue;
1816
1817		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1818							dma_addr + 4096, NULL);
1819		if (res)
1820			memset(mem + 4096, 0, 4096);
1821
1822		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1823		if (ns)
1824			list_add_tail(&ns->list, &dev->namespaces);
1825	}
1826	list_for_each_entry(ns, &dev->namespaces, list)
1827		add_disk(ns->disk);
1828	res = 0;
1829
1830 out:
1831	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1832	return res;
1833}
1834
1835static int nvme_dev_remove(struct nvme_dev *dev)
1836{
1837	struct nvme_ns *ns, *next;
1838
1839	spin_lock(&dev_list_lock);
1840	list_del(&dev->node);
1841	spin_unlock(&dev_list_lock);
1842
1843	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1844		list_del(&ns->list);
1845		del_gendisk(ns->disk);
1846		nvme_ns_free(ns);
1847	}
1848
1849	nvme_free_queues(dev);
1850
1851	return 0;
1852}
1853
1854static int nvme_setup_prp_pools(struct nvme_dev *dev)
1855{
1856	struct device *dmadev = &dev->pci_dev->dev;
1857	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1858						PAGE_SIZE, PAGE_SIZE, 0);
1859	if (!dev->prp_page_pool)
1860		return -ENOMEM;
1861
1862	/* Optimisation for I/Os between 4k and 128k */
1863	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1864						256, 256, 0);
1865	if (!dev->prp_small_pool) {
1866		dma_pool_destroy(dev->prp_page_pool);
1867		return -ENOMEM;
1868	}
1869	return 0;
1870}
1871
1872static void nvme_release_prp_pools(struct nvme_dev *dev)
1873{
1874	dma_pool_destroy(dev->prp_page_pool);
1875	dma_pool_destroy(dev->prp_small_pool);
1876}
1877
1878static DEFINE_IDA(nvme_instance_ida);
1879
1880static int nvme_set_instance(struct nvme_dev *dev)
1881{
1882	int instance, error;
1883
1884	do {
1885		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1886			return -ENODEV;
1887
1888		spin_lock(&dev_list_lock);
1889		error = ida_get_new(&nvme_instance_ida, &instance);
1890		spin_unlock(&dev_list_lock);
1891	} while (error == -EAGAIN);
1892
1893	if (error)
1894		return -ENODEV;
1895
1896	dev->instance = instance;
1897	return 0;
1898}
1899
1900static void nvme_release_instance(struct nvme_dev *dev)
1901{
1902	spin_lock(&dev_list_lock);
1903	ida_remove(&nvme_instance_ida, dev->instance);
1904	spin_unlock(&dev_list_lock);
1905}
1906
1907static void nvme_free_dev(struct kref *kref)
1908{
1909	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1910	nvme_dev_remove(dev);
1911	if (dev->pci_dev->msi_enabled)
1912		pci_disable_msi(dev->pci_dev);
1913	else if (dev->pci_dev->msix_enabled)
1914		pci_disable_msix(dev->pci_dev);
1915	iounmap(dev->bar);
1916	nvme_release_instance(dev);
1917	nvme_release_prp_pools(dev);
1918	pci_disable_device(dev->pci_dev);
1919	pci_release_regions(dev->pci_dev);
1920	kfree(dev->queues);
1921	kfree(dev->entry);
1922	kfree(dev);
1923}
1924
1925static int nvme_dev_open(struct inode *inode, struct file *f)
1926{
1927	struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1928								miscdev);
1929	kref_get(&dev->kref);
1930	f->private_data = dev;
1931	return 0;
1932}
1933
1934static int nvme_dev_release(struct inode *inode, struct file *f)
1935{
1936	struct nvme_dev *dev = f->private_data;
1937	kref_put(&dev->kref, nvme_free_dev);
1938	return 0;
1939}
1940
1941static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1942{
1943	struct nvme_dev *dev = f->private_data;
1944	switch (cmd) {
1945	case NVME_IOCTL_ADMIN_CMD:
1946		return nvme_user_admin_cmd(dev, (void __user *)arg);
1947	default:
1948		return -ENOTTY;
1949	}
1950}
1951
1952static const struct file_operations nvme_dev_fops = {
1953	.owner		= THIS_MODULE,
1954	.open		= nvme_dev_open,
1955	.release	= nvme_dev_release,
1956	.unlocked_ioctl	= nvme_dev_ioctl,
1957	.compat_ioctl	= nvme_dev_ioctl,
1958};
1959
1960static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1961{
1962	int bars, result = -ENOMEM;
1963	struct nvme_dev *dev;
1964
1965	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1966	if (!dev)
1967		return -ENOMEM;
1968	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1969								GFP_KERNEL);
1970	if (!dev->entry)
1971		goto free;
1972	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1973								GFP_KERNEL);
1974	if (!dev->queues)
1975		goto free;
1976
1977	if (pci_enable_device_mem(pdev))
1978		goto free;
1979	pci_set_master(pdev);
1980	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1981	if (pci_request_selected_regions(pdev, bars, "nvme"))
1982		goto disable;
1983
1984	INIT_LIST_HEAD(&dev->namespaces);
1985	dev->pci_dev = pdev;
1986	pci_set_drvdata(pdev, dev);
1987
1988	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1989		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1990	else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1991		dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1992	else
1993		goto disable;
1994
1995	result = nvme_set_instance(dev);
1996	if (result)
1997		goto disable;
1998
1999	dev->entry[0].vector = pdev->irq;
2000
2001	result = nvme_setup_prp_pools(dev);
2002	if (result)
2003		goto disable_msix;
2004
2005	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2006	if (!dev->bar) {
2007		result = -ENOMEM;
2008		goto disable_msix;
2009	}
2010
2011	result = nvme_configure_admin_queue(dev);
2012	if (result)
2013		goto unmap;
2014	dev->queue_count++;
2015
2016	spin_lock(&dev_list_lock);
2017	list_add(&dev->node, &dev_list);
2018	spin_unlock(&dev_list_lock);
2019
2020	result = nvme_dev_add(dev);
2021	if (result && result != -EBUSY)
2022		goto delete;
2023
2024	scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2025	dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2026	dev->miscdev.parent = &pdev->dev;
2027	dev->miscdev.name = dev->name;
2028	dev->miscdev.fops = &nvme_dev_fops;
2029	result = misc_register(&dev->miscdev);
2030	if (result)
2031		goto remove;
2032
2033	kref_init(&dev->kref);
2034	return 0;
2035
2036 remove:
2037	nvme_dev_remove(dev);
2038 delete:
2039	spin_lock(&dev_list_lock);
2040	list_del(&dev->node);
2041	spin_unlock(&dev_list_lock);
2042
2043	nvme_free_queues(dev);
2044 unmap:
2045	iounmap(dev->bar);
2046 disable_msix:
2047	if (dev->pci_dev->msi_enabled)
2048		pci_disable_msi(dev->pci_dev);
2049	else if (dev->pci_dev->msix_enabled)
2050		pci_disable_msix(dev->pci_dev);
2051	nvme_release_instance(dev);
2052	nvme_release_prp_pools(dev);
2053 disable:
2054	pci_disable_device(pdev);
2055	pci_release_regions(pdev);
2056 free:
2057	kfree(dev->queues);
2058	kfree(dev->entry);
2059	kfree(dev);
2060	return result;
2061}
2062
2063static void nvme_remove(struct pci_dev *pdev)
2064{
2065	struct nvme_dev *dev = pci_get_drvdata(pdev);
2066	misc_deregister(&dev->miscdev);
2067	kref_put(&dev->kref, nvme_free_dev);
2068}
2069
2070/* These functions are yet to be implemented */
2071#define nvme_error_detected NULL
2072#define nvme_dump_registers NULL
2073#define nvme_link_reset NULL
2074#define nvme_slot_reset NULL
2075#define nvme_error_resume NULL
2076#define nvme_suspend NULL
2077#define nvme_resume NULL
2078
2079static const struct pci_error_handlers nvme_err_handler = {
2080	.error_detected	= nvme_error_detected,
2081	.mmio_enabled	= nvme_dump_registers,
2082	.link_reset	= nvme_link_reset,
2083	.slot_reset	= nvme_slot_reset,
2084	.resume		= nvme_error_resume,
2085};
2086
2087/* Move to pci_ids.h later */
2088#define PCI_CLASS_STORAGE_EXPRESS	0x010802
2089
2090static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2091	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2092	{ 0, }
2093};
2094MODULE_DEVICE_TABLE(pci, nvme_id_table);
2095
2096static struct pci_driver nvme_driver = {
2097	.name		= "nvme",
2098	.id_table	= nvme_id_table,
2099	.probe		= nvme_probe,
2100	.remove		= nvme_remove,
2101	.suspend	= nvme_suspend,
2102	.resume		= nvme_resume,
2103	.err_handler	= &nvme_err_handler,
2104};
2105
2106static int __init nvme_init(void)
2107{
2108	int result;
2109
2110	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2111	if (IS_ERR(nvme_thread))
2112		return PTR_ERR(nvme_thread);
2113
2114	result = register_blkdev(nvme_major, "nvme");
2115	if (result < 0)
2116		goto kill_kthread;
2117	else if (result > 0)
2118		nvme_major = result;
2119
2120	result = pci_register_driver(&nvme_driver);
2121	if (result)
2122		goto unregister_blkdev;
2123	return 0;
2124
2125 unregister_blkdev:
2126	unregister_blkdev(nvme_major, "nvme");
2127 kill_kthread:
2128	kthread_stop(nvme_thread);
2129	return result;
2130}
2131
2132static void __exit nvme_exit(void)
2133{
2134	pci_unregister_driver(&nvme_driver);
2135	unregister_blkdev(nvme_major, "nvme");
2136	kthread_stop(nvme_thread);
2137}
2138
2139MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2140MODULE_LICENSE("GPL");
2141MODULE_VERSION("0.8");
2142module_init(nvme_init);
2143module_exit(nvme_exit);
2144