nvme-core.c revision b348b7d54368c87811907a8e88f0d96713c43009
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
29#include <linux/kthread.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/pci.h>
35#include <linux/poison.h>
36#include <linux/sched.h>
37#include <linux/slab.h>
38#include <linux/types.h>
39#include <linux/version.h>
40
41#define NVME_Q_DEPTH 1024
42#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
43#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
44#define NVME_MINORS 64
45#define IO_TIMEOUT	(5 * HZ)
46#define ADMIN_TIMEOUT	(60 * HZ)
47
48static int nvme_major;
49module_param(nvme_major, int, 0);
50
51static int use_threaded_interrupts;
52module_param(use_threaded_interrupts, int, 0);
53
54static DEFINE_SPINLOCK(dev_list_lock);
55static LIST_HEAD(dev_list);
56static struct task_struct *nvme_thread;
57
58/*
59 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
60 */
61struct nvme_dev {
62	struct list_head node;
63	struct nvme_queue **queues;
64	u32 __iomem *dbs;
65	struct pci_dev *pci_dev;
66	struct dma_pool *prp_page_pool;
67	struct dma_pool *prp_small_pool;
68	int instance;
69	int queue_count;
70	u32 ctrl_config;
71	struct msix_entry *entry;
72	struct nvme_bar __iomem *bar;
73	struct list_head namespaces;
74	char serial[20];
75	char model[40];
76	char firmware_rev[8];
77};
78
79/*
80 * An NVM Express namespace is equivalent to a SCSI LUN
81 */
82struct nvme_ns {
83	struct list_head list;
84
85	struct nvme_dev *dev;
86	struct request_queue *queue;
87	struct gendisk *disk;
88
89	int ns_id;
90	int lba_shift;
91};
92
93/*
94 * An NVM Express queue.  Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97struct nvme_queue {
98	struct device *q_dmadev;
99	struct nvme_dev *dev;
100	spinlock_t q_lock;
101	struct nvme_command *sq_cmds;
102	volatile struct nvme_completion *cqes;
103	dma_addr_t sq_dma_addr;
104	dma_addr_t cq_dma_addr;
105	wait_queue_head_t sq_full;
106	wait_queue_t sq_cong_wait;
107	struct bio_list sq_cong;
108	u32 __iomem *q_db;
109	u16 q_depth;
110	u16 cq_vector;
111	u16 sq_head;
112	u16 sq_tail;
113	u16 cq_head;
114	u16 cq_phase;
115	unsigned long cmdid_data[];
116};
117
118/*
119 * Check we didin't inadvertently grow the command struct
120 */
121static inline void _nvme_check_size(void)
122{
123	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132}
133
134struct nvme_cmd_info {
135	unsigned long ctx;
136	unsigned long timeout;
137};
138
139static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140{
141	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142}
143
144/**
145 * alloc_cmdid - Allocate a Command ID
146 * @param nvmeq The queue that will be used for this command
147 * @param ctx A pointer that will be passed to the handler
148 * @param handler The ID of the handler to call
149 *
150 * Allocate a Command ID for a queue.  The data passed in will
151 * be passed to the completion handler.  This is implemented by using
152 * the bottom two bits of the ctx pointer to store the handler ID.
153 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154 * We can change this if it becomes a problem.
155 */
156static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157							unsigned timeout)
158{
159	int depth = nvmeq->q_depth;
160	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
161	int cmdid;
162
163	BUG_ON((unsigned long)ctx & 3);
164
165	do {
166		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167		if (cmdid >= depth)
168			return -EBUSY;
169	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
171	info[cmdid].ctx = (unsigned long)ctx | handler;
172	info[cmdid].timeout = jiffies + timeout;
173	return cmdid;
174}
175
176static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
177						int handler, unsigned timeout)
178{
179	int cmdid;
180	wait_event_killable(nvmeq->sq_full,
181		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
182	return (cmdid < 0) ? -EINTR : cmdid;
183}
184
185/* If you need more than four handlers, you'll need to change how
186 * alloc_cmdid and nvme_process_cq work.  Consider using a special
187 * CMD_CTX value instead, if that works for your situation.
188 */
189enum {
190	sync_completion_id = 0,
191	bio_completion_id,
192};
193
194#define CMD_CTX_BASE		(POISON_POINTER_DELTA + sync_completion_id)
195#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
196#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
197#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
198
199static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
200{
201	unsigned long data;
202	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
203
204	if (cmdid >= nvmeq->q_depth)
205		return CMD_CTX_INVALID;
206	data = info[cmdid].ctx;
207	info[cmdid].ctx = CMD_CTX_COMPLETED;
208	clear_bit(cmdid, nvmeq->cmdid_data);
209	wake_up(&nvmeq->sq_full);
210	return data;
211}
212
213static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
214{
215	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
216	info[cmdid].ctx = CMD_CTX_CANCELLED;
217}
218
219static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
220{
221	int qid, cpu = get_cpu();
222	if (cpu < ns->dev->queue_count)
223		qid = cpu + 1;
224	else
225		qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
226	return ns->dev->queues[qid];
227}
228
229static void put_nvmeq(struct nvme_queue *nvmeq)
230{
231	put_cpu();
232}
233
234/**
235 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
236 * @nvmeq: The queue to use
237 * @cmd: The command to send
238 *
239 * Safe to use from interrupt context
240 */
241static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
242{
243	unsigned long flags;
244	u16 tail;
245	/* XXX: Need to check tail isn't going to overrun head */
246	spin_lock_irqsave(&nvmeq->q_lock, flags);
247	tail = nvmeq->sq_tail;
248	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
249	writel(tail, nvmeq->q_db);
250	if (++tail == nvmeq->q_depth)
251		tail = 0;
252	nvmeq->sq_tail = tail;
253	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
254
255	return 0;
256}
257
258struct nvme_prps {
259	int npages;
260	dma_addr_t first_dma;
261	__le64 *list[0];
262};
263
264static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
265{
266	const int last_prp = PAGE_SIZE / 8 - 1;
267	int i;
268	dma_addr_t prp_dma;
269
270	if (!prps)
271		return;
272
273	prp_dma = prps->first_dma;
274
275	if (prps->npages == 0)
276		dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
277	for (i = 0; i < prps->npages; i++) {
278		__le64 *prp_list = prps->list[i];
279		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
280		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
281		prp_dma = next_prp_dma;
282	}
283	kfree(prps);
284}
285
286struct nvme_bio {
287	struct bio *bio;
288	int nents;
289	struct nvme_prps *prps;
290	struct scatterlist sg[0];
291};
292
293/* XXX: use a mempool */
294static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
295{
296	return kzalloc(sizeof(struct nvme_bio) +
297			sizeof(struct scatterlist) * nseg, gfp);
298}
299
300static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
301{
302	nvme_free_prps(nvmeq->dev, nbio->prps);
303	kfree(nbio);
304}
305
306static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
307						struct nvme_completion *cqe)
308{
309	struct nvme_bio *nbio = ctx;
310	struct bio *bio = nbio->bio;
311	u16 status = le16_to_cpup(&cqe->status) >> 1;
312
313	dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
314			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
315	free_nbio(nvmeq, nbio);
316	bio_endio(bio, status ? -EIO : 0);
317}
318
319/* length is in bytes */
320static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
321					struct nvme_common_command *cmd,
322					struct scatterlist *sg, int length)
323{
324	struct dma_pool *pool;
325	int dma_len = sg_dma_len(sg);
326	u64 dma_addr = sg_dma_address(sg);
327	int offset = offset_in_page(dma_addr);
328	__le64 *prp_list;
329	dma_addr_t prp_dma;
330	int nprps, npages, i, prp_page;
331	struct nvme_prps *prps = NULL;
332
333	cmd->prp1 = cpu_to_le64(dma_addr);
334	length -= (PAGE_SIZE - offset);
335	if (length <= 0)
336		return prps;
337
338	dma_len -= (PAGE_SIZE - offset);
339	if (dma_len) {
340		dma_addr += (PAGE_SIZE - offset);
341	} else {
342		sg = sg_next(sg);
343		dma_addr = sg_dma_address(sg);
344		dma_len = sg_dma_len(sg);
345	}
346
347	if (length <= PAGE_SIZE) {
348		cmd->prp2 = cpu_to_le64(dma_addr);
349		return prps;
350	}
351
352	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
353	npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
354	prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
355	prp_page = 0;
356	if (nprps <= (256 / 8)) {
357		pool = dev->prp_small_pool;
358		prps->npages = 0;
359	} else {
360		pool = dev->prp_page_pool;
361		prps->npages = npages;
362	}
363
364	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
365	prps->list[prp_page++] = prp_list;
366	prps->first_dma = prp_dma;
367	cmd->prp2 = cpu_to_le64(prp_dma);
368	i = 0;
369	for (;;) {
370		if (i == PAGE_SIZE / 8 - 1) {
371			__le64 *old_prp_list = prp_list;
372			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
373			prps->list[prp_page++] = prp_list;
374			old_prp_list[i] = cpu_to_le64(prp_dma);
375			i = 0;
376		}
377		prp_list[i++] = cpu_to_le64(dma_addr);
378		dma_len -= PAGE_SIZE;
379		dma_addr += PAGE_SIZE;
380		length -= PAGE_SIZE;
381		if (length <= 0)
382			break;
383		if (dma_len > 0)
384			continue;
385		BUG_ON(dma_len < 0);
386		sg = sg_next(sg);
387		dma_addr = sg_dma_address(sg);
388		dma_len = sg_dma_len(sg);
389	}
390
391	return prps;
392}
393
394static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
395		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
396{
397	struct bio_vec *bvec, *bvprv = NULL;
398	struct scatterlist *sg = NULL;
399	int i, nsegs = 0;
400
401	sg_init_table(nbio->sg, psegs);
402	bio_for_each_segment(bvec, bio, i) {
403		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
404			sg->length += bvec->bv_len;
405		} else {
406			/* Check bvprv && offset == 0 */
407			sg = sg ? sg + 1 : nbio->sg;
408			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
409							bvec->bv_offset);
410			nsegs++;
411		}
412		bvprv = bvec;
413	}
414	nbio->nents = nsegs;
415	sg_mark_end(sg);
416	return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
417}
418
419static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
420								struct bio *bio)
421{
422	struct nvme_command *cmnd;
423	struct nvme_bio *nbio;
424	enum dma_data_direction dma_dir;
425	int cmdid, result = -ENOMEM;
426	u16 control;
427	u32 dsmgmt;
428	int psegs = bio_phys_segments(ns->queue, bio);
429
430	nbio = alloc_nbio(psegs, GFP_ATOMIC);
431	if (!nbio)
432		goto nomem;
433	nbio->bio = bio;
434
435	result = -EBUSY;
436	cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
437	if (unlikely(cmdid < 0))
438		goto free_nbio;
439
440	control = 0;
441	if (bio->bi_rw & REQ_FUA)
442		control |= NVME_RW_FUA;
443	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
444		control |= NVME_RW_LR;
445
446	dsmgmt = 0;
447	if (bio->bi_rw & REQ_RAHEAD)
448		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
449
450	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
451
452	memset(cmnd, 0, sizeof(*cmnd));
453	if (bio_data_dir(bio)) {
454		cmnd->rw.opcode = nvme_cmd_write;
455		dma_dir = DMA_TO_DEVICE;
456	} else {
457		cmnd->rw.opcode = nvme_cmd_read;
458		dma_dir = DMA_FROM_DEVICE;
459	}
460
461	result = -ENOMEM;
462	if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
463		goto free_nbio;
464
465	cmnd->rw.command_id = cmdid;
466	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
467	nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
468								bio->bi_size);
469	cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
470	cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
471	cmnd->rw.control = cpu_to_le16(control);
472	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
473
474	writel(nvmeq->sq_tail, nvmeq->q_db);
475	if (++nvmeq->sq_tail == nvmeq->q_depth)
476		nvmeq->sq_tail = 0;
477
478	return 0;
479
480 free_nbio:
481	free_nbio(nvmeq, nbio);
482 nomem:
483	return result;
484}
485
486/*
487 * NB: return value of non-zero would mean that we were a stacking driver.
488 * make_request must always succeed.
489 */
490static int nvme_make_request(struct request_queue *q, struct bio *bio)
491{
492	struct nvme_ns *ns = q->queuedata;
493	struct nvme_queue *nvmeq = get_nvmeq(ns);
494	int result = -EBUSY;
495
496	spin_lock_irq(&nvmeq->q_lock);
497	if (bio_list_empty(&nvmeq->sq_cong))
498		result = nvme_submit_bio_queue(nvmeq, ns, bio);
499	if (unlikely(result)) {
500		if (bio_list_empty(&nvmeq->sq_cong))
501			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
502		bio_list_add(&nvmeq->sq_cong, bio);
503	}
504
505	spin_unlock_irq(&nvmeq->q_lock);
506	put_nvmeq(nvmeq);
507
508	return 0;
509}
510
511struct sync_cmd_info {
512	struct task_struct *task;
513	u32 result;
514	int status;
515};
516
517static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
518						struct nvme_completion *cqe)
519{
520	struct sync_cmd_info *cmdinfo = ctx;
521	if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
522		return;
523	if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
524		dev_warn(nvmeq->q_dmadev,
525				"completed id %d twice on queue %d\n",
526				cqe->command_id, le16_to_cpup(&cqe->sq_id));
527		return;
528	}
529	if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
530		dev_warn(nvmeq->q_dmadev,
531				"invalid id %d completed on queue %d\n",
532				cqe->command_id, le16_to_cpup(&cqe->sq_id));
533		return;
534	}
535	cmdinfo->result = le32_to_cpup(&cqe->result);
536	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
537	wake_up_process(cmdinfo->task);
538}
539
540typedef void (*completion_fn)(struct nvme_queue *, void *,
541						struct nvme_completion *);
542
543static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
544{
545	u16 head, phase;
546
547	static const completion_fn completions[4] = {
548		[sync_completion_id] = sync_completion,
549		[bio_completion_id]  = bio_completion,
550	};
551
552	head = nvmeq->cq_head;
553	phase = nvmeq->cq_phase;
554
555	for (;;) {
556		unsigned long data;
557		void *ptr;
558		unsigned char handler;
559		struct nvme_completion cqe = nvmeq->cqes[head];
560		if ((le16_to_cpu(cqe.status) & 1) != phase)
561			break;
562		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
563		if (++head == nvmeq->q_depth) {
564			head = 0;
565			phase = !phase;
566		}
567
568		data = free_cmdid(nvmeq, cqe.command_id);
569		handler = data & 3;
570		ptr = (void *)(data & ~3UL);
571		completions[handler](nvmeq, ptr, &cqe);
572	}
573
574	/* If the controller ignores the cq head doorbell and continuously
575	 * writes to the queue, it is theoretically possible to wrap around
576	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
577	 * requires that 0.1% of your interrupts are handled, so this isn't
578	 * a big problem.
579	 */
580	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
581		return IRQ_NONE;
582
583	writel(head, nvmeq->q_db + 1);
584	nvmeq->cq_head = head;
585	nvmeq->cq_phase = phase;
586
587	return IRQ_HANDLED;
588}
589
590static irqreturn_t nvme_irq(int irq, void *data)
591{
592	irqreturn_t result;
593	struct nvme_queue *nvmeq = data;
594	spin_lock(&nvmeq->q_lock);
595	result = nvme_process_cq(nvmeq);
596	spin_unlock(&nvmeq->q_lock);
597	return result;
598}
599
600static irqreturn_t nvme_irq_check(int irq, void *data)
601{
602	struct nvme_queue *nvmeq = data;
603	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
604	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
605		return IRQ_NONE;
606	return IRQ_WAKE_THREAD;
607}
608
609static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
610{
611	spin_lock_irq(&nvmeq->q_lock);
612	cancel_cmdid_data(nvmeq, cmdid);
613	spin_unlock_irq(&nvmeq->q_lock);
614}
615
616/*
617 * Returns 0 on success.  If the result is negative, it's a Linux error code;
618 * if the result is positive, it's an NVM Express status code
619 */
620static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
621			struct nvme_command *cmd, u32 *result, unsigned timeout)
622{
623	int cmdid;
624	struct sync_cmd_info cmdinfo;
625
626	cmdinfo.task = current;
627	cmdinfo.status = -EINTR;
628
629	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
630								timeout);
631	if (cmdid < 0)
632		return cmdid;
633	cmd->common.command_id = cmdid;
634
635	set_current_state(TASK_KILLABLE);
636	nvme_submit_cmd(nvmeq, cmd);
637	schedule();
638
639	if (cmdinfo.status == -EINTR) {
640		nvme_abort_command(nvmeq, cmdid);
641		return -EINTR;
642	}
643
644	if (result)
645		*result = cmdinfo.result;
646
647	return cmdinfo.status;
648}
649
650static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
651								u32 *result)
652{
653	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
654}
655
656static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
657{
658	int status;
659	struct nvme_command c;
660
661	memset(&c, 0, sizeof(c));
662	c.delete_queue.opcode = opcode;
663	c.delete_queue.qid = cpu_to_le16(id);
664
665	status = nvme_submit_admin_cmd(dev, &c, NULL);
666	if (status)
667		return -EIO;
668	return 0;
669}
670
671static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
672						struct nvme_queue *nvmeq)
673{
674	int status;
675	struct nvme_command c;
676	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
677
678	memset(&c, 0, sizeof(c));
679	c.create_cq.opcode = nvme_admin_create_cq;
680	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
681	c.create_cq.cqid = cpu_to_le16(qid);
682	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
683	c.create_cq.cq_flags = cpu_to_le16(flags);
684	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
685
686	status = nvme_submit_admin_cmd(dev, &c, NULL);
687	if (status)
688		return -EIO;
689	return 0;
690}
691
692static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
693						struct nvme_queue *nvmeq)
694{
695	int status;
696	struct nvme_command c;
697	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
698
699	memset(&c, 0, sizeof(c));
700	c.create_sq.opcode = nvme_admin_create_sq;
701	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
702	c.create_sq.sqid = cpu_to_le16(qid);
703	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
704	c.create_sq.sq_flags = cpu_to_le16(flags);
705	c.create_sq.cqid = cpu_to_le16(qid);
706
707	status = nvme_submit_admin_cmd(dev, &c, NULL);
708	if (status)
709		return -EIO;
710	return 0;
711}
712
713static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
714{
715	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
716}
717
718static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
719{
720	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
721}
722
723static void nvme_free_queue(struct nvme_dev *dev, int qid)
724{
725	struct nvme_queue *nvmeq = dev->queues[qid];
726
727	free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
728
729	/* Don't tell the adapter to delete the admin queue */
730	if (qid) {
731		adapter_delete_sq(dev, qid);
732		adapter_delete_cq(dev, qid);
733	}
734
735	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
736				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
737	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
738					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
739	kfree(nvmeq);
740}
741
742static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
743							int depth, int vector)
744{
745	struct device *dmadev = &dev->pci_dev->dev;
746	unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
747	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
748	if (!nvmeq)
749		return NULL;
750
751	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
752					&nvmeq->cq_dma_addr, GFP_KERNEL);
753	if (!nvmeq->cqes)
754		goto free_nvmeq;
755	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
756
757	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
758					&nvmeq->sq_dma_addr, GFP_KERNEL);
759	if (!nvmeq->sq_cmds)
760		goto free_cqdma;
761
762	nvmeq->q_dmadev = dmadev;
763	nvmeq->dev = dev;
764	spin_lock_init(&nvmeq->q_lock);
765	nvmeq->cq_head = 0;
766	nvmeq->cq_phase = 1;
767	init_waitqueue_head(&nvmeq->sq_full);
768	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
769	bio_list_init(&nvmeq->sq_cong);
770	nvmeq->q_db = &dev->dbs[qid * 2];
771	nvmeq->q_depth = depth;
772	nvmeq->cq_vector = vector;
773
774	return nvmeq;
775
776 free_cqdma:
777	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
778							nvmeq->cq_dma_addr);
779 free_nvmeq:
780	kfree(nvmeq);
781	return NULL;
782}
783
784static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
785							const char *name)
786{
787	if (use_threaded_interrupts)
788		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
789					nvme_irq_check, nvme_irq,
790					IRQF_DISABLED | IRQF_SHARED,
791					name, nvmeq);
792	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
793				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
794}
795
796static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
797					int qid, int cq_size, int vector)
798{
799	int result;
800	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
801
802	if (!nvmeq)
803		return NULL;
804
805	result = adapter_alloc_cq(dev, qid, nvmeq);
806	if (result < 0)
807		goto free_nvmeq;
808
809	result = adapter_alloc_sq(dev, qid, nvmeq);
810	if (result < 0)
811		goto release_cq;
812
813	result = queue_request_irq(dev, nvmeq, "nvme");
814	if (result < 0)
815		goto release_sq;
816
817	return nvmeq;
818
819 release_sq:
820	adapter_delete_sq(dev, qid);
821 release_cq:
822	adapter_delete_cq(dev, qid);
823 free_nvmeq:
824	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
825				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
826	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
827					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
828	kfree(nvmeq);
829	return NULL;
830}
831
832static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
833{
834	int result;
835	u32 aqa;
836	struct nvme_queue *nvmeq;
837
838	dev->dbs = ((void __iomem *)dev->bar) + 4096;
839
840	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
841	if (!nvmeq)
842		return -ENOMEM;
843
844	aqa = nvmeq->q_depth - 1;
845	aqa |= aqa << 16;
846
847	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
848	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
849	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
850
851	writel(0, &dev->bar->cc);
852	writel(aqa, &dev->bar->aqa);
853	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
854	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
855	writel(dev->ctrl_config, &dev->bar->cc);
856
857	while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
858		msleep(100);
859		if (fatal_signal_pending(current))
860			return -EINTR;
861	}
862
863	result = queue_request_irq(dev, nvmeq, "nvme admin");
864	dev->queues[0] = nvmeq;
865	return result;
866}
867
868static int nvme_map_user_pages(struct nvme_dev *dev, int write,
869				unsigned long addr, unsigned length,
870				struct scatterlist **sgp)
871{
872	int i, err, count, nents, offset;
873	struct scatterlist *sg;
874	struct page **pages;
875
876	if (addr & 3)
877		return -EINVAL;
878	if (!length)
879		return -EINVAL;
880
881	offset = offset_in_page(addr);
882	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
883	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
884
885	err = get_user_pages_fast(addr, count, 1, pages);
886	if (err < count) {
887		count = err;
888		err = -EFAULT;
889		goto put_pages;
890	}
891
892	sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
893	sg_init_table(sg, count);
894	sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
895	length -= (PAGE_SIZE - offset);
896	for (i = 1; i < count; i++) {
897		sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
898		length -= PAGE_SIZE;
899	}
900
901	err = -ENOMEM;
902	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
903				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
904	if (!nents)
905		goto put_pages;
906
907	kfree(pages);
908	*sgp = sg;
909	return nents;
910
911 put_pages:
912	for (i = 0; i < count; i++)
913		put_page(pages[i]);
914	kfree(pages);
915	return err;
916}
917
918static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
919				unsigned long addr, int length,
920				struct scatterlist *sg, int nents)
921{
922	int i, count;
923
924	count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
925	dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
926
927	for (i = 0; i < count; i++)
928		put_page(sg_page(&sg[i]));
929}
930
931static int nvme_submit_user_admin_command(struct nvme_dev *dev,
932					unsigned long addr, unsigned length,
933					struct nvme_command *cmd)
934{
935	int err, nents;
936	struct scatterlist *sg;
937	struct nvme_prps *prps;
938
939	nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
940	if (nents < 0)
941		return nents;
942	prps = nvme_setup_prps(dev, &cmd->common, sg, length);
943	err = nvme_submit_admin_cmd(dev, cmd, NULL);
944	nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
945	nvme_free_prps(dev, prps);
946	return err ? -EIO : 0;
947}
948
949static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
950{
951	struct nvme_command c;
952
953	memset(&c, 0, sizeof(c));
954	c.identify.opcode = nvme_admin_identify;
955	c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
956	c.identify.cns = cpu_to_le32(cns);
957
958	return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
959}
960
961static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
962{
963	struct nvme_command c;
964
965	memset(&c, 0, sizeof(c));
966	c.features.opcode = nvme_admin_get_features;
967	c.features.nsid = cpu_to_le32(ns->ns_id);
968	c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
969
970	return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
971}
972
973static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
974{
975	struct nvme_dev *dev = ns->dev;
976	struct nvme_queue *nvmeq;
977	struct nvme_user_io io;
978	struct nvme_command c;
979	unsigned length;
980	u32 result;
981	int nents, status;
982	struct scatterlist *sg;
983	struct nvme_prps *prps;
984
985	if (copy_from_user(&io, uio, sizeof(io)))
986		return -EFAULT;
987	length = io.nblocks << io.block_shift;
988	nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
989	if (nents < 0)
990		return nents;
991
992	memset(&c, 0, sizeof(c));
993	c.rw.opcode = io.opcode;
994	c.rw.flags = io.flags;
995	c.rw.nsid = cpu_to_le32(io.nsid);
996	c.rw.slba = cpu_to_le64(io.slba);
997	c.rw.length = cpu_to_le16(io.nblocks - 1);
998	c.rw.control = cpu_to_le16(io.control);
999	c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1000	c.rw.reftag = cpu_to_le32(io.reftag);	/* XXX: endian? */
1001	c.rw.apptag = cpu_to_le16(io.apptag);
1002	c.rw.appmask = cpu_to_le16(io.appmask);
1003	/* XXX: metadata */
1004	prps = nvme_setup_prps(dev, &c.common, sg, length);
1005
1006	nvmeq = get_nvmeq(ns);
1007	/* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1008	 * disabled.  We may be preempted at any point, and be rescheduled
1009	 * to a different CPU.  That will cause cacheline bouncing, but no
1010	 * additional races since q_lock already protects against other CPUs.
1011	 */
1012	put_nvmeq(nvmeq);
1013	status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1014
1015	nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1016	nvme_free_prps(dev, prps);
1017	put_user(result, &uio->result);
1018	return status;
1019}
1020
1021static int nvme_download_firmware(struct nvme_ns *ns,
1022						struct nvme_dlfw __user *udlfw)
1023{
1024	struct nvme_dev *dev = ns->dev;
1025	struct nvme_dlfw dlfw;
1026	struct nvme_command c;
1027	int nents, status;
1028	struct scatterlist *sg;
1029	struct nvme_prps *prps;
1030
1031	if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1032		return -EFAULT;
1033	if (dlfw.length >= (1 << 30))
1034		return -EINVAL;
1035
1036	nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1037	if (nents < 0)
1038		return nents;
1039
1040	memset(&c, 0, sizeof(c));
1041	c.dlfw.opcode = nvme_admin_download_fw;
1042	c.dlfw.numd = cpu_to_le32(dlfw.length);
1043	c.dlfw.offset = cpu_to_le32(dlfw.offset);
1044	prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1045
1046	status = nvme_submit_admin_cmd(dev, &c, NULL);
1047	nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1048	nvme_free_prps(dev, prps);
1049	return status;
1050}
1051
1052static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1053{
1054	struct nvme_dev *dev = ns->dev;
1055	struct nvme_command c;
1056
1057	memset(&c, 0, sizeof(c));
1058	c.common.opcode = nvme_admin_activate_fw;
1059	c.common.rsvd10[0] = cpu_to_le32(arg);
1060
1061	return nvme_submit_admin_cmd(dev, &c, NULL);
1062}
1063
1064static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1065							unsigned long arg)
1066{
1067	struct nvme_ns *ns = bdev->bd_disk->private_data;
1068
1069	switch (cmd) {
1070	case NVME_IOCTL_IDENTIFY_NS:
1071		return nvme_identify(ns, arg, 0);
1072	case NVME_IOCTL_IDENTIFY_CTRL:
1073		return nvme_identify(ns, arg, 1);
1074	case NVME_IOCTL_GET_RANGE_TYPE:
1075		return nvme_get_range_type(ns, arg);
1076	case NVME_IOCTL_SUBMIT_IO:
1077		return nvme_submit_io(ns, (void __user *)arg);
1078	case NVME_IOCTL_DOWNLOAD_FW:
1079		return nvme_download_firmware(ns, (void __user *)arg);
1080	case NVME_IOCTL_ACTIVATE_FW:
1081		return nvme_activate_firmware(ns, arg);
1082	default:
1083		return -ENOTTY;
1084	}
1085}
1086
1087static const struct block_device_operations nvme_fops = {
1088	.owner		= THIS_MODULE,
1089	.ioctl		= nvme_ioctl,
1090};
1091
1092static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1093{
1094	while (bio_list_peek(&nvmeq->sq_cong)) {
1095		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1096		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1097		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1098			bio_list_add_head(&nvmeq->sq_cong, bio);
1099			break;
1100		}
1101	}
1102}
1103
1104static int nvme_kthread(void *data)
1105{
1106	struct nvme_dev *dev;
1107
1108	while (!kthread_should_stop()) {
1109		__set_current_state(TASK_RUNNING);
1110		spin_lock(&dev_list_lock);
1111		list_for_each_entry(dev, &dev_list, node) {
1112			int i;
1113			for (i = 0; i < dev->queue_count; i++) {
1114				struct nvme_queue *nvmeq = dev->queues[i];
1115				spin_lock_irq(&nvmeq->q_lock);
1116				if (nvme_process_cq(nvmeq))
1117					printk("process_cq did something\n");
1118				nvme_resubmit_bios(nvmeq);
1119				spin_unlock_irq(&nvmeq->q_lock);
1120			}
1121		}
1122		spin_unlock(&dev_list_lock);
1123		set_current_state(TASK_INTERRUPTIBLE);
1124		schedule_timeout(HZ);
1125	}
1126	return 0;
1127}
1128
1129static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1130			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1131{
1132	struct nvme_ns *ns;
1133	struct gendisk *disk;
1134	int lbaf;
1135
1136	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1137		return NULL;
1138
1139	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1140	if (!ns)
1141		return NULL;
1142	ns->queue = blk_alloc_queue(GFP_KERNEL);
1143	if (!ns->queue)
1144		goto out_free_ns;
1145	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1146				QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1147	blk_queue_make_request(ns->queue, nvme_make_request);
1148	ns->dev = dev;
1149	ns->queue->queuedata = ns;
1150
1151	disk = alloc_disk(NVME_MINORS);
1152	if (!disk)
1153		goto out_free_queue;
1154	ns->ns_id = index;
1155	ns->disk = disk;
1156	lbaf = id->flbas & 0xf;
1157	ns->lba_shift = id->lbaf[lbaf].ds;
1158
1159	disk->major = nvme_major;
1160	disk->minors = NVME_MINORS;
1161	disk->first_minor = NVME_MINORS * index;
1162	disk->fops = &nvme_fops;
1163	disk->private_data = ns;
1164	disk->queue = ns->queue;
1165	disk->driverfs_dev = &dev->pci_dev->dev;
1166	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1167	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1168
1169	return ns;
1170
1171 out_free_queue:
1172	blk_cleanup_queue(ns->queue);
1173 out_free_ns:
1174	kfree(ns);
1175	return NULL;
1176}
1177
1178static void nvme_ns_free(struct nvme_ns *ns)
1179{
1180	put_disk(ns->disk);
1181	blk_cleanup_queue(ns->queue);
1182	kfree(ns);
1183}
1184
1185static int set_queue_count(struct nvme_dev *dev, int count)
1186{
1187	int status;
1188	u32 result;
1189	struct nvme_command c;
1190	u32 q_count = (count - 1) | ((count - 1) << 16);
1191
1192	memset(&c, 0, sizeof(c));
1193	c.features.opcode = nvme_admin_get_features;
1194	c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1195	c.features.dword11 = cpu_to_le32(q_count);
1196
1197	status = nvme_submit_admin_cmd(dev, &c, &result);
1198	if (status)
1199		return -EIO;
1200	return min(result & 0xffff, result >> 16) + 1;
1201}
1202
1203static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1204{
1205	int result, cpu, i, nr_io_queues;
1206
1207	nr_io_queues = num_online_cpus();
1208	result = set_queue_count(dev, nr_io_queues);
1209	if (result < 0)
1210		return result;
1211	if (result < nr_io_queues)
1212		nr_io_queues = result;
1213
1214	/* Deregister the admin queue's interrupt */
1215	free_irq(dev->entry[0].vector, dev->queues[0]);
1216
1217	for (i = 0; i < nr_io_queues; i++)
1218		dev->entry[i].entry = i;
1219	for (;;) {
1220		result = pci_enable_msix(dev->pci_dev, dev->entry,
1221								nr_io_queues);
1222		if (result == 0) {
1223			break;
1224		} else if (result > 0) {
1225			nr_io_queues = result;
1226			continue;
1227		} else {
1228			nr_io_queues = 1;
1229			break;
1230		}
1231	}
1232
1233	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1234	/* XXX: handle failure here */
1235
1236	cpu = cpumask_first(cpu_online_mask);
1237	for (i = 0; i < nr_io_queues; i++) {
1238		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1239		cpu = cpumask_next(cpu, cpu_online_mask);
1240	}
1241
1242	for (i = 0; i < nr_io_queues; i++) {
1243		dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1244							NVME_Q_DEPTH, i);
1245		if (!dev->queues[i + 1])
1246			return -ENOMEM;
1247		dev->queue_count++;
1248	}
1249
1250	return 0;
1251}
1252
1253static void nvme_free_queues(struct nvme_dev *dev)
1254{
1255	int i;
1256
1257	for (i = dev->queue_count - 1; i >= 0; i--)
1258		nvme_free_queue(dev, i);
1259}
1260
1261static int __devinit nvme_dev_add(struct nvme_dev *dev)
1262{
1263	int res, nn, i;
1264	struct nvme_ns *ns, *next;
1265	struct nvme_id_ctrl *ctrl;
1266	void *id;
1267	dma_addr_t dma_addr;
1268	struct nvme_command cid, crt;
1269
1270	res = nvme_setup_io_queues(dev);
1271	if (res)
1272		return res;
1273
1274	/* XXX: Switch to a SG list once prp2 works */
1275	id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1276								GFP_KERNEL);
1277
1278	memset(&cid, 0, sizeof(cid));
1279	cid.identify.opcode = nvme_admin_identify;
1280	cid.identify.nsid = 0;
1281	cid.identify.prp1 = cpu_to_le64(dma_addr);
1282	cid.identify.cns = cpu_to_le32(1);
1283
1284	res = nvme_submit_admin_cmd(dev, &cid, NULL);
1285	if (res) {
1286		res = -EIO;
1287		goto out_free;
1288	}
1289
1290	ctrl = id;
1291	nn = le32_to_cpup(&ctrl->nn);
1292	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1293	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1294	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1295
1296	cid.identify.cns = 0;
1297	memset(&crt, 0, sizeof(crt));
1298	crt.features.opcode = nvme_admin_get_features;
1299	crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1300	crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1301
1302	for (i = 0; i < nn; i++) {
1303		cid.identify.nsid = cpu_to_le32(i);
1304		res = nvme_submit_admin_cmd(dev, &cid, NULL);
1305		if (res)
1306			continue;
1307
1308		if (((struct nvme_id_ns *)id)->ncap == 0)
1309			continue;
1310
1311		crt.features.nsid = cpu_to_le32(i);
1312		res = nvme_submit_admin_cmd(dev, &crt, NULL);
1313		if (res)
1314			continue;
1315
1316		ns = nvme_alloc_ns(dev, i, id, id + 4096);
1317		if (ns)
1318			list_add_tail(&ns->list, &dev->namespaces);
1319	}
1320	list_for_each_entry(ns, &dev->namespaces, list)
1321		add_disk(ns->disk);
1322
1323	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1324	return 0;
1325
1326 out_free:
1327	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1328		list_del(&ns->list);
1329		nvme_ns_free(ns);
1330	}
1331
1332	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1333	return res;
1334}
1335
1336static int nvme_dev_remove(struct nvme_dev *dev)
1337{
1338	struct nvme_ns *ns, *next;
1339
1340	spin_lock(&dev_list_lock);
1341	list_del(&dev->node);
1342	spin_unlock(&dev_list_lock);
1343
1344	/* TODO: wait all I/O finished or cancel them */
1345
1346	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1347		list_del(&ns->list);
1348		del_gendisk(ns->disk);
1349		nvme_ns_free(ns);
1350	}
1351
1352	nvme_free_queues(dev);
1353
1354	return 0;
1355}
1356
1357static int nvme_setup_prp_pools(struct nvme_dev *dev)
1358{
1359	struct device *dmadev = &dev->pci_dev->dev;
1360	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1361						PAGE_SIZE, PAGE_SIZE, 0);
1362	if (!dev->prp_page_pool)
1363		return -ENOMEM;
1364
1365	/* Optimisation for I/Os between 4k and 128k */
1366	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1367						256, 256, 0);
1368	if (!dev->prp_small_pool) {
1369		dma_pool_destroy(dev->prp_page_pool);
1370		return -ENOMEM;
1371	}
1372	return 0;
1373}
1374
1375static void nvme_release_prp_pools(struct nvme_dev *dev)
1376{
1377	dma_pool_destroy(dev->prp_page_pool);
1378	dma_pool_destroy(dev->prp_small_pool);
1379}
1380
1381/* XXX: Use an ida or something to let remove / add work correctly */
1382static void nvme_set_instance(struct nvme_dev *dev)
1383{
1384	static int instance;
1385	dev->instance = instance++;
1386}
1387
1388static void nvme_release_instance(struct nvme_dev *dev)
1389{
1390}
1391
1392static int __devinit nvme_probe(struct pci_dev *pdev,
1393						const struct pci_device_id *id)
1394{
1395	int bars, result = -ENOMEM;
1396	struct nvme_dev *dev;
1397
1398	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1399	if (!dev)
1400		return -ENOMEM;
1401	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1402								GFP_KERNEL);
1403	if (!dev->entry)
1404		goto free;
1405	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1406								GFP_KERNEL);
1407	if (!dev->queues)
1408		goto free;
1409
1410	if (pci_enable_device_mem(pdev))
1411		goto free;
1412	pci_set_master(pdev);
1413	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1414	if (pci_request_selected_regions(pdev, bars, "nvme"))
1415		goto disable;
1416
1417	INIT_LIST_HEAD(&dev->namespaces);
1418	dev->pci_dev = pdev;
1419	pci_set_drvdata(pdev, dev);
1420	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1421	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1422	nvme_set_instance(dev);
1423	dev->entry[0].vector = pdev->irq;
1424
1425	result = nvme_setup_prp_pools(dev);
1426	if (result)
1427		goto disable_msix;
1428
1429	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1430	if (!dev->bar) {
1431		result = -ENOMEM;
1432		goto disable_msix;
1433	}
1434
1435	result = nvme_configure_admin_queue(dev);
1436	if (result)
1437		goto unmap;
1438	dev->queue_count++;
1439
1440	result = nvme_dev_add(dev);
1441	if (result)
1442		goto delete;
1443
1444	spin_lock(&dev_list_lock);
1445	list_add(&dev->node, &dev_list);
1446	spin_unlock(&dev_list_lock);
1447
1448	return 0;
1449
1450 delete:
1451	nvme_free_queues(dev);
1452 unmap:
1453	iounmap(dev->bar);
1454 disable_msix:
1455	pci_disable_msix(pdev);
1456	nvme_release_instance(dev);
1457	nvme_release_prp_pools(dev);
1458 disable:
1459	pci_disable_device(pdev);
1460	pci_release_regions(pdev);
1461 free:
1462	kfree(dev->queues);
1463	kfree(dev->entry);
1464	kfree(dev);
1465	return result;
1466}
1467
1468static void __devexit nvme_remove(struct pci_dev *pdev)
1469{
1470	struct nvme_dev *dev = pci_get_drvdata(pdev);
1471	nvme_dev_remove(dev);
1472	pci_disable_msix(pdev);
1473	iounmap(dev->bar);
1474	nvme_release_instance(dev);
1475	nvme_release_prp_pools(dev);
1476	pci_disable_device(pdev);
1477	pci_release_regions(pdev);
1478	kfree(dev->queues);
1479	kfree(dev->entry);
1480	kfree(dev);
1481}
1482
1483/* These functions are yet to be implemented */
1484#define nvme_error_detected NULL
1485#define nvme_dump_registers NULL
1486#define nvme_link_reset NULL
1487#define nvme_slot_reset NULL
1488#define nvme_error_resume NULL
1489#define nvme_suspend NULL
1490#define nvme_resume NULL
1491
1492static struct pci_error_handlers nvme_err_handler = {
1493	.error_detected	= nvme_error_detected,
1494	.mmio_enabled	= nvme_dump_registers,
1495	.link_reset	= nvme_link_reset,
1496	.slot_reset	= nvme_slot_reset,
1497	.resume		= nvme_error_resume,
1498};
1499
1500/* Move to pci_ids.h later */
1501#define PCI_CLASS_STORAGE_EXPRESS	0x010802
1502
1503static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1504	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1505	{ 0, }
1506};
1507MODULE_DEVICE_TABLE(pci, nvme_id_table);
1508
1509static struct pci_driver nvme_driver = {
1510	.name		= "nvme",
1511	.id_table	= nvme_id_table,
1512	.probe		= nvme_probe,
1513	.remove		= __devexit_p(nvme_remove),
1514	.suspend	= nvme_suspend,
1515	.resume		= nvme_resume,
1516	.err_handler	= &nvme_err_handler,
1517};
1518
1519static int __init nvme_init(void)
1520{
1521	int result = -EBUSY;
1522
1523	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1524	if (IS_ERR(nvme_thread))
1525		return PTR_ERR(nvme_thread);
1526
1527	nvme_major = register_blkdev(nvme_major, "nvme");
1528	if (nvme_major <= 0)
1529		goto kill_kthread;
1530
1531	result = pci_register_driver(&nvme_driver);
1532	if (result)
1533		goto unregister_blkdev;
1534	return 0;
1535
1536 unregister_blkdev:
1537	unregister_blkdev(nvme_major, "nvme");
1538 kill_kthread:
1539	kthread_stop(nvme_thread);
1540	return result;
1541}
1542
1543static void __exit nvme_exit(void)
1544{
1545	pci_unregister_driver(&nvme_driver);
1546	unregister_blkdev(nvme_major, "nvme");
1547	kthread_stop(nvme_thread);
1548}
1549
1550MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1551MODULE_LICENSE("GPL");
1552MODULE_VERSION("0.3");
1553module_init(nvme_init);
1554module_exit(nvme_exit);
1555