nvme-core.c revision b355084a891985d4cd0ca23b1a83366af2c4232d
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/cpu.h>
24#include <linux/delay.h>
25#include <linux/errno.h>
26#include <linux/fs.h>
27#include <linux/genhd.h>
28#include <linux/idr.h>
29#include <linux/init.h>
30#include <linux/interrupt.h>
31#include <linux/io.h>
32#include <linux/kdev_t.h>
33#include <linux/kthread.h>
34#include <linux/kernel.h>
35#include <linux/mm.h>
36#include <linux/module.h>
37#include <linux/moduleparam.h>
38#include <linux/pci.h>
39#include <linux/percpu.h>
40#include <linux/poison.h>
41#include <linux/ptrace.h>
42#include <linux/sched.h>
43#include <linux/slab.h>
44#include <linux/types.h>
45#include <scsi/sg.h>
46#include <asm-generic/io-64-nonatomic-lo-hi.h>
47
48#define NVME_Q_DEPTH 1024
49#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
51#define ADMIN_TIMEOUT	(60 * HZ)
52
53unsigned char io_timeout = 30;
54module_param(io_timeout, byte, 0644);
55MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
56
57static int nvme_major;
58module_param(nvme_major, int, 0);
59
60static int use_threaded_interrupts;
61module_param(use_threaded_interrupts, int, 0);
62
63static DEFINE_SPINLOCK(dev_list_lock);
64static LIST_HEAD(dev_list);
65static struct task_struct *nvme_thread;
66static struct workqueue_struct *nvme_workq;
67
68static void nvme_reset_failed_dev(struct work_struct *ws);
69
70struct async_cmd_info {
71	struct kthread_work work;
72	struct kthread_worker *worker;
73	u32 result;
74	int status;
75	void *ctx;
76};
77
78/*
79 * An NVM Express queue.  Each device has at least two (one for admin
80 * commands and one for I/O commands).
81 */
82struct nvme_queue {
83	struct rcu_head r_head;
84	struct device *q_dmadev;
85	struct nvme_dev *dev;
86	char irqname[24];	/* nvme4294967295-65535\0 */
87	spinlock_t q_lock;
88	struct nvme_command *sq_cmds;
89	volatile struct nvme_completion *cqes;
90	dma_addr_t sq_dma_addr;
91	dma_addr_t cq_dma_addr;
92	wait_queue_head_t sq_full;
93	wait_queue_t sq_cong_wait;
94	struct bio_list sq_cong;
95	u32 __iomem *q_db;
96	u16 q_depth;
97	u16 cq_vector;
98	u16 sq_head;
99	u16 sq_tail;
100	u16 cq_head;
101	u16 qid;
102	u8 cq_phase;
103	u8 cqe_seen;
104	u8 q_suspended;
105	cpumask_var_t cpu_mask;
106	struct async_cmd_info cmdinfo;
107	unsigned long cmdid_data[];
108};
109
110/*
111 * Check we didin't inadvertently grow the command struct
112 */
113static inline void _nvme_check_size(void)
114{
115	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
116	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
117	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
118	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
119	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
120	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
121	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
122	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
123	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
124	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
125	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
126	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
127}
128
129typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
130						struct nvme_completion *);
131
132struct nvme_cmd_info {
133	nvme_completion_fn fn;
134	void *ctx;
135	unsigned long timeout;
136	int aborted;
137};
138
139static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140{
141	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142}
143
144static unsigned nvme_queue_extra(int depth)
145{
146	return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
147}
148
149/**
150 * alloc_cmdid() - Allocate a Command ID
151 * @nvmeq: The queue that will be used for this command
152 * @ctx: A pointer that will be passed to the handler
153 * @handler: The function to call on completion
154 *
155 * Allocate a Command ID for a queue.  The data passed in will
156 * be passed to the completion handler.  This is implemented by using
157 * the bottom two bits of the ctx pointer to store the handler ID.
158 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
159 * We can change this if it becomes a problem.
160 *
161 * May be called with local interrupts disabled and the q_lock held,
162 * or with interrupts enabled and no locks held.
163 */
164static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
165				nvme_completion_fn handler, unsigned timeout)
166{
167	int depth = nvmeq->q_depth - 1;
168	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
169	int cmdid;
170
171	do {
172		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
173		if (cmdid >= depth)
174			return -EBUSY;
175	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
176
177	info[cmdid].fn = handler;
178	info[cmdid].ctx = ctx;
179	info[cmdid].timeout = jiffies + timeout;
180	info[cmdid].aborted = 0;
181	return cmdid;
182}
183
184static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
185				nvme_completion_fn handler, unsigned timeout)
186{
187	int cmdid;
188	wait_event_killable(nvmeq->sq_full,
189		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
190	return (cmdid < 0) ? -EINTR : cmdid;
191}
192
193/* Special values must be less than 0x1000 */
194#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
195#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
196#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
197#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
198#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
199#define CMD_CTX_ABORT		(0x31C + CMD_CTX_BASE)
200
201static void special_completion(struct nvme_dev *dev, void *ctx,
202						struct nvme_completion *cqe)
203{
204	if (ctx == CMD_CTX_CANCELLED)
205		return;
206	if (ctx == CMD_CTX_FLUSH)
207		return;
208	if (ctx == CMD_CTX_ABORT) {
209		++dev->abort_limit;
210		return;
211	}
212	if (ctx == CMD_CTX_COMPLETED) {
213		dev_warn(&dev->pci_dev->dev,
214				"completed id %d twice on queue %d\n",
215				cqe->command_id, le16_to_cpup(&cqe->sq_id));
216		return;
217	}
218	if (ctx == CMD_CTX_INVALID) {
219		dev_warn(&dev->pci_dev->dev,
220				"invalid id %d completed on queue %d\n",
221				cqe->command_id, le16_to_cpup(&cqe->sq_id));
222		return;
223	}
224
225	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
226}
227
228static void async_completion(struct nvme_dev *dev, void *ctx,
229						struct nvme_completion *cqe)
230{
231	struct async_cmd_info *cmdinfo = ctx;
232	cmdinfo->result = le32_to_cpup(&cqe->result);
233	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
234	queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
235}
236
237/*
238 * Called with local interrupts disabled and the q_lock held.  May not sleep.
239 */
240static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
241						nvme_completion_fn *fn)
242{
243	void *ctx;
244	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
245
246	if (cmdid >= nvmeq->q_depth) {
247		*fn = special_completion;
248		return CMD_CTX_INVALID;
249	}
250	if (fn)
251		*fn = info[cmdid].fn;
252	ctx = info[cmdid].ctx;
253	info[cmdid].fn = special_completion;
254	info[cmdid].ctx = CMD_CTX_COMPLETED;
255	clear_bit(cmdid, nvmeq->cmdid_data);
256	wake_up(&nvmeq->sq_full);
257	return ctx;
258}
259
260static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
261						nvme_completion_fn *fn)
262{
263	void *ctx;
264	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
265	if (fn)
266		*fn = info[cmdid].fn;
267	ctx = info[cmdid].ctx;
268	info[cmdid].fn = special_completion;
269	info[cmdid].ctx = CMD_CTX_CANCELLED;
270	return ctx;
271}
272
273static struct nvme_queue *raw_nvmeq(struct nvme_dev *dev, int qid)
274{
275	return rcu_dereference_raw(dev->queues[qid]);
276}
277
278static struct nvme_queue *get_nvmeq(struct nvme_dev *dev) __acquires(RCU)
279{
280	unsigned queue_id = get_cpu_var(*dev->io_queue);
281	rcu_read_lock();
282	return rcu_dereference(dev->queues[queue_id]);
283}
284
285static void put_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
286{
287	rcu_read_unlock();
288	put_cpu_var(nvmeq->dev->io_queue);
289}
290
291static struct nvme_queue *lock_nvmeq(struct nvme_dev *dev, int q_idx)
292							__acquires(RCU)
293{
294	rcu_read_lock();
295	return rcu_dereference(dev->queues[q_idx]);
296}
297
298static void unlock_nvmeq(struct nvme_queue *nvmeq) __releases(RCU)
299{
300	rcu_read_unlock();
301}
302
303/**
304 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
305 * @nvmeq: The queue to use
306 * @cmd: The command to send
307 *
308 * Safe to use from interrupt context
309 */
310static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
311{
312	unsigned long flags;
313	u16 tail;
314	spin_lock_irqsave(&nvmeq->q_lock, flags);
315	if (nvmeq->q_suspended) {
316		spin_unlock_irqrestore(&nvmeq->q_lock, flags);
317		return -EBUSY;
318	}
319	tail = nvmeq->sq_tail;
320	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
321	if (++tail == nvmeq->q_depth)
322		tail = 0;
323	writel(tail, nvmeq->q_db);
324	nvmeq->sq_tail = tail;
325	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
326
327	return 0;
328}
329
330static __le64 **iod_list(struct nvme_iod *iod)
331{
332	return ((void *)iod) + iod->offset;
333}
334
335/*
336 * Will slightly overestimate the number of pages needed.  This is OK
337 * as it only leads to a small amount of wasted memory for the lifetime of
338 * the I/O.
339 */
340static int nvme_npages(unsigned size)
341{
342	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
343	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
344}
345
346static struct nvme_iod *
347nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
348{
349	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
350				sizeof(__le64 *) * nvme_npages(nbytes) +
351				sizeof(struct scatterlist) * nseg, gfp);
352
353	if (iod) {
354		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
355		iod->npages = -1;
356		iod->length = nbytes;
357		iod->nents = 0;
358		iod->start_time = jiffies;
359	}
360
361	return iod;
362}
363
364void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
365{
366	const int last_prp = PAGE_SIZE / 8 - 1;
367	int i;
368	__le64 **list = iod_list(iod);
369	dma_addr_t prp_dma = iod->first_dma;
370
371	if (iod->npages == 0)
372		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
373	for (i = 0; i < iod->npages; i++) {
374		__le64 *prp_list = list[i];
375		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
376		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
377		prp_dma = next_prp_dma;
378	}
379	kfree(iod);
380}
381
382static void nvme_start_io_acct(struct bio *bio)
383{
384	struct gendisk *disk = bio->bi_bdev->bd_disk;
385	const int rw = bio_data_dir(bio);
386	int cpu = part_stat_lock();
387	part_round_stats(cpu, &disk->part0);
388	part_stat_inc(cpu, &disk->part0, ios[rw]);
389	part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
390	part_inc_in_flight(&disk->part0, rw);
391	part_stat_unlock();
392}
393
394static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
395{
396	struct gendisk *disk = bio->bi_bdev->bd_disk;
397	const int rw = bio_data_dir(bio);
398	unsigned long duration = jiffies - start_time;
399	int cpu = part_stat_lock();
400	part_stat_add(cpu, &disk->part0, ticks[rw], duration);
401	part_round_stats(cpu, &disk->part0);
402	part_dec_in_flight(&disk->part0, rw);
403	part_stat_unlock();
404}
405
406static void bio_completion(struct nvme_dev *dev, void *ctx,
407						struct nvme_completion *cqe)
408{
409	struct nvme_iod *iod = ctx;
410	struct bio *bio = iod->private;
411	u16 status = le16_to_cpup(&cqe->status) >> 1;
412
413	if (iod->nents) {
414		dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
415			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
416		nvme_end_io_acct(bio, iod->start_time);
417	}
418	nvme_free_iod(dev, iod);
419	if (status)
420		bio_endio(bio, -EIO);
421	else
422		bio_endio(bio, 0);
423}
424
425/* length is in bytes.  gfp flags indicates whether we may sleep. */
426int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
427			struct nvme_iod *iod, int total_len, gfp_t gfp)
428{
429	struct dma_pool *pool;
430	int length = total_len;
431	struct scatterlist *sg = iod->sg;
432	int dma_len = sg_dma_len(sg);
433	u64 dma_addr = sg_dma_address(sg);
434	int offset = offset_in_page(dma_addr);
435	__le64 *prp_list;
436	__le64 **list = iod_list(iod);
437	dma_addr_t prp_dma;
438	int nprps, i;
439
440	cmd->prp1 = cpu_to_le64(dma_addr);
441	length -= (PAGE_SIZE - offset);
442	if (length <= 0)
443		return total_len;
444
445	dma_len -= (PAGE_SIZE - offset);
446	if (dma_len) {
447		dma_addr += (PAGE_SIZE - offset);
448	} else {
449		sg = sg_next(sg);
450		dma_addr = sg_dma_address(sg);
451		dma_len = sg_dma_len(sg);
452	}
453
454	if (length <= PAGE_SIZE) {
455		cmd->prp2 = cpu_to_le64(dma_addr);
456		return total_len;
457	}
458
459	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
460	if (nprps <= (256 / 8)) {
461		pool = dev->prp_small_pool;
462		iod->npages = 0;
463	} else {
464		pool = dev->prp_page_pool;
465		iod->npages = 1;
466	}
467
468	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
469	if (!prp_list) {
470		cmd->prp2 = cpu_to_le64(dma_addr);
471		iod->npages = -1;
472		return (total_len - length) + PAGE_SIZE;
473	}
474	list[0] = prp_list;
475	iod->first_dma = prp_dma;
476	cmd->prp2 = cpu_to_le64(prp_dma);
477	i = 0;
478	for (;;) {
479		if (i == PAGE_SIZE / 8) {
480			__le64 *old_prp_list = prp_list;
481			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
482			if (!prp_list)
483				return total_len - length;
484			list[iod->npages++] = prp_list;
485			prp_list[0] = old_prp_list[i - 1];
486			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
487			i = 1;
488		}
489		prp_list[i++] = cpu_to_le64(dma_addr);
490		dma_len -= PAGE_SIZE;
491		dma_addr += PAGE_SIZE;
492		length -= PAGE_SIZE;
493		if (length <= 0)
494			break;
495		if (dma_len > 0)
496			continue;
497		BUG_ON(dma_len < 0);
498		sg = sg_next(sg);
499		dma_addr = sg_dma_address(sg);
500		dma_len = sg_dma_len(sg);
501	}
502
503	return total_len;
504}
505
506static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
507				 int len)
508{
509	struct bio *split = bio_split(bio, len >> 9, GFP_ATOMIC, NULL);
510	if (!split)
511		return -ENOMEM;
512
513	bio_chain(split, bio);
514
515	if (bio_list_empty(&nvmeq->sq_cong))
516		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
517	bio_list_add(&nvmeq->sq_cong, split);
518	bio_list_add(&nvmeq->sq_cong, bio);
519
520	return 0;
521}
522
523/* NVMe scatterlists require no holes in the virtual address */
524#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
525			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
526
527static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
528		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
529{
530	struct bio_vec bvec, bvprv;
531	struct bvec_iter iter;
532	struct scatterlist *sg = NULL;
533	int length = 0, nsegs = 0, split_len = bio->bi_iter.bi_size;
534	int first = 1;
535
536	if (nvmeq->dev->stripe_size)
537		split_len = nvmeq->dev->stripe_size -
538			((bio->bi_iter.bi_sector << 9) &
539			 (nvmeq->dev->stripe_size - 1));
540
541	sg_init_table(iod->sg, psegs);
542	bio_for_each_segment(bvec, bio, iter) {
543		if (!first && BIOVEC_PHYS_MERGEABLE(&bvprv, &bvec)) {
544			sg->length += bvec.bv_len;
545		} else {
546			if (!first && BIOVEC_NOT_VIRT_MERGEABLE(&bvprv, &bvec))
547				return nvme_split_and_submit(bio, nvmeq,
548							     length);
549
550			sg = sg ? sg + 1 : iod->sg;
551			sg_set_page(sg, bvec.bv_page,
552				    bvec.bv_len, bvec.bv_offset);
553			nsegs++;
554		}
555
556		if (split_len - length < bvec.bv_len)
557			return nvme_split_and_submit(bio, nvmeq, split_len);
558		length += bvec.bv_len;
559		bvprv = bvec;
560		first = 0;
561	}
562	iod->nents = nsegs;
563	sg_mark_end(sg);
564	if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
565		return -ENOMEM;
566
567	BUG_ON(length != bio->bi_iter.bi_size);
568	return length;
569}
570
571/*
572 * We reuse the small pool to allocate the 16-byte range here as it is not
573 * worth having a special pool for these or additional cases to handle freeing
574 * the iod.
575 */
576static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
577		struct bio *bio, struct nvme_iod *iod, int cmdid)
578{
579	struct nvme_dsm_range *range;
580	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
581
582	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
583							&iod->first_dma);
584	if (!range)
585		return -ENOMEM;
586
587	iod_list(iod)[0] = (__le64 *)range;
588	iod->npages = 0;
589
590	range->cattr = cpu_to_le32(0);
591	range->nlb = cpu_to_le32(bio->bi_iter.bi_size >> ns->lba_shift);
592	range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
593
594	memset(cmnd, 0, sizeof(*cmnd));
595	cmnd->dsm.opcode = nvme_cmd_dsm;
596	cmnd->dsm.command_id = cmdid;
597	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
598	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
599	cmnd->dsm.nr = 0;
600	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
601
602	if (++nvmeq->sq_tail == nvmeq->q_depth)
603		nvmeq->sq_tail = 0;
604	writel(nvmeq->sq_tail, nvmeq->q_db);
605
606	return 0;
607}
608
609static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
610								int cmdid)
611{
612	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
613
614	memset(cmnd, 0, sizeof(*cmnd));
615	cmnd->common.opcode = nvme_cmd_flush;
616	cmnd->common.command_id = cmdid;
617	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
618
619	if (++nvmeq->sq_tail == nvmeq->q_depth)
620		nvmeq->sq_tail = 0;
621	writel(nvmeq->sq_tail, nvmeq->q_db);
622
623	return 0;
624}
625
626int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
627{
628	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
629					special_completion, NVME_IO_TIMEOUT);
630	if (unlikely(cmdid < 0))
631		return cmdid;
632
633	return nvme_submit_flush(nvmeq, ns, cmdid);
634}
635
636/*
637 * Called with local interrupts disabled and the q_lock held.  May not sleep.
638 */
639static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
640								struct bio *bio)
641{
642	struct nvme_command *cmnd;
643	struct nvme_iod *iod;
644	enum dma_data_direction dma_dir;
645	int cmdid, length, result;
646	u16 control;
647	u32 dsmgmt;
648	int psegs = bio_phys_segments(ns->queue, bio);
649
650	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
651		result = nvme_submit_flush_data(nvmeq, ns);
652		if (result)
653			return result;
654	}
655
656	result = -ENOMEM;
657	iod = nvme_alloc_iod(psegs, bio->bi_iter.bi_size, GFP_ATOMIC);
658	if (!iod)
659		goto nomem;
660	iod->private = bio;
661
662	result = -EBUSY;
663	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
664	if (unlikely(cmdid < 0))
665		goto free_iod;
666
667	if (bio->bi_rw & REQ_DISCARD) {
668		result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
669		if (result)
670			goto free_cmdid;
671		return result;
672	}
673	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
674		return nvme_submit_flush(nvmeq, ns, cmdid);
675
676	control = 0;
677	if (bio->bi_rw & REQ_FUA)
678		control |= NVME_RW_FUA;
679	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
680		control |= NVME_RW_LR;
681
682	dsmgmt = 0;
683	if (bio->bi_rw & REQ_RAHEAD)
684		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
685
686	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
687
688	memset(cmnd, 0, sizeof(*cmnd));
689	if (bio_data_dir(bio)) {
690		cmnd->rw.opcode = nvme_cmd_write;
691		dma_dir = DMA_TO_DEVICE;
692	} else {
693		cmnd->rw.opcode = nvme_cmd_read;
694		dma_dir = DMA_FROM_DEVICE;
695	}
696
697	result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
698	if (result <= 0)
699		goto free_cmdid;
700	length = result;
701
702	cmnd->rw.command_id = cmdid;
703	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
704	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
705								GFP_ATOMIC);
706	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_iter.bi_sector));
707	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
708	cmnd->rw.control = cpu_to_le16(control);
709	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
710
711	nvme_start_io_acct(bio);
712	if (++nvmeq->sq_tail == nvmeq->q_depth)
713		nvmeq->sq_tail = 0;
714	writel(nvmeq->sq_tail, nvmeq->q_db);
715
716	return 0;
717
718 free_cmdid:
719	free_cmdid(nvmeq, cmdid, NULL);
720 free_iod:
721	nvme_free_iod(nvmeq->dev, iod);
722 nomem:
723	return result;
724}
725
726static int nvme_process_cq(struct nvme_queue *nvmeq)
727{
728	u16 head, phase;
729
730	head = nvmeq->cq_head;
731	phase = nvmeq->cq_phase;
732
733	for (;;) {
734		void *ctx;
735		nvme_completion_fn fn;
736		struct nvme_completion cqe = nvmeq->cqes[head];
737		if ((le16_to_cpu(cqe.status) & 1) != phase)
738			break;
739		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
740		if (++head == nvmeq->q_depth) {
741			head = 0;
742			phase = !phase;
743		}
744
745		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
746		fn(nvmeq->dev, ctx, &cqe);
747	}
748
749	/* If the controller ignores the cq head doorbell and continuously
750	 * writes to the queue, it is theoretically possible to wrap around
751	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
752	 * requires that 0.1% of your interrupts are handled, so this isn't
753	 * a big problem.
754	 */
755	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
756		return 0;
757
758	writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
759	nvmeq->cq_head = head;
760	nvmeq->cq_phase = phase;
761
762	nvmeq->cqe_seen = 1;
763	return 1;
764}
765
766static void nvme_make_request(struct request_queue *q, struct bio *bio)
767{
768	struct nvme_ns *ns = q->queuedata;
769	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
770	int result = -EBUSY;
771
772	if (!nvmeq) {
773		put_nvmeq(NULL);
774		bio_endio(bio, -EIO);
775		return;
776	}
777
778	spin_lock_irq(&nvmeq->q_lock);
779	if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
780		result = nvme_submit_bio_queue(nvmeq, ns, bio);
781	if (unlikely(result)) {
782		if (bio_list_empty(&nvmeq->sq_cong))
783			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
784		bio_list_add(&nvmeq->sq_cong, bio);
785	}
786
787	nvme_process_cq(nvmeq);
788	spin_unlock_irq(&nvmeq->q_lock);
789	put_nvmeq(nvmeq);
790}
791
792static irqreturn_t nvme_irq(int irq, void *data)
793{
794	irqreturn_t result;
795	struct nvme_queue *nvmeq = data;
796	spin_lock(&nvmeq->q_lock);
797	nvme_process_cq(nvmeq);
798	result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
799	nvmeq->cqe_seen = 0;
800	spin_unlock(&nvmeq->q_lock);
801	return result;
802}
803
804static irqreturn_t nvme_irq_check(int irq, void *data)
805{
806	struct nvme_queue *nvmeq = data;
807	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
808	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
809		return IRQ_NONE;
810	return IRQ_WAKE_THREAD;
811}
812
813static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
814{
815	spin_lock_irq(&nvmeq->q_lock);
816	cancel_cmdid(nvmeq, cmdid, NULL);
817	spin_unlock_irq(&nvmeq->q_lock);
818}
819
820struct sync_cmd_info {
821	struct task_struct *task;
822	u32 result;
823	int status;
824};
825
826static void sync_completion(struct nvme_dev *dev, void *ctx,
827						struct nvme_completion *cqe)
828{
829	struct sync_cmd_info *cmdinfo = ctx;
830	cmdinfo->result = le32_to_cpup(&cqe->result);
831	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
832	wake_up_process(cmdinfo->task);
833}
834
835/*
836 * Returns 0 on success.  If the result is negative, it's a Linux error code;
837 * if the result is positive, it's an NVM Express status code
838 */
839static int nvme_submit_sync_cmd(struct nvme_dev *dev, int q_idx,
840						struct nvme_command *cmd,
841						u32 *result, unsigned timeout)
842{
843	int cmdid, ret;
844	struct sync_cmd_info cmdinfo;
845	struct nvme_queue *nvmeq;
846
847	nvmeq = lock_nvmeq(dev, q_idx);
848	if (!nvmeq) {
849		unlock_nvmeq(nvmeq);
850		return -ENODEV;
851	}
852
853	cmdinfo.task = current;
854	cmdinfo.status = -EINTR;
855
856	cmdid = alloc_cmdid(nvmeq, &cmdinfo, sync_completion, timeout);
857	if (cmdid < 0) {
858		unlock_nvmeq(nvmeq);
859		return cmdid;
860	}
861	cmd->common.command_id = cmdid;
862
863	set_current_state(TASK_KILLABLE);
864	ret = nvme_submit_cmd(nvmeq, cmd);
865	if (ret) {
866		free_cmdid(nvmeq, cmdid, NULL);
867		unlock_nvmeq(nvmeq);
868		set_current_state(TASK_RUNNING);
869		return ret;
870	}
871	unlock_nvmeq(nvmeq);
872	schedule_timeout(timeout);
873
874	if (cmdinfo.status == -EINTR) {
875		nvmeq = lock_nvmeq(dev, q_idx);
876		if (nvmeq)
877			nvme_abort_command(nvmeq, cmdid);
878		unlock_nvmeq(nvmeq);
879		return -EINTR;
880	}
881
882	if (result)
883		*result = cmdinfo.result;
884
885	return cmdinfo.status;
886}
887
888static int nvme_submit_async_cmd(struct nvme_queue *nvmeq,
889			struct nvme_command *cmd,
890			struct async_cmd_info *cmdinfo, unsigned timeout)
891{
892	int cmdid;
893
894	cmdid = alloc_cmdid_killable(nvmeq, cmdinfo, async_completion, timeout);
895	if (cmdid < 0)
896		return cmdid;
897	cmdinfo->status = -EINTR;
898	cmd->common.command_id = cmdid;
899	return nvme_submit_cmd(nvmeq, cmd);
900}
901
902int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
903								u32 *result)
904{
905	return nvme_submit_sync_cmd(dev, 0, cmd, result, ADMIN_TIMEOUT);
906}
907
908int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
909								u32 *result)
910{
911	return nvme_submit_sync_cmd(dev, smp_processor_id() + 1, cmd, result,
912							NVME_IO_TIMEOUT);
913}
914
915static int nvme_submit_admin_cmd_async(struct nvme_dev *dev,
916		struct nvme_command *cmd, struct async_cmd_info *cmdinfo)
917{
918	return nvme_submit_async_cmd(raw_nvmeq(dev, 0), cmd, cmdinfo,
919								ADMIN_TIMEOUT);
920}
921
922static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
923{
924	int status;
925	struct nvme_command c;
926
927	memset(&c, 0, sizeof(c));
928	c.delete_queue.opcode = opcode;
929	c.delete_queue.qid = cpu_to_le16(id);
930
931	status = nvme_submit_admin_cmd(dev, &c, NULL);
932	if (status)
933		return -EIO;
934	return 0;
935}
936
937static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
938						struct nvme_queue *nvmeq)
939{
940	int status;
941	struct nvme_command c;
942	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
943
944	memset(&c, 0, sizeof(c));
945	c.create_cq.opcode = nvme_admin_create_cq;
946	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
947	c.create_cq.cqid = cpu_to_le16(qid);
948	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
949	c.create_cq.cq_flags = cpu_to_le16(flags);
950	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
951
952	status = nvme_submit_admin_cmd(dev, &c, NULL);
953	if (status)
954		return -EIO;
955	return 0;
956}
957
958static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
959						struct nvme_queue *nvmeq)
960{
961	int status;
962	struct nvme_command c;
963	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
964
965	memset(&c, 0, sizeof(c));
966	c.create_sq.opcode = nvme_admin_create_sq;
967	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
968	c.create_sq.sqid = cpu_to_le16(qid);
969	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
970	c.create_sq.sq_flags = cpu_to_le16(flags);
971	c.create_sq.cqid = cpu_to_le16(qid);
972
973	status = nvme_submit_admin_cmd(dev, &c, NULL);
974	if (status)
975		return -EIO;
976	return 0;
977}
978
979static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
980{
981	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
982}
983
984static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
985{
986	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
987}
988
989int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
990							dma_addr_t dma_addr)
991{
992	struct nvme_command c;
993
994	memset(&c, 0, sizeof(c));
995	c.identify.opcode = nvme_admin_identify;
996	c.identify.nsid = cpu_to_le32(nsid);
997	c.identify.prp1 = cpu_to_le64(dma_addr);
998	c.identify.cns = cpu_to_le32(cns);
999
1000	return nvme_submit_admin_cmd(dev, &c, NULL);
1001}
1002
1003int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1004					dma_addr_t dma_addr, u32 *result)
1005{
1006	struct nvme_command c;
1007
1008	memset(&c, 0, sizeof(c));
1009	c.features.opcode = nvme_admin_get_features;
1010	c.features.nsid = cpu_to_le32(nsid);
1011	c.features.prp1 = cpu_to_le64(dma_addr);
1012	c.features.fid = cpu_to_le32(fid);
1013
1014	return nvme_submit_admin_cmd(dev, &c, result);
1015}
1016
1017int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1018					dma_addr_t dma_addr, u32 *result)
1019{
1020	struct nvme_command c;
1021
1022	memset(&c, 0, sizeof(c));
1023	c.features.opcode = nvme_admin_set_features;
1024	c.features.prp1 = cpu_to_le64(dma_addr);
1025	c.features.fid = cpu_to_le32(fid);
1026	c.features.dword11 = cpu_to_le32(dword11);
1027
1028	return nvme_submit_admin_cmd(dev, &c, result);
1029}
1030
1031/**
1032 * nvme_abort_cmd - Attempt aborting a command
1033 * @cmdid: Command id of a timed out IO
1034 * @queue: The queue with timed out IO
1035 *
1036 * Schedule controller reset if the command was already aborted once before and
1037 * still hasn't been returned to the driver, or if this is the admin queue.
1038 */
1039static void nvme_abort_cmd(int cmdid, struct nvme_queue *nvmeq)
1040{
1041	int a_cmdid;
1042	struct nvme_command cmd;
1043	struct nvme_dev *dev = nvmeq->dev;
1044	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1045	struct nvme_queue *adminq;
1046
1047	if (!nvmeq->qid || info[cmdid].aborted) {
1048		if (work_busy(&dev->reset_work))
1049			return;
1050		list_del_init(&dev->node);
1051		dev_warn(&dev->pci_dev->dev,
1052			"I/O %d QID %d timeout, reset controller\n", cmdid,
1053								nvmeq->qid);
1054		PREPARE_WORK(&dev->reset_work, nvme_reset_failed_dev);
1055		queue_work(nvme_workq, &dev->reset_work);
1056		return;
1057	}
1058
1059	if (!dev->abort_limit)
1060		return;
1061
1062	adminq = rcu_dereference(dev->queues[0]);
1063	a_cmdid = alloc_cmdid(adminq, CMD_CTX_ABORT, special_completion,
1064								ADMIN_TIMEOUT);
1065	if (a_cmdid < 0)
1066		return;
1067
1068	memset(&cmd, 0, sizeof(cmd));
1069	cmd.abort.opcode = nvme_admin_abort_cmd;
1070	cmd.abort.cid = cmdid;
1071	cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1072	cmd.abort.command_id = a_cmdid;
1073
1074	--dev->abort_limit;
1075	info[cmdid].aborted = 1;
1076	info[cmdid].timeout = jiffies + ADMIN_TIMEOUT;
1077
1078	dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", cmdid,
1079							nvmeq->qid);
1080	nvme_submit_cmd(adminq, &cmd);
1081}
1082
1083/**
1084 * nvme_cancel_ios - Cancel outstanding I/Os
1085 * @queue: The queue to cancel I/Os on
1086 * @timeout: True to only cancel I/Os which have timed out
1087 */
1088static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1089{
1090	int depth = nvmeq->q_depth - 1;
1091	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1092	unsigned long now = jiffies;
1093	int cmdid;
1094
1095	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1096		void *ctx;
1097		nvme_completion_fn fn;
1098		static struct nvme_completion cqe = {
1099			.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1100		};
1101
1102		if (timeout && !time_after(now, info[cmdid].timeout))
1103			continue;
1104		if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1105			continue;
1106		if (timeout && nvmeq->dev->initialized) {
1107			nvme_abort_cmd(cmdid, nvmeq);
1108			continue;
1109		}
1110		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n", cmdid,
1111								nvmeq->qid);
1112		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1113		fn(nvmeq->dev, ctx, &cqe);
1114	}
1115}
1116
1117static void nvme_free_queue(struct rcu_head *r)
1118{
1119	struct nvme_queue *nvmeq = container_of(r, struct nvme_queue, r_head);
1120
1121	spin_lock_irq(&nvmeq->q_lock);
1122	while (bio_list_peek(&nvmeq->sq_cong)) {
1123		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1124		bio_endio(bio, -EIO);
1125	}
1126	spin_unlock_irq(&nvmeq->q_lock);
1127
1128	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1129				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1130	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1131					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1132	if (nvmeq->qid)
1133		free_cpumask_var(nvmeq->cpu_mask);
1134	kfree(nvmeq);
1135}
1136
1137static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1138{
1139	int i;
1140
1141	for (i = dev->queue_count - 1; i >= lowest; i--) {
1142		struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
1143		rcu_assign_pointer(dev->queues[i], NULL);
1144		call_rcu(&nvmeq->r_head, nvme_free_queue);
1145		dev->queue_count--;
1146	}
1147}
1148
1149/**
1150 * nvme_suspend_queue - put queue into suspended state
1151 * @nvmeq - queue to suspend
1152 *
1153 * Returns 1 if already suspended, 0 otherwise.
1154 */
1155static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1156{
1157	int vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1158
1159	spin_lock_irq(&nvmeq->q_lock);
1160	if (nvmeq->q_suspended) {
1161		spin_unlock_irq(&nvmeq->q_lock);
1162		return 1;
1163	}
1164	nvmeq->q_suspended = 1;
1165	nvmeq->dev->online_queues--;
1166	spin_unlock_irq(&nvmeq->q_lock);
1167
1168	irq_set_affinity_hint(vector, NULL);
1169	free_irq(vector, nvmeq);
1170
1171	return 0;
1172}
1173
1174static void nvme_clear_queue(struct nvme_queue *nvmeq)
1175{
1176	spin_lock_irq(&nvmeq->q_lock);
1177	nvme_process_cq(nvmeq);
1178	nvme_cancel_ios(nvmeq, false);
1179	spin_unlock_irq(&nvmeq->q_lock);
1180}
1181
1182static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1183{
1184	struct nvme_queue *nvmeq = raw_nvmeq(dev, qid);
1185
1186	if (!nvmeq)
1187		return;
1188	if (nvme_suspend_queue(nvmeq))
1189		return;
1190
1191	/* Don't tell the adapter to delete the admin queue.
1192	 * Don't tell a removed adapter to delete IO queues. */
1193	if (qid && readl(&dev->bar->csts) != -1) {
1194		adapter_delete_sq(dev, qid);
1195		adapter_delete_cq(dev, qid);
1196	}
1197	nvme_clear_queue(nvmeq);
1198}
1199
1200static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1201							int depth, int vector)
1202{
1203	struct device *dmadev = &dev->pci_dev->dev;
1204	unsigned extra = nvme_queue_extra(depth);
1205	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1206	if (!nvmeq)
1207		return NULL;
1208
1209	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1210					&nvmeq->cq_dma_addr, GFP_KERNEL);
1211	if (!nvmeq->cqes)
1212		goto free_nvmeq;
1213	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1214
1215	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1216					&nvmeq->sq_dma_addr, GFP_KERNEL);
1217	if (!nvmeq->sq_cmds)
1218		goto free_cqdma;
1219
1220	if (qid && !zalloc_cpumask_var(&nvmeq->cpu_mask, GFP_KERNEL))
1221		goto free_sqdma;
1222
1223	nvmeq->q_dmadev = dmadev;
1224	nvmeq->dev = dev;
1225	snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1226			dev->instance, qid);
1227	spin_lock_init(&nvmeq->q_lock);
1228	nvmeq->cq_head = 0;
1229	nvmeq->cq_phase = 1;
1230	init_waitqueue_head(&nvmeq->sq_full);
1231	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1232	bio_list_init(&nvmeq->sq_cong);
1233	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1234	nvmeq->q_depth = depth;
1235	nvmeq->cq_vector = vector;
1236	nvmeq->qid = qid;
1237	nvmeq->q_suspended = 1;
1238	dev->queue_count++;
1239	rcu_assign_pointer(dev->queues[qid], nvmeq);
1240
1241	return nvmeq;
1242
1243 free_sqdma:
1244	dma_free_coherent(dmadev, SQ_SIZE(depth), (void *)nvmeq->sq_cmds,
1245							nvmeq->sq_dma_addr);
1246 free_cqdma:
1247	dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1248							nvmeq->cq_dma_addr);
1249 free_nvmeq:
1250	kfree(nvmeq);
1251	return NULL;
1252}
1253
1254static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1255							const char *name)
1256{
1257	if (use_threaded_interrupts)
1258		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1259					nvme_irq_check, nvme_irq, IRQF_SHARED,
1260					name, nvmeq);
1261	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1262				IRQF_SHARED, name, nvmeq);
1263}
1264
1265static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1266{
1267	struct nvme_dev *dev = nvmeq->dev;
1268	unsigned extra = nvme_queue_extra(nvmeq->q_depth);
1269
1270	nvmeq->sq_tail = 0;
1271	nvmeq->cq_head = 0;
1272	nvmeq->cq_phase = 1;
1273	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1274	memset(nvmeq->cmdid_data, 0, extra);
1275	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1276	nvme_cancel_ios(nvmeq, false);
1277	nvmeq->q_suspended = 0;
1278	dev->online_queues++;
1279}
1280
1281static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1282{
1283	struct nvme_dev *dev = nvmeq->dev;
1284	int result;
1285
1286	result = adapter_alloc_cq(dev, qid, nvmeq);
1287	if (result < 0)
1288		return result;
1289
1290	result = adapter_alloc_sq(dev, qid, nvmeq);
1291	if (result < 0)
1292		goto release_cq;
1293
1294	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1295	if (result < 0)
1296		goto release_sq;
1297
1298	spin_lock_irq(&nvmeq->q_lock);
1299	nvme_init_queue(nvmeq, qid);
1300	spin_unlock_irq(&nvmeq->q_lock);
1301
1302	return result;
1303
1304 release_sq:
1305	adapter_delete_sq(dev, qid);
1306 release_cq:
1307	adapter_delete_cq(dev, qid);
1308	return result;
1309}
1310
1311static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1312{
1313	unsigned long timeout;
1314	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1315
1316	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1317
1318	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1319		msleep(100);
1320		if (fatal_signal_pending(current))
1321			return -EINTR;
1322		if (time_after(jiffies, timeout)) {
1323			dev_err(&dev->pci_dev->dev,
1324				"Device not ready; aborting initialisation\n");
1325			return -ENODEV;
1326		}
1327	}
1328
1329	return 0;
1330}
1331
1332/*
1333 * If the device has been passed off to us in an enabled state, just clear
1334 * the enabled bit.  The spec says we should set the 'shutdown notification
1335 * bits', but doing so may cause the device to complete commands to the
1336 * admin queue ... and we don't know what memory that might be pointing at!
1337 */
1338static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1339{
1340	u32 cc = readl(&dev->bar->cc);
1341
1342	if (cc & NVME_CC_ENABLE)
1343		writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1344	return nvme_wait_ready(dev, cap, false);
1345}
1346
1347static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1348{
1349	return nvme_wait_ready(dev, cap, true);
1350}
1351
1352static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1353{
1354	unsigned long timeout;
1355	u32 cc;
1356
1357	cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1358	writel(cc, &dev->bar->cc);
1359
1360	timeout = 2 * HZ + jiffies;
1361	while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1362							NVME_CSTS_SHST_CMPLT) {
1363		msleep(100);
1364		if (fatal_signal_pending(current))
1365			return -EINTR;
1366		if (time_after(jiffies, timeout)) {
1367			dev_err(&dev->pci_dev->dev,
1368				"Device shutdown incomplete; abort shutdown\n");
1369			return -ENODEV;
1370		}
1371	}
1372
1373	return 0;
1374}
1375
1376static int nvme_configure_admin_queue(struct nvme_dev *dev)
1377{
1378	int result;
1379	u32 aqa;
1380	u64 cap = readq(&dev->bar->cap);
1381	struct nvme_queue *nvmeq;
1382
1383	result = nvme_disable_ctrl(dev, cap);
1384	if (result < 0)
1385		return result;
1386
1387	nvmeq = raw_nvmeq(dev, 0);
1388	if (!nvmeq) {
1389		nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1390		if (!nvmeq)
1391			return -ENOMEM;
1392	}
1393
1394	aqa = nvmeq->q_depth - 1;
1395	aqa |= aqa << 16;
1396
1397	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1398	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1399	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1400	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1401
1402	writel(aqa, &dev->bar->aqa);
1403	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1404	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1405	writel(dev->ctrl_config, &dev->bar->cc);
1406
1407	result = nvme_enable_ctrl(dev, cap);
1408	if (result)
1409		return result;
1410
1411	result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1412	if (result)
1413		return result;
1414
1415	spin_lock_irq(&nvmeq->q_lock);
1416	nvme_init_queue(nvmeq, 0);
1417	spin_unlock_irq(&nvmeq->q_lock);
1418	return result;
1419}
1420
1421struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1422				unsigned long addr, unsigned length)
1423{
1424	int i, err, count, nents, offset;
1425	struct scatterlist *sg;
1426	struct page **pages;
1427	struct nvme_iod *iod;
1428
1429	if (addr & 3)
1430		return ERR_PTR(-EINVAL);
1431	if (!length || length > INT_MAX - PAGE_SIZE)
1432		return ERR_PTR(-EINVAL);
1433
1434	offset = offset_in_page(addr);
1435	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1436	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1437	if (!pages)
1438		return ERR_PTR(-ENOMEM);
1439
1440	err = get_user_pages_fast(addr, count, 1, pages);
1441	if (err < count) {
1442		count = err;
1443		err = -EFAULT;
1444		goto put_pages;
1445	}
1446
1447	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1448	sg = iod->sg;
1449	sg_init_table(sg, count);
1450	for (i = 0; i < count; i++) {
1451		sg_set_page(&sg[i], pages[i],
1452			    min_t(unsigned, length, PAGE_SIZE - offset),
1453			    offset);
1454		length -= (PAGE_SIZE - offset);
1455		offset = 0;
1456	}
1457	sg_mark_end(&sg[i - 1]);
1458	iod->nents = count;
1459
1460	err = -ENOMEM;
1461	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1462				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1463	if (!nents)
1464		goto free_iod;
1465
1466	kfree(pages);
1467	return iod;
1468
1469 free_iod:
1470	kfree(iod);
1471 put_pages:
1472	for (i = 0; i < count; i++)
1473		put_page(pages[i]);
1474	kfree(pages);
1475	return ERR_PTR(err);
1476}
1477
1478void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1479			struct nvme_iod *iod)
1480{
1481	int i;
1482
1483	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1484				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1485
1486	for (i = 0; i < iod->nents; i++)
1487		put_page(sg_page(&iod->sg[i]));
1488}
1489
1490static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1491{
1492	struct nvme_dev *dev = ns->dev;
1493	struct nvme_user_io io;
1494	struct nvme_command c;
1495	unsigned length, meta_len;
1496	int status, i;
1497	struct nvme_iod *iod, *meta_iod = NULL;
1498	dma_addr_t meta_dma_addr;
1499	void *meta, *uninitialized_var(meta_mem);
1500
1501	if (copy_from_user(&io, uio, sizeof(io)))
1502		return -EFAULT;
1503	length = (io.nblocks + 1) << ns->lba_shift;
1504	meta_len = (io.nblocks + 1) * ns->ms;
1505
1506	if (meta_len && ((io.metadata & 3) || !io.metadata))
1507		return -EINVAL;
1508
1509	switch (io.opcode) {
1510	case nvme_cmd_write:
1511	case nvme_cmd_read:
1512	case nvme_cmd_compare:
1513		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1514		break;
1515	default:
1516		return -EINVAL;
1517	}
1518
1519	if (IS_ERR(iod))
1520		return PTR_ERR(iod);
1521
1522	memset(&c, 0, sizeof(c));
1523	c.rw.opcode = io.opcode;
1524	c.rw.flags = io.flags;
1525	c.rw.nsid = cpu_to_le32(ns->ns_id);
1526	c.rw.slba = cpu_to_le64(io.slba);
1527	c.rw.length = cpu_to_le16(io.nblocks);
1528	c.rw.control = cpu_to_le16(io.control);
1529	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1530	c.rw.reftag = cpu_to_le32(io.reftag);
1531	c.rw.apptag = cpu_to_le16(io.apptag);
1532	c.rw.appmask = cpu_to_le16(io.appmask);
1533
1534	if (meta_len) {
1535		meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1536								meta_len);
1537		if (IS_ERR(meta_iod)) {
1538			status = PTR_ERR(meta_iod);
1539			meta_iod = NULL;
1540			goto unmap;
1541		}
1542
1543		meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1544						&meta_dma_addr, GFP_KERNEL);
1545		if (!meta_mem) {
1546			status = -ENOMEM;
1547			goto unmap;
1548		}
1549
1550		if (io.opcode & 1) {
1551			int meta_offset = 0;
1552
1553			for (i = 0; i < meta_iod->nents; i++) {
1554				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1555						meta_iod->sg[i].offset;
1556				memcpy(meta_mem + meta_offset, meta,
1557						meta_iod->sg[i].length);
1558				kunmap_atomic(meta);
1559				meta_offset += meta_iod->sg[i].length;
1560			}
1561		}
1562
1563		c.rw.metadata = cpu_to_le64(meta_dma_addr);
1564	}
1565
1566	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1567
1568	if (length != (io.nblocks + 1) << ns->lba_shift)
1569		status = -ENOMEM;
1570	else
1571		status = nvme_submit_io_cmd(dev, &c, NULL);
1572
1573	if (meta_len) {
1574		if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1575			int meta_offset = 0;
1576
1577			for (i = 0; i < meta_iod->nents; i++) {
1578				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1579						meta_iod->sg[i].offset;
1580				memcpy(meta, meta_mem + meta_offset,
1581						meta_iod->sg[i].length);
1582				kunmap_atomic(meta);
1583				meta_offset += meta_iod->sg[i].length;
1584			}
1585		}
1586
1587		dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1588								meta_dma_addr);
1589	}
1590
1591 unmap:
1592	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1593	nvme_free_iod(dev, iod);
1594
1595	if (meta_iod) {
1596		nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1597		nvme_free_iod(dev, meta_iod);
1598	}
1599
1600	return status;
1601}
1602
1603static int nvme_user_admin_cmd(struct nvme_dev *dev,
1604					struct nvme_admin_cmd __user *ucmd)
1605{
1606	struct nvme_admin_cmd cmd;
1607	struct nvme_command c;
1608	int status, length;
1609	struct nvme_iod *uninitialized_var(iod);
1610	unsigned timeout;
1611
1612	if (!capable(CAP_SYS_ADMIN))
1613		return -EACCES;
1614	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1615		return -EFAULT;
1616
1617	memset(&c, 0, sizeof(c));
1618	c.common.opcode = cmd.opcode;
1619	c.common.flags = cmd.flags;
1620	c.common.nsid = cpu_to_le32(cmd.nsid);
1621	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1622	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1623	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1624	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1625	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1626	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1627	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1628	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1629
1630	length = cmd.data_len;
1631	if (cmd.data_len) {
1632		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1633								length);
1634		if (IS_ERR(iod))
1635			return PTR_ERR(iod);
1636		length = nvme_setup_prps(dev, &c.common, iod, length,
1637								GFP_KERNEL);
1638	}
1639
1640	timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1641								ADMIN_TIMEOUT;
1642	if (length != cmd.data_len)
1643		status = -ENOMEM;
1644	else
1645		status = nvme_submit_sync_cmd(dev, 0, &c, &cmd.result, timeout);
1646
1647	if (cmd.data_len) {
1648		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1649		nvme_free_iod(dev, iod);
1650	}
1651
1652	if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1653							sizeof(cmd.result)))
1654		status = -EFAULT;
1655
1656	return status;
1657}
1658
1659static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1660							unsigned long arg)
1661{
1662	struct nvme_ns *ns = bdev->bd_disk->private_data;
1663
1664	switch (cmd) {
1665	case NVME_IOCTL_ID:
1666		force_successful_syscall_return();
1667		return ns->ns_id;
1668	case NVME_IOCTL_ADMIN_CMD:
1669		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1670	case NVME_IOCTL_SUBMIT_IO:
1671		return nvme_submit_io(ns, (void __user *)arg);
1672	case SG_GET_VERSION_NUM:
1673		return nvme_sg_get_version_num((void __user *)arg);
1674	case SG_IO:
1675		return nvme_sg_io(ns, (void __user *)arg);
1676	default:
1677		return -ENOTTY;
1678	}
1679}
1680
1681#ifdef CONFIG_COMPAT
1682static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1683					unsigned int cmd, unsigned long arg)
1684{
1685	struct nvme_ns *ns = bdev->bd_disk->private_data;
1686
1687	switch (cmd) {
1688	case SG_IO:
1689		return nvme_sg_io32(ns, arg);
1690	}
1691	return nvme_ioctl(bdev, mode, cmd, arg);
1692}
1693#else
1694#define nvme_compat_ioctl	NULL
1695#endif
1696
1697static int nvme_open(struct block_device *bdev, fmode_t mode)
1698{
1699	struct nvme_ns *ns = bdev->bd_disk->private_data;
1700	struct nvme_dev *dev = ns->dev;
1701
1702	kref_get(&dev->kref);
1703	return 0;
1704}
1705
1706static void nvme_free_dev(struct kref *kref);
1707
1708static void nvme_release(struct gendisk *disk, fmode_t mode)
1709{
1710	struct nvme_ns *ns = disk->private_data;
1711	struct nvme_dev *dev = ns->dev;
1712
1713	kref_put(&dev->kref, nvme_free_dev);
1714}
1715
1716static const struct block_device_operations nvme_fops = {
1717	.owner		= THIS_MODULE,
1718	.ioctl		= nvme_ioctl,
1719	.compat_ioctl	= nvme_compat_ioctl,
1720	.open		= nvme_open,
1721	.release	= nvme_release,
1722};
1723
1724static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1725{
1726	while (bio_list_peek(&nvmeq->sq_cong)) {
1727		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1728		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1729
1730		if (bio_list_empty(&nvmeq->sq_cong))
1731			remove_wait_queue(&nvmeq->sq_full,
1732							&nvmeq->sq_cong_wait);
1733		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1734			if (bio_list_empty(&nvmeq->sq_cong))
1735				add_wait_queue(&nvmeq->sq_full,
1736							&nvmeq->sq_cong_wait);
1737			bio_list_add_head(&nvmeq->sq_cong, bio);
1738			break;
1739		}
1740	}
1741}
1742
1743static int nvme_kthread(void *data)
1744{
1745	struct nvme_dev *dev, *next;
1746
1747	while (!kthread_should_stop()) {
1748		set_current_state(TASK_INTERRUPTIBLE);
1749		spin_lock(&dev_list_lock);
1750		list_for_each_entry_safe(dev, next, &dev_list, node) {
1751			int i;
1752			if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1753							dev->initialized) {
1754				if (work_busy(&dev->reset_work))
1755					continue;
1756				list_del_init(&dev->node);
1757				dev_warn(&dev->pci_dev->dev,
1758					"Failed status, reset controller\n");
1759				PREPARE_WORK(&dev->reset_work,
1760							nvme_reset_failed_dev);
1761				queue_work(nvme_workq, &dev->reset_work);
1762				continue;
1763			}
1764			rcu_read_lock();
1765			for (i = 0; i < dev->queue_count; i++) {
1766				struct nvme_queue *nvmeq =
1767						rcu_dereference(dev->queues[i]);
1768				if (!nvmeq)
1769					continue;
1770				spin_lock_irq(&nvmeq->q_lock);
1771				if (nvmeq->q_suspended)
1772					goto unlock;
1773				nvme_process_cq(nvmeq);
1774				nvme_cancel_ios(nvmeq, true);
1775				nvme_resubmit_bios(nvmeq);
1776 unlock:
1777				spin_unlock_irq(&nvmeq->q_lock);
1778			}
1779			rcu_read_unlock();
1780		}
1781		spin_unlock(&dev_list_lock);
1782		schedule_timeout(round_jiffies_relative(HZ));
1783	}
1784	return 0;
1785}
1786
1787static void nvme_config_discard(struct nvme_ns *ns)
1788{
1789	u32 logical_block_size = queue_logical_block_size(ns->queue);
1790	ns->queue->limits.discard_zeroes_data = 0;
1791	ns->queue->limits.discard_alignment = logical_block_size;
1792	ns->queue->limits.discard_granularity = logical_block_size;
1793	ns->queue->limits.max_discard_sectors = 0xffffffff;
1794	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1795}
1796
1797static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1798			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1799{
1800	struct nvme_ns *ns;
1801	struct gendisk *disk;
1802	int lbaf;
1803
1804	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1805		return NULL;
1806
1807	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1808	if (!ns)
1809		return NULL;
1810	ns->queue = blk_alloc_queue(GFP_KERNEL);
1811	if (!ns->queue)
1812		goto out_free_ns;
1813	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1814	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1815	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1816	blk_queue_make_request(ns->queue, nvme_make_request);
1817	ns->dev = dev;
1818	ns->queue->queuedata = ns;
1819
1820	disk = alloc_disk(0);
1821	if (!disk)
1822		goto out_free_queue;
1823	ns->ns_id = nsid;
1824	ns->disk = disk;
1825	lbaf = id->flbas & 0xf;
1826	ns->lba_shift = id->lbaf[lbaf].ds;
1827	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1828	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1829	if (dev->max_hw_sectors)
1830		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1831
1832	disk->major = nvme_major;
1833	disk->first_minor = 0;
1834	disk->fops = &nvme_fops;
1835	disk->private_data = ns;
1836	disk->queue = ns->queue;
1837	disk->driverfs_dev = &dev->pci_dev->dev;
1838	disk->flags = GENHD_FL_EXT_DEVT;
1839	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1840	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1841
1842	if (dev->oncs & NVME_CTRL_ONCS_DSM)
1843		nvme_config_discard(ns);
1844
1845	return ns;
1846
1847 out_free_queue:
1848	blk_cleanup_queue(ns->queue);
1849 out_free_ns:
1850	kfree(ns);
1851	return NULL;
1852}
1853
1854static int nvme_find_closest_node(int node)
1855{
1856	int n, val, min_val = INT_MAX, best_node = node;
1857
1858	for_each_online_node(n) {
1859		if (n == node)
1860			continue;
1861		val = node_distance(node, n);
1862		if (val < min_val) {
1863			min_val = val;
1864			best_node = n;
1865		}
1866	}
1867	return best_node;
1868}
1869
1870static void nvme_set_queue_cpus(cpumask_t *qmask, struct nvme_queue *nvmeq,
1871								int count)
1872{
1873	int cpu;
1874	for_each_cpu(cpu, qmask) {
1875		if (cpumask_weight(nvmeq->cpu_mask) >= count)
1876			break;
1877		if (!cpumask_test_and_set_cpu(cpu, nvmeq->cpu_mask))
1878			*per_cpu_ptr(nvmeq->dev->io_queue, cpu) = nvmeq->qid;
1879	}
1880}
1881
1882static void nvme_add_cpus(cpumask_t *mask, const cpumask_t *unassigned_cpus,
1883	const cpumask_t *new_mask, struct nvme_queue *nvmeq, int cpus_per_queue)
1884{
1885	int next_cpu;
1886	for_each_cpu(next_cpu, new_mask) {
1887		cpumask_or(mask, mask, get_cpu_mask(next_cpu));
1888		cpumask_or(mask, mask, topology_thread_cpumask(next_cpu));
1889		cpumask_and(mask, mask, unassigned_cpus);
1890		nvme_set_queue_cpus(mask, nvmeq, cpus_per_queue);
1891	}
1892}
1893
1894static void nvme_create_io_queues(struct nvme_dev *dev)
1895{
1896	unsigned i, max;
1897
1898	max = min(dev->max_qid, num_online_cpus());
1899	for (i = dev->queue_count; i <= max; i++)
1900		if (!nvme_alloc_queue(dev, i, dev->q_depth, i - 1))
1901			break;
1902
1903	max = min(dev->queue_count - 1, num_online_cpus());
1904	for (i = dev->online_queues; i <= max; i++)
1905		if (nvme_create_queue(raw_nvmeq(dev, i), i))
1906			break;
1907}
1908
1909/*
1910 * If there are fewer queues than online cpus, this will try to optimally
1911 * assign a queue to multiple cpus by grouping cpus that are "close" together:
1912 * thread siblings, core, socket, closest node, then whatever else is
1913 * available.
1914 */
1915static void nvme_assign_io_queues(struct nvme_dev *dev)
1916{
1917	unsigned cpu, cpus_per_queue, queues, remainder, i;
1918	cpumask_var_t unassigned_cpus;
1919
1920	nvme_create_io_queues(dev);
1921
1922	queues = min(dev->online_queues - 1, num_online_cpus());
1923	if (!queues)
1924		return;
1925
1926	cpus_per_queue = num_online_cpus() / queues;
1927	remainder = queues - (num_online_cpus() - queues * cpus_per_queue);
1928
1929	if (!alloc_cpumask_var(&unassigned_cpus, GFP_KERNEL))
1930		return;
1931
1932	cpumask_copy(unassigned_cpus, cpu_online_mask);
1933	cpu = cpumask_first(unassigned_cpus);
1934	for (i = 1; i <= queues; i++) {
1935		struct nvme_queue *nvmeq = lock_nvmeq(dev, i);
1936		cpumask_t mask;
1937
1938		cpumask_clear(nvmeq->cpu_mask);
1939		if (!cpumask_weight(unassigned_cpus)) {
1940			unlock_nvmeq(nvmeq);
1941			break;
1942		}
1943
1944		mask = *get_cpu_mask(cpu);
1945		nvme_set_queue_cpus(&mask, nvmeq, cpus_per_queue);
1946		if (cpus_weight(mask) < cpus_per_queue)
1947			nvme_add_cpus(&mask, unassigned_cpus,
1948				topology_thread_cpumask(cpu),
1949				nvmeq, cpus_per_queue);
1950		if (cpus_weight(mask) < cpus_per_queue)
1951			nvme_add_cpus(&mask, unassigned_cpus,
1952				topology_core_cpumask(cpu),
1953				nvmeq, cpus_per_queue);
1954		if (cpus_weight(mask) < cpus_per_queue)
1955			nvme_add_cpus(&mask, unassigned_cpus,
1956				cpumask_of_node(cpu_to_node(cpu)),
1957				nvmeq, cpus_per_queue);
1958		if (cpus_weight(mask) < cpus_per_queue)
1959			nvme_add_cpus(&mask, unassigned_cpus,
1960				cpumask_of_node(
1961					nvme_find_closest_node(
1962						cpu_to_node(cpu))),
1963				nvmeq, cpus_per_queue);
1964		if (cpus_weight(mask) < cpus_per_queue)
1965			nvme_add_cpus(&mask, unassigned_cpus,
1966				unassigned_cpus,
1967				nvmeq, cpus_per_queue);
1968
1969		WARN(cpumask_weight(nvmeq->cpu_mask) != cpus_per_queue,
1970			"nvme%d qid:%d mis-matched queue-to-cpu assignment\n",
1971			dev->instance, i);
1972
1973		irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1974							nvmeq->cpu_mask);
1975		cpumask_andnot(unassigned_cpus, unassigned_cpus,
1976						nvmeq->cpu_mask);
1977		cpu = cpumask_next(cpu, unassigned_cpus);
1978		if (remainder && !--remainder)
1979			cpus_per_queue++;
1980		unlock_nvmeq(nvmeq);
1981	}
1982	WARN(cpumask_weight(unassigned_cpus), "nvme%d unassigned online cpus\n",
1983								dev->instance);
1984	i = 0;
1985	cpumask_andnot(unassigned_cpus, cpu_possible_mask, cpu_online_mask);
1986	for_each_cpu(cpu, unassigned_cpus)
1987		*per_cpu_ptr(dev->io_queue, cpu) = (i++ % queues) + 1;
1988	free_cpumask_var(unassigned_cpus);
1989}
1990
1991static int set_queue_count(struct nvme_dev *dev, int count)
1992{
1993	int status;
1994	u32 result;
1995	u32 q_count = (count - 1) | ((count - 1) << 16);
1996
1997	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1998								&result);
1999	if (status)
2000		return status < 0 ? -EIO : -EBUSY;
2001	return min(result & 0xffff, result >> 16) + 1;
2002}
2003
2004static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2005{
2006	return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2007}
2008
2009static int nvme_cpu_notify(struct notifier_block *self,
2010				unsigned long action, void *hcpu)
2011{
2012	struct nvme_dev *dev = container_of(self, struct nvme_dev, nb);
2013	switch (action) {
2014	case CPU_ONLINE:
2015	case CPU_DEAD:
2016		nvme_assign_io_queues(dev);
2017		break;
2018	}
2019	return NOTIFY_OK;
2020}
2021
2022static int nvme_setup_io_queues(struct nvme_dev *dev)
2023{
2024	struct nvme_queue *adminq = raw_nvmeq(dev, 0);
2025	struct pci_dev *pdev = dev->pci_dev;
2026	int result, i, vecs, nr_io_queues, size;
2027
2028	nr_io_queues = num_possible_cpus();
2029	result = set_queue_count(dev, nr_io_queues);
2030	if (result < 0)
2031		return result;
2032	if (result < nr_io_queues)
2033		nr_io_queues = result;
2034
2035	size = db_bar_size(dev, nr_io_queues);
2036	if (size > 8192) {
2037		iounmap(dev->bar);
2038		do {
2039			dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2040			if (dev->bar)
2041				break;
2042			if (!--nr_io_queues)
2043				return -ENOMEM;
2044			size = db_bar_size(dev, nr_io_queues);
2045		} while (1);
2046		dev->dbs = ((void __iomem *)dev->bar) + 4096;
2047		adminq->q_db = dev->dbs;
2048	}
2049
2050	/* Deregister the admin queue's interrupt */
2051	free_irq(dev->entry[0].vector, adminq);
2052
2053	vecs = nr_io_queues;
2054	for (i = 0; i < vecs; i++)
2055		dev->entry[i].entry = i;
2056	for (;;) {
2057		result = pci_enable_msix(pdev, dev->entry, vecs);
2058		if (result <= 0)
2059			break;
2060		vecs = result;
2061	}
2062
2063	if (result < 0) {
2064		vecs = nr_io_queues;
2065		if (vecs > 32)
2066			vecs = 32;
2067		for (;;) {
2068			result = pci_enable_msi_block(pdev, vecs);
2069			if (result == 0) {
2070				for (i = 0; i < vecs; i++)
2071					dev->entry[i].vector = i + pdev->irq;
2072				break;
2073			} else if (result < 0) {
2074				vecs = 1;
2075				break;
2076			}
2077			vecs = result;
2078		}
2079	}
2080
2081	/*
2082	 * Should investigate if there's a performance win from allocating
2083	 * more queues than interrupt vectors; it might allow the submission
2084	 * path to scale better, even if the receive path is limited by the
2085	 * number of interrupts.
2086	 */
2087	nr_io_queues = vecs;
2088	dev->max_qid = nr_io_queues;
2089
2090	result = queue_request_irq(dev, adminq, adminq->irqname);
2091	if (result) {
2092		adminq->q_suspended = 1;
2093		goto free_queues;
2094	}
2095
2096	/* Free previously allocated queues that are no longer usable */
2097	nvme_free_queues(dev, nr_io_queues + 1);
2098	nvme_assign_io_queues(dev);
2099
2100	dev->nb.notifier_call = &nvme_cpu_notify;
2101	result = register_hotcpu_notifier(&dev->nb);
2102	if (result)
2103		goto free_queues;
2104
2105	return 0;
2106
2107 free_queues:
2108	nvme_free_queues(dev, 1);
2109	return result;
2110}
2111
2112/*
2113 * Return: error value if an error occurred setting up the queues or calling
2114 * Identify Device.  0 if these succeeded, even if adding some of the
2115 * namespaces failed.  At the moment, these failures are silent.  TBD which
2116 * failures should be reported.
2117 */
2118static int nvme_dev_add(struct nvme_dev *dev)
2119{
2120	struct pci_dev *pdev = dev->pci_dev;
2121	int res;
2122	unsigned nn, i;
2123	struct nvme_ns *ns;
2124	struct nvme_id_ctrl *ctrl;
2125	struct nvme_id_ns *id_ns;
2126	void *mem;
2127	dma_addr_t dma_addr;
2128	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2129
2130	mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2131	if (!mem)
2132		return -ENOMEM;
2133
2134	res = nvme_identify(dev, 0, 1, dma_addr);
2135	if (res) {
2136		res = -EIO;
2137		goto out;
2138	}
2139
2140	ctrl = mem;
2141	nn = le32_to_cpup(&ctrl->nn);
2142	dev->oncs = le16_to_cpup(&ctrl->oncs);
2143	dev->abort_limit = ctrl->acl + 1;
2144	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2145	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2146	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2147	if (ctrl->mdts)
2148		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2149	if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2150			(pdev->device == 0x0953) && ctrl->vs[3])
2151		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2152
2153	id_ns = mem;
2154	for (i = 1; i <= nn; i++) {
2155		res = nvme_identify(dev, i, 0, dma_addr);
2156		if (res)
2157			continue;
2158
2159		if (id_ns->ncap == 0)
2160			continue;
2161
2162		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2163							dma_addr + 4096, NULL);
2164		if (res)
2165			memset(mem + 4096, 0, 4096);
2166
2167		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2168		if (ns)
2169			list_add_tail(&ns->list, &dev->namespaces);
2170	}
2171	list_for_each_entry(ns, &dev->namespaces, list)
2172		add_disk(ns->disk);
2173	res = 0;
2174
2175 out:
2176	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2177	return res;
2178}
2179
2180static int nvme_dev_map(struct nvme_dev *dev)
2181{
2182	u64 cap;
2183	int bars, result = -ENOMEM;
2184	struct pci_dev *pdev = dev->pci_dev;
2185
2186	if (pci_enable_device_mem(pdev))
2187		return result;
2188
2189	dev->entry[0].vector = pdev->irq;
2190	pci_set_master(pdev);
2191	bars = pci_select_bars(pdev, IORESOURCE_MEM);
2192	if (pci_request_selected_regions(pdev, bars, "nvme"))
2193		goto disable_pci;
2194
2195	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2196	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2197		goto disable;
2198
2199	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2200	if (!dev->bar)
2201		goto disable;
2202	if (readl(&dev->bar->csts) == -1) {
2203		result = -ENODEV;
2204		goto unmap;
2205	}
2206	cap = readq(&dev->bar->cap);
2207	dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2208	dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2209	dev->dbs = ((void __iomem *)dev->bar) + 4096;
2210
2211	return 0;
2212
2213 unmap:
2214	iounmap(dev->bar);
2215	dev->bar = NULL;
2216 disable:
2217	pci_release_regions(pdev);
2218 disable_pci:
2219	pci_disable_device(pdev);
2220	return result;
2221}
2222
2223static void nvme_dev_unmap(struct nvme_dev *dev)
2224{
2225	if (dev->pci_dev->msi_enabled)
2226		pci_disable_msi(dev->pci_dev);
2227	else if (dev->pci_dev->msix_enabled)
2228		pci_disable_msix(dev->pci_dev);
2229
2230	if (dev->bar) {
2231		iounmap(dev->bar);
2232		dev->bar = NULL;
2233		pci_release_regions(dev->pci_dev);
2234	}
2235
2236	if (pci_is_enabled(dev->pci_dev))
2237		pci_disable_device(dev->pci_dev);
2238}
2239
2240struct nvme_delq_ctx {
2241	struct task_struct *waiter;
2242	struct kthread_worker *worker;
2243	atomic_t refcount;
2244};
2245
2246static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2247{
2248	dq->waiter = current;
2249	mb();
2250
2251	for (;;) {
2252		set_current_state(TASK_KILLABLE);
2253		if (!atomic_read(&dq->refcount))
2254			break;
2255		if (!schedule_timeout(ADMIN_TIMEOUT) ||
2256					fatal_signal_pending(current)) {
2257			set_current_state(TASK_RUNNING);
2258
2259			nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2260			nvme_disable_queue(dev, 0);
2261
2262			send_sig(SIGKILL, dq->worker->task, 1);
2263			flush_kthread_worker(dq->worker);
2264			return;
2265		}
2266	}
2267	set_current_state(TASK_RUNNING);
2268}
2269
2270static void nvme_put_dq(struct nvme_delq_ctx *dq)
2271{
2272	atomic_dec(&dq->refcount);
2273	if (dq->waiter)
2274		wake_up_process(dq->waiter);
2275}
2276
2277static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2278{
2279	atomic_inc(&dq->refcount);
2280	return dq;
2281}
2282
2283static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2284{
2285	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2286
2287	nvme_clear_queue(nvmeq);
2288	nvme_put_dq(dq);
2289}
2290
2291static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2292						kthread_work_func_t fn)
2293{
2294	struct nvme_command c;
2295
2296	memset(&c, 0, sizeof(c));
2297	c.delete_queue.opcode = opcode;
2298	c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2299
2300	init_kthread_work(&nvmeq->cmdinfo.work, fn);
2301	return nvme_submit_admin_cmd_async(nvmeq->dev, &c, &nvmeq->cmdinfo);
2302}
2303
2304static void nvme_del_cq_work_handler(struct kthread_work *work)
2305{
2306	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2307							cmdinfo.work);
2308	nvme_del_queue_end(nvmeq);
2309}
2310
2311static int nvme_delete_cq(struct nvme_queue *nvmeq)
2312{
2313	return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2314						nvme_del_cq_work_handler);
2315}
2316
2317static void nvme_del_sq_work_handler(struct kthread_work *work)
2318{
2319	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2320							cmdinfo.work);
2321	int status = nvmeq->cmdinfo.status;
2322
2323	if (!status)
2324		status = nvme_delete_cq(nvmeq);
2325	if (status)
2326		nvme_del_queue_end(nvmeq);
2327}
2328
2329static int nvme_delete_sq(struct nvme_queue *nvmeq)
2330{
2331	return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2332						nvme_del_sq_work_handler);
2333}
2334
2335static void nvme_del_queue_start(struct kthread_work *work)
2336{
2337	struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2338							cmdinfo.work);
2339	allow_signal(SIGKILL);
2340	if (nvme_delete_sq(nvmeq))
2341		nvme_del_queue_end(nvmeq);
2342}
2343
2344static void nvme_disable_io_queues(struct nvme_dev *dev)
2345{
2346	int i;
2347	DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2348	struct nvme_delq_ctx dq;
2349	struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2350					&worker, "nvme%d", dev->instance);
2351
2352	if (IS_ERR(kworker_task)) {
2353		dev_err(&dev->pci_dev->dev,
2354			"Failed to create queue del task\n");
2355		for (i = dev->queue_count - 1; i > 0; i--)
2356			nvme_disable_queue(dev, i);
2357		return;
2358	}
2359
2360	dq.waiter = NULL;
2361	atomic_set(&dq.refcount, 0);
2362	dq.worker = &worker;
2363	for (i = dev->queue_count - 1; i > 0; i--) {
2364		struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2365
2366		if (nvme_suspend_queue(nvmeq))
2367			continue;
2368		nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2369		nvmeq->cmdinfo.worker = dq.worker;
2370		init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2371		queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2372	}
2373	nvme_wait_dq(&dq, dev);
2374	kthread_stop(kworker_task);
2375}
2376
2377static void nvme_dev_shutdown(struct nvme_dev *dev)
2378{
2379	int i;
2380
2381	dev->initialized = 0;
2382	unregister_hotcpu_notifier(&dev->nb);
2383
2384	spin_lock(&dev_list_lock);
2385	list_del_init(&dev->node);
2386	spin_unlock(&dev_list_lock);
2387
2388	if (!dev->bar || (dev->bar && readl(&dev->bar->csts) == -1)) {
2389		for (i = dev->queue_count - 1; i >= 0; i--) {
2390			struct nvme_queue *nvmeq = raw_nvmeq(dev, i);
2391			nvme_suspend_queue(nvmeq);
2392			nvme_clear_queue(nvmeq);
2393		}
2394	} else {
2395		nvme_disable_io_queues(dev);
2396		nvme_shutdown_ctrl(dev);
2397		nvme_disable_queue(dev, 0);
2398	}
2399	nvme_dev_unmap(dev);
2400}
2401
2402static void nvme_dev_remove(struct nvme_dev *dev)
2403{
2404	struct nvme_ns *ns;
2405
2406	list_for_each_entry(ns, &dev->namespaces, list) {
2407		if (ns->disk->flags & GENHD_FL_UP)
2408			del_gendisk(ns->disk);
2409		if (!blk_queue_dying(ns->queue))
2410			blk_cleanup_queue(ns->queue);
2411	}
2412}
2413
2414static int nvme_setup_prp_pools(struct nvme_dev *dev)
2415{
2416	struct device *dmadev = &dev->pci_dev->dev;
2417	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2418						PAGE_SIZE, PAGE_SIZE, 0);
2419	if (!dev->prp_page_pool)
2420		return -ENOMEM;
2421
2422	/* Optimisation for I/Os between 4k and 128k */
2423	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2424						256, 256, 0);
2425	if (!dev->prp_small_pool) {
2426		dma_pool_destroy(dev->prp_page_pool);
2427		return -ENOMEM;
2428	}
2429	return 0;
2430}
2431
2432static void nvme_release_prp_pools(struct nvme_dev *dev)
2433{
2434	dma_pool_destroy(dev->prp_page_pool);
2435	dma_pool_destroy(dev->prp_small_pool);
2436}
2437
2438static DEFINE_IDA(nvme_instance_ida);
2439
2440static int nvme_set_instance(struct nvme_dev *dev)
2441{
2442	int instance, error;
2443
2444	do {
2445		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2446			return -ENODEV;
2447
2448		spin_lock(&dev_list_lock);
2449		error = ida_get_new(&nvme_instance_ida, &instance);
2450		spin_unlock(&dev_list_lock);
2451	} while (error == -EAGAIN);
2452
2453	if (error)
2454		return -ENODEV;
2455
2456	dev->instance = instance;
2457	return 0;
2458}
2459
2460static void nvme_release_instance(struct nvme_dev *dev)
2461{
2462	spin_lock(&dev_list_lock);
2463	ida_remove(&nvme_instance_ida, dev->instance);
2464	spin_unlock(&dev_list_lock);
2465}
2466
2467static void nvme_free_namespaces(struct nvme_dev *dev)
2468{
2469	struct nvme_ns *ns, *next;
2470
2471	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2472		list_del(&ns->list);
2473		put_disk(ns->disk);
2474		kfree(ns);
2475	}
2476}
2477
2478static void nvme_free_dev(struct kref *kref)
2479{
2480	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2481
2482	nvme_free_namespaces(dev);
2483	free_percpu(dev->io_queue);
2484	kfree(dev->queues);
2485	kfree(dev->entry);
2486	kfree(dev);
2487}
2488
2489static int nvme_dev_open(struct inode *inode, struct file *f)
2490{
2491	struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2492								miscdev);
2493	kref_get(&dev->kref);
2494	f->private_data = dev;
2495	return 0;
2496}
2497
2498static int nvme_dev_release(struct inode *inode, struct file *f)
2499{
2500	struct nvme_dev *dev = f->private_data;
2501	kref_put(&dev->kref, nvme_free_dev);
2502	return 0;
2503}
2504
2505static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2506{
2507	struct nvme_dev *dev = f->private_data;
2508	switch (cmd) {
2509	case NVME_IOCTL_ADMIN_CMD:
2510		return nvme_user_admin_cmd(dev, (void __user *)arg);
2511	default:
2512		return -ENOTTY;
2513	}
2514}
2515
2516static const struct file_operations nvme_dev_fops = {
2517	.owner		= THIS_MODULE,
2518	.open		= nvme_dev_open,
2519	.release	= nvme_dev_release,
2520	.unlocked_ioctl	= nvme_dev_ioctl,
2521	.compat_ioctl	= nvme_dev_ioctl,
2522};
2523
2524static int nvme_dev_start(struct nvme_dev *dev)
2525{
2526	int result;
2527
2528	result = nvme_dev_map(dev);
2529	if (result)
2530		return result;
2531
2532	result = nvme_configure_admin_queue(dev);
2533	if (result)
2534		goto unmap;
2535
2536	spin_lock(&dev_list_lock);
2537	list_add(&dev->node, &dev_list);
2538	spin_unlock(&dev_list_lock);
2539
2540	result = nvme_setup_io_queues(dev);
2541	if (result && result != -EBUSY)
2542		goto disable;
2543
2544	return result;
2545
2546 disable:
2547	nvme_disable_queue(dev, 0);
2548	spin_lock(&dev_list_lock);
2549	list_del_init(&dev->node);
2550	spin_unlock(&dev_list_lock);
2551 unmap:
2552	nvme_dev_unmap(dev);
2553	return result;
2554}
2555
2556static int nvme_remove_dead_ctrl(void *arg)
2557{
2558	struct nvme_dev *dev = (struct nvme_dev *)arg;
2559	struct pci_dev *pdev = dev->pci_dev;
2560
2561	if (pci_get_drvdata(pdev))
2562		pci_stop_and_remove_bus_device(pdev);
2563	kref_put(&dev->kref, nvme_free_dev);
2564	return 0;
2565}
2566
2567static void nvme_remove_disks(struct work_struct *ws)
2568{
2569	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2570
2571	nvme_dev_remove(dev);
2572	nvme_free_queues(dev, 1);
2573}
2574
2575static int nvme_dev_resume(struct nvme_dev *dev)
2576{
2577	int ret;
2578
2579	ret = nvme_dev_start(dev);
2580	if (ret && ret != -EBUSY)
2581		return ret;
2582	if (ret == -EBUSY) {
2583		spin_lock(&dev_list_lock);
2584		PREPARE_WORK(&dev->reset_work, nvme_remove_disks);
2585		queue_work(nvme_workq, &dev->reset_work);
2586		spin_unlock(&dev_list_lock);
2587	}
2588	dev->initialized = 1;
2589	return 0;
2590}
2591
2592static void nvme_dev_reset(struct nvme_dev *dev)
2593{
2594	nvme_dev_shutdown(dev);
2595	if (nvme_dev_resume(dev)) {
2596		dev_err(&dev->pci_dev->dev, "Device failed to resume\n");
2597		kref_get(&dev->kref);
2598		if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2599							dev->instance))) {
2600			dev_err(&dev->pci_dev->dev,
2601				"Failed to start controller remove task\n");
2602			kref_put(&dev->kref, nvme_free_dev);
2603		}
2604	}
2605}
2606
2607static void nvme_reset_failed_dev(struct work_struct *ws)
2608{
2609	struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2610	nvme_dev_reset(dev);
2611}
2612
2613static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2614{
2615	int result = -ENOMEM;
2616	struct nvme_dev *dev;
2617
2618	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2619	if (!dev)
2620		return -ENOMEM;
2621	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2622								GFP_KERNEL);
2623	if (!dev->entry)
2624		goto free;
2625	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2626								GFP_KERNEL);
2627	if (!dev->queues)
2628		goto free;
2629	dev->io_queue = alloc_percpu(unsigned short);
2630	if (!dev->io_queue)
2631		goto free;
2632
2633	INIT_LIST_HEAD(&dev->namespaces);
2634	INIT_WORK(&dev->reset_work, nvme_reset_failed_dev);
2635	dev->pci_dev = pdev;
2636	pci_set_drvdata(pdev, dev);
2637	result = nvme_set_instance(dev);
2638	if (result)
2639		goto free;
2640
2641	result = nvme_setup_prp_pools(dev);
2642	if (result)
2643		goto release;
2644
2645	kref_init(&dev->kref);
2646	result = nvme_dev_start(dev);
2647	if (result) {
2648		if (result == -EBUSY)
2649			goto create_cdev;
2650		goto release_pools;
2651	}
2652
2653	result = nvme_dev_add(dev);
2654	if (result)
2655		goto shutdown;
2656
2657 create_cdev:
2658	scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2659	dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2660	dev->miscdev.parent = &pdev->dev;
2661	dev->miscdev.name = dev->name;
2662	dev->miscdev.fops = &nvme_dev_fops;
2663	result = misc_register(&dev->miscdev);
2664	if (result)
2665		goto remove;
2666
2667	dev->initialized = 1;
2668	return 0;
2669
2670 remove:
2671	nvme_dev_remove(dev);
2672	nvme_free_namespaces(dev);
2673 shutdown:
2674	nvme_dev_shutdown(dev);
2675 release_pools:
2676	nvme_free_queues(dev, 0);
2677	nvme_release_prp_pools(dev);
2678 release:
2679	nvme_release_instance(dev);
2680 free:
2681	free_percpu(dev->io_queue);
2682	kfree(dev->queues);
2683	kfree(dev->entry);
2684	kfree(dev);
2685	return result;
2686}
2687
2688static void nvme_shutdown(struct pci_dev *pdev)
2689{
2690	struct nvme_dev *dev = pci_get_drvdata(pdev);
2691	nvme_dev_shutdown(dev);
2692}
2693
2694static void nvme_remove(struct pci_dev *pdev)
2695{
2696	struct nvme_dev *dev = pci_get_drvdata(pdev);
2697
2698	spin_lock(&dev_list_lock);
2699	list_del_init(&dev->node);
2700	spin_unlock(&dev_list_lock);
2701
2702	pci_set_drvdata(pdev, NULL);
2703	flush_work(&dev->reset_work);
2704	misc_deregister(&dev->miscdev);
2705	nvme_dev_remove(dev);
2706	nvme_dev_shutdown(dev);
2707	nvme_free_queues(dev, 0);
2708	rcu_barrier();
2709	nvme_release_instance(dev);
2710	nvme_release_prp_pools(dev);
2711	kref_put(&dev->kref, nvme_free_dev);
2712}
2713
2714/* These functions are yet to be implemented */
2715#define nvme_error_detected NULL
2716#define nvme_dump_registers NULL
2717#define nvme_link_reset NULL
2718#define nvme_slot_reset NULL
2719#define nvme_error_resume NULL
2720
2721#ifdef CONFIG_PM_SLEEP
2722static int nvme_suspend(struct device *dev)
2723{
2724	struct pci_dev *pdev = to_pci_dev(dev);
2725	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2726
2727	nvme_dev_shutdown(ndev);
2728	return 0;
2729}
2730
2731static int nvme_resume(struct device *dev)
2732{
2733	struct pci_dev *pdev = to_pci_dev(dev);
2734	struct nvme_dev *ndev = pci_get_drvdata(pdev);
2735
2736	if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2737		PREPARE_WORK(&ndev->reset_work, nvme_reset_failed_dev);
2738		queue_work(nvme_workq, &ndev->reset_work);
2739	}
2740	return 0;
2741}
2742#endif
2743
2744static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2745
2746static const struct pci_error_handlers nvme_err_handler = {
2747	.error_detected	= nvme_error_detected,
2748	.mmio_enabled	= nvme_dump_registers,
2749	.link_reset	= nvme_link_reset,
2750	.slot_reset	= nvme_slot_reset,
2751	.resume		= nvme_error_resume,
2752};
2753
2754/* Move to pci_ids.h later */
2755#define PCI_CLASS_STORAGE_EXPRESS	0x010802
2756
2757static const struct pci_device_id nvme_id_table[] = {
2758	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2759	{ 0, }
2760};
2761MODULE_DEVICE_TABLE(pci, nvme_id_table);
2762
2763static struct pci_driver nvme_driver = {
2764	.name		= "nvme",
2765	.id_table	= nvme_id_table,
2766	.probe		= nvme_probe,
2767	.remove		= nvme_remove,
2768	.shutdown	= nvme_shutdown,
2769	.driver		= {
2770		.pm	= &nvme_dev_pm_ops,
2771	},
2772	.err_handler	= &nvme_err_handler,
2773};
2774
2775static int __init nvme_init(void)
2776{
2777	int result;
2778
2779	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2780	if (IS_ERR(nvme_thread))
2781		return PTR_ERR(nvme_thread);
2782
2783	result = -ENOMEM;
2784	nvme_workq = create_singlethread_workqueue("nvme");
2785	if (!nvme_workq)
2786		goto kill_kthread;
2787
2788	result = register_blkdev(nvme_major, "nvme");
2789	if (result < 0)
2790		goto kill_workq;
2791	else if (result > 0)
2792		nvme_major = result;
2793
2794	result = pci_register_driver(&nvme_driver);
2795	if (result)
2796		goto unregister_blkdev;
2797	return 0;
2798
2799 unregister_blkdev:
2800	unregister_blkdev(nvme_major, "nvme");
2801 kill_workq:
2802	destroy_workqueue(nvme_workq);
2803 kill_kthread:
2804	kthread_stop(nvme_thread);
2805	return result;
2806}
2807
2808static void __exit nvme_exit(void)
2809{
2810	pci_unregister_driver(&nvme_driver);
2811	unregister_blkdev(nvme_major, "nvme");
2812	destroy_workqueue(nvme_workq);
2813	kthread_stop(nvme_thread);
2814}
2815
2816MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2817MODULE_LICENSE("GPL");
2818MODULE_VERSION("0.9");
2819module_init(nvme_init);
2820module_exit(nvme_exit);
2821