nvme-core.c revision cf90bc4830b858487fe4b9b9ecd0031e23ca3e83
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <scsi/sg.h>
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
49#define ADMIN_TIMEOUT	(60 * HZ)
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
61/*
62 * An NVM Express queue.  Each device has at least two (one for admin
63 * commands and one for I/O commands).
64 */
65struct nvme_queue {
66	struct device *q_dmadev;
67	struct nvme_dev *dev;
68	spinlock_t q_lock;
69	struct nvme_command *sq_cmds;
70	volatile struct nvme_completion *cqes;
71	dma_addr_t sq_dma_addr;
72	dma_addr_t cq_dma_addr;
73	wait_queue_head_t sq_full;
74	wait_queue_t sq_cong_wait;
75	struct bio_list sq_cong;
76	u32 __iomem *q_db;
77	u16 q_depth;
78	u16 cq_vector;
79	u16 sq_head;
80	u16 sq_tail;
81	u16 cq_head;
82	u16 cq_phase;
83	unsigned long cmdid_data[];
84};
85
86/*
87 * Check we didin't inadvertently grow the command struct
88 */
89static inline void _nvme_check_size(void)
90{
91	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
96	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
97	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
101	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
102}
103
104typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
105						struct nvme_completion *);
106
107struct nvme_cmd_info {
108	nvme_completion_fn fn;
109	void *ctx;
110	unsigned long timeout;
111};
112
113static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114{
115	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116}
117
118/**
119 * alloc_cmdid() - Allocate a Command ID
120 * @nvmeq: The queue that will be used for this command
121 * @ctx: A pointer that will be passed to the handler
122 * @handler: The function to call on completion
123 *
124 * Allocate a Command ID for a queue.  The data passed in will
125 * be passed to the completion handler.  This is implemented by using
126 * the bottom two bits of the ctx pointer to store the handler ID.
127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128 * We can change this if it becomes a problem.
129 *
130 * May be called with local interrupts disabled and the q_lock held,
131 * or with interrupts enabled and no locks held.
132 */
133static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134				nvme_completion_fn handler, unsigned timeout)
135{
136	int depth = nvmeq->q_depth - 1;
137	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
138	int cmdid;
139
140	do {
141		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142		if (cmdid >= depth)
143			return -EBUSY;
144	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
146	info[cmdid].fn = handler;
147	info[cmdid].ctx = ctx;
148	info[cmdid].timeout = jiffies + timeout;
149	return cmdid;
150}
151
152static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153				nvme_completion_fn handler, unsigned timeout)
154{
155	int cmdid;
156	wait_event_killable(nvmeq->sq_full,
157		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
158	return (cmdid < 0) ? -EINTR : cmdid;
159}
160
161/* Special values must be less than 0x1000 */
162#define CMD_CTX_BASE		((void *)POISON_POINTER_DELTA)
163#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
164#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
165#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
166#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
167
168static void special_completion(struct nvme_dev *dev, void *ctx,
169						struct nvme_completion *cqe)
170{
171	if (ctx == CMD_CTX_CANCELLED)
172		return;
173	if (ctx == CMD_CTX_FLUSH)
174		return;
175	if (ctx == CMD_CTX_COMPLETED) {
176		dev_warn(&dev->pci_dev->dev,
177				"completed id %d twice on queue %d\n",
178				cqe->command_id, le16_to_cpup(&cqe->sq_id));
179		return;
180	}
181	if (ctx == CMD_CTX_INVALID) {
182		dev_warn(&dev->pci_dev->dev,
183				"invalid id %d completed on queue %d\n",
184				cqe->command_id, le16_to_cpup(&cqe->sq_id));
185		return;
186	}
187
188	dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
189}
190
191/*
192 * Called with local interrupts disabled and the q_lock held.  May not sleep.
193 */
194static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195						nvme_completion_fn *fn)
196{
197	void *ctx;
198	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
199
200	if (cmdid >= nvmeq->q_depth) {
201		*fn = special_completion;
202		return CMD_CTX_INVALID;
203	}
204	if (fn)
205		*fn = info[cmdid].fn;
206	ctx = info[cmdid].ctx;
207	info[cmdid].fn = special_completion;
208	info[cmdid].ctx = CMD_CTX_COMPLETED;
209	clear_bit(cmdid, nvmeq->cmdid_data);
210	wake_up(&nvmeq->sq_full);
211	return ctx;
212}
213
214static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215						nvme_completion_fn *fn)
216{
217	void *ctx;
218	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219	if (fn)
220		*fn = info[cmdid].fn;
221	ctx = info[cmdid].ctx;
222	info[cmdid].fn = special_completion;
223	info[cmdid].ctx = CMD_CTX_CANCELLED;
224	return ctx;
225}
226
227struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228{
229	return dev->queues[get_cpu() + 1];
230}
231
232void put_nvmeq(struct nvme_queue *nvmeq)
233{
234	put_cpu();
235}
236
237/**
238 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239 * @nvmeq: The queue to use
240 * @cmd: The command to send
241 *
242 * Safe to use from interrupt context
243 */
244static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245{
246	unsigned long flags;
247	u16 tail;
248	spin_lock_irqsave(&nvmeq->q_lock, flags);
249	tail = nvmeq->sq_tail;
250	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251	if (++tail == nvmeq->q_depth)
252		tail = 0;
253	writel(tail, nvmeq->q_db);
254	nvmeq->sq_tail = tail;
255	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257	return 0;
258}
259
260static __le64 **iod_list(struct nvme_iod *iod)
261{
262	return ((void *)iod) + iod->offset;
263}
264
265/*
266 * Will slightly overestimate the number of pages needed.  This is OK
267 * as it only leads to a small amount of wasted memory for the lifetime of
268 * the I/O.
269 */
270static int nvme_npages(unsigned size)
271{
272	unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274}
275
276static struct nvme_iod *
277nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
278{
279	struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280				sizeof(__le64 *) * nvme_npages(nbytes) +
281				sizeof(struct scatterlist) * nseg, gfp);
282
283	if (iod) {
284		iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285		iod->npages = -1;
286		iod->length = nbytes;
287		iod->nents = 0;
288	}
289
290	return iod;
291}
292
293void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
294{
295	const int last_prp = PAGE_SIZE / 8 - 1;
296	int i;
297	__le64 **list = iod_list(iod);
298	dma_addr_t prp_dma = iod->first_dma;
299
300	if (iod->npages == 0)
301		dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
302	for (i = 0; i < iod->npages; i++) {
303		__le64 *prp_list = list[i];
304		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
305		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
306		prp_dma = next_prp_dma;
307	}
308	kfree(iod);
309}
310
311static void bio_completion(struct nvme_dev *dev, void *ctx,
312						struct nvme_completion *cqe)
313{
314	struct nvme_iod *iod = ctx;
315	struct bio *bio = iod->private;
316	u16 status = le16_to_cpup(&cqe->status) >> 1;
317
318	if (iod->nents)
319		dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
320			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
321	nvme_free_iod(dev, iod);
322	if (status)
323		bio_endio(bio, -EIO);
324	else
325		bio_endio(bio, 0);
326}
327
328/* length is in bytes.  gfp flags indicates whether we may sleep. */
329int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
330			struct nvme_iod *iod, int total_len, gfp_t gfp)
331{
332	struct dma_pool *pool;
333	int length = total_len;
334	struct scatterlist *sg = iod->sg;
335	int dma_len = sg_dma_len(sg);
336	u64 dma_addr = sg_dma_address(sg);
337	int offset = offset_in_page(dma_addr);
338	__le64 *prp_list;
339	__le64 **list = iod_list(iod);
340	dma_addr_t prp_dma;
341	int nprps, i;
342
343	cmd->prp1 = cpu_to_le64(dma_addr);
344	length -= (PAGE_SIZE - offset);
345	if (length <= 0)
346		return total_len;
347
348	dma_len -= (PAGE_SIZE - offset);
349	if (dma_len) {
350		dma_addr += (PAGE_SIZE - offset);
351	} else {
352		sg = sg_next(sg);
353		dma_addr = sg_dma_address(sg);
354		dma_len = sg_dma_len(sg);
355	}
356
357	if (length <= PAGE_SIZE) {
358		cmd->prp2 = cpu_to_le64(dma_addr);
359		return total_len;
360	}
361
362	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
363	if (nprps <= (256 / 8)) {
364		pool = dev->prp_small_pool;
365		iod->npages = 0;
366	} else {
367		pool = dev->prp_page_pool;
368		iod->npages = 1;
369	}
370
371	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
372	if (!prp_list) {
373		cmd->prp2 = cpu_to_le64(dma_addr);
374		iod->npages = -1;
375		return (total_len - length) + PAGE_SIZE;
376	}
377	list[0] = prp_list;
378	iod->first_dma = prp_dma;
379	cmd->prp2 = cpu_to_le64(prp_dma);
380	i = 0;
381	for (;;) {
382		if (i == PAGE_SIZE / 8) {
383			__le64 *old_prp_list = prp_list;
384			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
385			if (!prp_list)
386				return total_len - length;
387			list[iod->npages++] = prp_list;
388			prp_list[0] = old_prp_list[i - 1];
389			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
390			i = 1;
391		}
392		prp_list[i++] = cpu_to_le64(dma_addr);
393		dma_len -= PAGE_SIZE;
394		dma_addr += PAGE_SIZE;
395		length -= PAGE_SIZE;
396		if (length <= 0)
397			break;
398		if (dma_len > 0)
399			continue;
400		BUG_ON(dma_len < 0);
401		sg = sg_next(sg);
402		dma_addr = sg_dma_address(sg);
403		dma_len = sg_dma_len(sg);
404	}
405
406	return total_len;
407}
408
409struct nvme_bio_pair {
410	struct bio b1, b2, *parent;
411	struct bio_vec *bv1, *bv2;
412	int err;
413	atomic_t cnt;
414};
415
416static void nvme_bio_pair_endio(struct bio *bio, int err)
417{
418	struct nvme_bio_pair *bp = bio->bi_private;
419
420	if (err)
421		bp->err = err;
422
423	if (atomic_dec_and_test(&bp->cnt)) {
424		bio_endio(bp->parent, bp->err);
425		if (bp->bv1)
426			kfree(bp->bv1);
427		if (bp->bv2)
428			kfree(bp->bv2);
429		kfree(bp);
430	}
431}
432
433static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
434							int len, int offset)
435{
436	struct nvme_bio_pair *bp;
437
438	BUG_ON(len > bio->bi_size);
439	BUG_ON(idx > bio->bi_vcnt);
440
441	bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
442	if (!bp)
443		return NULL;
444	bp->err = 0;
445
446	bp->b1 = *bio;
447	bp->b2 = *bio;
448
449	bp->b1.bi_size = len;
450	bp->b2.bi_size -= len;
451	bp->b1.bi_vcnt = idx;
452	bp->b2.bi_idx = idx;
453	bp->b2.bi_sector += len >> 9;
454
455	if (offset) {
456		bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
457								GFP_ATOMIC);
458		if (!bp->bv1)
459			goto split_fail_1;
460
461		bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
462								GFP_ATOMIC);
463		if (!bp->bv2)
464			goto split_fail_2;
465
466		memcpy(bp->bv1, bio->bi_io_vec,
467			bio->bi_max_vecs * sizeof(struct bio_vec));
468		memcpy(bp->bv2, bio->bi_io_vec,
469			bio->bi_max_vecs * sizeof(struct bio_vec));
470
471		bp->b1.bi_io_vec = bp->bv1;
472		bp->b2.bi_io_vec = bp->bv2;
473		bp->b2.bi_io_vec[idx].bv_offset += offset;
474		bp->b2.bi_io_vec[idx].bv_len -= offset;
475		bp->b1.bi_io_vec[idx].bv_len = offset;
476		bp->b1.bi_vcnt++;
477	} else
478		bp->bv1 = bp->bv2 = NULL;
479
480	bp->b1.bi_private = bp;
481	bp->b2.bi_private = bp;
482
483	bp->b1.bi_end_io = nvme_bio_pair_endio;
484	bp->b2.bi_end_io = nvme_bio_pair_endio;
485
486	bp->parent = bio;
487	atomic_set(&bp->cnt, 2);
488
489	return bp;
490
491 split_fail_2:
492	kfree(bp->bv1);
493 split_fail_1:
494	kfree(bp);
495	return NULL;
496}
497
498static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
499						int idx, int len, int offset)
500{
501	struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
502	if (!bp)
503		return -ENOMEM;
504
505	if (bio_list_empty(&nvmeq->sq_cong))
506		add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
507	bio_list_add(&nvmeq->sq_cong, &bp->b1);
508	bio_list_add(&nvmeq->sq_cong, &bp->b2);
509
510	return 0;
511}
512
513/* NVMe scatterlists require no holes in the virtual address */
514#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
515			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
516
517static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
518		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
519{
520	struct bio_vec *bvec, *bvprv = NULL;
521	struct scatterlist *sg = NULL;
522	int i, length = 0, nsegs = 0, split_len = bio->bi_size;
523
524	if (nvmeq->dev->stripe_size)
525		split_len = nvmeq->dev->stripe_size -
526			((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
527
528	sg_init_table(iod->sg, psegs);
529	bio_for_each_segment(bvec, bio, i) {
530		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
531			sg->length += bvec->bv_len;
532		} else {
533			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
534				return nvme_split_and_submit(bio, nvmeq, i,
535								length, 0);
536
537			sg = sg ? sg + 1 : iod->sg;
538			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
539							bvec->bv_offset);
540			nsegs++;
541		}
542
543		if (split_len - length < bvec->bv_len)
544			return nvme_split_and_submit(bio, nvmeq, i, split_len,
545							split_len - length);
546		length += bvec->bv_len;
547		bvprv = bvec;
548	}
549	iod->nents = nsegs;
550	sg_mark_end(sg);
551	if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
552		return -ENOMEM;
553
554	BUG_ON(length != bio->bi_size);
555	return length;
556}
557
558/*
559 * We reuse the small pool to allocate the 16-byte range here as it is not
560 * worth having a special pool for these or additional cases to handle freeing
561 * the iod.
562 */
563static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
564		struct bio *bio, struct nvme_iod *iod, int cmdid)
565{
566	struct nvme_dsm_range *range;
567	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
568
569	range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
570							&iod->first_dma);
571	if (!range)
572		return -ENOMEM;
573
574	iod_list(iod)[0] = (__le64 *)range;
575	iod->npages = 0;
576
577	range->cattr = cpu_to_le32(0);
578	range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
579	range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
580
581	memset(cmnd, 0, sizeof(*cmnd));
582	cmnd->dsm.opcode = nvme_cmd_dsm;
583	cmnd->dsm.command_id = cmdid;
584	cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
585	cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
586	cmnd->dsm.nr = 0;
587	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
588
589	if (++nvmeq->sq_tail == nvmeq->q_depth)
590		nvmeq->sq_tail = 0;
591	writel(nvmeq->sq_tail, nvmeq->q_db);
592
593	return 0;
594}
595
596static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
597								int cmdid)
598{
599	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
600
601	memset(cmnd, 0, sizeof(*cmnd));
602	cmnd->common.opcode = nvme_cmd_flush;
603	cmnd->common.command_id = cmdid;
604	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
605
606	if (++nvmeq->sq_tail == nvmeq->q_depth)
607		nvmeq->sq_tail = 0;
608	writel(nvmeq->sq_tail, nvmeq->q_db);
609
610	return 0;
611}
612
613int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
614{
615	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
616					special_completion, NVME_IO_TIMEOUT);
617	if (unlikely(cmdid < 0))
618		return cmdid;
619
620	return nvme_submit_flush(nvmeq, ns, cmdid);
621}
622
623/*
624 * Called with local interrupts disabled and the q_lock held.  May not sleep.
625 */
626static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
627								struct bio *bio)
628{
629	struct nvme_command *cmnd;
630	struct nvme_iod *iod;
631	enum dma_data_direction dma_dir;
632	int cmdid, length, result;
633	u16 control;
634	u32 dsmgmt;
635	int psegs = bio_phys_segments(ns->queue, bio);
636
637	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
638		result = nvme_submit_flush_data(nvmeq, ns);
639		if (result)
640			return result;
641	}
642
643	result = -ENOMEM;
644	iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
645	if (!iod)
646		goto nomem;
647	iod->private = bio;
648
649	result = -EBUSY;
650	cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
651	if (unlikely(cmdid < 0))
652		goto free_iod;
653
654	if (bio->bi_rw & REQ_DISCARD) {
655		result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
656		if (result)
657			goto free_cmdid;
658		return result;
659	}
660	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
661		return nvme_submit_flush(nvmeq, ns, cmdid);
662
663	control = 0;
664	if (bio->bi_rw & REQ_FUA)
665		control |= NVME_RW_FUA;
666	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
667		control |= NVME_RW_LR;
668
669	dsmgmt = 0;
670	if (bio->bi_rw & REQ_RAHEAD)
671		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
672
673	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
674
675	memset(cmnd, 0, sizeof(*cmnd));
676	if (bio_data_dir(bio)) {
677		cmnd->rw.opcode = nvme_cmd_write;
678		dma_dir = DMA_TO_DEVICE;
679	} else {
680		cmnd->rw.opcode = nvme_cmd_read;
681		dma_dir = DMA_FROM_DEVICE;
682	}
683
684	result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
685	if (result <= 0)
686		goto free_cmdid;
687	length = result;
688
689	cmnd->rw.command_id = cmdid;
690	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
691	length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
692								GFP_ATOMIC);
693	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
694	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
695	cmnd->rw.control = cpu_to_le16(control);
696	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
697
698	if (++nvmeq->sq_tail == nvmeq->q_depth)
699		nvmeq->sq_tail = 0;
700	writel(nvmeq->sq_tail, nvmeq->q_db);
701
702	return 0;
703
704 free_cmdid:
705	free_cmdid(nvmeq, cmdid, NULL);
706 free_iod:
707	nvme_free_iod(nvmeq->dev, iod);
708 nomem:
709	return result;
710}
711
712static void nvme_make_request(struct request_queue *q, struct bio *bio)
713{
714	struct nvme_ns *ns = q->queuedata;
715	struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
716	int result = -EBUSY;
717
718	spin_lock_irq(&nvmeq->q_lock);
719	if (bio_list_empty(&nvmeq->sq_cong))
720		result = nvme_submit_bio_queue(nvmeq, ns, bio);
721	if (unlikely(result)) {
722		if (bio_list_empty(&nvmeq->sq_cong))
723			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
724		bio_list_add(&nvmeq->sq_cong, bio);
725	}
726
727	spin_unlock_irq(&nvmeq->q_lock);
728	put_nvmeq(nvmeq);
729}
730
731static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
732{
733	u16 head, phase;
734
735	head = nvmeq->cq_head;
736	phase = nvmeq->cq_phase;
737
738	for (;;) {
739		void *ctx;
740		nvme_completion_fn fn;
741		struct nvme_completion cqe = nvmeq->cqes[head];
742		if ((le16_to_cpu(cqe.status) & 1) != phase)
743			break;
744		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
745		if (++head == nvmeq->q_depth) {
746			head = 0;
747			phase = !phase;
748		}
749
750		ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
751		fn(nvmeq->dev, ctx, &cqe);
752	}
753
754	/* If the controller ignores the cq head doorbell and continuously
755	 * writes to the queue, it is theoretically possible to wrap around
756	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
757	 * requires that 0.1% of your interrupts are handled, so this isn't
758	 * a big problem.
759	 */
760	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
761		return IRQ_NONE;
762
763	writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
764	nvmeq->cq_head = head;
765	nvmeq->cq_phase = phase;
766
767	return IRQ_HANDLED;
768}
769
770static irqreturn_t nvme_irq(int irq, void *data)
771{
772	irqreturn_t result;
773	struct nvme_queue *nvmeq = data;
774	spin_lock(&nvmeq->q_lock);
775	result = nvme_process_cq(nvmeq);
776	spin_unlock(&nvmeq->q_lock);
777	return result;
778}
779
780static irqreturn_t nvme_irq_check(int irq, void *data)
781{
782	struct nvme_queue *nvmeq = data;
783	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
784	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
785		return IRQ_NONE;
786	return IRQ_WAKE_THREAD;
787}
788
789static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
790{
791	spin_lock_irq(&nvmeq->q_lock);
792	cancel_cmdid(nvmeq, cmdid, NULL);
793	spin_unlock_irq(&nvmeq->q_lock);
794}
795
796struct sync_cmd_info {
797	struct task_struct *task;
798	u32 result;
799	int status;
800};
801
802static void sync_completion(struct nvme_dev *dev, void *ctx,
803						struct nvme_completion *cqe)
804{
805	struct sync_cmd_info *cmdinfo = ctx;
806	cmdinfo->result = le32_to_cpup(&cqe->result);
807	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
808	wake_up_process(cmdinfo->task);
809}
810
811/*
812 * Returns 0 on success.  If the result is negative, it's a Linux error code;
813 * if the result is positive, it's an NVM Express status code
814 */
815int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
816						u32 *result, unsigned timeout)
817{
818	int cmdid;
819	struct sync_cmd_info cmdinfo;
820
821	cmdinfo.task = current;
822	cmdinfo.status = -EINTR;
823
824	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
825								timeout);
826	if (cmdid < 0)
827		return cmdid;
828	cmd->common.command_id = cmdid;
829
830	set_current_state(TASK_KILLABLE);
831	nvme_submit_cmd(nvmeq, cmd);
832	schedule_timeout(timeout);
833
834	if (cmdinfo.status == -EINTR) {
835		nvme_abort_command(nvmeq, cmdid);
836		return -EINTR;
837	}
838
839	if (result)
840		*result = cmdinfo.result;
841
842	return cmdinfo.status;
843}
844
845int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
846								u32 *result)
847{
848	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
849}
850
851static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
852{
853	int status;
854	struct nvme_command c;
855
856	memset(&c, 0, sizeof(c));
857	c.delete_queue.opcode = opcode;
858	c.delete_queue.qid = cpu_to_le16(id);
859
860	status = nvme_submit_admin_cmd(dev, &c, NULL);
861	if (status)
862		return -EIO;
863	return 0;
864}
865
866static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
867						struct nvme_queue *nvmeq)
868{
869	int status;
870	struct nvme_command c;
871	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
872
873	memset(&c, 0, sizeof(c));
874	c.create_cq.opcode = nvme_admin_create_cq;
875	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
876	c.create_cq.cqid = cpu_to_le16(qid);
877	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
878	c.create_cq.cq_flags = cpu_to_le16(flags);
879	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
880
881	status = nvme_submit_admin_cmd(dev, &c, NULL);
882	if (status)
883		return -EIO;
884	return 0;
885}
886
887static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
888						struct nvme_queue *nvmeq)
889{
890	int status;
891	struct nvme_command c;
892	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
893
894	memset(&c, 0, sizeof(c));
895	c.create_sq.opcode = nvme_admin_create_sq;
896	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
897	c.create_sq.sqid = cpu_to_le16(qid);
898	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
899	c.create_sq.sq_flags = cpu_to_le16(flags);
900	c.create_sq.cqid = cpu_to_le16(qid);
901
902	status = nvme_submit_admin_cmd(dev, &c, NULL);
903	if (status)
904		return -EIO;
905	return 0;
906}
907
908static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
909{
910	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
911}
912
913static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
914{
915	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
916}
917
918int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
919							dma_addr_t dma_addr)
920{
921	struct nvme_command c;
922
923	memset(&c, 0, sizeof(c));
924	c.identify.opcode = nvme_admin_identify;
925	c.identify.nsid = cpu_to_le32(nsid);
926	c.identify.prp1 = cpu_to_le64(dma_addr);
927	c.identify.cns = cpu_to_le32(cns);
928
929	return nvme_submit_admin_cmd(dev, &c, NULL);
930}
931
932int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
933					dma_addr_t dma_addr, u32 *result)
934{
935	struct nvme_command c;
936
937	memset(&c, 0, sizeof(c));
938	c.features.opcode = nvme_admin_get_features;
939	c.features.nsid = cpu_to_le32(nsid);
940	c.features.prp1 = cpu_to_le64(dma_addr);
941	c.features.fid = cpu_to_le32(fid);
942
943	return nvme_submit_admin_cmd(dev, &c, result);
944}
945
946int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
947					dma_addr_t dma_addr, u32 *result)
948{
949	struct nvme_command c;
950
951	memset(&c, 0, sizeof(c));
952	c.features.opcode = nvme_admin_set_features;
953	c.features.prp1 = cpu_to_le64(dma_addr);
954	c.features.fid = cpu_to_le32(fid);
955	c.features.dword11 = cpu_to_le32(dword11);
956
957	return nvme_submit_admin_cmd(dev, &c, result);
958}
959
960/**
961 * nvme_cancel_ios - Cancel outstanding I/Os
962 * @queue: The queue to cancel I/Os on
963 * @timeout: True to only cancel I/Os which have timed out
964 */
965static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
966{
967	int depth = nvmeq->q_depth - 1;
968	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
969	unsigned long now = jiffies;
970	int cmdid;
971
972	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
973		void *ctx;
974		nvme_completion_fn fn;
975		static struct nvme_completion cqe = {
976			.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
977		};
978
979		if (timeout && !time_after(now, info[cmdid].timeout))
980			continue;
981		if (info[cmdid].ctx == CMD_CTX_CANCELLED)
982			continue;
983		dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
984		ctx = cancel_cmdid(nvmeq, cmdid, &fn);
985		fn(nvmeq->dev, ctx, &cqe);
986	}
987}
988
989static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
990{
991	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
992				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
993	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
994					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
995	kfree(nvmeq);
996}
997
998static void nvme_free_queue(struct nvme_dev *dev, int qid)
999{
1000	struct nvme_queue *nvmeq = dev->queues[qid];
1001	int vector = dev->entry[nvmeq->cq_vector].vector;
1002
1003	spin_lock_irq(&nvmeq->q_lock);
1004	nvme_cancel_ios(nvmeq, false);
1005	while (bio_list_peek(&nvmeq->sq_cong)) {
1006		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1007		bio_endio(bio, -EIO);
1008	}
1009	spin_unlock_irq(&nvmeq->q_lock);
1010
1011	irq_set_affinity_hint(vector, NULL);
1012	free_irq(vector, nvmeq);
1013
1014	/* Don't tell the adapter to delete the admin queue */
1015	if (qid) {
1016		adapter_delete_sq(dev, qid);
1017		adapter_delete_cq(dev, qid);
1018	}
1019
1020	nvme_free_queue_mem(nvmeq);
1021}
1022
1023static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1024							int depth, int vector)
1025{
1026	struct device *dmadev = &dev->pci_dev->dev;
1027	unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1028						sizeof(struct nvme_cmd_info));
1029	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1030	if (!nvmeq)
1031		return NULL;
1032
1033	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1034					&nvmeq->cq_dma_addr, GFP_KERNEL);
1035	if (!nvmeq->cqes)
1036		goto free_nvmeq;
1037	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1038
1039	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1040					&nvmeq->sq_dma_addr, GFP_KERNEL);
1041	if (!nvmeq->sq_cmds)
1042		goto free_cqdma;
1043
1044	nvmeq->q_dmadev = dmadev;
1045	nvmeq->dev = dev;
1046	spin_lock_init(&nvmeq->q_lock);
1047	nvmeq->cq_head = 0;
1048	nvmeq->cq_phase = 1;
1049	init_waitqueue_head(&nvmeq->sq_full);
1050	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1051	bio_list_init(&nvmeq->sq_cong);
1052	nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1053	nvmeq->q_depth = depth;
1054	nvmeq->cq_vector = vector;
1055
1056	return nvmeq;
1057
1058 free_cqdma:
1059	dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1060							nvmeq->cq_dma_addr);
1061 free_nvmeq:
1062	kfree(nvmeq);
1063	return NULL;
1064}
1065
1066static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1067							const char *name)
1068{
1069	if (use_threaded_interrupts)
1070		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1071					nvme_irq_check, nvme_irq,
1072					IRQF_DISABLED | IRQF_SHARED,
1073					name, nvmeq);
1074	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1075				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1076}
1077
1078static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1079					    int cq_size, int vector)
1080{
1081	int result;
1082	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1083
1084	if (!nvmeq)
1085		return ERR_PTR(-ENOMEM);
1086
1087	result = adapter_alloc_cq(dev, qid, nvmeq);
1088	if (result < 0)
1089		goto free_nvmeq;
1090
1091	result = adapter_alloc_sq(dev, qid, nvmeq);
1092	if (result < 0)
1093		goto release_cq;
1094
1095	result = queue_request_irq(dev, nvmeq, "nvme");
1096	if (result < 0)
1097		goto release_sq;
1098
1099	return nvmeq;
1100
1101 release_sq:
1102	adapter_delete_sq(dev, qid);
1103 release_cq:
1104	adapter_delete_cq(dev, qid);
1105 free_nvmeq:
1106	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1107				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1108	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1109					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1110	kfree(nvmeq);
1111	return ERR_PTR(result);
1112}
1113
1114static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1115{
1116	unsigned long timeout;
1117	u32 bit = enabled ? NVME_CSTS_RDY : 0;
1118
1119	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1120
1121	while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1122		msleep(100);
1123		if (fatal_signal_pending(current))
1124			return -EINTR;
1125		if (time_after(jiffies, timeout)) {
1126			dev_err(&dev->pci_dev->dev,
1127				"Device not ready; aborting initialisation\n");
1128			return -ENODEV;
1129		}
1130	}
1131
1132	return 0;
1133}
1134
1135/*
1136 * If the device has been passed off to us in an enabled state, just clear
1137 * the enabled bit.  The spec says we should set the 'shutdown notification
1138 * bits', but doing so may cause the device to complete commands to the
1139 * admin queue ... and we don't know what memory that might be pointing at!
1140 */
1141static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1142{
1143	u32 cc = readl(&dev->bar->cc);
1144
1145	if (cc & NVME_CC_ENABLE)
1146		writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1147	return nvme_wait_ready(dev, cap, false);
1148}
1149
1150static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1151{
1152	return nvme_wait_ready(dev, cap, true);
1153}
1154
1155static int nvme_configure_admin_queue(struct nvme_dev *dev)
1156{
1157	int result;
1158	u32 aqa;
1159	u64 cap = readq(&dev->bar->cap);
1160	struct nvme_queue *nvmeq;
1161
1162	dev->dbs = ((void __iomem *)dev->bar) + 4096;
1163	dev->db_stride = NVME_CAP_STRIDE(cap);
1164
1165	result = nvme_disable_ctrl(dev, cap);
1166	if (result < 0)
1167		return result;
1168
1169	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1170	if (!nvmeq)
1171		return -ENOMEM;
1172
1173	aqa = nvmeq->q_depth - 1;
1174	aqa |= aqa << 16;
1175
1176	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1177	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1178	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1179	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1180
1181	writel(aqa, &dev->bar->aqa);
1182	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1183	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1184	writel(dev->ctrl_config, &dev->bar->cc);
1185
1186	result = nvme_enable_ctrl(dev, cap);
1187	if (result)
1188		goto free_q;
1189
1190	result = queue_request_irq(dev, nvmeq, "nvme admin");
1191	if (result)
1192		goto free_q;
1193
1194	dev->queues[0] = nvmeq;
1195	return result;
1196
1197 free_q:
1198	nvme_free_queue_mem(nvmeq);
1199	return result;
1200}
1201
1202struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1203				unsigned long addr, unsigned length)
1204{
1205	int i, err, count, nents, offset;
1206	struct scatterlist *sg;
1207	struct page **pages;
1208	struct nvme_iod *iod;
1209
1210	if (addr & 3)
1211		return ERR_PTR(-EINVAL);
1212	if (!length || length > INT_MAX - PAGE_SIZE)
1213		return ERR_PTR(-EINVAL);
1214
1215	offset = offset_in_page(addr);
1216	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1217	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1218	if (!pages)
1219		return ERR_PTR(-ENOMEM);
1220
1221	err = get_user_pages_fast(addr, count, 1, pages);
1222	if (err < count) {
1223		count = err;
1224		err = -EFAULT;
1225		goto put_pages;
1226	}
1227
1228	iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1229	sg = iod->sg;
1230	sg_init_table(sg, count);
1231	for (i = 0; i < count; i++) {
1232		sg_set_page(&sg[i], pages[i],
1233			    min_t(unsigned, length, PAGE_SIZE - offset),
1234			    offset);
1235		length -= (PAGE_SIZE - offset);
1236		offset = 0;
1237	}
1238	sg_mark_end(&sg[i - 1]);
1239	iod->nents = count;
1240
1241	err = -ENOMEM;
1242	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1243				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1244	if (!nents)
1245		goto free_iod;
1246
1247	kfree(pages);
1248	return iod;
1249
1250 free_iod:
1251	kfree(iod);
1252 put_pages:
1253	for (i = 0; i < count; i++)
1254		put_page(pages[i]);
1255	kfree(pages);
1256	return ERR_PTR(err);
1257}
1258
1259void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1260			struct nvme_iod *iod)
1261{
1262	int i;
1263
1264	dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1265				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1266
1267	for (i = 0; i < iod->nents; i++)
1268		put_page(sg_page(&iod->sg[i]));
1269}
1270
1271static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1272{
1273	struct nvme_dev *dev = ns->dev;
1274	struct nvme_queue *nvmeq;
1275	struct nvme_user_io io;
1276	struct nvme_command c;
1277	unsigned length, meta_len;
1278	int status, i;
1279	struct nvme_iod *iod, *meta_iod = NULL;
1280	dma_addr_t meta_dma_addr;
1281	void *meta, *uninitialized_var(meta_mem);
1282
1283	if (copy_from_user(&io, uio, sizeof(io)))
1284		return -EFAULT;
1285	length = (io.nblocks + 1) << ns->lba_shift;
1286	meta_len = (io.nblocks + 1) * ns->ms;
1287
1288	if (meta_len && ((io.metadata & 3) || !io.metadata))
1289		return -EINVAL;
1290
1291	switch (io.opcode) {
1292	case nvme_cmd_write:
1293	case nvme_cmd_read:
1294	case nvme_cmd_compare:
1295		iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1296		break;
1297	default:
1298		return -EINVAL;
1299	}
1300
1301	if (IS_ERR(iod))
1302		return PTR_ERR(iod);
1303
1304	memset(&c, 0, sizeof(c));
1305	c.rw.opcode = io.opcode;
1306	c.rw.flags = io.flags;
1307	c.rw.nsid = cpu_to_le32(ns->ns_id);
1308	c.rw.slba = cpu_to_le64(io.slba);
1309	c.rw.length = cpu_to_le16(io.nblocks);
1310	c.rw.control = cpu_to_le16(io.control);
1311	c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1312	c.rw.reftag = cpu_to_le32(io.reftag);
1313	c.rw.apptag = cpu_to_le16(io.apptag);
1314	c.rw.appmask = cpu_to_le16(io.appmask);
1315
1316	if (meta_len) {
1317		meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1318		if (IS_ERR(meta_iod)) {
1319			status = PTR_ERR(meta_iod);
1320			meta_iod = NULL;
1321			goto unmap;
1322		}
1323
1324		meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1325						&meta_dma_addr, GFP_KERNEL);
1326		if (!meta_mem) {
1327			status = -ENOMEM;
1328			goto unmap;
1329		}
1330
1331		if (io.opcode & 1) {
1332			int meta_offset = 0;
1333
1334			for (i = 0; i < meta_iod->nents; i++) {
1335				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1336						meta_iod->sg[i].offset;
1337				memcpy(meta_mem + meta_offset, meta,
1338						meta_iod->sg[i].length);
1339				kunmap_atomic(meta);
1340				meta_offset += meta_iod->sg[i].length;
1341			}
1342		}
1343
1344		c.rw.metadata = cpu_to_le64(meta_dma_addr);
1345	}
1346
1347	length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1348
1349	nvmeq = get_nvmeq(dev);
1350	/*
1351	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1352	 * disabled.  We may be preempted at any point, and be rescheduled
1353	 * to a different CPU.  That will cause cacheline bouncing, but no
1354	 * additional races since q_lock already protects against other CPUs.
1355	 */
1356	put_nvmeq(nvmeq);
1357	if (length != (io.nblocks + 1) << ns->lba_shift)
1358		status = -ENOMEM;
1359	else
1360		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1361
1362	if (meta_len) {
1363		if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1364			int meta_offset = 0;
1365
1366			for (i = 0; i < meta_iod->nents; i++) {
1367				meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1368						meta_iod->sg[i].offset;
1369				memcpy(meta, meta_mem + meta_offset,
1370						meta_iod->sg[i].length);
1371				kunmap_atomic(meta);
1372				meta_offset += meta_iod->sg[i].length;
1373			}
1374		}
1375
1376		dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1377								meta_dma_addr);
1378	}
1379
1380 unmap:
1381	nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1382	nvme_free_iod(dev, iod);
1383
1384	if (meta_iod) {
1385		nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1386		nvme_free_iod(dev, meta_iod);
1387	}
1388
1389	return status;
1390}
1391
1392static int nvme_user_admin_cmd(struct nvme_dev *dev,
1393					struct nvme_admin_cmd __user *ucmd)
1394{
1395	struct nvme_admin_cmd cmd;
1396	struct nvme_command c;
1397	int status, length;
1398	struct nvme_iod *uninitialized_var(iod);
1399	unsigned timeout;
1400
1401	if (!capable(CAP_SYS_ADMIN))
1402		return -EACCES;
1403	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1404		return -EFAULT;
1405
1406	memset(&c, 0, sizeof(c));
1407	c.common.opcode = cmd.opcode;
1408	c.common.flags = cmd.flags;
1409	c.common.nsid = cpu_to_le32(cmd.nsid);
1410	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1411	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1412	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1413	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1414	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1415	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1416	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1417	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1418
1419	length = cmd.data_len;
1420	if (cmd.data_len) {
1421		iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1422								length);
1423		if (IS_ERR(iod))
1424			return PTR_ERR(iod);
1425		length = nvme_setup_prps(dev, &c.common, iod, length,
1426								GFP_KERNEL);
1427	}
1428
1429	timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1430								ADMIN_TIMEOUT;
1431	if (length != cmd.data_len)
1432		status = -ENOMEM;
1433	else
1434		status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1435								timeout);
1436
1437	if (cmd.data_len) {
1438		nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1439		nvme_free_iod(dev, iod);
1440	}
1441
1442	if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1443							sizeof(cmd.result)))
1444		status = -EFAULT;
1445
1446	return status;
1447}
1448
1449static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1450							unsigned long arg)
1451{
1452	struct nvme_ns *ns = bdev->bd_disk->private_data;
1453
1454	switch (cmd) {
1455	case NVME_IOCTL_ID:
1456		return ns->ns_id;
1457	case NVME_IOCTL_ADMIN_CMD:
1458		return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1459	case NVME_IOCTL_SUBMIT_IO:
1460		return nvme_submit_io(ns, (void __user *)arg);
1461	case SG_GET_VERSION_NUM:
1462		return nvme_sg_get_version_num((void __user *)arg);
1463	case SG_IO:
1464		return nvme_sg_io(ns, (void __user *)arg);
1465	default:
1466		return -ENOTTY;
1467	}
1468}
1469
1470static const struct block_device_operations nvme_fops = {
1471	.owner		= THIS_MODULE,
1472	.ioctl		= nvme_ioctl,
1473	.compat_ioctl	= nvme_ioctl,
1474};
1475
1476static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1477{
1478	while (bio_list_peek(&nvmeq->sq_cong)) {
1479		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1480		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1481
1482		if (bio_list_empty(&nvmeq->sq_cong))
1483			remove_wait_queue(&nvmeq->sq_full,
1484							&nvmeq->sq_cong_wait);
1485		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1486			if (bio_list_empty(&nvmeq->sq_cong))
1487				add_wait_queue(&nvmeq->sq_full,
1488							&nvmeq->sq_cong_wait);
1489			bio_list_add_head(&nvmeq->sq_cong, bio);
1490			break;
1491		}
1492	}
1493}
1494
1495static int nvme_kthread(void *data)
1496{
1497	struct nvme_dev *dev;
1498
1499	while (!kthread_should_stop()) {
1500		set_current_state(TASK_INTERRUPTIBLE);
1501		spin_lock(&dev_list_lock);
1502		list_for_each_entry(dev, &dev_list, node) {
1503			int i;
1504			for (i = 0; i < dev->queue_count; i++) {
1505				struct nvme_queue *nvmeq = dev->queues[i];
1506				if (!nvmeq)
1507					continue;
1508				spin_lock_irq(&nvmeq->q_lock);
1509				if (nvme_process_cq(nvmeq))
1510					printk("process_cq did something\n");
1511				nvme_cancel_ios(nvmeq, true);
1512				nvme_resubmit_bios(nvmeq);
1513				spin_unlock_irq(&nvmeq->q_lock);
1514			}
1515		}
1516		spin_unlock(&dev_list_lock);
1517		schedule_timeout(round_jiffies_relative(HZ));
1518	}
1519	return 0;
1520}
1521
1522static DEFINE_IDA(nvme_index_ida);
1523
1524static int nvme_get_ns_idx(void)
1525{
1526	int index, error;
1527
1528	do {
1529		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1530			return -1;
1531
1532		spin_lock(&dev_list_lock);
1533		error = ida_get_new(&nvme_index_ida, &index);
1534		spin_unlock(&dev_list_lock);
1535	} while (error == -EAGAIN);
1536
1537	if (error)
1538		index = -1;
1539	return index;
1540}
1541
1542static void nvme_put_ns_idx(int index)
1543{
1544	spin_lock(&dev_list_lock);
1545	ida_remove(&nvme_index_ida, index);
1546	spin_unlock(&dev_list_lock);
1547}
1548
1549static void nvme_config_discard(struct nvme_ns *ns)
1550{
1551	u32 logical_block_size = queue_logical_block_size(ns->queue);
1552	ns->queue->limits.discard_zeroes_data = 0;
1553	ns->queue->limits.discard_alignment = logical_block_size;
1554	ns->queue->limits.discard_granularity = logical_block_size;
1555	ns->queue->limits.max_discard_sectors = 0xffffffff;
1556	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1557}
1558
1559static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1560			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1561{
1562	struct nvme_ns *ns;
1563	struct gendisk *disk;
1564	int lbaf;
1565
1566	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1567		return NULL;
1568
1569	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1570	if (!ns)
1571		return NULL;
1572	ns->queue = blk_alloc_queue(GFP_KERNEL);
1573	if (!ns->queue)
1574		goto out_free_ns;
1575	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1576	queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1577	queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1578	blk_queue_make_request(ns->queue, nvme_make_request);
1579	ns->dev = dev;
1580	ns->queue->queuedata = ns;
1581
1582	disk = alloc_disk(NVME_MINORS);
1583	if (!disk)
1584		goto out_free_queue;
1585	ns->ns_id = nsid;
1586	ns->disk = disk;
1587	lbaf = id->flbas & 0xf;
1588	ns->lba_shift = id->lbaf[lbaf].ds;
1589	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1590	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1591	if (dev->max_hw_sectors)
1592		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1593
1594	disk->major = nvme_major;
1595	disk->minors = NVME_MINORS;
1596	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1597	disk->fops = &nvme_fops;
1598	disk->private_data = ns;
1599	disk->queue = ns->queue;
1600	disk->driverfs_dev = &dev->pci_dev->dev;
1601	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1602	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1603
1604	if (dev->oncs & NVME_CTRL_ONCS_DSM)
1605		nvme_config_discard(ns);
1606
1607	return ns;
1608
1609 out_free_queue:
1610	blk_cleanup_queue(ns->queue);
1611 out_free_ns:
1612	kfree(ns);
1613	return NULL;
1614}
1615
1616static void nvme_ns_free(struct nvme_ns *ns)
1617{
1618	int index = ns->disk->first_minor / NVME_MINORS;
1619	put_disk(ns->disk);
1620	nvme_put_ns_idx(index);
1621	blk_cleanup_queue(ns->queue);
1622	kfree(ns);
1623}
1624
1625static int set_queue_count(struct nvme_dev *dev, int count)
1626{
1627	int status;
1628	u32 result;
1629	u32 q_count = (count - 1) | ((count - 1) << 16);
1630
1631	status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1632								&result);
1633	if (status)
1634		return -EIO;
1635	return min(result & 0xffff, result >> 16) + 1;
1636}
1637
1638static int nvme_setup_io_queues(struct nvme_dev *dev)
1639{
1640	int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
1641
1642	nr_io_queues = num_online_cpus();
1643	result = set_queue_count(dev, nr_io_queues);
1644	if (result < 0)
1645		return result;
1646	if (result < nr_io_queues)
1647		nr_io_queues = result;
1648
1649	/* Deregister the admin queue's interrupt */
1650	free_irq(dev->entry[0].vector, dev->queues[0]);
1651
1652	db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1653	if (db_bar_size > 8192) {
1654		iounmap(dev->bar);
1655		dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1656								db_bar_size);
1657		dev->dbs = ((void __iomem *)dev->bar) + 4096;
1658		dev->queues[0]->q_db = dev->dbs;
1659	}
1660
1661	for (i = 0; i < nr_io_queues; i++)
1662		dev->entry[i].entry = i;
1663	for (;;) {
1664		result = pci_enable_msix(dev->pci_dev, dev->entry,
1665								nr_io_queues);
1666		if (result == 0) {
1667			break;
1668		} else if (result > 0) {
1669			nr_io_queues = result;
1670			continue;
1671		} else {
1672			nr_io_queues = 1;
1673			break;
1674		}
1675	}
1676
1677	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1678	/* XXX: handle failure here */
1679
1680	cpu = cpumask_first(cpu_online_mask);
1681	for (i = 0; i < nr_io_queues; i++) {
1682		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1683		cpu = cpumask_next(cpu, cpu_online_mask);
1684	}
1685
1686	q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1687								NVME_Q_DEPTH);
1688	for (i = 0; i < nr_io_queues; i++) {
1689		dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1690		if (IS_ERR(dev->queues[i + 1]))
1691			return PTR_ERR(dev->queues[i + 1]);
1692		dev->queue_count++;
1693	}
1694
1695	for (; i < num_possible_cpus(); i++) {
1696		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1697		dev->queues[i + 1] = dev->queues[target + 1];
1698	}
1699
1700	return 0;
1701}
1702
1703static void nvme_free_queues(struct nvme_dev *dev)
1704{
1705	int i;
1706
1707	for (i = dev->queue_count - 1; i >= 0; i--)
1708		nvme_free_queue(dev, i);
1709}
1710
1711/*
1712 * Return: error value if an error occurred setting up the queues or calling
1713 * Identify Device.  0 if these succeeded, even if adding some of the
1714 * namespaces failed.  At the moment, these failures are silent.  TBD which
1715 * failures should be reported.
1716 */
1717static int nvme_dev_add(struct nvme_dev *dev)
1718{
1719	int res, nn, i;
1720	struct nvme_ns *ns;
1721	struct nvme_id_ctrl *ctrl;
1722	struct nvme_id_ns *id_ns;
1723	void *mem;
1724	dma_addr_t dma_addr;
1725	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1726
1727	res = nvme_setup_io_queues(dev);
1728	if (res)
1729		return res;
1730
1731	mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1732								GFP_KERNEL);
1733	if (!mem)
1734		return -ENOMEM;
1735
1736	res = nvme_identify(dev, 0, 1, dma_addr);
1737	if (res) {
1738		res = -EIO;
1739		goto out;
1740	}
1741
1742	ctrl = mem;
1743	nn = le32_to_cpup(&ctrl->nn);
1744	dev->oncs = le16_to_cpup(&ctrl->oncs);
1745	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1746	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1747	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1748	if (ctrl->mdts)
1749		dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1750	if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1751			(dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1752		dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1753
1754	id_ns = mem;
1755	for (i = 1; i <= nn; i++) {
1756		res = nvme_identify(dev, i, 0, dma_addr);
1757		if (res)
1758			continue;
1759
1760		if (id_ns->ncap == 0)
1761			continue;
1762
1763		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1764							dma_addr + 4096, NULL);
1765		if (res)
1766			memset(mem + 4096, 0, 4096);
1767
1768		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1769		if (ns)
1770			list_add_tail(&ns->list, &dev->namespaces);
1771	}
1772	list_for_each_entry(ns, &dev->namespaces, list)
1773		add_disk(ns->disk);
1774	res = 0;
1775
1776 out:
1777	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1778	return res;
1779}
1780
1781static int nvme_dev_remove(struct nvme_dev *dev)
1782{
1783	struct nvme_ns *ns, *next;
1784
1785	spin_lock(&dev_list_lock);
1786	list_del(&dev->node);
1787	spin_unlock(&dev_list_lock);
1788
1789	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1790		list_del(&ns->list);
1791		del_gendisk(ns->disk);
1792		nvme_ns_free(ns);
1793	}
1794
1795	nvme_free_queues(dev);
1796
1797	return 0;
1798}
1799
1800static int nvme_setup_prp_pools(struct nvme_dev *dev)
1801{
1802	struct device *dmadev = &dev->pci_dev->dev;
1803	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1804						PAGE_SIZE, PAGE_SIZE, 0);
1805	if (!dev->prp_page_pool)
1806		return -ENOMEM;
1807
1808	/* Optimisation for I/Os between 4k and 128k */
1809	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1810						256, 256, 0);
1811	if (!dev->prp_small_pool) {
1812		dma_pool_destroy(dev->prp_page_pool);
1813		return -ENOMEM;
1814	}
1815	return 0;
1816}
1817
1818static void nvme_release_prp_pools(struct nvme_dev *dev)
1819{
1820	dma_pool_destroy(dev->prp_page_pool);
1821	dma_pool_destroy(dev->prp_small_pool);
1822}
1823
1824static DEFINE_IDA(nvme_instance_ida);
1825
1826static int nvme_set_instance(struct nvme_dev *dev)
1827{
1828	int instance, error;
1829
1830	do {
1831		if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1832			return -ENODEV;
1833
1834		spin_lock(&dev_list_lock);
1835		error = ida_get_new(&nvme_instance_ida, &instance);
1836		spin_unlock(&dev_list_lock);
1837	} while (error == -EAGAIN);
1838
1839	if (error)
1840		return -ENODEV;
1841
1842	dev->instance = instance;
1843	return 0;
1844}
1845
1846static void nvme_release_instance(struct nvme_dev *dev)
1847{
1848	spin_lock(&dev_list_lock);
1849	ida_remove(&nvme_instance_ida, dev->instance);
1850	spin_unlock(&dev_list_lock);
1851}
1852
1853static void nvme_free_dev(struct kref *kref)
1854{
1855	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1856	nvme_dev_remove(dev);
1857	pci_disable_msix(dev->pci_dev);
1858	iounmap(dev->bar);
1859	nvme_release_instance(dev);
1860	nvme_release_prp_pools(dev);
1861	pci_disable_device(dev->pci_dev);
1862	pci_release_regions(dev->pci_dev);
1863	kfree(dev->queues);
1864	kfree(dev->entry);
1865	kfree(dev);
1866}
1867
1868static int nvme_dev_open(struct inode *inode, struct file *f)
1869{
1870	struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1871								miscdev);
1872	kref_get(&dev->kref);
1873	f->private_data = dev;
1874	return 0;
1875}
1876
1877static int nvme_dev_release(struct inode *inode, struct file *f)
1878{
1879	struct nvme_dev *dev = f->private_data;
1880	kref_put(&dev->kref, nvme_free_dev);
1881	return 0;
1882}
1883
1884static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1885{
1886	struct nvme_dev *dev = f->private_data;
1887	switch (cmd) {
1888	case NVME_IOCTL_ADMIN_CMD:
1889		return nvme_user_admin_cmd(dev, (void __user *)arg);
1890	default:
1891		return -ENOTTY;
1892	}
1893}
1894
1895static const struct file_operations nvme_dev_fops = {
1896	.owner		= THIS_MODULE,
1897	.open		= nvme_dev_open,
1898	.release	= nvme_dev_release,
1899	.unlocked_ioctl	= nvme_dev_ioctl,
1900	.compat_ioctl	= nvme_dev_ioctl,
1901};
1902
1903static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1904{
1905	int bars, result = -ENOMEM;
1906	struct nvme_dev *dev;
1907
1908	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1909	if (!dev)
1910		return -ENOMEM;
1911	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1912								GFP_KERNEL);
1913	if (!dev->entry)
1914		goto free;
1915	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1916								GFP_KERNEL);
1917	if (!dev->queues)
1918		goto free;
1919
1920	if (pci_enable_device_mem(pdev))
1921		goto free;
1922	pci_set_master(pdev);
1923	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1924	if (pci_request_selected_regions(pdev, bars, "nvme"))
1925		goto disable;
1926
1927	INIT_LIST_HEAD(&dev->namespaces);
1928	dev->pci_dev = pdev;
1929	pci_set_drvdata(pdev, dev);
1930	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1931	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1932	result = nvme_set_instance(dev);
1933	if (result)
1934		goto disable;
1935
1936	dev->entry[0].vector = pdev->irq;
1937
1938	result = nvme_setup_prp_pools(dev);
1939	if (result)
1940		goto disable_msix;
1941
1942	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1943	if (!dev->bar) {
1944		result = -ENOMEM;
1945		goto disable_msix;
1946	}
1947
1948	result = nvme_configure_admin_queue(dev);
1949	if (result)
1950		goto unmap;
1951	dev->queue_count++;
1952
1953	spin_lock(&dev_list_lock);
1954	list_add(&dev->node, &dev_list);
1955	spin_unlock(&dev_list_lock);
1956
1957	result = nvme_dev_add(dev);
1958	if (result)
1959		goto delete;
1960
1961	scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
1962	dev->miscdev.minor = MISC_DYNAMIC_MINOR;
1963	dev->miscdev.parent = &pdev->dev;
1964	dev->miscdev.name = dev->name;
1965	dev->miscdev.fops = &nvme_dev_fops;
1966	result = misc_register(&dev->miscdev);
1967	if (result)
1968		goto remove;
1969
1970	kref_init(&dev->kref);
1971	return 0;
1972
1973 remove:
1974	nvme_dev_remove(dev);
1975 delete:
1976	spin_lock(&dev_list_lock);
1977	list_del(&dev->node);
1978	spin_unlock(&dev_list_lock);
1979
1980	nvme_free_queues(dev);
1981 unmap:
1982	iounmap(dev->bar);
1983 disable_msix:
1984	pci_disable_msix(pdev);
1985	nvme_release_instance(dev);
1986	nvme_release_prp_pools(dev);
1987 disable:
1988	pci_disable_device(pdev);
1989	pci_release_regions(pdev);
1990 free:
1991	kfree(dev->queues);
1992	kfree(dev->entry);
1993	kfree(dev);
1994	return result;
1995}
1996
1997static void nvme_remove(struct pci_dev *pdev)
1998{
1999	struct nvme_dev *dev = pci_get_drvdata(pdev);
2000	misc_deregister(&dev->miscdev);
2001	kref_put(&dev->kref, nvme_free_dev);
2002}
2003
2004/* These functions are yet to be implemented */
2005#define nvme_error_detected NULL
2006#define nvme_dump_registers NULL
2007#define nvme_link_reset NULL
2008#define nvme_slot_reset NULL
2009#define nvme_error_resume NULL
2010#define nvme_suspend NULL
2011#define nvme_resume NULL
2012
2013static const struct pci_error_handlers nvme_err_handler = {
2014	.error_detected	= nvme_error_detected,
2015	.mmio_enabled	= nvme_dump_registers,
2016	.link_reset	= nvme_link_reset,
2017	.slot_reset	= nvme_slot_reset,
2018	.resume		= nvme_error_resume,
2019};
2020
2021/* Move to pci_ids.h later */
2022#define PCI_CLASS_STORAGE_EXPRESS	0x010802
2023
2024static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2025	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2026	{ 0, }
2027};
2028MODULE_DEVICE_TABLE(pci, nvme_id_table);
2029
2030static struct pci_driver nvme_driver = {
2031	.name		= "nvme",
2032	.id_table	= nvme_id_table,
2033	.probe		= nvme_probe,
2034	.remove		= nvme_remove,
2035	.suspend	= nvme_suspend,
2036	.resume		= nvme_resume,
2037	.err_handler	= &nvme_err_handler,
2038};
2039
2040static int __init nvme_init(void)
2041{
2042	int result;
2043
2044	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2045	if (IS_ERR(nvme_thread))
2046		return PTR_ERR(nvme_thread);
2047
2048	result = register_blkdev(nvme_major, "nvme");
2049	if (result < 0)
2050		goto kill_kthread;
2051	else if (result > 0)
2052		nvme_major = result;
2053
2054	result = pci_register_driver(&nvme_driver);
2055	if (result)
2056		goto unregister_blkdev;
2057	return 0;
2058
2059 unregister_blkdev:
2060	unregister_blkdev(nvme_major, "nvme");
2061 kill_kthread:
2062	kthread_stop(nvme_thread);
2063	return result;
2064}
2065
2066static void __exit nvme_exit(void)
2067{
2068	pci_unregister_driver(&nvme_driver);
2069	unregister_blkdev(nvme_major, "nvme");
2070	kthread_stop(nvme_thread);
2071}
2072
2073MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2074MODULE_LICENSE("GPL");
2075MODULE_VERSION("0.8");
2076module_init(nvme_init);
2077module_exit(nvme_exit);
2078