nvme-core.c revision d0ba1e497bca83a3d353eb47c9658afc54d83228
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/bitops.h>
22#include <linux/blkdev.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
27#include <linux/idr.h>
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
32#include <linux/kthread.h>
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
38#include <linux/poison.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/version.h>
43
44#define NVME_Q_DEPTH 1024
45#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
46#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
47#define NVME_MINORS 64
48#define IO_TIMEOUT	(5 * HZ)
49#define ADMIN_TIMEOUT	(60 * HZ)
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
61/*
62 * Represents an NVM Express device.  Each nvme_dev is a PCI function.
63 */
64struct nvme_dev {
65	struct list_head node;
66	struct nvme_queue **queues;
67	u32 __iomem *dbs;
68	struct pci_dev *pci_dev;
69	struct dma_pool *prp_page_pool;
70	struct dma_pool *prp_small_pool;
71	int instance;
72	int queue_count;
73	u32 ctrl_config;
74	struct msix_entry *entry;
75	struct nvme_bar __iomem *bar;
76	struct list_head namespaces;
77	char serial[20];
78	char model[40];
79	char firmware_rev[8];
80};
81
82/*
83 * An NVM Express namespace is equivalent to a SCSI LUN
84 */
85struct nvme_ns {
86	struct list_head list;
87
88	struct nvme_dev *dev;
89	struct request_queue *queue;
90	struct gendisk *disk;
91
92	int ns_id;
93	int lba_shift;
94};
95
96/*
97 * An NVM Express queue.  Each device has at least two (one for admin
98 * commands and one for I/O commands).
99 */
100struct nvme_queue {
101	struct device *q_dmadev;
102	struct nvme_dev *dev;
103	spinlock_t q_lock;
104	struct nvme_command *sq_cmds;
105	volatile struct nvme_completion *cqes;
106	dma_addr_t sq_dma_addr;
107	dma_addr_t cq_dma_addr;
108	wait_queue_head_t sq_full;
109	wait_queue_t sq_cong_wait;
110	struct bio_list sq_cong;
111	u32 __iomem *q_db;
112	u16 q_depth;
113	u16 cq_vector;
114	u16 sq_head;
115	u16 sq_tail;
116	u16 cq_head;
117	u16 cq_phase;
118	unsigned long cmdid_data[];
119};
120
121/*
122 * Check we didin't inadvertently grow the command struct
123 */
124static inline void _nvme_check_size(void)
125{
126	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
127	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
128	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
129	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
130	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
131	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
132	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
133	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
134	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
135}
136
137struct nvme_cmd_info {
138	unsigned long ctx;
139	unsigned long timeout;
140};
141
142static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
143{
144	return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
145}
146
147/**
148 * alloc_cmdid() - Allocate a Command ID
149 * @nvmeq: The queue that will be used for this command
150 * @ctx: A pointer that will be passed to the handler
151 * @handler: The ID of the handler to call
152 *
153 * Allocate a Command ID for a queue.  The data passed in will
154 * be passed to the completion handler.  This is implemented by using
155 * the bottom two bits of the ctx pointer to store the handler ID.
156 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
157 * We can change this if it becomes a problem.
158 *
159 * May be called with local interrupts disabled and the q_lock held,
160 * or with interrupts enabled and no locks held.
161 */
162static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
163							unsigned timeout)
164{
165	int depth = nvmeq->q_depth - 1;
166	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
167	int cmdid;
168
169	BUG_ON((unsigned long)ctx & 3);
170
171	do {
172		cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
173		if (cmdid >= depth)
174			return -EBUSY;
175	} while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
176
177	info[cmdid].ctx = (unsigned long)ctx | handler;
178	info[cmdid].timeout = jiffies + timeout;
179	return cmdid;
180}
181
182static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
183						int handler, unsigned timeout)
184{
185	int cmdid;
186	wait_event_killable(nvmeq->sq_full,
187		(cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
188	return (cmdid < 0) ? -EINTR : cmdid;
189}
190
191/*
192 * If you need more than four handlers, you'll need to change how
193 * alloc_cmdid and nvme_process_cq work.  Consider using a special
194 * CMD_CTX value instead, if that works for your situation.
195 */
196enum {
197	sync_completion_id = 0,
198	bio_completion_id,
199};
200
201/* Special values must be a multiple of 4, and less than 0x1000 */
202#define CMD_CTX_BASE		(POISON_POINTER_DELTA + sync_completion_id)
203#define CMD_CTX_CANCELLED	(0x30C + CMD_CTX_BASE)
204#define CMD_CTX_COMPLETED	(0x310 + CMD_CTX_BASE)
205#define CMD_CTX_INVALID		(0x314 + CMD_CTX_BASE)
206#define CMD_CTX_FLUSH		(0x318 + CMD_CTX_BASE)
207
208/*
209 * Called with local interrupts disabled and the q_lock held.  May not sleep.
210 */
211static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
212{
213	unsigned long data;
214	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
215
216	if (cmdid >= nvmeq->q_depth)
217		return CMD_CTX_INVALID;
218	data = info[cmdid].ctx;
219	info[cmdid].ctx = CMD_CTX_COMPLETED;
220	clear_bit(cmdid, nvmeq->cmdid_data);
221	wake_up(&nvmeq->sq_full);
222	return data;
223}
224
225static unsigned long cancel_cmdid(struct nvme_queue *nvmeq, int cmdid)
226{
227	unsigned long data;
228	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
229	data = info[cmdid].ctx;
230	info[cmdid].ctx = CMD_CTX_CANCELLED;
231	return data;
232}
233
234static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
235{
236	return ns->dev->queues[get_cpu() + 1];
237}
238
239static void put_nvmeq(struct nvme_queue *nvmeq)
240{
241	put_cpu();
242}
243
244/**
245 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
246 * @nvmeq: The queue to use
247 * @cmd: The command to send
248 *
249 * Safe to use from interrupt context
250 */
251static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
252{
253	unsigned long flags;
254	u16 tail;
255	spin_lock_irqsave(&nvmeq->q_lock, flags);
256	tail = nvmeq->sq_tail;
257	memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
258	if (++tail == nvmeq->q_depth)
259		tail = 0;
260	writel(tail, nvmeq->q_db);
261	nvmeq->sq_tail = tail;
262	spin_unlock_irqrestore(&nvmeq->q_lock, flags);
263
264	return 0;
265}
266
267struct nvme_prps {
268	int npages;
269	dma_addr_t first_dma;
270	__le64 *list[0];
271};
272
273static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
274{
275	const int last_prp = PAGE_SIZE / 8 - 1;
276	int i;
277	dma_addr_t prp_dma;
278
279	if (!prps)
280		return;
281
282	prp_dma = prps->first_dma;
283
284	if (prps->npages == 0)
285		dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
286	for (i = 0; i < prps->npages; i++) {
287		__le64 *prp_list = prps->list[i];
288		dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
289		dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
290		prp_dma = next_prp_dma;
291	}
292	kfree(prps);
293}
294
295struct nvme_bio {
296	struct bio *bio;
297	int nents;
298	struct nvme_prps *prps;
299	struct scatterlist sg[0];
300};
301
302/* XXX: use a mempool */
303static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
304{
305	return kzalloc(sizeof(struct nvme_bio) +
306			sizeof(struct scatterlist) * nseg, gfp);
307}
308
309static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
310{
311	nvme_free_prps(nvmeq->dev, nbio->prps);
312	kfree(nbio);
313}
314
315static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
316						struct nvme_completion *cqe)
317{
318	struct nvme_bio *nbio = ctx;
319	struct bio *bio = nbio->bio;
320	u16 status = le16_to_cpup(&cqe->status) >> 1;
321
322	dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
323			bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
324	free_nbio(nvmeq, nbio);
325	if (status) {
326		bio_endio(bio, -EIO);
327	} else if (bio->bi_vcnt > bio->bi_idx) {
328		if (bio_list_empty(&nvmeq->sq_cong))
329			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
330		bio_list_add(&nvmeq->sq_cong, bio);
331		wake_up_process(nvme_thread);
332	} else {
333		bio_endio(bio, 0);
334	}
335}
336
337/* length is in bytes.  gfp flags indicates whether we may sleep. */
338static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
339					struct nvme_common_command *cmd,
340					struct scatterlist *sg, int *len,
341					gfp_t gfp)
342{
343	struct dma_pool *pool;
344	int length = *len;
345	int dma_len = sg_dma_len(sg);
346	u64 dma_addr = sg_dma_address(sg);
347	int offset = offset_in_page(dma_addr);
348	__le64 *prp_list;
349	dma_addr_t prp_dma;
350	int nprps, npages, i, prp_page;
351	struct nvme_prps *prps = NULL;
352
353	cmd->prp1 = cpu_to_le64(dma_addr);
354	length -= (PAGE_SIZE - offset);
355	if (length <= 0)
356		return prps;
357
358	dma_len -= (PAGE_SIZE - offset);
359	if (dma_len) {
360		dma_addr += (PAGE_SIZE - offset);
361	} else {
362		sg = sg_next(sg);
363		dma_addr = sg_dma_address(sg);
364		dma_len = sg_dma_len(sg);
365	}
366
367	if (length <= PAGE_SIZE) {
368		cmd->prp2 = cpu_to_le64(dma_addr);
369		return prps;
370	}
371
372	nprps = DIV_ROUND_UP(length, PAGE_SIZE);
373	npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
374	prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
375	if (!prps) {
376		cmd->prp2 = cpu_to_le64(dma_addr);
377		*len = (*len - length) + PAGE_SIZE;
378		return prps;
379	}
380	prp_page = 0;
381	if (nprps <= (256 / 8)) {
382		pool = dev->prp_small_pool;
383		prps->npages = 0;
384	} else {
385		pool = dev->prp_page_pool;
386		prps->npages = npages;
387	}
388
389	prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
390	if (!prp_list) {
391		cmd->prp2 = cpu_to_le64(dma_addr);
392		*len = (*len - length) + PAGE_SIZE;
393		kfree(prps);
394		return NULL;
395	}
396	prps->list[prp_page++] = prp_list;
397	prps->first_dma = prp_dma;
398	cmd->prp2 = cpu_to_le64(prp_dma);
399	i = 0;
400	for (;;) {
401		if (i == PAGE_SIZE / 8) {
402			__le64 *old_prp_list = prp_list;
403			prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
404			if (!prp_list) {
405				*len = (*len - length);
406				return prps;
407			}
408			prps->list[prp_page++] = prp_list;
409			prp_list[0] = old_prp_list[i - 1];
410			old_prp_list[i - 1] = cpu_to_le64(prp_dma);
411			i = 1;
412		}
413		prp_list[i++] = cpu_to_le64(dma_addr);
414		dma_len -= PAGE_SIZE;
415		dma_addr += PAGE_SIZE;
416		length -= PAGE_SIZE;
417		if (length <= 0)
418			break;
419		if (dma_len > 0)
420			continue;
421		BUG_ON(dma_len < 0);
422		sg = sg_next(sg);
423		dma_addr = sg_dma_address(sg);
424		dma_len = sg_dma_len(sg);
425	}
426
427	return prps;
428}
429
430/* NVMe scatterlists require no holes in the virtual address */
431#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)	((vec2)->bv_offset || \
432			(((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
433
434static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
435		struct bio *bio, enum dma_data_direction dma_dir, int psegs)
436{
437	struct bio_vec *bvec, *bvprv = NULL;
438	struct scatterlist *sg = NULL;
439	int i, old_idx, length = 0, nsegs = 0;
440
441	sg_init_table(nbio->sg, psegs);
442	old_idx = bio->bi_idx;
443	bio_for_each_segment(bvec, bio, i) {
444		if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
445			sg->length += bvec->bv_len;
446		} else {
447			if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
448				break;
449			sg = sg ? sg + 1 : nbio->sg;
450			sg_set_page(sg, bvec->bv_page, bvec->bv_len,
451							bvec->bv_offset);
452			nsegs++;
453		}
454		length += bvec->bv_len;
455		bvprv = bvec;
456	}
457	bio->bi_idx = i;
458	nbio->nents = nsegs;
459	sg_mark_end(sg);
460	if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
461		bio->bi_idx = old_idx;
462		return -ENOMEM;
463	}
464	return length;
465}
466
467static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
468								int cmdid)
469{
470	struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
471
472	memset(cmnd, 0, sizeof(*cmnd));
473	cmnd->common.opcode = nvme_cmd_flush;
474	cmnd->common.command_id = cmdid;
475	cmnd->common.nsid = cpu_to_le32(ns->ns_id);
476
477	if (++nvmeq->sq_tail == nvmeq->q_depth)
478		nvmeq->sq_tail = 0;
479	writel(nvmeq->sq_tail, nvmeq->q_db);
480
481	return 0;
482}
483
484static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
485{
486	int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
487						sync_completion_id, IO_TIMEOUT);
488	if (unlikely(cmdid < 0))
489		return cmdid;
490
491	return nvme_submit_flush(nvmeq, ns, cmdid);
492}
493
494/*
495 * Called with local interrupts disabled and the q_lock held.  May not sleep.
496 */
497static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
498								struct bio *bio)
499{
500	struct nvme_command *cmnd;
501	struct nvme_bio *nbio;
502	enum dma_data_direction dma_dir;
503	int cmdid, length, result = -ENOMEM;
504	u16 control;
505	u32 dsmgmt;
506	int psegs = bio_phys_segments(ns->queue, bio);
507
508	if ((bio->bi_rw & REQ_FLUSH) && psegs) {
509		result = nvme_submit_flush_data(nvmeq, ns);
510		if (result)
511			return result;
512	}
513
514	nbio = alloc_nbio(psegs, GFP_ATOMIC);
515	if (!nbio)
516		goto nomem;
517	nbio->bio = bio;
518
519	result = -EBUSY;
520	cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
521	if (unlikely(cmdid < 0))
522		goto free_nbio;
523
524	if ((bio->bi_rw & REQ_FLUSH) && !psegs)
525		return nvme_submit_flush(nvmeq, ns, cmdid);
526
527	control = 0;
528	if (bio->bi_rw & REQ_FUA)
529		control |= NVME_RW_FUA;
530	if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
531		control |= NVME_RW_LR;
532
533	dsmgmt = 0;
534	if (bio->bi_rw & REQ_RAHEAD)
535		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
536
537	cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
538
539	memset(cmnd, 0, sizeof(*cmnd));
540	if (bio_data_dir(bio)) {
541		cmnd->rw.opcode = nvme_cmd_write;
542		dma_dir = DMA_TO_DEVICE;
543	} else {
544		cmnd->rw.opcode = nvme_cmd_read;
545		dma_dir = DMA_FROM_DEVICE;
546	}
547
548	result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
549	if (result < 0)
550		goto free_nbio;
551	length = result;
552
553	cmnd->rw.command_id = cmdid;
554	cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
555	nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
556							&length, GFP_ATOMIC);
557	cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
558	cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
559	cmnd->rw.control = cpu_to_le16(control);
560	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
561
562	bio->bi_sector += length >> 9;
563
564	if (++nvmeq->sq_tail == nvmeq->q_depth)
565		nvmeq->sq_tail = 0;
566	writel(nvmeq->sq_tail, nvmeq->q_db);
567
568	return 0;
569
570 free_nbio:
571	free_nbio(nvmeq, nbio);
572 nomem:
573	return result;
574}
575
576/*
577 * NB: return value of non-zero would mean that we were a stacking driver.
578 * make_request must always succeed.
579 */
580static int nvme_make_request(struct request_queue *q, struct bio *bio)
581{
582	struct nvme_ns *ns = q->queuedata;
583	struct nvme_queue *nvmeq = get_nvmeq(ns);
584	int result = -EBUSY;
585
586	spin_lock_irq(&nvmeq->q_lock);
587	if (bio_list_empty(&nvmeq->sq_cong))
588		result = nvme_submit_bio_queue(nvmeq, ns, bio);
589	if (unlikely(result)) {
590		if (bio_list_empty(&nvmeq->sq_cong))
591			add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
592		bio_list_add(&nvmeq->sq_cong, bio);
593	}
594
595	spin_unlock_irq(&nvmeq->q_lock);
596	put_nvmeq(nvmeq);
597
598	return 0;
599}
600
601struct sync_cmd_info {
602	struct task_struct *task;
603	u32 result;
604	int status;
605};
606
607static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
608						struct nvme_completion *cqe)
609{
610	struct sync_cmd_info *cmdinfo = ctx;
611	if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
612		return;
613	if ((unsigned long)cmdinfo == CMD_CTX_FLUSH)
614		return;
615	if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
616		dev_warn(nvmeq->q_dmadev,
617				"completed id %d twice on queue %d\n",
618				cqe->command_id, le16_to_cpup(&cqe->sq_id));
619		return;
620	}
621	if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
622		dev_warn(nvmeq->q_dmadev,
623				"invalid id %d completed on queue %d\n",
624				cqe->command_id, le16_to_cpup(&cqe->sq_id));
625		return;
626	}
627	cmdinfo->result = le32_to_cpup(&cqe->result);
628	cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
629	wake_up_process(cmdinfo->task);
630}
631
632typedef void (*completion_fn)(struct nvme_queue *, void *,
633						struct nvme_completion *);
634
635static const completion_fn nvme_completions[4] = {
636	[sync_completion_id] = sync_completion,
637	[bio_completion_id]  = bio_completion,
638};
639
640static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
641{
642	u16 head, phase;
643
644	head = nvmeq->cq_head;
645	phase = nvmeq->cq_phase;
646
647	for (;;) {
648		unsigned long data;
649		void *ptr;
650		unsigned char handler;
651		struct nvme_completion cqe = nvmeq->cqes[head];
652		if ((le16_to_cpu(cqe.status) & 1) != phase)
653			break;
654		nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
655		if (++head == nvmeq->q_depth) {
656			head = 0;
657			phase = !phase;
658		}
659
660		data = free_cmdid(nvmeq, cqe.command_id);
661		handler = data & 3;
662		ptr = (void *)(data & ~3UL);
663		nvme_completions[handler](nvmeq, ptr, &cqe);
664	}
665
666	/* If the controller ignores the cq head doorbell and continuously
667	 * writes to the queue, it is theoretically possible to wrap around
668	 * the queue twice and mistakenly return IRQ_NONE.  Linux only
669	 * requires that 0.1% of your interrupts are handled, so this isn't
670	 * a big problem.
671	 */
672	if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
673		return IRQ_NONE;
674
675	writel(head, nvmeq->q_db + 1);
676	nvmeq->cq_head = head;
677	nvmeq->cq_phase = phase;
678
679	return IRQ_HANDLED;
680}
681
682static irqreturn_t nvme_irq(int irq, void *data)
683{
684	irqreturn_t result;
685	struct nvme_queue *nvmeq = data;
686	spin_lock(&nvmeq->q_lock);
687	result = nvme_process_cq(nvmeq);
688	spin_unlock(&nvmeq->q_lock);
689	return result;
690}
691
692static irqreturn_t nvme_irq_check(int irq, void *data)
693{
694	struct nvme_queue *nvmeq = data;
695	struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
696	if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
697		return IRQ_NONE;
698	return IRQ_WAKE_THREAD;
699}
700
701static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
702{
703	spin_lock_irq(&nvmeq->q_lock);
704	cancel_cmdid(nvmeq, cmdid);
705	spin_unlock_irq(&nvmeq->q_lock);
706}
707
708/*
709 * Returns 0 on success.  If the result is negative, it's a Linux error code;
710 * if the result is positive, it's an NVM Express status code
711 */
712static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
713			struct nvme_command *cmd, u32 *result, unsigned timeout)
714{
715	int cmdid;
716	struct sync_cmd_info cmdinfo;
717
718	cmdinfo.task = current;
719	cmdinfo.status = -EINTR;
720
721	cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
722								timeout);
723	if (cmdid < 0)
724		return cmdid;
725	cmd->common.command_id = cmdid;
726
727	set_current_state(TASK_KILLABLE);
728	nvme_submit_cmd(nvmeq, cmd);
729	schedule();
730
731	if (cmdinfo.status == -EINTR) {
732		nvme_abort_command(nvmeq, cmdid);
733		return -EINTR;
734	}
735
736	if (result)
737		*result = cmdinfo.result;
738
739	return cmdinfo.status;
740}
741
742static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
743								u32 *result)
744{
745	return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
746}
747
748static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
749{
750	int status;
751	struct nvme_command c;
752
753	memset(&c, 0, sizeof(c));
754	c.delete_queue.opcode = opcode;
755	c.delete_queue.qid = cpu_to_le16(id);
756
757	status = nvme_submit_admin_cmd(dev, &c, NULL);
758	if (status)
759		return -EIO;
760	return 0;
761}
762
763static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
764						struct nvme_queue *nvmeq)
765{
766	int status;
767	struct nvme_command c;
768	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
769
770	memset(&c, 0, sizeof(c));
771	c.create_cq.opcode = nvme_admin_create_cq;
772	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
773	c.create_cq.cqid = cpu_to_le16(qid);
774	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
775	c.create_cq.cq_flags = cpu_to_le16(flags);
776	c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
777
778	status = nvme_submit_admin_cmd(dev, &c, NULL);
779	if (status)
780		return -EIO;
781	return 0;
782}
783
784static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
785						struct nvme_queue *nvmeq)
786{
787	int status;
788	struct nvme_command c;
789	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
790
791	memset(&c, 0, sizeof(c));
792	c.create_sq.opcode = nvme_admin_create_sq;
793	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
794	c.create_sq.sqid = cpu_to_le16(qid);
795	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
796	c.create_sq.sq_flags = cpu_to_le16(flags);
797	c.create_sq.cqid = cpu_to_le16(qid);
798
799	status = nvme_submit_admin_cmd(dev, &c, NULL);
800	if (status)
801		return -EIO;
802	return 0;
803}
804
805static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
806{
807	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
808}
809
810static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
811{
812	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
813}
814
815static void nvme_free_queue(struct nvme_dev *dev, int qid)
816{
817	struct nvme_queue *nvmeq = dev->queues[qid];
818	int vector = dev->entry[nvmeq->cq_vector].vector;
819
820	irq_set_affinity_hint(vector, NULL);
821	free_irq(vector, nvmeq);
822
823	/* Don't tell the adapter to delete the admin queue */
824	if (qid) {
825		adapter_delete_sq(dev, qid);
826		adapter_delete_cq(dev, qid);
827	}
828
829	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
830				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
831	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
832					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
833	kfree(nvmeq);
834}
835
836static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
837							int depth, int vector)
838{
839	struct device *dmadev = &dev->pci_dev->dev;
840	unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
841	struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
842	if (!nvmeq)
843		return NULL;
844
845	nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
846					&nvmeq->cq_dma_addr, GFP_KERNEL);
847	if (!nvmeq->cqes)
848		goto free_nvmeq;
849	memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
850
851	nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
852					&nvmeq->sq_dma_addr, GFP_KERNEL);
853	if (!nvmeq->sq_cmds)
854		goto free_cqdma;
855
856	nvmeq->q_dmadev = dmadev;
857	nvmeq->dev = dev;
858	spin_lock_init(&nvmeq->q_lock);
859	nvmeq->cq_head = 0;
860	nvmeq->cq_phase = 1;
861	init_waitqueue_head(&nvmeq->sq_full);
862	init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
863	bio_list_init(&nvmeq->sq_cong);
864	nvmeq->q_db = &dev->dbs[qid * 2];
865	nvmeq->q_depth = depth;
866	nvmeq->cq_vector = vector;
867
868	return nvmeq;
869
870 free_cqdma:
871	dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
872							nvmeq->cq_dma_addr);
873 free_nvmeq:
874	kfree(nvmeq);
875	return NULL;
876}
877
878static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
879							const char *name)
880{
881	if (use_threaded_interrupts)
882		return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
883					nvme_irq_check, nvme_irq,
884					IRQF_DISABLED | IRQF_SHARED,
885					name, nvmeq);
886	return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
887				IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
888}
889
890static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
891					int qid, int cq_size, int vector)
892{
893	int result;
894	struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
895
896	if (!nvmeq)
897		return ERR_PTR(-ENOMEM);
898
899	result = adapter_alloc_cq(dev, qid, nvmeq);
900	if (result < 0)
901		goto free_nvmeq;
902
903	result = adapter_alloc_sq(dev, qid, nvmeq);
904	if (result < 0)
905		goto release_cq;
906
907	result = queue_request_irq(dev, nvmeq, "nvme");
908	if (result < 0)
909		goto release_sq;
910
911	return nvmeq;
912
913 release_sq:
914	adapter_delete_sq(dev, qid);
915 release_cq:
916	adapter_delete_cq(dev, qid);
917 free_nvmeq:
918	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
919				(void *)nvmeq->cqes, nvmeq->cq_dma_addr);
920	dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
921					nvmeq->sq_cmds, nvmeq->sq_dma_addr);
922	kfree(nvmeq);
923	return ERR_PTR(result);
924}
925
926static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
927{
928	int result;
929	u32 aqa;
930	u64 cap;
931	unsigned long timeout;
932	struct nvme_queue *nvmeq;
933
934	dev->dbs = ((void __iomem *)dev->bar) + 4096;
935
936	nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
937	if (!nvmeq)
938		return -ENOMEM;
939
940	aqa = nvmeq->q_depth - 1;
941	aqa |= aqa << 16;
942
943	dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
944	dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
945	dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
946	dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
947
948	writel(0, &dev->bar->cc);
949	writel(aqa, &dev->bar->aqa);
950	writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
951	writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
952	writel(dev->ctrl_config, &dev->bar->cc);
953
954	cap = readq(&dev->bar->cap);
955	timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
956
957	while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
958		msleep(100);
959		if (fatal_signal_pending(current))
960			return -EINTR;
961		if (time_after(jiffies, timeout)) {
962			dev_err(&dev->pci_dev->dev,
963				"Device not ready; aborting initialisation\n");
964			return -ENODEV;
965		}
966	}
967
968	result = queue_request_irq(dev, nvmeq, "nvme admin");
969	dev->queues[0] = nvmeq;
970	return result;
971}
972
973static int nvme_map_user_pages(struct nvme_dev *dev, int write,
974				unsigned long addr, unsigned length,
975				struct scatterlist **sgp)
976{
977	int i, err, count, nents, offset;
978	struct scatterlist *sg;
979	struct page **pages;
980
981	if (addr & 3)
982		return -EINVAL;
983	if (!length)
984		return -EINVAL;
985
986	offset = offset_in_page(addr);
987	count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
988	pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
989
990	err = get_user_pages_fast(addr, count, 1, pages);
991	if (err < count) {
992		count = err;
993		err = -EFAULT;
994		goto put_pages;
995	}
996
997	sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
998	sg_init_table(sg, count);
999	for (i = 0; i < count; i++) {
1000		sg_set_page(&sg[i], pages[i],
1001				min_t(int, length, PAGE_SIZE - offset), offset);
1002		length -= (PAGE_SIZE - offset);
1003		offset = 0;
1004	}
1005
1006	err = -ENOMEM;
1007	nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1008				write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1009	if (!nents)
1010		goto put_pages;
1011
1012	kfree(pages);
1013	*sgp = sg;
1014	return nents;
1015
1016 put_pages:
1017	for (i = 0; i < count; i++)
1018		put_page(pages[i]);
1019	kfree(pages);
1020	return err;
1021}
1022
1023static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1024				unsigned long addr, int length,
1025				struct scatterlist *sg, int nents)
1026{
1027	int i, count;
1028
1029	count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
1030	dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
1031
1032	for (i = 0; i < count; i++)
1033		put_page(sg_page(&sg[i]));
1034}
1035
1036static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1037{
1038	struct nvme_dev *dev = ns->dev;
1039	struct nvme_queue *nvmeq;
1040	struct nvme_user_io io;
1041	struct nvme_command c;
1042	unsigned length;
1043	int nents, status;
1044	struct scatterlist *sg;
1045	struct nvme_prps *prps;
1046
1047	if (copy_from_user(&io, uio, sizeof(io)))
1048		return -EFAULT;
1049	length = (io.nblocks + 1) << ns->lba_shift;
1050
1051	switch (io.opcode) {
1052	case nvme_cmd_write:
1053	case nvme_cmd_read:
1054	case nvme_cmd_compare:
1055		nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1056								length, &sg);
1057		break;
1058	default:
1059		return -EINVAL;
1060	}
1061
1062	if (nents < 0)
1063		return nents;
1064
1065	memset(&c, 0, sizeof(c));
1066	c.rw.opcode = io.opcode;
1067	c.rw.flags = io.flags;
1068	c.rw.nsid = cpu_to_le32(ns->ns_id);
1069	c.rw.slba = cpu_to_le64(io.slba);
1070	c.rw.length = cpu_to_le16(io.nblocks);
1071	c.rw.control = cpu_to_le16(io.control);
1072	c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1073	c.rw.reftag = io.reftag;
1074	c.rw.apptag = io.apptag;
1075	c.rw.appmask = io.appmask;
1076	/* XXX: metadata */
1077	prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1078
1079	nvmeq = get_nvmeq(ns);
1080	/*
1081	 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1082	 * disabled.  We may be preempted at any point, and be rescheduled
1083	 * to a different CPU.  That will cause cacheline bouncing, but no
1084	 * additional races since q_lock already protects against other CPUs.
1085	 */
1086	put_nvmeq(nvmeq);
1087	if (length != (io.nblocks + 1) << ns->lba_shift)
1088		status = -ENOMEM;
1089	else
1090		status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
1091
1092	nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1093	nvme_free_prps(dev, prps);
1094	return status;
1095}
1096
1097static int nvme_user_admin_cmd(struct nvme_ns *ns,
1098					struct nvme_admin_cmd __user *ucmd)
1099{
1100	struct nvme_dev *dev = ns->dev;
1101	struct nvme_admin_cmd cmd;
1102	struct nvme_command c;
1103	int status, length, nents = 0;
1104	struct scatterlist *sg;
1105	struct nvme_prps *prps = NULL;
1106
1107	if (!capable(CAP_SYS_ADMIN))
1108		return -EACCES;
1109	if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1110		return -EFAULT;
1111
1112	memset(&c, 0, sizeof(c));
1113	c.common.opcode = cmd.opcode;
1114	c.common.flags = cmd.flags;
1115	c.common.nsid = cpu_to_le32(cmd.nsid);
1116	c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1117	c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1118	c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1119	c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1120	c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1121	c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1122	c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1123	c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1124
1125	length = cmd.data_len;
1126	if (cmd.data_len) {
1127		nents = nvme_map_user_pages(dev, 1, cmd.addr, length, &sg);
1128		if (nents < 0)
1129			return nents;
1130		prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1131	}
1132
1133	if (length != cmd.data_len)
1134		status = -ENOMEM;
1135	else
1136		status = nvme_submit_admin_cmd(dev, &c, NULL);
1137	if (cmd.data_len) {
1138		nvme_unmap_user_pages(dev, 0, cmd.addr, cmd.data_len, sg,
1139									nents);
1140		nvme_free_prps(dev, prps);
1141	}
1142	return status;
1143}
1144
1145static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1146							unsigned long arg)
1147{
1148	struct nvme_ns *ns = bdev->bd_disk->private_data;
1149
1150	switch (cmd) {
1151	case NVME_IOCTL_ID:
1152		return ns->ns_id;
1153	case NVME_IOCTL_ADMIN_CMD:
1154		return nvme_user_admin_cmd(ns, (void __user *)arg);
1155	case NVME_IOCTL_SUBMIT_IO:
1156		return nvme_submit_io(ns, (void __user *)arg);
1157	default:
1158		return -ENOTTY;
1159	}
1160}
1161
1162static const struct block_device_operations nvme_fops = {
1163	.owner		= THIS_MODULE,
1164	.ioctl		= nvme_ioctl,
1165	.compat_ioctl	= nvme_ioctl,
1166};
1167
1168static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1169{
1170	int depth = nvmeq->q_depth - 1;
1171	struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1172	unsigned long now = jiffies;
1173	int cmdid;
1174
1175	for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1176		unsigned long data;
1177		void *ptr;
1178		unsigned char handler;
1179		static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1180
1181		if (!time_after(now, info[cmdid].timeout))
1182			continue;
1183		dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
1184		data = cancel_cmdid(nvmeq, cmdid);
1185		handler = data & 3;
1186		ptr = (void *)(data & ~3UL);
1187		nvme_completions[handler](nvmeq, ptr, &cqe);
1188	}
1189}
1190
1191static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1192{
1193	while (bio_list_peek(&nvmeq->sq_cong)) {
1194		struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1195		struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1196		if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1197			bio_list_add_head(&nvmeq->sq_cong, bio);
1198			break;
1199		}
1200		if (bio_list_empty(&nvmeq->sq_cong))
1201			remove_wait_queue(&nvmeq->sq_full,
1202							&nvmeq->sq_cong_wait);
1203	}
1204}
1205
1206static int nvme_kthread(void *data)
1207{
1208	struct nvme_dev *dev;
1209
1210	while (!kthread_should_stop()) {
1211		__set_current_state(TASK_RUNNING);
1212		spin_lock(&dev_list_lock);
1213		list_for_each_entry(dev, &dev_list, node) {
1214			int i;
1215			for (i = 0; i < dev->queue_count; i++) {
1216				struct nvme_queue *nvmeq = dev->queues[i];
1217				if (!nvmeq)
1218					continue;
1219				spin_lock_irq(&nvmeq->q_lock);
1220				if (nvme_process_cq(nvmeq))
1221					printk("process_cq did something\n");
1222				nvme_timeout_ios(nvmeq);
1223				nvme_resubmit_bios(nvmeq);
1224				spin_unlock_irq(&nvmeq->q_lock);
1225			}
1226		}
1227		spin_unlock(&dev_list_lock);
1228		set_current_state(TASK_INTERRUPTIBLE);
1229		schedule_timeout(HZ);
1230	}
1231	return 0;
1232}
1233
1234static DEFINE_IDA(nvme_index_ida);
1235
1236static int nvme_get_ns_idx(void)
1237{
1238	int index, error;
1239
1240	do {
1241		if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1242			return -1;
1243
1244		spin_lock(&dev_list_lock);
1245		error = ida_get_new(&nvme_index_ida, &index);
1246		spin_unlock(&dev_list_lock);
1247	} while (error == -EAGAIN);
1248
1249	if (error)
1250		index = -1;
1251	return index;
1252}
1253
1254static void nvme_put_ns_idx(int index)
1255{
1256	spin_lock(&dev_list_lock);
1257	ida_remove(&nvme_index_ida, index);
1258	spin_unlock(&dev_list_lock);
1259}
1260
1261static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1262			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1263{
1264	struct nvme_ns *ns;
1265	struct gendisk *disk;
1266	int lbaf;
1267
1268	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1269		return NULL;
1270
1271	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1272	if (!ns)
1273		return NULL;
1274	ns->queue = blk_alloc_queue(GFP_KERNEL);
1275	if (!ns->queue)
1276		goto out_free_ns;
1277	ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1278				QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1279	blk_queue_make_request(ns->queue, nvme_make_request);
1280	ns->dev = dev;
1281	ns->queue->queuedata = ns;
1282
1283	disk = alloc_disk(NVME_MINORS);
1284	if (!disk)
1285		goto out_free_queue;
1286	ns->ns_id = nsid;
1287	ns->disk = disk;
1288	lbaf = id->flbas & 0xf;
1289	ns->lba_shift = id->lbaf[lbaf].ds;
1290
1291	disk->major = nvme_major;
1292	disk->minors = NVME_MINORS;
1293	disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1294	disk->fops = &nvme_fops;
1295	disk->private_data = ns;
1296	disk->queue = ns->queue;
1297	disk->driverfs_dev = &dev->pci_dev->dev;
1298	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1299	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1300
1301	return ns;
1302
1303 out_free_queue:
1304	blk_cleanup_queue(ns->queue);
1305 out_free_ns:
1306	kfree(ns);
1307	return NULL;
1308}
1309
1310static void nvme_ns_free(struct nvme_ns *ns)
1311{
1312	int index = ns->disk->first_minor / NVME_MINORS;
1313	put_disk(ns->disk);
1314	nvme_put_ns_idx(index);
1315	blk_cleanup_queue(ns->queue);
1316	kfree(ns);
1317}
1318
1319static int set_queue_count(struct nvme_dev *dev, int count)
1320{
1321	int status;
1322	u32 result;
1323	struct nvme_command c;
1324	u32 q_count = (count - 1) | ((count - 1) << 16);
1325
1326	memset(&c, 0, sizeof(c));
1327	c.features.opcode = nvme_admin_get_features;
1328	c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1329	c.features.dword11 = cpu_to_le32(q_count);
1330
1331	status = nvme_submit_admin_cmd(dev, &c, &result);
1332	if (status)
1333		return -EIO;
1334	return min(result & 0xffff, result >> 16) + 1;
1335}
1336
1337static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1338{
1339	int result, cpu, i, nr_io_queues;
1340
1341	nr_io_queues = num_online_cpus();
1342	result = set_queue_count(dev, nr_io_queues);
1343	if (result < 0)
1344		return result;
1345	if (result < nr_io_queues)
1346		nr_io_queues = result;
1347
1348	/* Deregister the admin queue's interrupt */
1349	free_irq(dev->entry[0].vector, dev->queues[0]);
1350
1351	for (i = 0; i < nr_io_queues; i++)
1352		dev->entry[i].entry = i;
1353	for (;;) {
1354		result = pci_enable_msix(dev->pci_dev, dev->entry,
1355								nr_io_queues);
1356		if (result == 0) {
1357			break;
1358		} else if (result > 0) {
1359			nr_io_queues = result;
1360			continue;
1361		} else {
1362			nr_io_queues = 1;
1363			break;
1364		}
1365	}
1366
1367	result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1368	/* XXX: handle failure here */
1369
1370	cpu = cpumask_first(cpu_online_mask);
1371	for (i = 0; i < nr_io_queues; i++) {
1372		irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1373		cpu = cpumask_next(cpu, cpu_online_mask);
1374	}
1375
1376	for (i = 0; i < nr_io_queues; i++) {
1377		dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1378							NVME_Q_DEPTH, i);
1379		if (IS_ERR(dev->queues[i + 1]))
1380			return PTR_ERR(dev->queues[i + 1]);
1381		dev->queue_count++;
1382	}
1383
1384	for (; i < num_possible_cpus(); i++) {
1385		int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1386		dev->queues[i + 1] = dev->queues[target + 1];
1387	}
1388
1389	return 0;
1390}
1391
1392static void nvme_free_queues(struct nvme_dev *dev)
1393{
1394	int i;
1395
1396	for (i = dev->queue_count - 1; i >= 0; i--)
1397		nvme_free_queue(dev, i);
1398}
1399
1400static int __devinit nvme_dev_add(struct nvme_dev *dev)
1401{
1402	int res, nn, i;
1403	struct nvme_ns *ns, *next;
1404	struct nvme_id_ctrl *ctrl;
1405	void *id;
1406	dma_addr_t dma_addr;
1407	struct nvme_command cid, crt;
1408
1409	res = nvme_setup_io_queues(dev);
1410	if (res)
1411		return res;
1412
1413	/* XXX: Switch to a SG list once prp2 works */
1414	id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1415								GFP_KERNEL);
1416
1417	memset(&cid, 0, sizeof(cid));
1418	cid.identify.opcode = nvme_admin_identify;
1419	cid.identify.nsid = 0;
1420	cid.identify.prp1 = cpu_to_le64(dma_addr);
1421	cid.identify.cns = cpu_to_le32(1);
1422
1423	res = nvme_submit_admin_cmd(dev, &cid, NULL);
1424	if (res) {
1425		res = -EIO;
1426		goto out_free;
1427	}
1428
1429	ctrl = id;
1430	nn = le32_to_cpup(&ctrl->nn);
1431	memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1432	memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1433	memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1434
1435	cid.identify.cns = 0;
1436	memset(&crt, 0, sizeof(crt));
1437	crt.features.opcode = nvme_admin_get_features;
1438	crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1439	crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1440
1441	for (i = 0; i <= nn; i++) {
1442		cid.identify.nsid = cpu_to_le32(i);
1443		res = nvme_submit_admin_cmd(dev, &cid, NULL);
1444		if (res)
1445			continue;
1446
1447		if (((struct nvme_id_ns *)id)->ncap == 0)
1448			continue;
1449
1450		crt.features.nsid = cpu_to_le32(i);
1451		res = nvme_submit_admin_cmd(dev, &crt, NULL);
1452		if (res)
1453			continue;
1454
1455		ns = nvme_alloc_ns(dev, i, id, id + 4096);
1456		if (ns)
1457			list_add_tail(&ns->list, &dev->namespaces);
1458	}
1459	list_for_each_entry(ns, &dev->namespaces, list)
1460		add_disk(ns->disk);
1461
1462	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1463	return 0;
1464
1465 out_free:
1466	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1467		list_del(&ns->list);
1468		nvme_ns_free(ns);
1469	}
1470
1471	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1472	return res;
1473}
1474
1475static int nvme_dev_remove(struct nvme_dev *dev)
1476{
1477	struct nvme_ns *ns, *next;
1478
1479	spin_lock(&dev_list_lock);
1480	list_del(&dev->node);
1481	spin_unlock(&dev_list_lock);
1482
1483	/* TODO: wait all I/O finished or cancel them */
1484
1485	list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1486		list_del(&ns->list);
1487		del_gendisk(ns->disk);
1488		nvme_ns_free(ns);
1489	}
1490
1491	nvme_free_queues(dev);
1492
1493	return 0;
1494}
1495
1496static int nvme_setup_prp_pools(struct nvme_dev *dev)
1497{
1498	struct device *dmadev = &dev->pci_dev->dev;
1499	dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1500						PAGE_SIZE, PAGE_SIZE, 0);
1501	if (!dev->prp_page_pool)
1502		return -ENOMEM;
1503
1504	/* Optimisation for I/Os between 4k and 128k */
1505	dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1506						256, 256, 0);
1507	if (!dev->prp_small_pool) {
1508		dma_pool_destroy(dev->prp_page_pool);
1509		return -ENOMEM;
1510	}
1511	return 0;
1512}
1513
1514static void nvme_release_prp_pools(struct nvme_dev *dev)
1515{
1516	dma_pool_destroy(dev->prp_page_pool);
1517	dma_pool_destroy(dev->prp_small_pool);
1518}
1519
1520/* XXX: Use an ida or something to let remove / add work correctly */
1521static void nvme_set_instance(struct nvme_dev *dev)
1522{
1523	static int instance;
1524	dev->instance = instance++;
1525}
1526
1527static void nvme_release_instance(struct nvme_dev *dev)
1528{
1529}
1530
1531static int __devinit nvme_probe(struct pci_dev *pdev,
1532						const struct pci_device_id *id)
1533{
1534	int bars, result = -ENOMEM;
1535	struct nvme_dev *dev;
1536
1537	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1538	if (!dev)
1539		return -ENOMEM;
1540	dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1541								GFP_KERNEL);
1542	if (!dev->entry)
1543		goto free;
1544	dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1545								GFP_KERNEL);
1546	if (!dev->queues)
1547		goto free;
1548
1549	if (pci_enable_device_mem(pdev))
1550		goto free;
1551	pci_set_master(pdev);
1552	bars = pci_select_bars(pdev, IORESOURCE_MEM);
1553	if (pci_request_selected_regions(pdev, bars, "nvme"))
1554		goto disable;
1555
1556	INIT_LIST_HEAD(&dev->namespaces);
1557	dev->pci_dev = pdev;
1558	pci_set_drvdata(pdev, dev);
1559	dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1560	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1561	nvme_set_instance(dev);
1562	dev->entry[0].vector = pdev->irq;
1563
1564	result = nvme_setup_prp_pools(dev);
1565	if (result)
1566		goto disable_msix;
1567
1568	dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1569	if (!dev->bar) {
1570		result = -ENOMEM;
1571		goto disable_msix;
1572	}
1573
1574	result = nvme_configure_admin_queue(dev);
1575	if (result)
1576		goto unmap;
1577	dev->queue_count++;
1578
1579	spin_lock(&dev_list_lock);
1580	list_add(&dev->node, &dev_list);
1581	spin_unlock(&dev_list_lock);
1582
1583	result = nvme_dev_add(dev);
1584	if (result)
1585		goto delete;
1586
1587	return 0;
1588
1589 delete:
1590	spin_lock(&dev_list_lock);
1591	list_del(&dev->node);
1592	spin_unlock(&dev_list_lock);
1593
1594	nvme_free_queues(dev);
1595 unmap:
1596	iounmap(dev->bar);
1597 disable_msix:
1598	pci_disable_msix(pdev);
1599	nvme_release_instance(dev);
1600	nvme_release_prp_pools(dev);
1601 disable:
1602	pci_disable_device(pdev);
1603	pci_release_regions(pdev);
1604 free:
1605	kfree(dev->queues);
1606	kfree(dev->entry);
1607	kfree(dev);
1608	return result;
1609}
1610
1611static void __devexit nvme_remove(struct pci_dev *pdev)
1612{
1613	struct nvme_dev *dev = pci_get_drvdata(pdev);
1614	nvme_dev_remove(dev);
1615	pci_disable_msix(pdev);
1616	iounmap(dev->bar);
1617	nvme_release_instance(dev);
1618	nvme_release_prp_pools(dev);
1619	pci_disable_device(pdev);
1620	pci_release_regions(pdev);
1621	kfree(dev->queues);
1622	kfree(dev->entry);
1623	kfree(dev);
1624}
1625
1626/* These functions are yet to be implemented */
1627#define nvme_error_detected NULL
1628#define nvme_dump_registers NULL
1629#define nvme_link_reset NULL
1630#define nvme_slot_reset NULL
1631#define nvme_error_resume NULL
1632#define nvme_suspend NULL
1633#define nvme_resume NULL
1634
1635static struct pci_error_handlers nvme_err_handler = {
1636	.error_detected	= nvme_error_detected,
1637	.mmio_enabled	= nvme_dump_registers,
1638	.link_reset	= nvme_link_reset,
1639	.slot_reset	= nvme_slot_reset,
1640	.resume		= nvme_error_resume,
1641};
1642
1643/* Move to pci_ids.h later */
1644#define PCI_CLASS_STORAGE_EXPRESS	0x010802
1645
1646static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1647	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1648	{ 0, }
1649};
1650MODULE_DEVICE_TABLE(pci, nvme_id_table);
1651
1652static struct pci_driver nvme_driver = {
1653	.name		= "nvme",
1654	.id_table	= nvme_id_table,
1655	.probe		= nvme_probe,
1656	.remove		= __devexit_p(nvme_remove),
1657	.suspend	= nvme_suspend,
1658	.resume		= nvme_resume,
1659	.err_handler	= &nvme_err_handler,
1660};
1661
1662static int __init nvme_init(void)
1663{
1664	int result = -EBUSY;
1665
1666	nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1667	if (IS_ERR(nvme_thread))
1668		return PTR_ERR(nvme_thread);
1669
1670	nvme_major = register_blkdev(nvme_major, "nvme");
1671	if (nvme_major <= 0)
1672		goto kill_kthread;
1673
1674	result = pci_register_driver(&nvme_driver);
1675	if (result)
1676		goto unregister_blkdev;
1677	return 0;
1678
1679 unregister_blkdev:
1680	unregister_blkdev(nvme_major, "nvme");
1681 kill_kthread:
1682	kthread_stop(nvme_thread);
1683	return result;
1684}
1685
1686static void __exit nvme_exit(void)
1687{
1688	pci_unregister_driver(&nvme_driver);
1689	unregister_blkdev(nvme_major, "nvme");
1690	kthread_stop(nvme_thread);
1691}
1692
1693MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1694MODULE_LICENSE("GPL");
1695MODULE_VERSION("0.6");
1696module_init(nvme_init);
1697module_exit(nvme_exit);
1698