rtc.c revision 048cd5888f81713af4597bde5815f32d58fdf5b0
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10	Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *	1.11	Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 *	1.12b	David John: Remove calls to the BKL.
52 */
53
54#define RTC_VERSION		"1.12b"
55
56/*
57 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 *	design of the RTC, we don't want two different things trying to
60 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 *	this driver.)
62 */
63
64#include <linux/interrupt.h>
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/types.h>
68#include <linux/miscdevice.h>
69#include <linux/ioport.h>
70#include <linux/fcntl.h>
71#include <linux/mc146818rtc.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/proc_fs.h>
75#include <linux/seq_file.h>
76#include <linux/spinlock.h>
77#include <linux/sysctl.h>
78#include <linux/wait.h>
79#include <linux/bcd.h>
80#include <linux/delay.h>
81#include <linux/uaccess.h>
82
83#include <asm/current.h>
84#include <asm/system.h>
85
86#ifdef CONFIG_X86
87#include <asm/hpet.h>
88#endif
89
90#ifdef CONFIG_SPARC32
91#include <linux/of.h>
92#include <linux/of_device.h>
93#include <asm/io.h>
94
95static unsigned long rtc_port;
96static int rtc_irq;
97#endif
98
99#ifdef	CONFIG_HPET_EMULATE_RTC
100#undef	RTC_IRQ
101#endif
102
103#ifdef RTC_IRQ
104static int rtc_has_irq = 1;
105#endif
106
107#ifndef CONFIG_HPET_EMULATE_RTC
108#define is_hpet_enabled()			0
109#define hpet_set_alarm_time(hrs, min, sec)	0
110#define hpet_set_periodic_freq(arg)		0
111#define hpet_mask_rtc_irq_bit(arg)		0
112#define hpet_set_rtc_irq_bit(arg)		0
113#define hpet_rtc_timer_init()			do { } while (0)
114#define hpet_rtc_dropped_irq()			0
115#define hpet_register_irq_handler(h)		({ 0; })
116#define hpet_unregister_irq_handler(h)		({ 0; })
117#ifdef RTC_IRQ
118static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
119{
120	return 0;
121}
122#endif
123#endif
124
125/*
126 *	We sponge a minor off of the misc major. No need slurping
127 *	up another valuable major dev number for this. If you add
128 *	an ioctl, make sure you don't conflict with SPARC's RTC
129 *	ioctls.
130 */
131
132static struct fasync_struct *rtc_async_queue;
133
134static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
135
136#ifdef RTC_IRQ
137static void rtc_dropped_irq(unsigned long data);
138
139static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
140#endif
141
142static ssize_t rtc_read(struct file *file, char __user *buf,
143			size_t count, loff_t *ppos);
144
145static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
147
148#ifdef RTC_IRQ
149static unsigned int rtc_poll(struct file *file, poll_table *wait);
150#endif
151
152static void get_rtc_alm_time(struct rtc_time *alm_tm);
153#ifdef RTC_IRQ
154static void set_rtc_irq_bit_locked(unsigned char bit);
155static void mask_rtc_irq_bit_locked(unsigned char bit);
156
157static inline void set_rtc_irq_bit(unsigned char bit)
158{
159	spin_lock_irq(&rtc_lock);
160	set_rtc_irq_bit_locked(bit);
161	spin_unlock_irq(&rtc_lock);
162}
163
164static void mask_rtc_irq_bit(unsigned char bit)
165{
166	spin_lock_irq(&rtc_lock);
167	mask_rtc_irq_bit_locked(bit);
168	spin_unlock_irq(&rtc_lock);
169}
170#endif
171
172#ifdef CONFIG_PROC_FS
173static int rtc_proc_open(struct inode *inode, struct file *file);
174#endif
175
176/*
177 *	Bits in rtc_status. (6 bits of room for future expansion)
178 */
179
180#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
181#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
182
183/*
184 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
185 * protected by the spin lock rtc_lock. However, ioctl can still disable the
186 * timer in rtc_status and then with del_timer after the interrupt has read
187 * rtc_status but before mod_timer is called, which would then reenable the
188 * timer (but you would need to have an awful timing before you'd trip on it)
189 */
190static unsigned long rtc_status;	/* bitmapped status byte.	*/
191static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
192static unsigned long rtc_irq_data;	/* our output to the world	*/
193static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
194
195#ifdef RTC_IRQ
196/*
197 * rtc_task_lock nests inside rtc_lock.
198 */
199static DEFINE_SPINLOCK(rtc_task_lock);
200static rtc_task_t *rtc_callback;
201#endif
202
203/*
204 *	If this driver ever becomes modularised, it will be really nice
205 *	to make the epoch retain its value across module reload...
206 */
207
208static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
209
210static const unsigned char days_in_mo[] =
211{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
212
213/*
214 * Returns true if a clock update is in progress
215 */
216static inline unsigned char rtc_is_updating(void)
217{
218	unsigned long flags;
219	unsigned char uip;
220
221	spin_lock_irqsave(&rtc_lock, flags);
222	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
223	spin_unlock_irqrestore(&rtc_lock, flags);
224	return uip;
225}
226
227#ifdef RTC_IRQ
228/*
229 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
230 *	but there is possibility of conflicting with the set_rtc_mmss()
231 *	call (the rtc irq and the timer irq can easily run at the same
232 *	time in two different CPUs). So we need to serialize
233 *	accesses to the chip with the rtc_lock spinlock that each
234 *	architecture should implement in the timer code.
235 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
236 */
237
238static irqreturn_t rtc_interrupt(int irq, void *dev_id)
239{
240	/*
241	 *	Can be an alarm interrupt, update complete interrupt,
242	 *	or a periodic interrupt. We store the status in the
243	 *	low byte and the number of interrupts received since
244	 *	the last read in the remainder of rtc_irq_data.
245	 */
246
247	spin_lock(&rtc_lock);
248	rtc_irq_data += 0x100;
249	rtc_irq_data &= ~0xff;
250	if (is_hpet_enabled()) {
251		/*
252		 * In this case it is HPET RTC interrupt handler
253		 * calling us, with the interrupt information
254		 * passed as arg1, instead of irq.
255		 */
256		rtc_irq_data |= (unsigned long)irq & 0xF0;
257	} else {
258		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
259	}
260
261	if (rtc_status & RTC_TIMER_ON)
262		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
263
264	spin_unlock(&rtc_lock);
265
266	/* Now do the rest of the actions */
267	spin_lock(&rtc_task_lock);
268	if (rtc_callback)
269		rtc_callback->func(rtc_callback->private_data);
270	spin_unlock(&rtc_task_lock);
271	wake_up_interruptible(&rtc_wait);
272
273	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
274
275	return IRQ_HANDLED;
276}
277#endif
278
279/*
280 * sysctl-tuning infrastructure.
281 */
282static ctl_table rtc_table[] = {
283	{
284		.ctl_name	= CTL_UNNUMBERED,
285		.procname	= "max-user-freq",
286		.data		= &rtc_max_user_freq,
287		.maxlen		= sizeof(int),
288		.mode		= 0644,
289		.proc_handler	= &proc_dointvec,
290	},
291	{ .ctl_name = 0 }
292};
293
294static ctl_table rtc_root[] = {
295	{
296		.ctl_name	= CTL_UNNUMBERED,
297		.procname	= "rtc",
298		.mode		= 0555,
299		.child		= rtc_table,
300	},
301	{ .ctl_name = 0 }
302};
303
304static ctl_table dev_root[] = {
305	{
306		.ctl_name	= CTL_DEV,
307		.procname	= "dev",
308		.mode		= 0555,
309		.child		= rtc_root,
310	},
311	{ .ctl_name = 0 }
312};
313
314static struct ctl_table_header *sysctl_header;
315
316static int __init init_sysctl(void)
317{
318    sysctl_header = register_sysctl_table(dev_root);
319    return 0;
320}
321
322static void __exit cleanup_sysctl(void)
323{
324    unregister_sysctl_table(sysctl_header);
325}
326
327/*
328 *	Now all the various file operations that we export.
329 */
330
331static ssize_t rtc_read(struct file *file, char __user *buf,
332			size_t count, loff_t *ppos)
333{
334#ifndef RTC_IRQ
335	return -EIO;
336#else
337	DECLARE_WAITQUEUE(wait, current);
338	unsigned long data;
339	ssize_t retval;
340
341	if (rtc_has_irq == 0)
342		return -EIO;
343
344	/*
345	 * Historically this function used to assume that sizeof(unsigned long)
346	 * is the same in userspace and kernelspace.  This lead to problems
347	 * for configurations with multiple ABIs such a the MIPS o32 and 64
348	 * ABIs supported on the same kernel.  So now we support read of both
349	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350	 * userspace ABI.
351	 */
352	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
353		return -EINVAL;
354
355	add_wait_queue(&rtc_wait, &wait);
356
357	do {
358		/* First make it right. Then make it fast. Putting this whole
359		 * block within the parentheses of a while would be too
360		 * confusing. And no, xchg() is not the answer. */
361
362		__set_current_state(TASK_INTERRUPTIBLE);
363
364		spin_lock_irq(&rtc_lock);
365		data = rtc_irq_data;
366		rtc_irq_data = 0;
367		spin_unlock_irq(&rtc_lock);
368
369		if (data != 0)
370			break;
371
372		if (file->f_flags & O_NONBLOCK) {
373			retval = -EAGAIN;
374			goto out;
375		}
376		if (signal_pending(current)) {
377			retval = -ERESTARTSYS;
378			goto out;
379		}
380		schedule();
381	} while (1);
382
383	if (count == sizeof(unsigned int)) {
384		retval = put_user(data,
385				  (unsigned int __user *)buf) ?: sizeof(int);
386	} else {
387		retval = put_user(data,
388				  (unsigned long __user *)buf) ?: sizeof(long);
389	}
390	if (!retval)
391		retval = count;
392 out:
393	__set_current_state(TASK_RUNNING);
394	remove_wait_queue(&rtc_wait, &wait);
395
396	return retval;
397#endif
398}
399
400static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
401{
402	struct rtc_time wtime;
403
404#ifdef RTC_IRQ
405	if (rtc_has_irq == 0) {
406		switch (cmd) {
407		case RTC_AIE_OFF:
408		case RTC_AIE_ON:
409		case RTC_PIE_OFF:
410		case RTC_PIE_ON:
411		case RTC_UIE_OFF:
412		case RTC_UIE_ON:
413		case RTC_IRQP_READ:
414		case RTC_IRQP_SET:
415			return -EINVAL;
416		};
417	}
418#endif
419
420	switch (cmd) {
421#ifdef RTC_IRQ
422	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
423	{
424		mask_rtc_irq_bit(RTC_AIE);
425		return 0;
426	}
427	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
428	{
429		set_rtc_irq_bit(RTC_AIE);
430		return 0;
431	}
432	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
433	{
434		/* can be called from isr via rtc_control() */
435		unsigned long flags;
436
437		spin_lock_irqsave(&rtc_lock, flags);
438		mask_rtc_irq_bit_locked(RTC_PIE);
439		if (rtc_status & RTC_TIMER_ON) {
440			rtc_status &= ~RTC_TIMER_ON;
441			del_timer(&rtc_irq_timer);
442		}
443		spin_unlock_irqrestore(&rtc_lock, flags);
444
445		return 0;
446	}
447	case RTC_PIE_ON:	/* Allow periodic ints		*/
448	{
449		/* can be called from isr via rtc_control() */
450		unsigned long flags;
451
452		/*
453		 * We don't really want Joe User enabling more
454		 * than 64Hz of interrupts on a multi-user machine.
455		 */
456		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
457						(!capable(CAP_SYS_RESOURCE)))
458			return -EACCES;
459
460		spin_lock_irqsave(&rtc_lock, flags);
461		if (!(rtc_status & RTC_TIMER_ON)) {
462			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
463					2*HZ/100);
464			rtc_status |= RTC_TIMER_ON;
465		}
466		set_rtc_irq_bit_locked(RTC_PIE);
467		spin_unlock_irqrestore(&rtc_lock, flags);
468
469		return 0;
470	}
471	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
472	{
473		mask_rtc_irq_bit(RTC_UIE);
474		return 0;
475	}
476	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
477	{
478		set_rtc_irq_bit(RTC_UIE);
479		return 0;
480	}
481#endif
482	case RTC_ALM_READ:	/* Read the present alarm time */
483	{
484		/*
485		 * This returns a struct rtc_time. Reading >= 0xc0
486		 * means "don't care" or "match all". Only the tm_hour,
487		 * tm_min, and tm_sec values are filled in.
488		 */
489		memset(&wtime, 0, sizeof(struct rtc_time));
490		get_rtc_alm_time(&wtime);
491		break;
492	}
493	case RTC_ALM_SET:	/* Store a time into the alarm */
494	{
495		/*
496		 * This expects a struct rtc_time. Writing 0xff means
497		 * "don't care" or "match all". Only the tm_hour,
498		 * tm_min and tm_sec are used.
499		 */
500		unsigned char hrs, min, sec;
501		struct rtc_time alm_tm;
502
503		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
504				   sizeof(struct rtc_time)))
505			return -EFAULT;
506
507		hrs = alm_tm.tm_hour;
508		min = alm_tm.tm_min;
509		sec = alm_tm.tm_sec;
510
511		spin_lock_irq(&rtc_lock);
512		if (hpet_set_alarm_time(hrs, min, sec)) {
513			/*
514			 * Fallthru and set alarm time in CMOS too,
515			 * so that we will get proper value in RTC_ALM_READ
516			 */
517		}
518		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
519							RTC_ALWAYS_BCD) {
520			if (sec < 60)
521				sec = bin2bcd(sec);
522			else
523				sec = 0xff;
524
525			if (min < 60)
526				min = bin2bcd(min);
527			else
528				min = 0xff;
529
530			if (hrs < 24)
531				hrs = bin2bcd(hrs);
532			else
533				hrs = 0xff;
534		}
535		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
536		CMOS_WRITE(min, RTC_MINUTES_ALARM);
537		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
538		spin_unlock_irq(&rtc_lock);
539
540		return 0;
541	}
542	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
543	{
544		memset(&wtime, 0, sizeof(struct rtc_time));
545		rtc_get_rtc_time(&wtime);
546		break;
547	}
548	case RTC_SET_TIME:	/* Set the RTC */
549	{
550		struct rtc_time rtc_tm;
551		unsigned char mon, day, hrs, min, sec, leap_yr;
552		unsigned char save_control, save_freq_select;
553		unsigned int yrs;
554#ifdef CONFIG_MACH_DECSTATION
555		unsigned int real_yrs;
556#endif
557
558		if (!capable(CAP_SYS_TIME))
559			return -EACCES;
560
561		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
562				   sizeof(struct rtc_time)))
563			return -EFAULT;
564
565		yrs = rtc_tm.tm_year + 1900;
566		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
567		day = rtc_tm.tm_mday;
568		hrs = rtc_tm.tm_hour;
569		min = rtc_tm.tm_min;
570		sec = rtc_tm.tm_sec;
571
572		if (yrs < 1970)
573			return -EINVAL;
574
575		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
576
577		if ((mon > 12) || (day == 0))
578			return -EINVAL;
579
580		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
581			return -EINVAL;
582
583		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
584			return -EINVAL;
585
586		yrs -= epoch;
587		if (yrs > 255)		/* They are unsigned */
588			return -EINVAL;
589
590		spin_lock_irq(&rtc_lock);
591#ifdef CONFIG_MACH_DECSTATION
592		real_yrs = yrs;
593		yrs = 72;
594
595		/*
596		 * We want to keep the year set to 73 until March
597		 * for non-leap years, so that Feb, 29th is handled
598		 * correctly.
599		 */
600		if (!leap_yr && mon < 3) {
601			real_yrs--;
602			yrs = 73;
603		}
604#endif
605		/* These limits and adjustments are independent of
606		 * whether the chip is in binary mode or not.
607		 */
608		if (yrs > 169) {
609			spin_unlock_irq(&rtc_lock);
610			return -EINVAL;
611		}
612		if (yrs >= 100)
613			yrs -= 100;
614
615		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
616		    || RTC_ALWAYS_BCD) {
617			sec = bin2bcd(sec);
618			min = bin2bcd(min);
619			hrs = bin2bcd(hrs);
620			day = bin2bcd(day);
621			mon = bin2bcd(mon);
622			yrs = bin2bcd(yrs);
623		}
624
625		save_control = CMOS_READ(RTC_CONTROL);
626		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
627		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
628		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
629
630#ifdef CONFIG_MACH_DECSTATION
631		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
632#endif
633		CMOS_WRITE(yrs, RTC_YEAR);
634		CMOS_WRITE(mon, RTC_MONTH);
635		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
636		CMOS_WRITE(hrs, RTC_HOURS);
637		CMOS_WRITE(min, RTC_MINUTES);
638		CMOS_WRITE(sec, RTC_SECONDS);
639
640		CMOS_WRITE(save_control, RTC_CONTROL);
641		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
642
643		spin_unlock_irq(&rtc_lock);
644		return 0;
645	}
646#ifdef RTC_IRQ
647	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
648	{
649		return put_user(rtc_freq, (unsigned long __user *)arg);
650	}
651	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
652	{
653		int tmp = 0;
654		unsigned char val;
655		/* can be called from isr via rtc_control() */
656		unsigned long flags;
657
658		/*
659		 * The max we can do is 8192Hz.
660		 */
661		if ((arg < 2) || (arg > 8192))
662			return -EINVAL;
663		/*
664		 * We don't really want Joe User generating more
665		 * than 64Hz of interrupts on a multi-user machine.
666		 */
667		if (!kernel && (arg > rtc_max_user_freq) &&
668					!capable(CAP_SYS_RESOURCE))
669			return -EACCES;
670
671		while (arg > (1<<tmp))
672			tmp++;
673
674		/*
675		 * Check that the input was really a power of 2.
676		 */
677		if (arg != (1<<tmp))
678			return -EINVAL;
679
680		rtc_freq = arg;
681
682		spin_lock_irqsave(&rtc_lock, flags);
683		if (hpet_set_periodic_freq(arg)) {
684			spin_unlock_irqrestore(&rtc_lock, flags);
685			return 0;
686		}
687
688		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
689		val |= (16 - tmp);
690		CMOS_WRITE(val, RTC_FREQ_SELECT);
691		spin_unlock_irqrestore(&rtc_lock, flags);
692		return 0;
693	}
694#endif
695	case RTC_EPOCH_READ:	/* Read the epoch.	*/
696	{
697		return put_user(epoch, (unsigned long __user *)arg);
698	}
699	case RTC_EPOCH_SET:	/* Set the epoch.	*/
700	{
701		/*
702		 * There were no RTC clocks before 1900.
703		 */
704		if (arg < 1900)
705			return -EINVAL;
706
707		if (!capable(CAP_SYS_TIME))
708			return -EACCES;
709
710		epoch = arg;
711		return 0;
712	}
713	default:
714		return -ENOTTY;
715	}
716	return copy_to_user((void __user *)arg,
717			    &wtime, sizeof wtime) ? -EFAULT : 0;
718}
719
720static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
721{
722	long ret;
723	ret = rtc_do_ioctl(cmd, arg, 0);
724	return ret;
725}
726
727/*
728 *	We enforce only one user at a time here with the open/close.
729 *	Also clear the previous interrupt data on an open, and clean
730 *	up things on a close.
731 */
732static int rtc_open(struct inode *inode, struct file *file)
733{
734	spin_lock_irq(&rtc_lock);
735
736	if (rtc_status & RTC_IS_OPEN)
737		goto out_busy;
738
739	rtc_status |= RTC_IS_OPEN;
740
741	rtc_irq_data = 0;
742	spin_unlock_irq(&rtc_lock);
743	return 0;
744
745out_busy:
746	spin_unlock_irq(&rtc_lock);
747	return -EBUSY;
748}
749
750static int rtc_fasync(int fd, struct file *filp, int on)
751{
752	return fasync_helper(fd, filp, on, &rtc_async_queue);
753}
754
755static int rtc_release(struct inode *inode, struct file *file)
756{
757#ifdef RTC_IRQ
758	unsigned char tmp;
759
760	if (rtc_has_irq == 0)
761		goto no_irq;
762
763	/*
764	 * Turn off all interrupts once the device is no longer
765	 * in use, and clear the data.
766	 */
767
768	spin_lock_irq(&rtc_lock);
769	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
770		tmp = CMOS_READ(RTC_CONTROL);
771		tmp &=  ~RTC_PIE;
772		tmp &=  ~RTC_AIE;
773		tmp &=  ~RTC_UIE;
774		CMOS_WRITE(tmp, RTC_CONTROL);
775		CMOS_READ(RTC_INTR_FLAGS);
776	}
777	if (rtc_status & RTC_TIMER_ON) {
778		rtc_status &= ~RTC_TIMER_ON;
779		del_timer(&rtc_irq_timer);
780	}
781	spin_unlock_irq(&rtc_lock);
782
783no_irq:
784#endif
785
786	spin_lock_irq(&rtc_lock);
787	rtc_irq_data = 0;
788	rtc_status &= ~RTC_IS_OPEN;
789	spin_unlock_irq(&rtc_lock);
790
791	return 0;
792}
793
794#ifdef RTC_IRQ
795static unsigned int rtc_poll(struct file *file, poll_table *wait)
796{
797	unsigned long l;
798
799	if (rtc_has_irq == 0)
800		return 0;
801
802	poll_wait(file, &rtc_wait, wait);
803
804	spin_lock_irq(&rtc_lock);
805	l = rtc_irq_data;
806	spin_unlock_irq(&rtc_lock);
807
808	if (l != 0)
809		return POLLIN | POLLRDNORM;
810	return 0;
811}
812#endif
813
814int rtc_register(rtc_task_t *task)
815{
816#ifndef RTC_IRQ
817	return -EIO;
818#else
819	if (task == NULL || task->func == NULL)
820		return -EINVAL;
821	spin_lock_irq(&rtc_lock);
822	if (rtc_status & RTC_IS_OPEN) {
823		spin_unlock_irq(&rtc_lock);
824		return -EBUSY;
825	}
826	spin_lock(&rtc_task_lock);
827	if (rtc_callback) {
828		spin_unlock(&rtc_task_lock);
829		spin_unlock_irq(&rtc_lock);
830		return -EBUSY;
831	}
832	rtc_status |= RTC_IS_OPEN;
833	rtc_callback = task;
834	spin_unlock(&rtc_task_lock);
835	spin_unlock_irq(&rtc_lock);
836	return 0;
837#endif
838}
839EXPORT_SYMBOL(rtc_register);
840
841int rtc_unregister(rtc_task_t *task)
842{
843#ifndef RTC_IRQ
844	return -EIO;
845#else
846	unsigned char tmp;
847
848	spin_lock_irq(&rtc_lock);
849	spin_lock(&rtc_task_lock);
850	if (rtc_callback != task) {
851		spin_unlock(&rtc_task_lock);
852		spin_unlock_irq(&rtc_lock);
853		return -ENXIO;
854	}
855	rtc_callback = NULL;
856
857	/* disable controls */
858	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
859		tmp = CMOS_READ(RTC_CONTROL);
860		tmp &= ~RTC_PIE;
861		tmp &= ~RTC_AIE;
862		tmp &= ~RTC_UIE;
863		CMOS_WRITE(tmp, RTC_CONTROL);
864		CMOS_READ(RTC_INTR_FLAGS);
865	}
866	if (rtc_status & RTC_TIMER_ON) {
867		rtc_status &= ~RTC_TIMER_ON;
868		del_timer(&rtc_irq_timer);
869	}
870	rtc_status &= ~RTC_IS_OPEN;
871	spin_unlock(&rtc_task_lock);
872	spin_unlock_irq(&rtc_lock);
873	return 0;
874#endif
875}
876EXPORT_SYMBOL(rtc_unregister);
877
878int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
879{
880#ifndef RTC_IRQ
881	return -EIO;
882#else
883	unsigned long flags;
884	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
885		return -EINVAL;
886	spin_lock_irqsave(&rtc_task_lock, flags);
887	if (rtc_callback != task) {
888		spin_unlock_irqrestore(&rtc_task_lock, flags);
889		return -ENXIO;
890	}
891	spin_unlock_irqrestore(&rtc_task_lock, flags);
892	return rtc_do_ioctl(cmd, arg, 1);
893#endif
894}
895EXPORT_SYMBOL(rtc_control);
896
897/*
898 *	The various file operations we support.
899 */
900
901static const struct file_operations rtc_fops = {
902	.owner		= THIS_MODULE,
903	.llseek		= no_llseek,
904	.read		= rtc_read,
905#ifdef RTC_IRQ
906	.poll		= rtc_poll,
907#endif
908	.unlocked_ioctl	= rtc_ioctl,
909	.open		= rtc_open,
910	.release	= rtc_release,
911	.fasync		= rtc_fasync,
912};
913
914static struct miscdevice rtc_dev = {
915	.minor		= RTC_MINOR,
916	.name		= "rtc",
917	.fops		= &rtc_fops,
918};
919
920#ifdef CONFIG_PROC_FS
921static const struct file_operations rtc_proc_fops = {
922	.owner		= THIS_MODULE,
923	.open		= rtc_proc_open,
924	.read		= seq_read,
925	.llseek		= seq_lseek,
926	.release	= single_release,
927};
928#endif
929
930static resource_size_t rtc_size;
931
932static struct resource * __init rtc_request_region(resource_size_t size)
933{
934	struct resource *r;
935
936	if (RTC_IOMAPPED)
937		r = request_region(RTC_PORT(0), size, "rtc");
938	else
939		r = request_mem_region(RTC_PORT(0), size, "rtc");
940
941	if (r)
942		rtc_size = size;
943
944	return r;
945}
946
947static void rtc_release_region(void)
948{
949	if (RTC_IOMAPPED)
950		release_region(RTC_PORT(0), rtc_size);
951	else
952		release_mem_region(RTC_PORT(0), rtc_size);
953}
954
955static int __init rtc_init(void)
956{
957#ifdef CONFIG_PROC_FS
958	struct proc_dir_entry *ent;
959#endif
960#if defined(__alpha__) || defined(__mips__)
961	unsigned int year, ctrl;
962	char *guess = NULL;
963#endif
964#ifdef CONFIG_SPARC32
965	struct device_node *ebus_dp;
966	struct of_device *op;
967#else
968	void *r;
969#ifdef RTC_IRQ
970	irq_handler_t rtc_int_handler_ptr;
971#endif
972#endif
973
974#ifdef CONFIG_SPARC32
975	for_each_node_by_name(ebus_dp, "ebus") {
976		struct device_node *dp;
977		for (dp = ebus_dp; dp; dp = dp->sibling) {
978			if (!strcmp(dp->name, "rtc")) {
979				op = of_find_device_by_node(dp);
980				if (op) {
981					rtc_port = op->resource[0].start;
982					rtc_irq = op->irqs[0];
983					goto found;
984				}
985			}
986		}
987	}
988	rtc_has_irq = 0;
989	printk(KERN_ERR "rtc_init: no PC rtc found\n");
990	return -EIO;
991
992found:
993	if (!rtc_irq) {
994		rtc_has_irq = 0;
995		goto no_irq;
996	}
997
998	/*
999	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1000	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1001	 */
1002	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1003			(void *)&rtc_port)) {
1004		rtc_has_irq = 0;
1005		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1006		return -EIO;
1007	}
1008no_irq:
1009#else
1010	r = rtc_request_region(RTC_IO_EXTENT);
1011
1012	/*
1013	 * If we've already requested a smaller range (for example, because
1014	 * PNPBIOS or ACPI told us how the device is configured), the request
1015	 * above might fail because it's too big.
1016	 *
1017	 * If so, request just the range we actually use.
1018	 */
1019	if (!r)
1020		r = rtc_request_region(RTC_IO_EXTENT_USED);
1021	if (!r) {
1022#ifdef RTC_IRQ
1023		rtc_has_irq = 0;
1024#endif
1025		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1026		       (long)(RTC_PORT(0)));
1027		return -EIO;
1028	}
1029
1030#ifdef RTC_IRQ
1031	if (is_hpet_enabled()) {
1032		int err;
1033
1034		rtc_int_handler_ptr = hpet_rtc_interrupt;
1035		err = hpet_register_irq_handler(rtc_interrupt);
1036		if (err != 0) {
1037			printk(KERN_WARNING "hpet_register_irq_handler failed "
1038					"in rtc_init().");
1039			return err;
1040		}
1041	} else {
1042		rtc_int_handler_ptr = rtc_interrupt;
1043	}
1044
1045	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1046			"rtc", NULL)) {
1047		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1048		rtc_has_irq = 0;
1049		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1050		rtc_release_region();
1051
1052		return -EIO;
1053	}
1054	hpet_rtc_timer_init();
1055
1056#endif
1057
1058#endif /* CONFIG_SPARC32 vs. others */
1059
1060	if (misc_register(&rtc_dev)) {
1061#ifdef RTC_IRQ
1062		free_irq(RTC_IRQ, NULL);
1063		hpet_unregister_irq_handler(rtc_interrupt);
1064		rtc_has_irq = 0;
1065#endif
1066		rtc_release_region();
1067		return -ENODEV;
1068	}
1069
1070#ifdef CONFIG_PROC_FS
1071	ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1072	if (!ent)
1073		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1074#endif
1075
1076#if defined(__alpha__) || defined(__mips__)
1077	rtc_freq = HZ;
1078
1079	/* Each operating system on an Alpha uses its own epoch.
1080	   Let's try to guess which one we are using now. */
1081
1082	if (rtc_is_updating() != 0)
1083		msleep(20);
1084
1085	spin_lock_irq(&rtc_lock);
1086	year = CMOS_READ(RTC_YEAR);
1087	ctrl = CMOS_READ(RTC_CONTROL);
1088	spin_unlock_irq(&rtc_lock);
1089
1090	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1091		year = bcd2bin(year);       /* This should never happen... */
1092
1093	if (year < 20) {
1094		epoch = 2000;
1095		guess = "SRM (post-2000)";
1096	} else if (year >= 20 && year < 48) {
1097		epoch = 1980;
1098		guess = "ARC console";
1099	} else if (year >= 48 && year < 72) {
1100		epoch = 1952;
1101		guess = "Digital UNIX";
1102#if defined(__mips__)
1103	} else if (year >= 72 && year < 74) {
1104		epoch = 2000;
1105		guess = "Digital DECstation";
1106#else
1107	} else if (year >= 70) {
1108		epoch = 1900;
1109		guess = "Standard PC (1900)";
1110#endif
1111	}
1112	if (guess)
1113		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1114			guess, epoch);
1115#endif
1116#ifdef RTC_IRQ
1117	if (rtc_has_irq == 0)
1118		goto no_irq2;
1119
1120	spin_lock_irq(&rtc_lock);
1121	rtc_freq = 1024;
1122	if (!hpet_set_periodic_freq(rtc_freq)) {
1123		/*
1124		 * Initialize periodic frequency to CMOS reset default,
1125		 * which is 1024Hz
1126		 */
1127		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1128			   RTC_FREQ_SELECT);
1129	}
1130	spin_unlock_irq(&rtc_lock);
1131no_irq2:
1132#endif
1133
1134	(void) init_sysctl();
1135
1136	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1137
1138	return 0;
1139}
1140
1141static void __exit rtc_exit(void)
1142{
1143	cleanup_sysctl();
1144	remove_proc_entry("driver/rtc", NULL);
1145	misc_deregister(&rtc_dev);
1146
1147#ifdef CONFIG_SPARC32
1148	if (rtc_has_irq)
1149		free_irq(rtc_irq, &rtc_port);
1150#else
1151	rtc_release_region();
1152#ifdef RTC_IRQ
1153	if (rtc_has_irq) {
1154		free_irq(RTC_IRQ, NULL);
1155		hpet_unregister_irq_handler(hpet_rtc_interrupt);
1156	}
1157#endif
1158#endif /* CONFIG_SPARC32 */
1159}
1160
1161module_init(rtc_init);
1162module_exit(rtc_exit);
1163
1164#ifdef RTC_IRQ
1165/*
1166 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1167 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1168 *	Since the interrupt handler doesn't get called, the IRQ status
1169 *	byte doesn't get read, and the RTC stops generating interrupts.
1170 *	A timer is set, and will call this function if/when that happens.
1171 *	To get it out of this stalled state, we just read the status.
1172 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1173 *	(You *really* shouldn't be trying to use a non-realtime system
1174 *	for something that requires a steady > 1KHz signal anyways.)
1175 */
1176
1177static void rtc_dropped_irq(unsigned long data)
1178{
1179	unsigned long freq;
1180
1181	spin_lock_irq(&rtc_lock);
1182
1183	if (hpet_rtc_dropped_irq()) {
1184		spin_unlock_irq(&rtc_lock);
1185		return;
1186	}
1187
1188	/* Just in case someone disabled the timer from behind our back... */
1189	if (rtc_status & RTC_TIMER_ON)
1190		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1191
1192	rtc_irq_data += ((rtc_freq/HZ)<<8);
1193	rtc_irq_data &= ~0xff;
1194	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1195
1196	freq = rtc_freq;
1197
1198	spin_unlock_irq(&rtc_lock);
1199
1200	if (printk_ratelimit()) {
1201		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1202			freq);
1203	}
1204
1205	/* Now we have new data */
1206	wake_up_interruptible(&rtc_wait);
1207
1208	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1209}
1210#endif
1211
1212#ifdef CONFIG_PROC_FS
1213/*
1214 *	Info exported via "/proc/driver/rtc".
1215 */
1216
1217static int rtc_proc_show(struct seq_file *seq, void *v)
1218{
1219#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1220#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1221	struct rtc_time tm;
1222	unsigned char batt, ctrl;
1223	unsigned long freq;
1224
1225	spin_lock_irq(&rtc_lock);
1226	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1227	ctrl = CMOS_READ(RTC_CONTROL);
1228	freq = rtc_freq;
1229	spin_unlock_irq(&rtc_lock);
1230
1231
1232	rtc_get_rtc_time(&tm);
1233
1234	/*
1235	 * There is no way to tell if the luser has the RTC set for local
1236	 * time or for Universal Standard Time (GMT). Probably local though.
1237	 */
1238	seq_printf(seq,
1239		   "rtc_time\t: %02d:%02d:%02d\n"
1240		   "rtc_date\t: %04d-%02d-%02d\n"
1241		   "rtc_epoch\t: %04lu\n",
1242		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1243		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1244
1245	get_rtc_alm_time(&tm);
1246
1247	/*
1248	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1249	 * match any value for that particular field. Values that are
1250	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1251	 */
1252	seq_puts(seq, "alarm\t\t: ");
1253	if (tm.tm_hour <= 24)
1254		seq_printf(seq, "%02d:", tm.tm_hour);
1255	else
1256		seq_puts(seq, "**:");
1257
1258	if (tm.tm_min <= 59)
1259		seq_printf(seq, "%02d:", tm.tm_min);
1260	else
1261		seq_puts(seq, "**:");
1262
1263	if (tm.tm_sec <= 59)
1264		seq_printf(seq, "%02d\n", tm.tm_sec);
1265	else
1266		seq_puts(seq, "**\n");
1267
1268	seq_printf(seq,
1269		   "DST_enable\t: %s\n"
1270		   "BCD\t\t: %s\n"
1271		   "24hr\t\t: %s\n"
1272		   "square_wave\t: %s\n"
1273		   "alarm_IRQ\t: %s\n"
1274		   "update_IRQ\t: %s\n"
1275		   "periodic_IRQ\t: %s\n"
1276		   "periodic_freq\t: %ld\n"
1277		   "batt_status\t: %s\n",
1278		   YN(RTC_DST_EN),
1279		   NY(RTC_DM_BINARY),
1280		   YN(RTC_24H),
1281		   YN(RTC_SQWE),
1282		   YN(RTC_AIE),
1283		   YN(RTC_UIE),
1284		   YN(RTC_PIE),
1285		   freq,
1286		   batt ? "okay" : "dead");
1287
1288	return  0;
1289#undef YN
1290#undef NY
1291}
1292
1293static int rtc_proc_open(struct inode *inode, struct file *file)
1294{
1295	return single_open(file, rtc_proc_show, NULL);
1296}
1297#endif
1298
1299static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1300{
1301	unsigned long uip_watchdog = jiffies, flags;
1302	unsigned char ctrl;
1303#ifdef CONFIG_MACH_DECSTATION
1304	unsigned int real_year;
1305#endif
1306
1307	/*
1308	 * read RTC once any update in progress is done. The update
1309	 * can take just over 2ms. We wait 20ms. There is no need to
1310	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1311	 * If you need to know *exactly* when a second has started, enable
1312	 * periodic update complete interrupts, (via ioctl) and then
1313	 * immediately read /dev/rtc which will block until you get the IRQ.
1314	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1315	 */
1316
1317	while (rtc_is_updating() != 0 &&
1318	       time_before(jiffies, uip_watchdog + 2*HZ/100))
1319		cpu_relax();
1320
1321	/*
1322	 * Only the values that we read from the RTC are set. We leave
1323	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1324	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1325	 * only updated by the RTC when initially set to a non-zero value.
1326	 */
1327	spin_lock_irqsave(&rtc_lock, flags);
1328	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1329	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1330	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1331	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1332	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1333	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1334	/* Only set from 2.6.16 onwards */
1335	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1336
1337#ifdef CONFIG_MACH_DECSTATION
1338	real_year = CMOS_READ(RTC_DEC_YEAR);
1339#endif
1340	ctrl = CMOS_READ(RTC_CONTROL);
1341	spin_unlock_irqrestore(&rtc_lock, flags);
1342
1343	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1344		rtc_tm->tm_sec = bcd2bin(rtc_tm->tm_sec);
1345		rtc_tm->tm_min = bcd2bin(rtc_tm->tm_min);
1346		rtc_tm->tm_hour = bcd2bin(rtc_tm->tm_hour);
1347		rtc_tm->tm_mday = bcd2bin(rtc_tm->tm_mday);
1348		rtc_tm->tm_mon = bcd2bin(rtc_tm->tm_mon);
1349		rtc_tm->tm_year = bcd2bin(rtc_tm->tm_year);
1350		rtc_tm->tm_wday = bcd2bin(rtc_tm->tm_wday);
1351	}
1352
1353#ifdef CONFIG_MACH_DECSTATION
1354	rtc_tm->tm_year += real_year - 72;
1355#endif
1356
1357	/*
1358	 * Account for differences between how the RTC uses the values
1359	 * and how they are defined in a struct rtc_time;
1360	 */
1361	rtc_tm->tm_year += epoch - 1900;
1362	if (rtc_tm->tm_year <= 69)
1363		rtc_tm->tm_year += 100;
1364
1365	rtc_tm->tm_mon--;
1366}
1367
1368static void get_rtc_alm_time(struct rtc_time *alm_tm)
1369{
1370	unsigned char ctrl;
1371
1372	/*
1373	 * Only the values that we read from the RTC are set. That
1374	 * means only tm_hour, tm_min, and tm_sec.
1375	 */
1376	spin_lock_irq(&rtc_lock);
1377	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1378	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1379	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1380	ctrl = CMOS_READ(RTC_CONTROL);
1381	spin_unlock_irq(&rtc_lock);
1382
1383	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1384		alm_tm->tm_sec = bcd2bin(alm_tm->tm_sec);
1385		alm_tm->tm_min = bcd2bin(alm_tm->tm_min);
1386		alm_tm->tm_hour = bcd2bin(alm_tm->tm_hour);
1387	}
1388}
1389
1390#ifdef RTC_IRQ
1391/*
1392 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1393 * Rumour has it that if you frob the interrupt enable/disable
1394 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1395 * ensure you actually start getting interrupts. Probably for
1396 * compatibility with older/broken chipset RTC implementations.
1397 * We also clear out any old irq data after an ioctl() that
1398 * meddles with the interrupt enable/disable bits.
1399 */
1400
1401static void mask_rtc_irq_bit_locked(unsigned char bit)
1402{
1403	unsigned char val;
1404
1405	if (hpet_mask_rtc_irq_bit(bit))
1406		return;
1407	val = CMOS_READ(RTC_CONTROL);
1408	val &=  ~bit;
1409	CMOS_WRITE(val, RTC_CONTROL);
1410	CMOS_READ(RTC_INTR_FLAGS);
1411
1412	rtc_irq_data = 0;
1413}
1414
1415static void set_rtc_irq_bit_locked(unsigned char bit)
1416{
1417	unsigned char val;
1418
1419	if (hpet_set_rtc_irq_bit(bit))
1420		return;
1421	val = CMOS_READ(RTC_CONTROL);
1422	val |= bit;
1423	CMOS_WRITE(val, RTC_CONTROL);
1424	CMOS_READ(RTC_INTR_FLAGS);
1425
1426	rtc_irq_data = 0;
1427}
1428#endif
1429
1430MODULE_AUTHOR("Paul Gortmaker");
1431MODULE_LICENSE("GPL");
1432MODULE_ALIAS_MISCDEV(RTC_MINOR);
1433