rtc.c revision 0f2ed4c6bae23d2b7ef0ea2d272377e3de700c0c
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10    Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *      1.11    Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12ac	Alan Cox: Allow read access to the day of week register
50 */
51
52#define RTC_VERSION		"1.12ac"
53
54#define RTC_IO_EXTENT	0x8
55
56/*
57 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
58 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
59 *	design of the RTC, we don't want two different things trying to
60 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
61 *	this driver.)
62 */
63
64#include <linux/interrupt.h>
65#include <linux/module.h>
66#include <linux/kernel.h>
67#include <linux/types.h>
68#include <linux/miscdevice.h>
69#include <linux/ioport.h>
70#include <linux/fcntl.h>
71#include <linux/mc146818rtc.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/proc_fs.h>
75#include <linux/seq_file.h>
76#include <linux/spinlock.h>
77#include <linux/sysctl.h>
78#include <linux/wait.h>
79#include <linux/bcd.h>
80#include <linux/delay.h>
81
82#include <asm/current.h>
83#include <asm/uaccess.h>
84#include <asm/system.h>
85
86#if defined(__i386__)
87#include <asm/hpet.h>
88#endif
89
90#ifdef __sparc__
91#include <linux/pci.h>
92#include <asm/ebus.h>
93#ifdef __sparc_v9__
94#include <asm/isa.h>
95#endif
96
97static unsigned long rtc_port;
98static int rtc_irq = PCI_IRQ_NONE;
99#endif
100
101#ifdef	CONFIG_HPET_RTC_IRQ
102#undef	RTC_IRQ
103#endif
104
105#ifdef RTC_IRQ
106static int rtc_has_irq = 1;
107#endif
108
109#ifndef CONFIG_HPET_EMULATE_RTC
110#define is_hpet_enabled()			0
111#define hpet_set_alarm_time(hrs, min, sec) 	0
112#define hpet_set_periodic_freq(arg) 		0
113#define hpet_mask_rtc_irq_bit(arg) 		0
114#define hpet_set_rtc_irq_bit(arg) 		0
115#define hpet_rtc_timer_init() 			do { } while (0)
116#define hpet_rtc_dropped_irq() 			0
117static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;}
118#else
119extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
120#endif
121
122/*
123 *	We sponge a minor off of the misc major. No need slurping
124 *	up another valuable major dev number for this. If you add
125 *	an ioctl, make sure you don't conflict with SPARC's RTC
126 *	ioctls.
127 */
128
129static struct fasync_struct *rtc_async_queue;
130
131static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
132
133#ifdef RTC_IRQ
134static struct timer_list rtc_irq_timer;
135#endif
136
137static ssize_t rtc_read(struct file *file, char __user *buf,
138			size_t count, loff_t *ppos);
139
140static int rtc_ioctl(struct inode *inode, struct file *file,
141		     unsigned int cmd, unsigned long arg);
142
143#ifdef RTC_IRQ
144static unsigned int rtc_poll(struct file *file, poll_table *wait);
145#endif
146
147static void get_rtc_alm_time (struct rtc_time *alm_tm);
148#ifdef RTC_IRQ
149static void rtc_dropped_irq(unsigned long data);
150
151static void set_rtc_irq_bit_locked(unsigned char bit);
152static void mask_rtc_irq_bit_locked(unsigned char bit);
153
154static inline void set_rtc_irq_bit(unsigned char bit)
155{
156	spin_lock_irq(&rtc_lock);
157	set_rtc_irq_bit_locked(bit);
158	spin_unlock_irq(&rtc_lock);
159}
160
161static void mask_rtc_irq_bit(unsigned char bit)
162{
163	spin_lock_irq(&rtc_lock);
164	mask_rtc_irq_bit_locked(bit);
165	spin_unlock_irq(&rtc_lock);
166}
167#endif
168
169static int rtc_proc_open(struct inode *inode, struct file *file);
170
171/*
172 *	Bits in rtc_status. (6 bits of room for future expansion)
173 */
174
175#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
176#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
177
178/*
179 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
180 * protected by the big kernel lock. However, ioctl can still disable the timer
181 * in rtc_status and then with del_timer after the interrupt has read
182 * rtc_status but before mod_timer is called, which would then reenable the
183 * timer (but you would need to have an awful timing before you'd trip on it)
184 */
185static unsigned long rtc_status = 0;	/* bitmapped status byte.	*/
186static unsigned long rtc_freq = 0;	/* Current periodic IRQ rate	*/
187static unsigned long rtc_irq_data = 0;	/* our output to the world	*/
188static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
189
190#ifdef RTC_IRQ
191/*
192 * rtc_task_lock nests inside rtc_lock.
193 */
194static DEFINE_SPINLOCK(rtc_task_lock);
195static rtc_task_t *rtc_callback = NULL;
196#endif
197
198/*
199 *	If this driver ever becomes modularised, it will be really nice
200 *	to make the epoch retain its value across module reload...
201 */
202
203static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
204
205static const unsigned char days_in_mo[] =
206{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
207
208/*
209 * Returns true if a clock update is in progress
210 */
211static inline unsigned char rtc_is_updating(void)
212{
213	unsigned char uip;
214
215	spin_lock_irq(&rtc_lock);
216	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
217	spin_unlock_irq(&rtc_lock);
218	return uip;
219}
220
221#ifdef RTC_IRQ
222/*
223 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
224 *	but there is possibility of conflicting with the set_rtc_mmss()
225 *	call (the rtc irq and the timer irq can easily run at the same
226 *	time in two different CPUs). So we need to serialize
227 *	accesses to the chip with the rtc_lock spinlock that each
228 *	architecture should implement in the timer code.
229 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
230 */
231
232irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
233{
234	/*
235	 *	Can be an alarm interrupt, update complete interrupt,
236	 *	or a periodic interrupt. We store the status in the
237	 *	low byte and the number of interrupts received since
238	 *	the last read in the remainder of rtc_irq_data.
239	 */
240
241	spin_lock (&rtc_lock);
242	rtc_irq_data += 0x100;
243	rtc_irq_data &= ~0xff;
244	if (is_hpet_enabled()) {
245		/*
246		 * In this case it is HPET RTC interrupt handler
247		 * calling us, with the interrupt information
248		 * passed as arg1, instead of irq.
249		 */
250		rtc_irq_data |= (unsigned long)irq & 0xF0;
251	} else {
252		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
253	}
254
255	if (rtc_status & RTC_TIMER_ON)
256		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
257
258	spin_unlock (&rtc_lock);
259
260	/* Now do the rest of the actions */
261	spin_lock(&rtc_task_lock);
262	if (rtc_callback)
263		rtc_callback->func(rtc_callback->private_data);
264	spin_unlock(&rtc_task_lock);
265	wake_up_interruptible(&rtc_wait);
266
267	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
268
269	return IRQ_HANDLED;
270}
271#endif
272
273/*
274 * sysctl-tuning infrastructure.
275 */
276static ctl_table rtc_table[] = {
277	{
278		.ctl_name	= 1,
279		.procname	= "max-user-freq",
280		.data		= &rtc_max_user_freq,
281		.maxlen		= sizeof(int),
282		.mode		= 0644,
283		.proc_handler	= &proc_dointvec,
284	},
285	{ .ctl_name = 0 }
286};
287
288static ctl_table rtc_root[] = {
289	{
290		.ctl_name	= 1,
291		.procname	= "rtc",
292		.maxlen		= 0,
293		.mode		= 0555,
294		.child		= rtc_table,
295	},
296	{ .ctl_name = 0 }
297};
298
299static ctl_table dev_root[] = {
300	{
301		.ctl_name	= CTL_DEV,
302		.procname	= "dev",
303		.maxlen		= 0,
304		.mode		= 0555,
305		.child		= rtc_root,
306	},
307	{ .ctl_name = 0 }
308};
309
310static struct ctl_table_header *sysctl_header;
311
312static int __init init_sysctl(void)
313{
314    sysctl_header = register_sysctl_table(dev_root, 0);
315    return 0;
316}
317
318static void __exit cleanup_sysctl(void)
319{
320    unregister_sysctl_table(sysctl_header);
321}
322
323/*
324 *	Now all the various file operations that we export.
325 */
326
327static ssize_t rtc_read(struct file *file, char __user *buf,
328			size_t count, loff_t *ppos)
329{
330#ifndef RTC_IRQ
331	return -EIO;
332#else
333	DECLARE_WAITQUEUE(wait, current);
334	unsigned long data;
335	ssize_t retval;
336
337	if (rtc_has_irq == 0)
338		return -EIO;
339
340	if (count < sizeof(unsigned))
341		return -EINVAL;
342
343	add_wait_queue(&rtc_wait, &wait);
344
345	do {
346		/* First make it right. Then make it fast. Putting this whole
347		 * block within the parentheses of a while would be too
348		 * confusing. And no, xchg() is not the answer. */
349
350		__set_current_state(TASK_INTERRUPTIBLE);
351
352		spin_lock_irq (&rtc_lock);
353		data = rtc_irq_data;
354		rtc_irq_data = 0;
355		spin_unlock_irq (&rtc_lock);
356
357		if (data != 0)
358			break;
359
360		if (file->f_flags & O_NONBLOCK) {
361			retval = -EAGAIN;
362			goto out;
363		}
364		if (signal_pending(current)) {
365			retval = -ERESTARTSYS;
366			goto out;
367		}
368		schedule();
369	} while (1);
370
371	if (count < sizeof(unsigned long))
372		retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
373	else
374		retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
375 out:
376	current->state = TASK_RUNNING;
377	remove_wait_queue(&rtc_wait, &wait);
378
379	return retval;
380#endif
381}
382
383static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
384{
385	struct rtc_time wtime;
386
387#ifdef RTC_IRQ
388	if (rtc_has_irq == 0) {
389		switch (cmd) {
390		case RTC_AIE_OFF:
391		case RTC_AIE_ON:
392		case RTC_PIE_OFF:
393		case RTC_PIE_ON:
394		case RTC_UIE_OFF:
395		case RTC_UIE_ON:
396		case RTC_IRQP_READ:
397		case RTC_IRQP_SET:
398			return -EINVAL;
399		};
400	}
401#endif
402
403	switch (cmd) {
404#ifdef RTC_IRQ
405	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
406	{
407		mask_rtc_irq_bit(RTC_AIE);
408		return 0;
409	}
410	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
411	{
412		set_rtc_irq_bit(RTC_AIE);
413		return 0;
414	}
415	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
416	{
417		unsigned long flags; /* can be called from isr via rtc_control() */
418		spin_lock_irqsave (&rtc_lock, flags);
419		mask_rtc_irq_bit_locked(RTC_PIE);
420		if (rtc_status & RTC_TIMER_ON) {
421			rtc_status &= ~RTC_TIMER_ON;
422			del_timer(&rtc_irq_timer);
423		}
424		spin_unlock_irqrestore (&rtc_lock, flags);
425		return 0;
426	}
427	case RTC_PIE_ON:	/* Allow periodic ints		*/
428	{
429		unsigned long flags; /* can be called from isr via rtc_control() */
430		/*
431		 * We don't really want Joe User enabling more
432		 * than 64Hz of interrupts on a multi-user machine.
433		 */
434		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
435			(!capable(CAP_SYS_RESOURCE)))
436			return -EACCES;
437
438		spin_lock_irqsave (&rtc_lock, flags);
439		if (!(rtc_status & RTC_TIMER_ON)) {
440			rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
441			add_timer(&rtc_irq_timer);
442			rtc_status |= RTC_TIMER_ON;
443		}
444		set_rtc_irq_bit_locked(RTC_PIE);
445		spin_unlock_irqrestore (&rtc_lock, flags);
446		return 0;
447	}
448	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
449	{
450		mask_rtc_irq_bit(RTC_UIE);
451		return 0;
452	}
453	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
454	{
455		set_rtc_irq_bit(RTC_UIE);
456		return 0;
457	}
458#endif
459	case RTC_ALM_READ:	/* Read the present alarm time */
460	{
461		/*
462		 * This returns a struct rtc_time. Reading >= 0xc0
463		 * means "don't care" or "match all". Only the tm_hour,
464		 * tm_min, and tm_sec values are filled in.
465		 */
466		memset(&wtime, 0, sizeof(struct rtc_time));
467		get_rtc_alm_time(&wtime);
468		break;
469	}
470	case RTC_ALM_SET:	/* Store a time into the alarm */
471	{
472		/*
473		 * This expects a struct rtc_time. Writing 0xff means
474		 * "don't care" or "match all". Only the tm_hour,
475		 * tm_min and tm_sec are used.
476		 */
477		unsigned char hrs, min, sec;
478		struct rtc_time alm_tm;
479
480		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
481				   sizeof(struct rtc_time)))
482			return -EFAULT;
483
484		hrs = alm_tm.tm_hour;
485		min = alm_tm.tm_min;
486		sec = alm_tm.tm_sec;
487
488		spin_lock_irq(&rtc_lock);
489		if (hpet_set_alarm_time(hrs, min, sec)) {
490			/*
491			 * Fallthru and set alarm time in CMOS too,
492			 * so that we will get proper value in RTC_ALM_READ
493			 */
494		}
495		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
496		    RTC_ALWAYS_BCD)
497		{
498			if (sec < 60) BIN_TO_BCD(sec);
499			else sec = 0xff;
500
501			if (min < 60) BIN_TO_BCD(min);
502			else min = 0xff;
503
504			if (hrs < 24) BIN_TO_BCD(hrs);
505			else hrs = 0xff;
506		}
507		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
508		CMOS_WRITE(min, RTC_MINUTES_ALARM);
509		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
510		spin_unlock_irq(&rtc_lock);
511
512		return 0;
513	}
514	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
515	{
516		memset(&wtime, 0, sizeof(struct rtc_time));
517		rtc_get_rtc_time(&wtime);
518		break;
519	}
520	case RTC_SET_TIME:	/* Set the RTC */
521	{
522		struct rtc_time rtc_tm;
523		unsigned char mon, day, hrs, min, sec, leap_yr;
524		unsigned char save_control, save_freq_select;
525		unsigned int yrs;
526#ifdef CONFIG_MACH_DECSTATION
527		unsigned int real_yrs;
528#endif
529
530		if (!capable(CAP_SYS_TIME))
531			return -EACCES;
532
533		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
534				   sizeof(struct rtc_time)))
535			return -EFAULT;
536
537		yrs = rtc_tm.tm_year + 1900;
538		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
539		day = rtc_tm.tm_mday;
540		hrs = rtc_tm.tm_hour;
541		min = rtc_tm.tm_min;
542		sec = rtc_tm.tm_sec;
543
544		if (yrs < 1970)
545			return -EINVAL;
546
547		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
548
549		if ((mon > 12) || (day == 0))
550			return -EINVAL;
551
552		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
553			return -EINVAL;
554
555		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
556			return -EINVAL;
557
558		if ((yrs -= epoch) > 255)    /* They are unsigned */
559			return -EINVAL;
560
561		spin_lock_irq(&rtc_lock);
562#ifdef CONFIG_MACH_DECSTATION
563		real_yrs = yrs;
564		yrs = 72;
565
566		/*
567		 * We want to keep the year set to 73 until March
568		 * for non-leap years, so that Feb, 29th is handled
569		 * correctly.
570		 */
571		if (!leap_yr && mon < 3) {
572			real_yrs--;
573			yrs = 73;
574		}
575#endif
576		/* These limits and adjustments are independent of
577		 * whether the chip is in binary mode or not.
578		 */
579		if (yrs > 169) {
580			spin_unlock_irq(&rtc_lock);
581			return -EINVAL;
582		}
583		if (yrs >= 100)
584			yrs -= 100;
585
586		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
587		    || RTC_ALWAYS_BCD) {
588			BIN_TO_BCD(sec);
589			BIN_TO_BCD(min);
590			BIN_TO_BCD(hrs);
591			BIN_TO_BCD(day);
592			BIN_TO_BCD(mon);
593			BIN_TO_BCD(yrs);
594		}
595
596		save_control = CMOS_READ(RTC_CONTROL);
597		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
598		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
599		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
600
601#ifdef CONFIG_MACH_DECSTATION
602		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
603#endif
604		CMOS_WRITE(yrs, RTC_YEAR);
605		CMOS_WRITE(mon, RTC_MONTH);
606		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
607		CMOS_WRITE(hrs, RTC_HOURS);
608		CMOS_WRITE(min, RTC_MINUTES);
609		CMOS_WRITE(sec, RTC_SECONDS);
610
611		CMOS_WRITE(save_control, RTC_CONTROL);
612		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
613
614		spin_unlock_irq(&rtc_lock);
615		return 0;
616	}
617#ifdef RTC_IRQ
618	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
619	{
620		return put_user(rtc_freq, (unsigned long __user *)arg);
621	}
622	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
623	{
624		int tmp = 0;
625		unsigned char val;
626		unsigned long flags; /* can be called from isr via rtc_control() */
627
628		/*
629		 * The max we can do is 8192Hz.
630		 */
631		if ((arg < 2) || (arg > 8192))
632			return -EINVAL;
633		/*
634		 * We don't really want Joe User generating more
635		 * than 64Hz of interrupts on a multi-user machine.
636		 */
637		if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
638			return -EACCES;
639
640		while (arg > (1<<tmp))
641			tmp++;
642
643		/*
644		 * Check that the input was really a power of 2.
645		 */
646		if (arg != (1<<tmp))
647			return -EINVAL;
648
649		spin_lock_irqsave(&rtc_lock, flags);
650		if (hpet_set_periodic_freq(arg)) {
651			spin_unlock_irqrestore(&rtc_lock, flags);
652			return 0;
653		}
654		rtc_freq = arg;
655
656		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
657		val |= (16 - tmp);
658		CMOS_WRITE(val, RTC_FREQ_SELECT);
659		spin_unlock_irqrestore(&rtc_lock, flags);
660		return 0;
661	}
662#endif
663	case RTC_EPOCH_READ:	/* Read the epoch.	*/
664	{
665		return put_user (epoch, (unsigned long __user *)arg);
666	}
667	case RTC_EPOCH_SET:	/* Set the epoch.	*/
668	{
669		/*
670		 * There were no RTC clocks before 1900.
671		 */
672		if (arg < 1900)
673			return -EINVAL;
674
675		if (!capable(CAP_SYS_TIME))
676			return -EACCES;
677
678		epoch = arg;
679		return 0;
680	}
681	default:
682		return -ENOTTY;
683	}
684	return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
685}
686
687static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
688		     unsigned long arg)
689{
690	return rtc_do_ioctl(cmd, arg, 0);
691}
692
693/*
694 *	We enforce only one user at a time here with the open/close.
695 *	Also clear the previous interrupt data on an open, and clean
696 *	up things on a close.
697 */
698
699/* We use rtc_lock to protect against concurrent opens. So the BKL is not
700 * needed here. Or anywhere else in this driver. */
701static int rtc_open(struct inode *inode, struct file *file)
702{
703	spin_lock_irq (&rtc_lock);
704
705	if(rtc_status & RTC_IS_OPEN)
706		goto out_busy;
707
708	rtc_status |= RTC_IS_OPEN;
709
710	rtc_irq_data = 0;
711	spin_unlock_irq (&rtc_lock);
712	return 0;
713
714out_busy:
715	spin_unlock_irq (&rtc_lock);
716	return -EBUSY;
717}
718
719static int rtc_fasync (int fd, struct file *filp, int on)
720
721{
722	return fasync_helper (fd, filp, on, &rtc_async_queue);
723}
724
725static int rtc_release(struct inode *inode, struct file *file)
726{
727#ifdef RTC_IRQ
728	unsigned char tmp;
729
730	if (rtc_has_irq == 0)
731		goto no_irq;
732
733	/*
734	 * Turn off all interrupts once the device is no longer
735	 * in use, and clear the data.
736	 */
737
738	spin_lock_irq(&rtc_lock);
739	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
740		tmp = CMOS_READ(RTC_CONTROL);
741		tmp &=  ~RTC_PIE;
742		tmp &=  ~RTC_AIE;
743		tmp &=  ~RTC_UIE;
744		CMOS_WRITE(tmp, RTC_CONTROL);
745		CMOS_READ(RTC_INTR_FLAGS);
746	}
747	if (rtc_status & RTC_TIMER_ON) {
748		rtc_status &= ~RTC_TIMER_ON;
749		del_timer(&rtc_irq_timer);
750	}
751	spin_unlock_irq(&rtc_lock);
752
753	if (file->f_flags & FASYNC) {
754		rtc_fasync (-1, file, 0);
755	}
756no_irq:
757#endif
758
759	spin_lock_irq (&rtc_lock);
760	rtc_irq_data = 0;
761	rtc_status &= ~RTC_IS_OPEN;
762	spin_unlock_irq (&rtc_lock);
763	return 0;
764}
765
766#ifdef RTC_IRQ
767/* Called without the kernel lock - fine */
768static unsigned int rtc_poll(struct file *file, poll_table *wait)
769{
770	unsigned long l;
771
772	if (rtc_has_irq == 0)
773		return 0;
774
775	poll_wait(file, &rtc_wait, wait);
776
777	spin_lock_irq (&rtc_lock);
778	l = rtc_irq_data;
779	spin_unlock_irq (&rtc_lock);
780
781	if (l != 0)
782		return POLLIN | POLLRDNORM;
783	return 0;
784}
785#endif
786
787/*
788 * exported stuffs
789 */
790
791EXPORT_SYMBOL(rtc_register);
792EXPORT_SYMBOL(rtc_unregister);
793EXPORT_SYMBOL(rtc_control);
794
795int rtc_register(rtc_task_t *task)
796{
797#ifndef RTC_IRQ
798	return -EIO;
799#else
800	if (task == NULL || task->func == NULL)
801		return -EINVAL;
802	spin_lock_irq(&rtc_lock);
803	if (rtc_status & RTC_IS_OPEN) {
804		spin_unlock_irq(&rtc_lock);
805		return -EBUSY;
806	}
807	spin_lock(&rtc_task_lock);
808	if (rtc_callback) {
809		spin_unlock(&rtc_task_lock);
810		spin_unlock_irq(&rtc_lock);
811		return -EBUSY;
812	}
813	rtc_status |= RTC_IS_OPEN;
814	rtc_callback = task;
815	spin_unlock(&rtc_task_lock);
816	spin_unlock_irq(&rtc_lock);
817	return 0;
818#endif
819}
820
821int rtc_unregister(rtc_task_t *task)
822{
823#ifndef RTC_IRQ
824	return -EIO;
825#else
826	unsigned char tmp;
827
828	spin_lock_irq(&rtc_lock);
829	spin_lock(&rtc_task_lock);
830	if (rtc_callback != task) {
831		spin_unlock(&rtc_task_lock);
832		spin_unlock_irq(&rtc_lock);
833		return -ENXIO;
834	}
835	rtc_callback = NULL;
836
837	/* disable controls */
838	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
839		tmp = CMOS_READ(RTC_CONTROL);
840		tmp &= ~RTC_PIE;
841		tmp &= ~RTC_AIE;
842		tmp &= ~RTC_UIE;
843		CMOS_WRITE(tmp, RTC_CONTROL);
844		CMOS_READ(RTC_INTR_FLAGS);
845	}
846	if (rtc_status & RTC_TIMER_ON) {
847		rtc_status &= ~RTC_TIMER_ON;
848		del_timer(&rtc_irq_timer);
849	}
850	rtc_status &= ~RTC_IS_OPEN;
851	spin_unlock(&rtc_task_lock);
852	spin_unlock_irq(&rtc_lock);
853	return 0;
854#endif
855}
856
857int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
858{
859#ifndef RTC_IRQ
860	return -EIO;
861#else
862	unsigned long flags;
863	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
864		return -EINVAL;
865	spin_lock_irqsave(&rtc_task_lock, flags);
866	if (rtc_callback != task) {
867		spin_unlock_irqrestore(&rtc_task_lock, flags);
868		return -ENXIO;
869	}
870	spin_unlock_irqrestore(&rtc_task_lock, flags);
871	return rtc_do_ioctl(cmd, arg, 1);
872#endif
873}
874
875
876/*
877 *	The various file operations we support.
878 */
879
880static struct file_operations rtc_fops = {
881	.owner		= THIS_MODULE,
882	.llseek		= no_llseek,
883	.read		= rtc_read,
884#ifdef RTC_IRQ
885	.poll		= rtc_poll,
886#endif
887	.ioctl		= rtc_ioctl,
888	.open		= rtc_open,
889	.release	= rtc_release,
890	.fasync		= rtc_fasync,
891};
892
893static struct miscdevice rtc_dev = {
894	.minor		= RTC_MINOR,
895	.name		= "rtc",
896	.fops		= &rtc_fops,
897};
898
899static struct file_operations rtc_proc_fops = {
900	.owner = THIS_MODULE,
901	.open = rtc_proc_open,
902	.read  = seq_read,
903	.llseek = seq_lseek,
904	.release = single_release,
905};
906
907#if defined(RTC_IRQ) && !defined(__sparc__)
908static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs);
909#endif
910
911static int __init rtc_init(void)
912{
913	struct proc_dir_entry *ent;
914#if defined(__alpha__) || defined(__mips__)
915	unsigned int year, ctrl;
916	char *guess = NULL;
917#endif
918#ifdef __sparc__
919	struct linux_ebus *ebus;
920	struct linux_ebus_device *edev;
921#ifdef __sparc_v9__
922	struct sparc_isa_bridge *isa_br;
923	struct sparc_isa_device *isa_dev;
924#endif
925#endif
926
927#ifdef __sparc__
928	for_each_ebus(ebus) {
929		for_each_ebusdev(edev, ebus) {
930			if(strcmp(edev->prom_node->name, "rtc") == 0) {
931				rtc_port = edev->resource[0].start;
932				rtc_irq = edev->irqs[0];
933				goto found;
934			}
935		}
936	}
937#ifdef __sparc_v9__
938	for_each_isa(isa_br) {
939		for_each_isadev(isa_dev, isa_br) {
940			if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
941				rtc_port = isa_dev->resource.start;
942				rtc_irq = isa_dev->irq;
943				goto found;
944			}
945		}
946	}
947#endif
948	printk(KERN_ERR "rtc_init: no PC rtc found\n");
949	return -EIO;
950
951found:
952	if (rtc_irq == PCI_IRQ_NONE) {
953		rtc_has_irq = 0;
954		goto no_irq;
955	}
956
957	/*
958	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
959	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
960	 */
961	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
962		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
963		return -EIO;
964	}
965no_irq:
966#else
967	if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) {
968		printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0));
969		return -EIO;
970	}
971
972#ifdef RTC_IRQ
973	if (is_hpet_enabled()) {
974		rtc_int_handler_ptr = hpet_rtc_interrupt;
975	} else {
976		rtc_int_handler_ptr = rtc_interrupt;
977	}
978
979	if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
980		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
981		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
982		release_region(RTC_PORT(0), RTC_IO_EXTENT);
983		return -EIO;
984	}
985	hpet_rtc_timer_init();
986
987#endif
988
989#endif /* __sparc__ vs. others */
990
991	if (misc_register(&rtc_dev)) {
992#ifdef RTC_IRQ
993		free_irq(RTC_IRQ, NULL);
994#endif
995		release_region(RTC_PORT(0), RTC_IO_EXTENT);
996		return -ENODEV;
997	}
998
999	ent = create_proc_entry("driver/rtc", 0, NULL);
1000	if (!ent) {
1001#ifdef RTC_IRQ
1002		free_irq(RTC_IRQ, NULL);
1003#endif
1004		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1005		misc_deregister(&rtc_dev);
1006		return -ENOMEM;
1007	}
1008	ent->proc_fops = &rtc_proc_fops;
1009
1010#if defined(__alpha__) || defined(__mips__)
1011	rtc_freq = HZ;
1012
1013	/* Each operating system on an Alpha uses its own epoch.
1014	   Let's try to guess which one we are using now. */
1015
1016	if (rtc_is_updating() != 0)
1017		msleep(20);
1018
1019	spin_lock_irq(&rtc_lock);
1020	year = CMOS_READ(RTC_YEAR);
1021	ctrl = CMOS_READ(RTC_CONTROL);
1022	spin_unlock_irq(&rtc_lock);
1023
1024	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1025		BCD_TO_BIN(year);       /* This should never happen... */
1026
1027	if (year < 20) {
1028		epoch = 2000;
1029		guess = "SRM (post-2000)";
1030	} else if (year >= 20 && year < 48) {
1031		epoch = 1980;
1032		guess = "ARC console";
1033	} else if (year >= 48 && year < 72) {
1034		epoch = 1952;
1035		guess = "Digital UNIX";
1036#if defined(__mips__)
1037	} else if (year >= 72 && year < 74) {
1038		epoch = 2000;
1039		guess = "Digital DECstation";
1040#else
1041	} else if (year >= 70) {
1042		epoch = 1900;
1043		guess = "Standard PC (1900)";
1044#endif
1045	}
1046	if (guess)
1047		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1048#endif
1049#ifdef RTC_IRQ
1050	if (rtc_has_irq == 0)
1051		goto no_irq2;
1052
1053	init_timer(&rtc_irq_timer);
1054	rtc_irq_timer.function = rtc_dropped_irq;
1055	spin_lock_irq(&rtc_lock);
1056	rtc_freq = 1024;
1057	if (!hpet_set_periodic_freq(rtc_freq)) {
1058		/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1059		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1060	}
1061	spin_unlock_irq(&rtc_lock);
1062no_irq2:
1063#endif
1064
1065	(void) init_sysctl();
1066
1067	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1068
1069	return 0;
1070}
1071
1072static void __exit rtc_exit (void)
1073{
1074	cleanup_sysctl();
1075	remove_proc_entry ("driver/rtc", NULL);
1076	misc_deregister(&rtc_dev);
1077
1078#ifdef __sparc__
1079	if (rtc_has_irq)
1080		free_irq (rtc_irq, &rtc_port);
1081#else
1082	release_region (RTC_PORT (0), RTC_IO_EXTENT);
1083#ifdef RTC_IRQ
1084	if (rtc_has_irq)
1085		free_irq (RTC_IRQ, NULL);
1086#endif
1087#endif /* __sparc__ */
1088}
1089
1090module_init(rtc_init);
1091module_exit(rtc_exit);
1092
1093#ifdef RTC_IRQ
1094/*
1095 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1096 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1097 *	Since the interrupt handler doesn't get called, the IRQ status
1098 *	byte doesn't get read, and the RTC stops generating interrupts.
1099 *	A timer is set, and will call this function if/when that happens.
1100 *	To get it out of this stalled state, we just read the status.
1101 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1102 *	(You *really* shouldn't be trying to use a non-realtime system
1103 *	for something that requires a steady > 1KHz signal anyways.)
1104 */
1105
1106static void rtc_dropped_irq(unsigned long data)
1107{
1108	unsigned long freq;
1109
1110	spin_lock_irq (&rtc_lock);
1111
1112	if (hpet_rtc_dropped_irq()) {
1113		spin_unlock_irq(&rtc_lock);
1114		return;
1115	}
1116
1117	/* Just in case someone disabled the timer from behind our back... */
1118	if (rtc_status & RTC_TIMER_ON)
1119		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1120
1121	rtc_irq_data += ((rtc_freq/HZ)<<8);
1122	rtc_irq_data &= ~0xff;
1123	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1124
1125	freq = rtc_freq;
1126
1127	spin_unlock_irq(&rtc_lock);
1128
1129	printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1130
1131	/* Now we have new data */
1132	wake_up_interruptible(&rtc_wait);
1133
1134	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1135}
1136#endif
1137
1138/*
1139 *	Info exported via "/proc/driver/rtc".
1140 */
1141
1142static int rtc_proc_show(struct seq_file *seq, void *v)
1143{
1144#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1145#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1146	struct rtc_time tm;
1147	unsigned char batt, ctrl;
1148	unsigned long freq;
1149
1150	spin_lock_irq(&rtc_lock);
1151	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1152	ctrl = CMOS_READ(RTC_CONTROL);
1153	freq = rtc_freq;
1154	spin_unlock_irq(&rtc_lock);
1155
1156
1157	rtc_get_rtc_time(&tm);
1158
1159	/*
1160	 * There is no way to tell if the luser has the RTC set for local
1161	 * time or for Universal Standard Time (GMT). Probably local though.
1162	 */
1163	seq_printf(seq,
1164		   "rtc_time\t: %02d:%02d:%02d\n"
1165		   "rtc_date\t: %04d-%02d-%02d\n"
1166		   "rtc_epoch\t: %04lu\n",
1167		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1168		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1169
1170	get_rtc_alm_time(&tm);
1171
1172	/*
1173	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1174	 * match any value for that particular field. Values that are
1175	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1176	 */
1177	seq_puts(seq, "alarm\t\t: ");
1178	if (tm.tm_hour <= 24)
1179		seq_printf(seq, "%02d:", tm.tm_hour);
1180	else
1181		seq_puts(seq, "**:");
1182
1183	if (tm.tm_min <= 59)
1184		seq_printf(seq, "%02d:", tm.tm_min);
1185	else
1186		seq_puts(seq, "**:");
1187
1188	if (tm.tm_sec <= 59)
1189		seq_printf(seq, "%02d\n", tm.tm_sec);
1190	else
1191		seq_puts(seq, "**\n");
1192
1193	seq_printf(seq,
1194		   "DST_enable\t: %s\n"
1195		   "BCD\t\t: %s\n"
1196		   "24hr\t\t: %s\n"
1197		   "square_wave\t: %s\n"
1198		   "alarm_IRQ\t: %s\n"
1199		   "update_IRQ\t: %s\n"
1200		   "periodic_IRQ\t: %s\n"
1201		   "periodic_freq\t: %ld\n"
1202		   "batt_status\t: %s\n",
1203		   YN(RTC_DST_EN),
1204		   NY(RTC_DM_BINARY),
1205		   YN(RTC_24H),
1206		   YN(RTC_SQWE),
1207		   YN(RTC_AIE),
1208		   YN(RTC_UIE),
1209		   YN(RTC_PIE),
1210		   freq,
1211		   batt ? "okay" : "dead");
1212
1213	return  0;
1214#undef YN
1215#undef NY
1216}
1217
1218static int rtc_proc_open(struct inode *inode, struct file *file)
1219{
1220	return single_open(file, rtc_proc_show, NULL);
1221}
1222
1223void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1224{
1225	unsigned long uip_watchdog = jiffies;
1226	unsigned char ctrl;
1227#ifdef CONFIG_MACH_DECSTATION
1228	unsigned int real_year;
1229#endif
1230
1231	/*
1232	 * read RTC once any update in progress is done. The update
1233	 * can take just over 2ms. We wait 20ms. There is no need to
1234	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1235	 * If you need to know *exactly* when a second has started, enable
1236	 * periodic update complete interrupts, (via ioctl) and then
1237	 * immediately read /dev/rtc which will block until you get the IRQ.
1238	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1239	 */
1240
1241	while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100) {
1242		barrier();
1243		cpu_relax();
1244	}
1245
1246	/*
1247	 * Only the values that we read from the RTC are set. We leave
1248	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1249	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1250	 * only updated by the RTC when initially set to a non-zero value.
1251	 */
1252	spin_lock_irq(&rtc_lock);
1253	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1254	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1255	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1256	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1257	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1258	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1259	/* Only set from 2.6.16 onwards */
1260	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1261
1262#ifdef CONFIG_MACH_DECSTATION
1263	real_year = CMOS_READ(RTC_DEC_YEAR);
1264#endif
1265	ctrl = CMOS_READ(RTC_CONTROL);
1266	spin_unlock_irq(&rtc_lock);
1267
1268	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1269	{
1270		BCD_TO_BIN(rtc_tm->tm_sec);
1271		BCD_TO_BIN(rtc_tm->tm_min);
1272		BCD_TO_BIN(rtc_tm->tm_hour);
1273		BCD_TO_BIN(rtc_tm->tm_mday);
1274		BCD_TO_BIN(rtc_tm->tm_mon);
1275		BCD_TO_BIN(rtc_tm->tm_year);
1276		BCD_TO_BIN(rtc_tm->tm_wday);
1277	}
1278
1279#ifdef CONFIG_MACH_DECSTATION
1280	rtc_tm->tm_year += real_year - 72;
1281#endif
1282
1283	/*
1284	 * Account for differences between how the RTC uses the values
1285	 * and how they are defined in a struct rtc_time;
1286	 */
1287	if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1288		rtc_tm->tm_year += 100;
1289
1290	rtc_tm->tm_mon--;
1291}
1292
1293static void get_rtc_alm_time(struct rtc_time *alm_tm)
1294{
1295	unsigned char ctrl;
1296
1297	/*
1298	 * Only the values that we read from the RTC are set. That
1299	 * means only tm_hour, tm_min, and tm_sec.
1300	 */
1301	spin_lock_irq(&rtc_lock);
1302	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1303	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1304	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1305	ctrl = CMOS_READ(RTC_CONTROL);
1306	spin_unlock_irq(&rtc_lock);
1307
1308	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1309	{
1310		BCD_TO_BIN(alm_tm->tm_sec);
1311		BCD_TO_BIN(alm_tm->tm_min);
1312		BCD_TO_BIN(alm_tm->tm_hour);
1313	}
1314}
1315
1316#ifdef RTC_IRQ
1317/*
1318 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1319 * Rumour has it that if you frob the interrupt enable/disable
1320 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1321 * ensure you actually start getting interrupts. Probably for
1322 * compatibility with older/broken chipset RTC implementations.
1323 * We also clear out any old irq data after an ioctl() that
1324 * meddles with the interrupt enable/disable bits.
1325 */
1326
1327static void mask_rtc_irq_bit_locked(unsigned char bit)
1328{
1329	unsigned char val;
1330
1331	if (hpet_mask_rtc_irq_bit(bit))
1332		return;
1333	val = CMOS_READ(RTC_CONTROL);
1334	val &=  ~bit;
1335	CMOS_WRITE(val, RTC_CONTROL);
1336	CMOS_READ(RTC_INTR_FLAGS);
1337
1338	rtc_irq_data = 0;
1339}
1340
1341static void set_rtc_irq_bit_locked(unsigned char bit)
1342{
1343	unsigned char val;
1344
1345	if (hpet_set_rtc_irq_bit(bit))
1346		return;
1347	val = CMOS_READ(RTC_CONTROL);
1348	val |= bit;
1349	CMOS_WRITE(val, RTC_CONTROL);
1350	CMOS_READ(RTC_INTR_FLAGS);
1351
1352	rtc_irq_data = 0;
1353}
1354#endif
1355
1356MODULE_AUTHOR("Paul Gortmaker");
1357MODULE_LICENSE("GPL");
1358MODULE_ALIAS_MISCDEV(RTC_MINOR);
1359