rtc.c revision 40565f1962c5be9b9e285e05af01ab7771534868
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10	Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *	1.11	Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 */
52
53#define RTC_VERSION		"1.12ac"
54
55/*
56 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 *	design of the RTC, we don't want two different things trying to
59 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 *	this driver.)
61 */
62
63#include <linux/interrupt.h>
64#include <linux/module.h>
65#include <linux/kernel.h>
66#include <linux/types.h>
67#include <linux/miscdevice.h>
68#include <linux/ioport.h>
69#include <linux/fcntl.h>
70#include <linux/mc146818rtc.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/proc_fs.h>
74#include <linux/seq_file.h>
75#include <linux/spinlock.h>
76#include <linux/sysctl.h>
77#include <linux/wait.h>
78#include <linux/bcd.h>
79#include <linux/delay.h>
80
81#include <asm/current.h>
82#include <asm/uaccess.h>
83#include <asm/system.h>
84
85#if defined(__i386__)
86#include <asm/hpet.h>
87#endif
88
89#ifdef __sparc__
90#include <linux/pci.h>
91#include <asm/ebus.h>
92#ifdef __sparc_v9__
93#include <asm/isa.h>
94#endif
95
96static unsigned long rtc_port;
97static int rtc_irq = PCI_IRQ_NONE;
98#endif
99
100#ifdef	CONFIG_HPET_RTC_IRQ
101#undef	RTC_IRQ
102#endif
103
104#ifdef RTC_IRQ
105static int rtc_has_irq = 1;
106#endif
107
108#ifndef CONFIG_HPET_EMULATE_RTC
109#define is_hpet_enabled()			0
110#define hpet_set_alarm_time(hrs, min, sec) 	0
111#define hpet_set_periodic_freq(arg) 		0
112#define hpet_mask_rtc_irq_bit(arg) 		0
113#define hpet_set_rtc_irq_bit(arg) 		0
114#define hpet_rtc_timer_init() 			do { } while (0)
115#define hpet_rtc_dropped_irq() 			0
116#ifdef RTC_IRQ
117static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
118{
119	return 0;
120}
121#endif
122#else
123extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
124#endif
125
126/*
127 *	We sponge a minor off of the misc major. No need slurping
128 *	up another valuable major dev number for this. If you add
129 *	an ioctl, make sure you don't conflict with SPARC's RTC
130 *	ioctls.
131 */
132
133static struct fasync_struct *rtc_async_queue;
134
135static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
136
137#ifdef RTC_IRQ
138static void rtc_dropped_irq(unsigned long data);
139
140static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
141#endif
142
143static ssize_t rtc_read(struct file *file, char __user *buf,
144			size_t count, loff_t *ppos);
145
146static int rtc_ioctl(struct inode *inode, struct file *file,
147		     unsigned int cmd, unsigned long arg);
148
149#ifdef RTC_IRQ
150static unsigned int rtc_poll(struct file *file, poll_table *wait);
151#endif
152
153static void get_rtc_alm_time (struct rtc_time *alm_tm);
154#ifdef RTC_IRQ
155static void set_rtc_irq_bit_locked(unsigned char bit);
156static void mask_rtc_irq_bit_locked(unsigned char bit);
157
158static inline void set_rtc_irq_bit(unsigned char bit)
159{
160	spin_lock_irq(&rtc_lock);
161	set_rtc_irq_bit_locked(bit);
162	spin_unlock_irq(&rtc_lock);
163}
164
165static void mask_rtc_irq_bit(unsigned char bit)
166{
167	spin_lock_irq(&rtc_lock);
168	mask_rtc_irq_bit_locked(bit);
169	spin_unlock_irq(&rtc_lock);
170}
171#endif
172
173#ifdef CONFIG_PROC_FS
174static int rtc_proc_open(struct inode *inode, struct file *file);
175#endif
176
177/*
178 *	Bits in rtc_status. (6 bits of room for future expansion)
179 */
180
181#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
182#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
183
184/*
185 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
186 * protected by the big kernel lock. However, ioctl can still disable the timer
187 * in rtc_status and then with del_timer after the interrupt has read
188 * rtc_status but before mod_timer is called, which would then reenable the
189 * timer (but you would need to have an awful timing before you'd trip on it)
190 */
191static unsigned long rtc_status = 0;	/* bitmapped status byte.	*/
192static unsigned long rtc_freq = 0;	/* Current periodic IRQ rate	*/
193static unsigned long rtc_irq_data = 0;	/* our output to the world	*/
194static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
195
196#ifdef RTC_IRQ
197/*
198 * rtc_task_lock nests inside rtc_lock.
199 */
200static DEFINE_SPINLOCK(rtc_task_lock);
201static rtc_task_t *rtc_callback = NULL;
202#endif
203
204/*
205 *	If this driver ever becomes modularised, it will be really nice
206 *	to make the epoch retain its value across module reload...
207 */
208
209static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
210
211static const unsigned char days_in_mo[] =
212{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
213
214/*
215 * Returns true if a clock update is in progress
216 */
217static inline unsigned char rtc_is_updating(void)
218{
219	unsigned long flags;
220	unsigned char uip;
221
222	spin_lock_irqsave(&rtc_lock, flags);
223	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
224	spin_unlock_irqrestore(&rtc_lock, flags);
225	return uip;
226}
227
228#ifdef RTC_IRQ
229/*
230 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
231 *	but there is possibility of conflicting with the set_rtc_mmss()
232 *	call (the rtc irq and the timer irq can easily run at the same
233 *	time in two different CPUs). So we need to serialize
234 *	accesses to the chip with the rtc_lock spinlock that each
235 *	architecture should implement in the timer code.
236 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
237 */
238
239irqreturn_t rtc_interrupt(int irq, void *dev_id)
240{
241	/*
242	 *	Can be an alarm interrupt, update complete interrupt,
243	 *	or a periodic interrupt. We store the status in the
244	 *	low byte and the number of interrupts received since
245	 *	the last read in the remainder of rtc_irq_data.
246	 */
247
248	spin_lock (&rtc_lock);
249	rtc_irq_data += 0x100;
250	rtc_irq_data &= ~0xff;
251	if (is_hpet_enabled()) {
252		/*
253		 * In this case it is HPET RTC interrupt handler
254		 * calling us, with the interrupt information
255		 * passed as arg1, instead of irq.
256		 */
257		rtc_irq_data |= (unsigned long)irq & 0xF0;
258	} else {
259		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
260	}
261
262	if (rtc_status & RTC_TIMER_ON)
263		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
264
265	spin_unlock (&rtc_lock);
266
267	/* Now do the rest of the actions */
268	spin_lock(&rtc_task_lock);
269	if (rtc_callback)
270		rtc_callback->func(rtc_callback->private_data);
271	spin_unlock(&rtc_task_lock);
272	wake_up_interruptible(&rtc_wait);
273
274	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
275
276	return IRQ_HANDLED;
277}
278#endif
279
280/*
281 * sysctl-tuning infrastructure.
282 */
283static ctl_table rtc_table[] = {
284	{
285		.ctl_name	= 1,
286		.procname	= "max-user-freq",
287		.data		= &rtc_max_user_freq,
288		.maxlen		= sizeof(int),
289		.mode		= 0644,
290		.proc_handler	= &proc_dointvec,
291	},
292	{ .ctl_name = 0 }
293};
294
295static ctl_table rtc_root[] = {
296	{
297		.ctl_name	= 1,
298		.procname	= "rtc",
299		.maxlen		= 0,
300		.mode		= 0555,
301		.child		= rtc_table,
302	},
303	{ .ctl_name = 0 }
304};
305
306static ctl_table dev_root[] = {
307	{
308		.ctl_name	= CTL_DEV,
309		.procname	= "dev",
310		.maxlen		= 0,
311		.mode		= 0555,
312		.child		= rtc_root,
313	},
314	{ .ctl_name = 0 }
315};
316
317static struct ctl_table_header *sysctl_header;
318
319static int __init init_sysctl(void)
320{
321    sysctl_header = register_sysctl_table(dev_root, 0);
322    return 0;
323}
324
325static void __exit cleanup_sysctl(void)
326{
327    unregister_sysctl_table(sysctl_header);
328}
329
330/*
331 *	Now all the various file operations that we export.
332 */
333
334static ssize_t rtc_read(struct file *file, char __user *buf,
335			size_t count, loff_t *ppos)
336{
337#ifndef RTC_IRQ
338	return -EIO;
339#else
340	DECLARE_WAITQUEUE(wait, current);
341	unsigned long data;
342	ssize_t retval;
343
344	if (rtc_has_irq == 0)
345		return -EIO;
346
347	/*
348	 * Historically this function used to assume that sizeof(unsigned long)
349	 * is the same in userspace and kernelspace.  This lead to problems
350	 * for configurations with multiple ABIs such a the MIPS o32 and 64
351	 * ABIs supported on the same kernel.  So now we support read of both
352	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
353	 * userspace ABI.
354	 */
355	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
356		return -EINVAL;
357
358	add_wait_queue(&rtc_wait, &wait);
359
360	do {
361		/* First make it right. Then make it fast. Putting this whole
362		 * block within the parentheses of a while would be too
363		 * confusing. And no, xchg() is not the answer. */
364
365		__set_current_state(TASK_INTERRUPTIBLE);
366
367		spin_lock_irq (&rtc_lock);
368		data = rtc_irq_data;
369		rtc_irq_data = 0;
370		spin_unlock_irq (&rtc_lock);
371
372		if (data != 0)
373			break;
374
375		if (file->f_flags & O_NONBLOCK) {
376			retval = -EAGAIN;
377			goto out;
378		}
379		if (signal_pending(current)) {
380			retval = -ERESTARTSYS;
381			goto out;
382		}
383		schedule();
384	} while (1);
385
386	if (count == sizeof(unsigned int))
387		retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int);
388	else
389		retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
390	if (!retval)
391		retval = count;
392 out:
393	current->state = TASK_RUNNING;
394	remove_wait_queue(&rtc_wait, &wait);
395
396	return retval;
397#endif
398}
399
400static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
401{
402	struct rtc_time wtime;
403
404#ifdef RTC_IRQ
405	if (rtc_has_irq == 0) {
406		switch (cmd) {
407		case RTC_AIE_OFF:
408		case RTC_AIE_ON:
409		case RTC_PIE_OFF:
410		case RTC_PIE_ON:
411		case RTC_UIE_OFF:
412		case RTC_UIE_ON:
413		case RTC_IRQP_READ:
414		case RTC_IRQP_SET:
415			return -EINVAL;
416		};
417	}
418#endif
419
420	switch (cmd) {
421#ifdef RTC_IRQ
422	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
423	{
424		mask_rtc_irq_bit(RTC_AIE);
425		return 0;
426	}
427	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
428	{
429		set_rtc_irq_bit(RTC_AIE);
430		return 0;
431	}
432	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
433	{
434		unsigned long flags; /* can be called from isr via rtc_control() */
435		spin_lock_irqsave (&rtc_lock, flags);
436		mask_rtc_irq_bit_locked(RTC_PIE);
437		if (rtc_status & RTC_TIMER_ON) {
438			rtc_status &= ~RTC_TIMER_ON;
439			del_timer(&rtc_irq_timer);
440		}
441		spin_unlock_irqrestore (&rtc_lock, flags);
442		return 0;
443	}
444	case RTC_PIE_ON:	/* Allow periodic ints		*/
445	{
446		unsigned long flags; /* can be called from isr via rtc_control() */
447		/*
448		 * We don't really want Joe User enabling more
449		 * than 64Hz of interrupts on a multi-user machine.
450		 */
451		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
452			(!capable(CAP_SYS_RESOURCE)))
453			return -EACCES;
454
455		spin_lock_irqsave (&rtc_lock, flags);
456		if (!(rtc_status & RTC_TIMER_ON)) {
457			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
458					2*HZ/100);
459			rtc_status |= RTC_TIMER_ON;
460		}
461		set_rtc_irq_bit_locked(RTC_PIE);
462		spin_unlock_irqrestore (&rtc_lock, flags);
463		return 0;
464	}
465	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
466	{
467		mask_rtc_irq_bit(RTC_UIE);
468		return 0;
469	}
470	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
471	{
472		set_rtc_irq_bit(RTC_UIE);
473		return 0;
474	}
475#endif
476	case RTC_ALM_READ:	/* Read the present alarm time */
477	{
478		/*
479		 * This returns a struct rtc_time. Reading >= 0xc0
480		 * means "don't care" or "match all". Only the tm_hour,
481		 * tm_min, and tm_sec values are filled in.
482		 */
483		memset(&wtime, 0, sizeof(struct rtc_time));
484		get_rtc_alm_time(&wtime);
485		break;
486	}
487	case RTC_ALM_SET:	/* Store a time into the alarm */
488	{
489		/*
490		 * This expects a struct rtc_time. Writing 0xff means
491		 * "don't care" or "match all". Only the tm_hour,
492		 * tm_min and tm_sec are used.
493		 */
494		unsigned char hrs, min, sec;
495		struct rtc_time alm_tm;
496
497		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
498				   sizeof(struct rtc_time)))
499			return -EFAULT;
500
501		hrs = alm_tm.tm_hour;
502		min = alm_tm.tm_min;
503		sec = alm_tm.tm_sec;
504
505		spin_lock_irq(&rtc_lock);
506		if (hpet_set_alarm_time(hrs, min, sec)) {
507			/*
508			 * Fallthru and set alarm time in CMOS too,
509			 * so that we will get proper value in RTC_ALM_READ
510			 */
511		}
512		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
513		    RTC_ALWAYS_BCD)
514		{
515			if (sec < 60) BIN_TO_BCD(sec);
516			else sec = 0xff;
517
518			if (min < 60) BIN_TO_BCD(min);
519			else min = 0xff;
520
521			if (hrs < 24) BIN_TO_BCD(hrs);
522			else hrs = 0xff;
523		}
524		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
525		CMOS_WRITE(min, RTC_MINUTES_ALARM);
526		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
527		spin_unlock_irq(&rtc_lock);
528
529		return 0;
530	}
531	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
532	{
533		memset(&wtime, 0, sizeof(struct rtc_time));
534		rtc_get_rtc_time(&wtime);
535		break;
536	}
537	case RTC_SET_TIME:	/* Set the RTC */
538	{
539		struct rtc_time rtc_tm;
540		unsigned char mon, day, hrs, min, sec, leap_yr;
541		unsigned char save_control, save_freq_select;
542		unsigned int yrs;
543#ifdef CONFIG_MACH_DECSTATION
544		unsigned int real_yrs;
545#endif
546
547		if (!capable(CAP_SYS_TIME))
548			return -EACCES;
549
550		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
551				   sizeof(struct rtc_time)))
552			return -EFAULT;
553
554		yrs = rtc_tm.tm_year + 1900;
555		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
556		day = rtc_tm.tm_mday;
557		hrs = rtc_tm.tm_hour;
558		min = rtc_tm.tm_min;
559		sec = rtc_tm.tm_sec;
560
561		if (yrs < 1970)
562			return -EINVAL;
563
564		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
565
566		if ((mon > 12) || (day == 0))
567			return -EINVAL;
568
569		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
570			return -EINVAL;
571
572		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
573			return -EINVAL;
574
575		if ((yrs -= epoch) > 255)    /* They are unsigned */
576			return -EINVAL;
577
578		spin_lock_irq(&rtc_lock);
579#ifdef CONFIG_MACH_DECSTATION
580		real_yrs = yrs;
581		yrs = 72;
582
583		/*
584		 * We want to keep the year set to 73 until March
585		 * for non-leap years, so that Feb, 29th is handled
586		 * correctly.
587		 */
588		if (!leap_yr && mon < 3) {
589			real_yrs--;
590			yrs = 73;
591		}
592#endif
593		/* These limits and adjustments are independent of
594		 * whether the chip is in binary mode or not.
595		 */
596		if (yrs > 169) {
597			spin_unlock_irq(&rtc_lock);
598			return -EINVAL;
599		}
600		if (yrs >= 100)
601			yrs -= 100;
602
603		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
604		    || RTC_ALWAYS_BCD) {
605			BIN_TO_BCD(sec);
606			BIN_TO_BCD(min);
607			BIN_TO_BCD(hrs);
608			BIN_TO_BCD(day);
609			BIN_TO_BCD(mon);
610			BIN_TO_BCD(yrs);
611		}
612
613		save_control = CMOS_READ(RTC_CONTROL);
614		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
615		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
616		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
617
618#ifdef CONFIG_MACH_DECSTATION
619		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
620#endif
621		CMOS_WRITE(yrs, RTC_YEAR);
622		CMOS_WRITE(mon, RTC_MONTH);
623		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
624		CMOS_WRITE(hrs, RTC_HOURS);
625		CMOS_WRITE(min, RTC_MINUTES);
626		CMOS_WRITE(sec, RTC_SECONDS);
627
628		CMOS_WRITE(save_control, RTC_CONTROL);
629		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
630
631		spin_unlock_irq(&rtc_lock);
632		return 0;
633	}
634#ifdef RTC_IRQ
635	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
636	{
637		return put_user(rtc_freq, (unsigned long __user *)arg);
638	}
639	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
640	{
641		int tmp = 0;
642		unsigned char val;
643		unsigned long flags; /* can be called from isr via rtc_control() */
644
645		/*
646		 * The max we can do is 8192Hz.
647		 */
648		if ((arg < 2) || (arg > 8192))
649			return -EINVAL;
650		/*
651		 * We don't really want Joe User generating more
652		 * than 64Hz of interrupts on a multi-user machine.
653		 */
654		if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
655			return -EACCES;
656
657		while (arg > (1<<tmp))
658			tmp++;
659
660		/*
661		 * Check that the input was really a power of 2.
662		 */
663		if (arg != (1<<tmp))
664			return -EINVAL;
665
666		spin_lock_irqsave(&rtc_lock, flags);
667		if (hpet_set_periodic_freq(arg)) {
668			spin_unlock_irqrestore(&rtc_lock, flags);
669			return 0;
670		}
671		rtc_freq = arg;
672
673		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
674		val |= (16 - tmp);
675		CMOS_WRITE(val, RTC_FREQ_SELECT);
676		spin_unlock_irqrestore(&rtc_lock, flags);
677		return 0;
678	}
679#endif
680	case RTC_EPOCH_READ:	/* Read the epoch.	*/
681	{
682		return put_user (epoch, (unsigned long __user *)arg);
683	}
684	case RTC_EPOCH_SET:	/* Set the epoch.	*/
685	{
686		/*
687		 * There were no RTC clocks before 1900.
688		 */
689		if (arg < 1900)
690			return -EINVAL;
691
692		if (!capable(CAP_SYS_TIME))
693			return -EACCES;
694
695		epoch = arg;
696		return 0;
697	}
698	default:
699		return -ENOTTY;
700	}
701	return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
702}
703
704static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
705		     unsigned long arg)
706{
707	return rtc_do_ioctl(cmd, arg, 0);
708}
709
710/*
711 *	We enforce only one user at a time here with the open/close.
712 *	Also clear the previous interrupt data on an open, and clean
713 *	up things on a close.
714 */
715
716/* We use rtc_lock to protect against concurrent opens. So the BKL is not
717 * needed here. Or anywhere else in this driver. */
718static int rtc_open(struct inode *inode, struct file *file)
719{
720	spin_lock_irq (&rtc_lock);
721
722	if(rtc_status & RTC_IS_OPEN)
723		goto out_busy;
724
725	rtc_status |= RTC_IS_OPEN;
726
727	rtc_irq_data = 0;
728	spin_unlock_irq (&rtc_lock);
729	return 0;
730
731out_busy:
732	spin_unlock_irq (&rtc_lock);
733	return -EBUSY;
734}
735
736static int rtc_fasync (int fd, struct file *filp, int on)
737
738{
739	return fasync_helper (fd, filp, on, &rtc_async_queue);
740}
741
742static int rtc_release(struct inode *inode, struct file *file)
743{
744#ifdef RTC_IRQ
745	unsigned char tmp;
746
747	if (rtc_has_irq == 0)
748		goto no_irq;
749
750	/*
751	 * Turn off all interrupts once the device is no longer
752	 * in use, and clear the data.
753	 */
754
755	spin_lock_irq(&rtc_lock);
756	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
757		tmp = CMOS_READ(RTC_CONTROL);
758		tmp &=  ~RTC_PIE;
759		tmp &=  ~RTC_AIE;
760		tmp &=  ~RTC_UIE;
761		CMOS_WRITE(tmp, RTC_CONTROL);
762		CMOS_READ(RTC_INTR_FLAGS);
763	}
764	if (rtc_status & RTC_TIMER_ON) {
765		rtc_status &= ~RTC_TIMER_ON;
766		del_timer(&rtc_irq_timer);
767	}
768	spin_unlock_irq(&rtc_lock);
769
770	if (file->f_flags & FASYNC) {
771		rtc_fasync (-1, file, 0);
772	}
773no_irq:
774#endif
775
776	spin_lock_irq (&rtc_lock);
777	rtc_irq_data = 0;
778	rtc_status &= ~RTC_IS_OPEN;
779	spin_unlock_irq (&rtc_lock);
780	return 0;
781}
782
783#ifdef RTC_IRQ
784/* Called without the kernel lock - fine */
785static unsigned int rtc_poll(struct file *file, poll_table *wait)
786{
787	unsigned long l;
788
789	if (rtc_has_irq == 0)
790		return 0;
791
792	poll_wait(file, &rtc_wait, wait);
793
794	spin_lock_irq (&rtc_lock);
795	l = rtc_irq_data;
796	spin_unlock_irq (&rtc_lock);
797
798	if (l != 0)
799		return POLLIN | POLLRDNORM;
800	return 0;
801}
802#endif
803
804/*
805 * exported stuffs
806 */
807
808EXPORT_SYMBOL(rtc_register);
809EXPORT_SYMBOL(rtc_unregister);
810EXPORT_SYMBOL(rtc_control);
811
812int rtc_register(rtc_task_t *task)
813{
814#ifndef RTC_IRQ
815	return -EIO;
816#else
817	if (task == NULL || task->func == NULL)
818		return -EINVAL;
819	spin_lock_irq(&rtc_lock);
820	if (rtc_status & RTC_IS_OPEN) {
821		spin_unlock_irq(&rtc_lock);
822		return -EBUSY;
823	}
824	spin_lock(&rtc_task_lock);
825	if (rtc_callback) {
826		spin_unlock(&rtc_task_lock);
827		spin_unlock_irq(&rtc_lock);
828		return -EBUSY;
829	}
830	rtc_status |= RTC_IS_OPEN;
831	rtc_callback = task;
832	spin_unlock(&rtc_task_lock);
833	spin_unlock_irq(&rtc_lock);
834	return 0;
835#endif
836}
837
838int rtc_unregister(rtc_task_t *task)
839{
840#ifndef RTC_IRQ
841	return -EIO;
842#else
843	unsigned char tmp;
844
845	spin_lock_irq(&rtc_lock);
846	spin_lock(&rtc_task_lock);
847	if (rtc_callback != task) {
848		spin_unlock(&rtc_task_lock);
849		spin_unlock_irq(&rtc_lock);
850		return -ENXIO;
851	}
852	rtc_callback = NULL;
853
854	/* disable controls */
855	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
856		tmp = CMOS_READ(RTC_CONTROL);
857		tmp &= ~RTC_PIE;
858		tmp &= ~RTC_AIE;
859		tmp &= ~RTC_UIE;
860		CMOS_WRITE(tmp, RTC_CONTROL);
861		CMOS_READ(RTC_INTR_FLAGS);
862	}
863	if (rtc_status & RTC_TIMER_ON) {
864		rtc_status &= ~RTC_TIMER_ON;
865		del_timer(&rtc_irq_timer);
866	}
867	rtc_status &= ~RTC_IS_OPEN;
868	spin_unlock(&rtc_task_lock);
869	spin_unlock_irq(&rtc_lock);
870	return 0;
871#endif
872}
873
874int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
875{
876#ifndef RTC_IRQ
877	return -EIO;
878#else
879	unsigned long flags;
880	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
881		return -EINVAL;
882	spin_lock_irqsave(&rtc_task_lock, flags);
883	if (rtc_callback != task) {
884		spin_unlock_irqrestore(&rtc_task_lock, flags);
885		return -ENXIO;
886	}
887	spin_unlock_irqrestore(&rtc_task_lock, flags);
888	return rtc_do_ioctl(cmd, arg, 1);
889#endif
890}
891
892
893/*
894 *	The various file operations we support.
895 */
896
897static const struct file_operations rtc_fops = {
898	.owner		= THIS_MODULE,
899	.llseek		= no_llseek,
900	.read		= rtc_read,
901#ifdef RTC_IRQ
902	.poll		= rtc_poll,
903#endif
904	.ioctl		= rtc_ioctl,
905	.open		= rtc_open,
906	.release	= rtc_release,
907	.fasync		= rtc_fasync,
908};
909
910static struct miscdevice rtc_dev = {
911	.minor		= RTC_MINOR,
912	.name		= "rtc",
913	.fops		= &rtc_fops,
914};
915
916#ifdef CONFIG_PROC_FS
917static const struct file_operations rtc_proc_fops = {
918	.owner = THIS_MODULE,
919	.open = rtc_proc_open,
920	.read  = seq_read,
921	.llseek = seq_lseek,
922	.release = single_release,
923};
924#endif
925
926static int __init rtc_init(void)
927{
928#ifdef CONFIG_PROC_FS
929	struct proc_dir_entry *ent;
930#endif
931#if defined(__alpha__) || defined(__mips__)
932	unsigned int year, ctrl;
933	char *guess = NULL;
934#endif
935#ifdef __sparc__
936	struct linux_ebus *ebus;
937	struct linux_ebus_device *edev;
938#ifdef __sparc_v9__
939	struct sparc_isa_bridge *isa_br;
940	struct sparc_isa_device *isa_dev;
941#endif
942#else
943	void *r;
944#ifdef RTC_IRQ
945	irq_handler_t rtc_int_handler_ptr;
946#endif
947#endif
948
949#ifdef __sparc__
950	for_each_ebus(ebus) {
951		for_each_ebusdev(edev, ebus) {
952			if(strcmp(edev->prom_node->name, "rtc") == 0) {
953				rtc_port = edev->resource[0].start;
954				rtc_irq = edev->irqs[0];
955				goto found;
956			}
957		}
958	}
959#ifdef __sparc_v9__
960	for_each_isa(isa_br) {
961		for_each_isadev(isa_dev, isa_br) {
962			if (strcmp(isa_dev->prom_node->name, "rtc") == 0) {
963				rtc_port = isa_dev->resource.start;
964				rtc_irq = isa_dev->irq;
965				goto found;
966			}
967		}
968	}
969#endif
970	rtc_has_irq = 0;
971	printk(KERN_ERR "rtc_init: no PC rtc found\n");
972	return -EIO;
973
974found:
975	if (rtc_irq == PCI_IRQ_NONE) {
976		rtc_has_irq = 0;
977		goto no_irq;
978	}
979
980	/*
981	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
982	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
983	 */
984	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc", (void *)&rtc_port)) {
985		rtc_has_irq = 0;
986		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
987		return -EIO;
988	}
989no_irq:
990#else
991	if (RTC_IOMAPPED)
992		r = request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
993	else
994		r = request_mem_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc");
995	if (!r) {
996#ifdef RTC_IRQ
997		rtc_has_irq = 0;
998#endif
999		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1000		       (long)(RTC_PORT(0)));
1001		return -EIO;
1002	}
1003
1004#ifdef RTC_IRQ
1005	if (is_hpet_enabled()) {
1006		rtc_int_handler_ptr = hpet_rtc_interrupt;
1007	} else {
1008		rtc_int_handler_ptr = rtc_interrupt;
1009	}
1010
1011	if(request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED, "rtc", NULL)) {
1012		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1013		rtc_has_irq = 0;
1014		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1015		if (RTC_IOMAPPED)
1016			release_region(RTC_PORT(0), RTC_IO_EXTENT);
1017		else
1018			release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1019		return -EIO;
1020	}
1021	hpet_rtc_timer_init();
1022
1023#endif
1024
1025#endif /* __sparc__ vs. others */
1026
1027	if (misc_register(&rtc_dev)) {
1028#ifdef RTC_IRQ
1029		free_irq(RTC_IRQ, NULL);
1030		rtc_has_irq = 0;
1031#endif
1032		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1033		return -ENODEV;
1034	}
1035
1036#ifdef CONFIG_PROC_FS
1037	ent = create_proc_entry("driver/rtc", 0, NULL);
1038	if (ent)
1039		ent->proc_fops = &rtc_proc_fops;
1040	else
1041		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1042#endif
1043
1044#if defined(__alpha__) || defined(__mips__)
1045	rtc_freq = HZ;
1046
1047	/* Each operating system on an Alpha uses its own epoch.
1048	   Let's try to guess which one we are using now. */
1049
1050	if (rtc_is_updating() != 0)
1051		msleep(20);
1052
1053	spin_lock_irq(&rtc_lock);
1054	year = CMOS_READ(RTC_YEAR);
1055	ctrl = CMOS_READ(RTC_CONTROL);
1056	spin_unlock_irq(&rtc_lock);
1057
1058	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1059		BCD_TO_BIN(year);       /* This should never happen... */
1060
1061	if (year < 20) {
1062		epoch = 2000;
1063		guess = "SRM (post-2000)";
1064	} else if (year >= 20 && year < 48) {
1065		epoch = 1980;
1066		guess = "ARC console";
1067	} else if (year >= 48 && year < 72) {
1068		epoch = 1952;
1069		guess = "Digital UNIX";
1070#if defined(__mips__)
1071	} else if (year >= 72 && year < 74) {
1072		epoch = 2000;
1073		guess = "Digital DECstation";
1074#else
1075	} else if (year >= 70) {
1076		epoch = 1900;
1077		guess = "Standard PC (1900)";
1078#endif
1079	}
1080	if (guess)
1081		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
1082#endif
1083#ifdef RTC_IRQ
1084	if (rtc_has_irq == 0)
1085		goto no_irq2;
1086
1087	spin_lock_irq(&rtc_lock);
1088	rtc_freq = 1024;
1089	if (!hpet_set_periodic_freq(rtc_freq)) {
1090		/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
1091		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
1092	}
1093	spin_unlock_irq(&rtc_lock);
1094no_irq2:
1095#endif
1096
1097	(void) init_sysctl();
1098
1099	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1100
1101	return 0;
1102}
1103
1104static void __exit rtc_exit (void)
1105{
1106	cleanup_sysctl();
1107	remove_proc_entry ("driver/rtc", NULL);
1108	misc_deregister(&rtc_dev);
1109
1110#ifdef __sparc__
1111	if (rtc_has_irq)
1112		free_irq (rtc_irq, &rtc_port);
1113#else
1114	if (RTC_IOMAPPED)
1115		release_region(RTC_PORT(0), RTC_IO_EXTENT);
1116	else
1117		release_mem_region(RTC_PORT(0), RTC_IO_EXTENT);
1118#ifdef RTC_IRQ
1119	if (rtc_has_irq)
1120		free_irq (RTC_IRQ, NULL);
1121#endif
1122#endif /* __sparc__ */
1123}
1124
1125module_init(rtc_init);
1126module_exit(rtc_exit);
1127
1128#ifdef RTC_IRQ
1129/*
1130 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1131 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1132 *	Since the interrupt handler doesn't get called, the IRQ status
1133 *	byte doesn't get read, and the RTC stops generating interrupts.
1134 *	A timer is set, and will call this function if/when that happens.
1135 *	To get it out of this stalled state, we just read the status.
1136 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1137 *	(You *really* shouldn't be trying to use a non-realtime system
1138 *	for something that requires a steady > 1KHz signal anyways.)
1139 */
1140
1141static void rtc_dropped_irq(unsigned long data)
1142{
1143	unsigned long freq;
1144
1145	spin_lock_irq (&rtc_lock);
1146
1147	if (hpet_rtc_dropped_irq()) {
1148		spin_unlock_irq(&rtc_lock);
1149		return;
1150	}
1151
1152	/* Just in case someone disabled the timer from behind our back... */
1153	if (rtc_status & RTC_TIMER_ON)
1154		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1155
1156	rtc_irq_data += ((rtc_freq/HZ)<<8);
1157	rtc_irq_data &= ~0xff;
1158	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1159
1160	freq = rtc_freq;
1161
1162	spin_unlock_irq(&rtc_lock);
1163
1164	printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);
1165
1166	/* Now we have new data */
1167	wake_up_interruptible(&rtc_wait);
1168
1169	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
1170}
1171#endif
1172
1173#ifdef CONFIG_PROC_FS
1174/*
1175 *	Info exported via "/proc/driver/rtc".
1176 */
1177
1178static int rtc_proc_show(struct seq_file *seq, void *v)
1179{
1180#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1181#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1182	struct rtc_time tm;
1183	unsigned char batt, ctrl;
1184	unsigned long freq;
1185
1186	spin_lock_irq(&rtc_lock);
1187	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1188	ctrl = CMOS_READ(RTC_CONTROL);
1189	freq = rtc_freq;
1190	spin_unlock_irq(&rtc_lock);
1191
1192
1193	rtc_get_rtc_time(&tm);
1194
1195	/*
1196	 * There is no way to tell if the luser has the RTC set for local
1197	 * time or for Universal Standard Time (GMT). Probably local though.
1198	 */
1199	seq_printf(seq,
1200		   "rtc_time\t: %02d:%02d:%02d\n"
1201		   "rtc_date\t: %04d-%02d-%02d\n"
1202		   "rtc_epoch\t: %04lu\n",
1203		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1204		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1205
1206	get_rtc_alm_time(&tm);
1207
1208	/*
1209	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1210	 * match any value for that particular field. Values that are
1211	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1212	 */
1213	seq_puts(seq, "alarm\t\t: ");
1214	if (tm.tm_hour <= 24)
1215		seq_printf(seq, "%02d:", tm.tm_hour);
1216	else
1217		seq_puts(seq, "**:");
1218
1219	if (tm.tm_min <= 59)
1220		seq_printf(seq, "%02d:", tm.tm_min);
1221	else
1222		seq_puts(seq, "**:");
1223
1224	if (tm.tm_sec <= 59)
1225		seq_printf(seq, "%02d\n", tm.tm_sec);
1226	else
1227		seq_puts(seq, "**\n");
1228
1229	seq_printf(seq,
1230		   "DST_enable\t: %s\n"
1231		   "BCD\t\t: %s\n"
1232		   "24hr\t\t: %s\n"
1233		   "square_wave\t: %s\n"
1234		   "alarm_IRQ\t: %s\n"
1235		   "update_IRQ\t: %s\n"
1236		   "periodic_IRQ\t: %s\n"
1237		   "periodic_freq\t: %ld\n"
1238		   "batt_status\t: %s\n",
1239		   YN(RTC_DST_EN),
1240		   NY(RTC_DM_BINARY),
1241		   YN(RTC_24H),
1242		   YN(RTC_SQWE),
1243		   YN(RTC_AIE),
1244		   YN(RTC_UIE),
1245		   YN(RTC_PIE),
1246		   freq,
1247		   batt ? "okay" : "dead");
1248
1249	return  0;
1250#undef YN
1251#undef NY
1252}
1253
1254static int rtc_proc_open(struct inode *inode, struct file *file)
1255{
1256	return single_open(file, rtc_proc_show, NULL);
1257}
1258#endif
1259
1260void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1261{
1262	unsigned long uip_watchdog = jiffies, flags;
1263	unsigned char ctrl;
1264#ifdef CONFIG_MACH_DECSTATION
1265	unsigned int real_year;
1266#endif
1267
1268	/*
1269	 * read RTC once any update in progress is done. The update
1270	 * can take just over 2ms. We wait 20ms. There is no need to
1271	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1272	 * If you need to know *exactly* when a second has started, enable
1273	 * periodic update complete interrupts, (via ioctl) and then
1274	 * immediately read /dev/rtc which will block until you get the IRQ.
1275	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1276	 */
1277
1278	while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
1279		cpu_relax();
1280
1281	/*
1282	 * Only the values that we read from the RTC are set. We leave
1283	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1284	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1285	 * only updated by the RTC when initially set to a non-zero value.
1286	 */
1287	spin_lock_irqsave(&rtc_lock, flags);
1288	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1289	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1290	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1291	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1292	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1293	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1294	/* Only set from 2.6.16 onwards */
1295	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1296
1297#ifdef CONFIG_MACH_DECSTATION
1298	real_year = CMOS_READ(RTC_DEC_YEAR);
1299#endif
1300	ctrl = CMOS_READ(RTC_CONTROL);
1301	spin_unlock_irqrestore(&rtc_lock, flags);
1302
1303	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1304	{
1305		BCD_TO_BIN(rtc_tm->tm_sec);
1306		BCD_TO_BIN(rtc_tm->tm_min);
1307		BCD_TO_BIN(rtc_tm->tm_hour);
1308		BCD_TO_BIN(rtc_tm->tm_mday);
1309		BCD_TO_BIN(rtc_tm->tm_mon);
1310		BCD_TO_BIN(rtc_tm->tm_year);
1311		BCD_TO_BIN(rtc_tm->tm_wday);
1312	}
1313
1314#ifdef CONFIG_MACH_DECSTATION
1315	rtc_tm->tm_year += real_year - 72;
1316#endif
1317
1318	/*
1319	 * Account for differences between how the RTC uses the values
1320	 * and how they are defined in a struct rtc_time;
1321	 */
1322	if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
1323		rtc_tm->tm_year += 100;
1324
1325	rtc_tm->tm_mon--;
1326}
1327
1328static void get_rtc_alm_time(struct rtc_time *alm_tm)
1329{
1330	unsigned char ctrl;
1331
1332	/*
1333	 * Only the values that we read from the RTC are set. That
1334	 * means only tm_hour, tm_min, and tm_sec.
1335	 */
1336	spin_lock_irq(&rtc_lock);
1337	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1338	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1339	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1340	ctrl = CMOS_READ(RTC_CONTROL);
1341	spin_unlock_irq(&rtc_lock);
1342
1343	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1344	{
1345		BCD_TO_BIN(alm_tm->tm_sec);
1346		BCD_TO_BIN(alm_tm->tm_min);
1347		BCD_TO_BIN(alm_tm->tm_hour);
1348	}
1349}
1350
1351#ifdef RTC_IRQ
1352/*
1353 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1354 * Rumour has it that if you frob the interrupt enable/disable
1355 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1356 * ensure you actually start getting interrupts. Probably for
1357 * compatibility with older/broken chipset RTC implementations.
1358 * We also clear out any old irq data after an ioctl() that
1359 * meddles with the interrupt enable/disable bits.
1360 */
1361
1362static void mask_rtc_irq_bit_locked(unsigned char bit)
1363{
1364	unsigned char val;
1365
1366	if (hpet_mask_rtc_irq_bit(bit))
1367		return;
1368	val = CMOS_READ(RTC_CONTROL);
1369	val &=  ~bit;
1370	CMOS_WRITE(val, RTC_CONTROL);
1371	CMOS_READ(RTC_INTR_FLAGS);
1372
1373	rtc_irq_data = 0;
1374}
1375
1376static void set_rtc_irq_bit_locked(unsigned char bit)
1377{
1378	unsigned char val;
1379
1380	if (hpet_set_rtc_irq_bit(bit))
1381		return;
1382	val = CMOS_READ(RTC_CONTROL);
1383	val |= bit;
1384	CMOS_WRITE(val, RTC_CONTROL);
1385	CMOS_READ(RTC_INTR_FLAGS);
1386
1387	rtc_irq_data = 0;
1388}
1389#endif
1390
1391MODULE_AUTHOR("Paul Gortmaker");
1392MODULE_LICENSE("GPL");
1393MODULE_ALIAS_MISCDEV(RTC_MINOR);
1394