rtc.c revision 5fd1fe9c582e00ca0a98f852cd693dc3caf607a0
1/*
2 *	Real Time Clock interface for Linux
3 *
4 *	Copyright (C) 1996 Paul Gortmaker
5 *
6 *	This driver allows use of the real time clock (built into
7 *	nearly all computers) from user space. It exports the /dev/rtc
8 *	interface supporting various ioctl() and also the
9 *	/proc/driver/rtc pseudo-file for status information.
10 *
11 *	The ioctls can be used to set the interrupt behaviour and
12 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 *	interface can be used to make use of these timer interrupts,
14 *	be they interval or alarm based.
15 *
16 *	The /dev/rtc interface will block on reads until an interrupt
17 *	has been received. If a RTC interrupt has already happened,
18 *	it will output an unsigned long and then block. The output value
19 *	contains the interrupt status in the low byte and the number of
20 *	interrupts since the last read in the remaining high bytes. The
21 *	/dev/rtc interface can also be used with the select(2) call.
22 *
23 *	This program is free software; you can redistribute it and/or
24 *	modify it under the terms of the GNU General Public License
25 *	as published by the Free Software Foundation; either version
26 *	2 of the License, or (at your option) any later version.
27 *
28 *	Based on other minimal char device drivers, like Alan's
29 *	watchdog, Ted's random, etc. etc.
30 *
31 *	1.07	Paul Gortmaker.
32 *	1.08	Miquel van Smoorenburg: disallow certain things on the
33 *		DEC Alpha as the CMOS clock is also used for other things.
34 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
35 *	1.09a	Pete Zaitcev: Sun SPARC
36 *	1.09b	Jeff Garzik: Modularize, init cleanup
37 *	1.09c	Jeff Garzik: SMP cleanup
38 *	1.10	Paul Barton-Davis: add support for async I/O
39 *	1.10a	Andrea Arcangeli: Alpha updates
40 *	1.10b	Andrew Morton: SMP lock fix
41 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
42 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
43 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
44 *	1.11	Takashi Iwai: Kernel access functions
45 *			      rtc_register/rtc_unregister/rtc_control
46 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 *		CONFIG_HPET_EMULATE_RTC
49 *	1.12a	Maciej W. Rozycki: Handle memory-mapped chips properly.
50 *	1.12ac	Alan Cox: Allow read access to the day of week register
51 */
52
53#define RTC_VERSION		"1.12ac"
54
55/*
56 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 *	design of the RTC, we don't want two different things trying to
59 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 *	this driver.)
61 */
62
63#include <linux/interrupt.h>
64#include <linux/module.h>
65#include <linux/kernel.h>
66#include <linux/types.h>
67#include <linux/miscdevice.h>
68#include <linux/ioport.h>
69#include <linux/fcntl.h>
70#include <linux/mc146818rtc.h>
71#include <linux/init.h>
72#include <linux/poll.h>
73#include <linux/proc_fs.h>
74#include <linux/seq_file.h>
75#include <linux/spinlock.h>
76#include <linux/sysctl.h>
77#include <linux/wait.h>
78#include <linux/bcd.h>
79#include <linux/delay.h>
80
81#include <asm/current.h>
82#include <asm/uaccess.h>
83#include <asm/system.h>
84
85#ifdef CONFIG_X86
86#include <asm/hpet.h>
87#endif
88
89#ifdef CONFIG_SPARC32
90#include <linux/pci.h>
91#include <asm/ebus.h>
92
93static unsigned long rtc_port;
94static int rtc_irq = PCI_IRQ_NONE;
95#endif
96
97#ifdef	CONFIG_HPET_RTC_IRQ
98#undef	RTC_IRQ
99#endif
100
101#ifdef RTC_IRQ
102static int rtc_has_irq = 1;
103#endif
104
105#ifndef CONFIG_HPET_EMULATE_RTC
106#define is_hpet_enabled()			0
107#define hpet_set_alarm_time(hrs, min, sec)	0
108#define hpet_set_periodic_freq(arg)		0
109#define hpet_mask_rtc_irq_bit(arg)		0
110#define hpet_set_rtc_irq_bit(arg)		0
111#define hpet_rtc_timer_init()			do { } while (0)
112#define hpet_rtc_dropped_irq()			0
113#ifdef RTC_IRQ
114static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
115{
116	return 0;
117}
118#endif
119#else
120extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id);
121#endif
122
123/*
124 *	We sponge a minor off of the misc major. No need slurping
125 *	up another valuable major dev number for this. If you add
126 *	an ioctl, make sure you don't conflict with SPARC's RTC
127 *	ioctls.
128 */
129
130static struct fasync_struct *rtc_async_queue;
131
132static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
133
134#ifdef RTC_IRQ
135static void rtc_dropped_irq(unsigned long data);
136
137static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
138#endif
139
140static ssize_t rtc_read(struct file *file, char __user *buf,
141			size_t count, loff_t *ppos);
142
143static int rtc_ioctl(struct inode *inode, struct file *file,
144		     unsigned int cmd, unsigned long arg);
145
146#ifdef RTC_IRQ
147static unsigned int rtc_poll(struct file *file, poll_table *wait);
148#endif
149
150static void get_rtc_alm_time(struct rtc_time *alm_tm);
151#ifdef RTC_IRQ
152static void set_rtc_irq_bit_locked(unsigned char bit);
153static void mask_rtc_irq_bit_locked(unsigned char bit);
154
155static inline void set_rtc_irq_bit(unsigned char bit)
156{
157	spin_lock_irq(&rtc_lock);
158	set_rtc_irq_bit_locked(bit);
159	spin_unlock_irq(&rtc_lock);
160}
161
162static void mask_rtc_irq_bit(unsigned char bit)
163{
164	spin_lock_irq(&rtc_lock);
165	mask_rtc_irq_bit_locked(bit);
166	spin_unlock_irq(&rtc_lock);
167}
168#endif
169
170#ifdef CONFIG_PROC_FS
171static int rtc_proc_open(struct inode *inode, struct file *file);
172#endif
173
174/*
175 *	Bits in rtc_status. (6 bits of room for future expansion)
176 */
177
178#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
179#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/
180
181/*
182 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
183 * protected by the big kernel lock. However, ioctl can still disable the timer
184 * in rtc_status and then with del_timer after the interrupt has read
185 * rtc_status but before mod_timer is called, which would then reenable the
186 * timer (but you would need to have an awful timing before you'd trip on it)
187 */
188static unsigned long rtc_status;	/* bitmapped status byte.	*/
189static unsigned long rtc_freq;		/* Current periodic IRQ rate	*/
190static unsigned long rtc_irq_data;	/* our output to the world	*/
191static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
192
193#ifdef RTC_IRQ
194/*
195 * rtc_task_lock nests inside rtc_lock.
196 */
197static DEFINE_SPINLOCK(rtc_task_lock);
198static rtc_task_t *rtc_callback;
199#endif
200
201/*
202 *	If this driver ever becomes modularised, it will be really nice
203 *	to make the epoch retain its value across module reload...
204 */
205
206static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/
207
208static const unsigned char days_in_mo[] =
209{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
210
211/*
212 * Returns true if a clock update is in progress
213 */
214static inline unsigned char rtc_is_updating(void)
215{
216	unsigned long flags;
217	unsigned char uip;
218
219	spin_lock_irqsave(&rtc_lock, flags);
220	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
221	spin_unlock_irqrestore(&rtc_lock, flags);
222	return uip;
223}
224
225#ifdef RTC_IRQ
226/*
227 *	A very tiny interrupt handler. It runs with IRQF_DISABLED set,
228 *	but there is possibility of conflicting with the set_rtc_mmss()
229 *	call (the rtc irq and the timer irq can easily run at the same
230 *	time in two different CPUs). So we need to serialize
231 *	accesses to the chip with the rtc_lock spinlock that each
232 *	architecture should implement in the timer code.
233 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
234 */
235
236irqreturn_t rtc_interrupt(int irq, void *dev_id)
237{
238	/*
239	 *	Can be an alarm interrupt, update complete interrupt,
240	 *	or a periodic interrupt. We store the status in the
241	 *	low byte and the number of interrupts received since
242	 *	the last read in the remainder of rtc_irq_data.
243	 */
244
245	spin_lock(&rtc_lock);
246	rtc_irq_data += 0x100;
247	rtc_irq_data &= ~0xff;
248	if (is_hpet_enabled()) {
249		/*
250		 * In this case it is HPET RTC interrupt handler
251		 * calling us, with the interrupt information
252		 * passed as arg1, instead of irq.
253		 */
254		rtc_irq_data |= (unsigned long)irq & 0xF0;
255	} else {
256		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
257	}
258
259	if (rtc_status & RTC_TIMER_ON)
260		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
261
262	spin_unlock(&rtc_lock);
263
264	/* Now do the rest of the actions */
265	spin_lock(&rtc_task_lock);
266	if (rtc_callback)
267		rtc_callback->func(rtc_callback->private_data);
268	spin_unlock(&rtc_task_lock);
269	wake_up_interruptible(&rtc_wait);
270
271	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
272
273	return IRQ_HANDLED;
274}
275#endif
276
277/*
278 * sysctl-tuning infrastructure.
279 */
280static ctl_table rtc_table[] = {
281	{
282		.ctl_name	= CTL_UNNUMBERED,
283		.procname	= "max-user-freq",
284		.data		= &rtc_max_user_freq,
285		.maxlen		= sizeof(int),
286		.mode		= 0644,
287		.proc_handler	= &proc_dointvec,
288	},
289	{ .ctl_name = 0 }
290};
291
292static ctl_table rtc_root[] = {
293	{
294		.ctl_name	= CTL_UNNUMBERED,
295		.procname	= "rtc",
296		.mode		= 0555,
297		.child		= rtc_table,
298	},
299	{ .ctl_name = 0 }
300};
301
302static ctl_table dev_root[] = {
303	{
304		.ctl_name	= CTL_DEV,
305		.procname	= "dev",
306		.mode		= 0555,
307		.child		= rtc_root,
308	},
309	{ .ctl_name = 0 }
310};
311
312static struct ctl_table_header *sysctl_header;
313
314static int __init init_sysctl(void)
315{
316    sysctl_header = register_sysctl_table(dev_root);
317    return 0;
318}
319
320static void __exit cleanup_sysctl(void)
321{
322    unregister_sysctl_table(sysctl_header);
323}
324
325/*
326 *	Now all the various file operations that we export.
327 */
328
329static ssize_t rtc_read(struct file *file, char __user *buf,
330			size_t count, loff_t *ppos)
331{
332#ifndef RTC_IRQ
333	return -EIO;
334#else
335	DECLARE_WAITQUEUE(wait, current);
336	unsigned long data;
337	ssize_t retval;
338
339	if (rtc_has_irq == 0)
340		return -EIO;
341
342	/*
343	 * Historically this function used to assume that sizeof(unsigned long)
344	 * is the same in userspace and kernelspace.  This lead to problems
345	 * for configurations with multiple ABIs such a the MIPS o32 and 64
346	 * ABIs supported on the same kernel.  So now we support read of both
347	 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
348	 * userspace ABI.
349	 */
350	if (count != sizeof(unsigned int) && count !=  sizeof(unsigned long))
351		return -EINVAL;
352
353	add_wait_queue(&rtc_wait, &wait);
354
355	do {
356		/* First make it right. Then make it fast. Putting this whole
357		 * block within the parentheses of a while would be too
358		 * confusing. And no, xchg() is not the answer. */
359
360		__set_current_state(TASK_INTERRUPTIBLE);
361
362		spin_lock_irq(&rtc_lock);
363		data = rtc_irq_data;
364		rtc_irq_data = 0;
365		spin_unlock_irq(&rtc_lock);
366
367		if (data != 0)
368			break;
369
370		if (file->f_flags & O_NONBLOCK) {
371			retval = -EAGAIN;
372			goto out;
373		}
374		if (signal_pending(current)) {
375			retval = -ERESTARTSYS;
376			goto out;
377		}
378		schedule();
379	} while (1);
380
381	if (count == sizeof(unsigned int)) {
382		retval = put_user(data,
383				  (unsigned int __user *)buf) ?: sizeof(int);
384	} else {
385		retval = put_user(data,
386				  (unsigned long __user *)buf) ?: sizeof(long);
387	}
388	if (!retval)
389		retval = count;
390 out:
391	__set_current_state(TASK_RUNNING);
392	remove_wait_queue(&rtc_wait, &wait);
393
394	return retval;
395#endif
396}
397
398static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
399{
400	struct rtc_time wtime;
401
402#ifdef RTC_IRQ
403	if (rtc_has_irq == 0) {
404		switch (cmd) {
405		case RTC_AIE_OFF:
406		case RTC_AIE_ON:
407		case RTC_PIE_OFF:
408		case RTC_PIE_ON:
409		case RTC_UIE_OFF:
410		case RTC_UIE_ON:
411		case RTC_IRQP_READ:
412		case RTC_IRQP_SET:
413			return -EINVAL;
414		};
415	}
416#endif
417
418	switch (cmd) {
419#ifdef RTC_IRQ
420	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
421	{
422		mask_rtc_irq_bit(RTC_AIE);
423		return 0;
424	}
425	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
426	{
427		set_rtc_irq_bit(RTC_AIE);
428		return 0;
429	}
430	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
431	{
432		/* can be called from isr via rtc_control() */
433		unsigned long flags;
434
435		spin_lock_irqsave(&rtc_lock, flags);
436		mask_rtc_irq_bit_locked(RTC_PIE);
437		if (rtc_status & RTC_TIMER_ON) {
438			rtc_status &= ~RTC_TIMER_ON;
439			del_timer(&rtc_irq_timer);
440		}
441		spin_unlock_irqrestore(&rtc_lock, flags);
442
443		return 0;
444	}
445	case RTC_PIE_ON:	/* Allow periodic ints		*/
446	{
447		/* can be called from isr via rtc_control() */
448		unsigned long flags;
449
450		/*
451		 * We don't really want Joe User enabling more
452		 * than 64Hz of interrupts on a multi-user machine.
453		 */
454		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
455						(!capable(CAP_SYS_RESOURCE)))
456			return -EACCES;
457
458		spin_lock_irqsave(&rtc_lock, flags);
459		if (!(rtc_status & RTC_TIMER_ON)) {
460			mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
461					2*HZ/100);
462			rtc_status |= RTC_TIMER_ON;
463		}
464		set_rtc_irq_bit_locked(RTC_PIE);
465		spin_unlock_irqrestore(&rtc_lock, flags);
466
467		return 0;
468	}
469	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
470	{
471		mask_rtc_irq_bit(RTC_UIE);
472		return 0;
473	}
474	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
475	{
476		set_rtc_irq_bit(RTC_UIE);
477		return 0;
478	}
479#endif
480	case RTC_ALM_READ:	/* Read the present alarm time */
481	{
482		/*
483		 * This returns a struct rtc_time. Reading >= 0xc0
484		 * means "don't care" or "match all". Only the tm_hour,
485		 * tm_min, and tm_sec values are filled in.
486		 */
487		memset(&wtime, 0, sizeof(struct rtc_time));
488		get_rtc_alm_time(&wtime);
489		break;
490	}
491	case RTC_ALM_SET:	/* Store a time into the alarm */
492	{
493		/*
494		 * This expects a struct rtc_time. Writing 0xff means
495		 * "don't care" or "match all". Only the tm_hour,
496		 * tm_min and tm_sec are used.
497		 */
498		unsigned char hrs, min, sec;
499		struct rtc_time alm_tm;
500
501		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
502				   sizeof(struct rtc_time)))
503			return -EFAULT;
504
505		hrs = alm_tm.tm_hour;
506		min = alm_tm.tm_min;
507		sec = alm_tm.tm_sec;
508
509		spin_lock_irq(&rtc_lock);
510		if (hpet_set_alarm_time(hrs, min, sec)) {
511			/*
512			 * Fallthru and set alarm time in CMOS too,
513			 * so that we will get proper value in RTC_ALM_READ
514			 */
515		}
516		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
517							RTC_ALWAYS_BCD) {
518			if (sec < 60)
519				BIN_TO_BCD(sec);
520			else
521				sec = 0xff;
522
523			if (min < 60)
524				BIN_TO_BCD(min);
525			else
526				min = 0xff;
527
528			if (hrs < 24)
529				BIN_TO_BCD(hrs);
530			else
531				hrs = 0xff;
532		}
533		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
534		CMOS_WRITE(min, RTC_MINUTES_ALARM);
535		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
536		spin_unlock_irq(&rtc_lock);
537
538		return 0;
539	}
540	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
541	{
542		memset(&wtime, 0, sizeof(struct rtc_time));
543		rtc_get_rtc_time(&wtime);
544		break;
545	}
546	case RTC_SET_TIME:	/* Set the RTC */
547	{
548		struct rtc_time rtc_tm;
549		unsigned char mon, day, hrs, min, sec, leap_yr;
550		unsigned char save_control, save_freq_select;
551		unsigned int yrs;
552#ifdef CONFIG_MACH_DECSTATION
553		unsigned int real_yrs;
554#endif
555
556		if (!capable(CAP_SYS_TIME))
557			return -EACCES;
558
559		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
560				   sizeof(struct rtc_time)))
561			return -EFAULT;
562
563		yrs = rtc_tm.tm_year + 1900;
564		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
565		day = rtc_tm.tm_mday;
566		hrs = rtc_tm.tm_hour;
567		min = rtc_tm.tm_min;
568		sec = rtc_tm.tm_sec;
569
570		if (yrs < 1970)
571			return -EINVAL;
572
573		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
574
575		if ((mon > 12) || (day == 0))
576			return -EINVAL;
577
578		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
579			return -EINVAL;
580
581		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
582			return -EINVAL;
583
584		yrs -= epoch;
585		if (yrs > 255)		/* They are unsigned */
586			return -EINVAL;
587
588		spin_lock_irq(&rtc_lock);
589#ifdef CONFIG_MACH_DECSTATION
590		real_yrs = yrs;
591		yrs = 72;
592
593		/*
594		 * We want to keep the year set to 73 until March
595		 * for non-leap years, so that Feb, 29th is handled
596		 * correctly.
597		 */
598		if (!leap_yr && mon < 3) {
599			real_yrs--;
600			yrs = 73;
601		}
602#endif
603		/* These limits and adjustments are independent of
604		 * whether the chip is in binary mode or not.
605		 */
606		if (yrs > 169) {
607			spin_unlock_irq(&rtc_lock);
608			return -EINVAL;
609		}
610		if (yrs >= 100)
611			yrs -= 100;
612
613		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
614		    || RTC_ALWAYS_BCD) {
615			BIN_TO_BCD(sec);
616			BIN_TO_BCD(min);
617			BIN_TO_BCD(hrs);
618			BIN_TO_BCD(day);
619			BIN_TO_BCD(mon);
620			BIN_TO_BCD(yrs);
621		}
622
623		save_control = CMOS_READ(RTC_CONTROL);
624		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
625		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
626		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
627
628#ifdef CONFIG_MACH_DECSTATION
629		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
630#endif
631		CMOS_WRITE(yrs, RTC_YEAR);
632		CMOS_WRITE(mon, RTC_MONTH);
633		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
634		CMOS_WRITE(hrs, RTC_HOURS);
635		CMOS_WRITE(min, RTC_MINUTES);
636		CMOS_WRITE(sec, RTC_SECONDS);
637
638		CMOS_WRITE(save_control, RTC_CONTROL);
639		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
640
641		spin_unlock_irq(&rtc_lock);
642		return 0;
643	}
644#ifdef RTC_IRQ
645	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
646	{
647		return put_user(rtc_freq, (unsigned long __user *)arg);
648	}
649	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
650	{
651		int tmp = 0;
652		unsigned char val;
653		/* can be called from isr via rtc_control() */
654		unsigned long flags;
655
656		/*
657		 * The max we can do is 8192Hz.
658		 */
659		if ((arg < 2) || (arg > 8192))
660			return -EINVAL;
661		/*
662		 * We don't really want Joe User generating more
663		 * than 64Hz of interrupts on a multi-user machine.
664		 */
665		if (!kernel && (arg > rtc_max_user_freq) &&
666					!capable(CAP_SYS_RESOURCE))
667			return -EACCES;
668
669		while (arg > (1<<tmp))
670			tmp++;
671
672		/*
673		 * Check that the input was really a power of 2.
674		 */
675		if (arg != (1<<tmp))
676			return -EINVAL;
677
678		spin_lock_irqsave(&rtc_lock, flags);
679		if (hpet_set_periodic_freq(arg)) {
680			spin_unlock_irqrestore(&rtc_lock, flags);
681			return 0;
682		}
683		rtc_freq = arg;
684
685		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
686		val |= (16 - tmp);
687		CMOS_WRITE(val, RTC_FREQ_SELECT);
688		spin_unlock_irqrestore(&rtc_lock, flags);
689		return 0;
690	}
691#endif
692	case RTC_EPOCH_READ:	/* Read the epoch.	*/
693	{
694		return put_user(epoch, (unsigned long __user *)arg);
695	}
696	case RTC_EPOCH_SET:	/* Set the epoch.	*/
697	{
698		/*
699		 * There were no RTC clocks before 1900.
700		 */
701		if (arg < 1900)
702			return -EINVAL;
703
704		if (!capable(CAP_SYS_TIME))
705			return -EACCES;
706
707		epoch = arg;
708		return 0;
709	}
710	default:
711		return -ENOTTY;
712	}
713	return copy_to_user((void __user *)arg,
714			    &wtime, sizeof wtime) ? -EFAULT : 0;
715}
716
717static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
718		     unsigned long arg)
719{
720	return rtc_do_ioctl(cmd, arg, 0);
721}
722
723/*
724 *	We enforce only one user at a time here with the open/close.
725 *	Also clear the previous interrupt data on an open, and clean
726 *	up things on a close.
727 */
728
729/* We use rtc_lock to protect against concurrent opens. So the BKL is not
730 * needed here. Or anywhere else in this driver. */
731static int rtc_open(struct inode *inode, struct file *file)
732{
733	spin_lock_irq(&rtc_lock);
734
735	if (rtc_status & RTC_IS_OPEN)
736		goto out_busy;
737
738	rtc_status |= RTC_IS_OPEN;
739
740	rtc_irq_data = 0;
741	spin_unlock_irq(&rtc_lock);
742	return 0;
743
744out_busy:
745	spin_unlock_irq(&rtc_lock);
746	return -EBUSY;
747}
748
749static int rtc_fasync(int fd, struct file *filp, int on)
750{
751	return fasync_helper(fd, filp, on, &rtc_async_queue);
752}
753
754static int rtc_release(struct inode *inode, struct file *file)
755{
756#ifdef RTC_IRQ
757	unsigned char tmp;
758
759	if (rtc_has_irq == 0)
760		goto no_irq;
761
762	/*
763	 * Turn off all interrupts once the device is no longer
764	 * in use, and clear the data.
765	 */
766
767	spin_lock_irq(&rtc_lock);
768	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
769		tmp = CMOS_READ(RTC_CONTROL);
770		tmp &=  ~RTC_PIE;
771		tmp &=  ~RTC_AIE;
772		tmp &=  ~RTC_UIE;
773		CMOS_WRITE(tmp, RTC_CONTROL);
774		CMOS_READ(RTC_INTR_FLAGS);
775	}
776	if (rtc_status & RTC_TIMER_ON) {
777		rtc_status &= ~RTC_TIMER_ON;
778		del_timer(&rtc_irq_timer);
779	}
780	spin_unlock_irq(&rtc_lock);
781
782	if (file->f_flags & FASYNC)
783		rtc_fasync(-1, file, 0);
784no_irq:
785#endif
786
787	spin_lock_irq(&rtc_lock);
788	rtc_irq_data = 0;
789	rtc_status &= ~RTC_IS_OPEN;
790	spin_unlock_irq(&rtc_lock);
791
792	return 0;
793}
794
795#ifdef RTC_IRQ
796/* Called without the kernel lock - fine */
797static unsigned int rtc_poll(struct file *file, poll_table *wait)
798{
799	unsigned long l;
800
801	if (rtc_has_irq == 0)
802		return 0;
803
804	poll_wait(file, &rtc_wait, wait);
805
806	spin_lock_irq(&rtc_lock);
807	l = rtc_irq_data;
808	spin_unlock_irq(&rtc_lock);
809
810	if (l != 0)
811		return POLLIN | POLLRDNORM;
812	return 0;
813}
814#endif
815
816int rtc_register(rtc_task_t *task)
817{
818#ifndef RTC_IRQ
819	return -EIO;
820#else
821	if (task == NULL || task->func == NULL)
822		return -EINVAL;
823	spin_lock_irq(&rtc_lock);
824	if (rtc_status & RTC_IS_OPEN) {
825		spin_unlock_irq(&rtc_lock);
826		return -EBUSY;
827	}
828	spin_lock(&rtc_task_lock);
829	if (rtc_callback) {
830		spin_unlock(&rtc_task_lock);
831		spin_unlock_irq(&rtc_lock);
832		return -EBUSY;
833	}
834	rtc_status |= RTC_IS_OPEN;
835	rtc_callback = task;
836	spin_unlock(&rtc_task_lock);
837	spin_unlock_irq(&rtc_lock);
838	return 0;
839#endif
840}
841EXPORT_SYMBOL(rtc_register);
842
843int rtc_unregister(rtc_task_t *task)
844{
845#ifndef RTC_IRQ
846	return -EIO;
847#else
848	unsigned char tmp;
849
850	spin_lock_irq(&rtc_lock);
851	spin_lock(&rtc_task_lock);
852	if (rtc_callback != task) {
853		spin_unlock(&rtc_task_lock);
854		spin_unlock_irq(&rtc_lock);
855		return -ENXIO;
856	}
857	rtc_callback = NULL;
858
859	/* disable controls */
860	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
861		tmp = CMOS_READ(RTC_CONTROL);
862		tmp &= ~RTC_PIE;
863		tmp &= ~RTC_AIE;
864		tmp &= ~RTC_UIE;
865		CMOS_WRITE(tmp, RTC_CONTROL);
866		CMOS_READ(RTC_INTR_FLAGS);
867	}
868	if (rtc_status & RTC_TIMER_ON) {
869		rtc_status &= ~RTC_TIMER_ON;
870		del_timer(&rtc_irq_timer);
871	}
872	rtc_status &= ~RTC_IS_OPEN;
873	spin_unlock(&rtc_task_lock);
874	spin_unlock_irq(&rtc_lock);
875	return 0;
876#endif
877}
878EXPORT_SYMBOL(rtc_unregister);
879
880int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
881{
882#ifndef RTC_IRQ
883	return -EIO;
884#else
885	unsigned long flags;
886	if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
887		return -EINVAL;
888	spin_lock_irqsave(&rtc_task_lock, flags);
889	if (rtc_callback != task) {
890		spin_unlock_irqrestore(&rtc_task_lock, flags);
891		return -ENXIO;
892	}
893	spin_unlock_irqrestore(&rtc_task_lock, flags);
894	return rtc_do_ioctl(cmd, arg, 1);
895#endif
896}
897EXPORT_SYMBOL(rtc_control);
898
899/*
900 *	The various file operations we support.
901 */
902
903static const struct file_operations rtc_fops = {
904	.owner		= THIS_MODULE,
905	.llseek		= no_llseek,
906	.read		= rtc_read,
907#ifdef RTC_IRQ
908	.poll		= rtc_poll,
909#endif
910	.ioctl		= rtc_ioctl,
911	.open		= rtc_open,
912	.release	= rtc_release,
913	.fasync		= rtc_fasync,
914};
915
916static struct miscdevice rtc_dev = {
917	.minor		= RTC_MINOR,
918	.name		= "rtc",
919	.fops		= &rtc_fops,
920};
921
922#ifdef CONFIG_PROC_FS
923static const struct file_operations rtc_proc_fops = {
924	.owner		= THIS_MODULE,
925	.open		= rtc_proc_open,
926	.read		= seq_read,
927	.llseek		= seq_lseek,
928	.release	= single_release,
929};
930#endif
931
932static resource_size_t rtc_size;
933
934static struct resource * __init rtc_request_region(resource_size_t size)
935{
936	struct resource *r;
937
938	if (RTC_IOMAPPED)
939		r = request_region(RTC_PORT(0), size, "rtc");
940	else
941		r = request_mem_region(RTC_PORT(0), size, "rtc");
942
943	if (r)
944		rtc_size = size;
945
946	return r;
947}
948
949static void rtc_release_region(void)
950{
951	if (RTC_IOMAPPED)
952		release_region(RTC_PORT(0), rtc_size);
953	else
954		release_mem_region(RTC_PORT(0), rtc_size);
955}
956
957static int __init rtc_init(void)
958{
959#ifdef CONFIG_PROC_FS
960	struct proc_dir_entry *ent;
961#endif
962#if defined(__alpha__) || defined(__mips__)
963	unsigned int year, ctrl;
964	char *guess = NULL;
965#endif
966#ifdef CONFIG_SPARC32
967	struct linux_ebus *ebus;
968	struct linux_ebus_device *edev;
969#else
970	void *r;
971#ifdef RTC_IRQ
972	irq_handler_t rtc_int_handler_ptr;
973#endif
974#endif
975
976#ifdef CONFIG_SPARC32
977	for_each_ebus(ebus) {
978		for_each_ebusdev(edev, ebus) {
979			if (strcmp(edev->prom_node->name, "rtc") == 0) {
980				rtc_port = edev->resource[0].start;
981				rtc_irq = edev->irqs[0];
982				goto found;
983			}
984		}
985	}
986	rtc_has_irq = 0;
987	printk(KERN_ERR "rtc_init: no PC rtc found\n");
988	return -EIO;
989
990found:
991	if (rtc_irq == PCI_IRQ_NONE) {
992		rtc_has_irq = 0;
993		goto no_irq;
994	}
995
996	/*
997	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
998	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
999	 */
1000	if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1001			(void *)&rtc_port)) {
1002		rtc_has_irq = 0;
1003		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1004		return -EIO;
1005	}
1006no_irq:
1007#else
1008	r = rtc_request_region(RTC_IO_EXTENT);
1009
1010	/*
1011	 * If we've already requested a smaller range (for example, because
1012	 * PNPBIOS or ACPI told us how the device is configured), the request
1013	 * above might fail because it's too big.
1014	 *
1015	 * If so, request just the range we actually use.
1016	 */
1017	if (!r)
1018		r = rtc_request_region(RTC_IO_EXTENT_USED);
1019	if (!r) {
1020#ifdef RTC_IRQ
1021		rtc_has_irq = 0;
1022#endif
1023		printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1024		       (long)(RTC_PORT(0)));
1025		return -EIO;
1026	}
1027
1028#ifdef RTC_IRQ
1029	if (is_hpet_enabled()) {
1030		rtc_int_handler_ptr = hpet_rtc_interrupt;
1031	} else {
1032		rtc_int_handler_ptr = rtc_interrupt;
1033	}
1034
1035	if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1036			"rtc", NULL)) {
1037		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1038		rtc_has_irq = 0;
1039		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1040		rtc_release_region();
1041
1042		return -EIO;
1043	}
1044	hpet_rtc_timer_init();
1045
1046#endif
1047
1048#endif /* CONFIG_SPARC32 vs. others */
1049
1050	if (misc_register(&rtc_dev)) {
1051#ifdef RTC_IRQ
1052		free_irq(RTC_IRQ, NULL);
1053		rtc_has_irq = 0;
1054#endif
1055		rtc_release_region();
1056		return -ENODEV;
1057	}
1058
1059#ifdef CONFIG_PROC_FS
1060	ent = create_proc_entry("driver/rtc", 0, NULL);
1061	if (ent)
1062		ent->proc_fops = &rtc_proc_fops;
1063	else
1064		printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1065#endif
1066
1067#if defined(__alpha__) || defined(__mips__)
1068	rtc_freq = HZ;
1069
1070	/* Each operating system on an Alpha uses its own epoch.
1071	   Let's try to guess which one we are using now. */
1072
1073	if (rtc_is_updating() != 0)
1074		msleep(20);
1075
1076	spin_lock_irq(&rtc_lock);
1077	year = CMOS_READ(RTC_YEAR);
1078	ctrl = CMOS_READ(RTC_CONTROL);
1079	spin_unlock_irq(&rtc_lock);
1080
1081	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1082		BCD_TO_BIN(year);       /* This should never happen... */
1083
1084	if (year < 20) {
1085		epoch = 2000;
1086		guess = "SRM (post-2000)";
1087	} else if (year >= 20 && year < 48) {
1088		epoch = 1980;
1089		guess = "ARC console";
1090	} else if (year >= 48 && year < 72) {
1091		epoch = 1952;
1092		guess = "Digital UNIX";
1093#if defined(__mips__)
1094	} else if (year >= 72 && year < 74) {
1095		epoch = 2000;
1096		guess = "Digital DECstation";
1097#else
1098	} else if (year >= 70) {
1099		epoch = 1900;
1100		guess = "Standard PC (1900)";
1101#endif
1102	}
1103	if (guess)
1104		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1105			guess, epoch);
1106#endif
1107#ifdef RTC_IRQ
1108	if (rtc_has_irq == 0)
1109		goto no_irq2;
1110
1111	spin_lock_irq(&rtc_lock);
1112	rtc_freq = 1024;
1113	if (!hpet_set_periodic_freq(rtc_freq)) {
1114		/*
1115		 * Initialize periodic frequency to CMOS reset default,
1116		 * which is 1024Hz
1117		 */
1118		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1119			   RTC_FREQ_SELECT);
1120	}
1121	spin_unlock_irq(&rtc_lock);
1122no_irq2:
1123#endif
1124
1125	(void) init_sysctl();
1126
1127	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1128
1129	return 0;
1130}
1131
1132static void __exit rtc_exit(void)
1133{
1134	cleanup_sysctl();
1135	remove_proc_entry("driver/rtc", NULL);
1136	misc_deregister(&rtc_dev);
1137
1138#ifdef CONFIG_SPARC32
1139	if (rtc_has_irq)
1140		free_irq(rtc_irq, &rtc_port);
1141#else
1142	rtc_release_region();
1143#ifdef RTC_IRQ
1144	if (rtc_has_irq)
1145		free_irq(RTC_IRQ, NULL);
1146#endif
1147#endif /* CONFIG_SPARC32 */
1148}
1149
1150module_init(rtc_init);
1151module_exit(rtc_exit);
1152
1153#ifdef RTC_IRQ
1154/*
1155 *	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1156 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
1157 *	Since the interrupt handler doesn't get called, the IRQ status
1158 *	byte doesn't get read, and the RTC stops generating interrupts.
1159 *	A timer is set, and will call this function if/when that happens.
1160 *	To get it out of this stalled state, we just read the status.
1161 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1162 *	(You *really* shouldn't be trying to use a non-realtime system
1163 *	for something that requires a steady > 1KHz signal anyways.)
1164 */
1165
1166static void rtc_dropped_irq(unsigned long data)
1167{
1168	unsigned long freq;
1169
1170	spin_lock_irq(&rtc_lock);
1171
1172	if (hpet_rtc_dropped_irq()) {
1173		spin_unlock_irq(&rtc_lock);
1174		return;
1175	}
1176
1177	/* Just in case someone disabled the timer from behind our back... */
1178	if (rtc_status & RTC_TIMER_ON)
1179		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1180
1181	rtc_irq_data += ((rtc_freq/HZ)<<8);
1182	rtc_irq_data &= ~0xff;
1183	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */
1184
1185	freq = rtc_freq;
1186
1187	spin_unlock_irq(&rtc_lock);
1188
1189	if (printk_ratelimit()) {
1190		printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1191			freq);
1192	}
1193
1194	/* Now we have new data */
1195	wake_up_interruptible(&rtc_wait);
1196
1197	kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1198}
1199#endif
1200
1201#ifdef CONFIG_PROC_FS
1202/*
1203 *	Info exported via "/proc/driver/rtc".
1204 */
1205
1206static int rtc_proc_show(struct seq_file *seq, void *v)
1207{
1208#define YN(bit) ((ctrl & bit) ? "yes" : "no")
1209#define NY(bit) ((ctrl & bit) ? "no" : "yes")
1210	struct rtc_time tm;
1211	unsigned char batt, ctrl;
1212	unsigned long freq;
1213
1214	spin_lock_irq(&rtc_lock);
1215	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1216	ctrl = CMOS_READ(RTC_CONTROL);
1217	freq = rtc_freq;
1218	spin_unlock_irq(&rtc_lock);
1219
1220
1221	rtc_get_rtc_time(&tm);
1222
1223	/*
1224	 * There is no way to tell if the luser has the RTC set for local
1225	 * time or for Universal Standard Time (GMT). Probably local though.
1226	 */
1227	seq_printf(seq,
1228		   "rtc_time\t: %02d:%02d:%02d\n"
1229		   "rtc_date\t: %04d-%02d-%02d\n"
1230		   "rtc_epoch\t: %04lu\n",
1231		   tm.tm_hour, tm.tm_min, tm.tm_sec,
1232		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1233
1234	get_rtc_alm_time(&tm);
1235
1236	/*
1237	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1238	 * match any value for that particular field. Values that are
1239	 * greater than a valid time, but less than 0xc0 shouldn't appear.
1240	 */
1241	seq_puts(seq, "alarm\t\t: ");
1242	if (tm.tm_hour <= 24)
1243		seq_printf(seq, "%02d:", tm.tm_hour);
1244	else
1245		seq_puts(seq, "**:");
1246
1247	if (tm.tm_min <= 59)
1248		seq_printf(seq, "%02d:", tm.tm_min);
1249	else
1250		seq_puts(seq, "**:");
1251
1252	if (tm.tm_sec <= 59)
1253		seq_printf(seq, "%02d\n", tm.tm_sec);
1254	else
1255		seq_puts(seq, "**\n");
1256
1257	seq_printf(seq,
1258		   "DST_enable\t: %s\n"
1259		   "BCD\t\t: %s\n"
1260		   "24hr\t\t: %s\n"
1261		   "square_wave\t: %s\n"
1262		   "alarm_IRQ\t: %s\n"
1263		   "update_IRQ\t: %s\n"
1264		   "periodic_IRQ\t: %s\n"
1265		   "periodic_freq\t: %ld\n"
1266		   "batt_status\t: %s\n",
1267		   YN(RTC_DST_EN),
1268		   NY(RTC_DM_BINARY),
1269		   YN(RTC_24H),
1270		   YN(RTC_SQWE),
1271		   YN(RTC_AIE),
1272		   YN(RTC_UIE),
1273		   YN(RTC_PIE),
1274		   freq,
1275		   batt ? "okay" : "dead");
1276
1277	return  0;
1278#undef YN
1279#undef NY
1280}
1281
1282static int rtc_proc_open(struct inode *inode, struct file *file)
1283{
1284	return single_open(file, rtc_proc_show, NULL);
1285}
1286#endif
1287
1288void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1289{
1290	unsigned long uip_watchdog = jiffies, flags;
1291	unsigned char ctrl;
1292#ifdef CONFIG_MACH_DECSTATION
1293	unsigned int real_year;
1294#endif
1295
1296	/*
1297	 * read RTC once any update in progress is done. The update
1298	 * can take just over 2ms. We wait 20ms. There is no need to
1299	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1300	 * If you need to know *exactly* when a second has started, enable
1301	 * periodic update complete interrupts, (via ioctl) and then
1302	 * immediately read /dev/rtc which will block until you get the IRQ.
1303	 * Once the read clears, read the RTC time (again via ioctl). Easy.
1304	 */
1305
1306	while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100)
1307		cpu_relax();
1308
1309	/*
1310	 * Only the values that we read from the RTC are set. We leave
1311	 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1312	 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1313	 * only updated by the RTC when initially set to a non-zero value.
1314	 */
1315	spin_lock_irqsave(&rtc_lock, flags);
1316	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1317	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1318	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1319	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1320	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1321	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1322	/* Only set from 2.6.16 onwards */
1323	rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1324
1325#ifdef CONFIG_MACH_DECSTATION
1326	real_year = CMOS_READ(RTC_DEC_YEAR);
1327#endif
1328	ctrl = CMOS_READ(RTC_CONTROL);
1329	spin_unlock_irqrestore(&rtc_lock, flags);
1330
1331	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1332		BCD_TO_BIN(rtc_tm->tm_sec);
1333		BCD_TO_BIN(rtc_tm->tm_min);
1334		BCD_TO_BIN(rtc_tm->tm_hour);
1335		BCD_TO_BIN(rtc_tm->tm_mday);
1336		BCD_TO_BIN(rtc_tm->tm_mon);
1337		BCD_TO_BIN(rtc_tm->tm_year);
1338		BCD_TO_BIN(rtc_tm->tm_wday);
1339	}
1340
1341#ifdef CONFIG_MACH_DECSTATION
1342	rtc_tm->tm_year += real_year - 72;
1343#endif
1344
1345	/*
1346	 * Account for differences between how the RTC uses the values
1347	 * and how they are defined in a struct rtc_time;
1348	 */
1349	rtc_tm->tm_year += epoch - 1900;
1350	if (rtc_tm->tm_year <= 69)
1351		rtc_tm->tm_year += 100;
1352
1353	rtc_tm->tm_mon--;
1354}
1355
1356static void get_rtc_alm_time(struct rtc_time *alm_tm)
1357{
1358	unsigned char ctrl;
1359
1360	/*
1361	 * Only the values that we read from the RTC are set. That
1362	 * means only tm_hour, tm_min, and tm_sec.
1363	 */
1364	spin_lock_irq(&rtc_lock);
1365	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1366	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1367	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1368	ctrl = CMOS_READ(RTC_CONTROL);
1369	spin_unlock_irq(&rtc_lock);
1370
1371	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1372		BCD_TO_BIN(alm_tm->tm_sec);
1373		BCD_TO_BIN(alm_tm->tm_min);
1374		BCD_TO_BIN(alm_tm->tm_hour);
1375	}
1376}
1377
1378#ifdef RTC_IRQ
1379/*
1380 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1381 * Rumour has it that if you frob the interrupt enable/disable
1382 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1383 * ensure you actually start getting interrupts. Probably for
1384 * compatibility with older/broken chipset RTC implementations.
1385 * We also clear out any old irq data after an ioctl() that
1386 * meddles with the interrupt enable/disable bits.
1387 */
1388
1389static void mask_rtc_irq_bit_locked(unsigned char bit)
1390{
1391	unsigned char val;
1392
1393	if (hpet_mask_rtc_irq_bit(bit))
1394		return;
1395	val = CMOS_READ(RTC_CONTROL);
1396	val &=  ~bit;
1397	CMOS_WRITE(val, RTC_CONTROL);
1398	CMOS_READ(RTC_INTR_FLAGS);
1399
1400	rtc_irq_data = 0;
1401}
1402
1403static void set_rtc_irq_bit_locked(unsigned char bit)
1404{
1405	unsigned char val;
1406
1407	if (hpet_set_rtc_irq_bit(bit))
1408		return;
1409	val = CMOS_READ(RTC_CONTROL);
1410	val |= bit;
1411	CMOS_WRITE(val, RTC_CONTROL);
1412	CMOS_READ(RTC_INTR_FLAGS);
1413
1414	rtc_irq_data = 0;
1415}
1416#endif
1417
1418MODULE_AUTHOR("Paul Gortmaker");
1419MODULE_LICENSE("GPL");
1420MODULE_ALIAS_MISCDEV(RTC_MINOR);
1421